
Bit-Stream Processing with No Bit-Stream: E�icient So�ware
Simulation of Stochastic Vision Machines
Sercan Aygun

University of Louisiana at Lafayette
Lafayette, LA, USA

sercan.aygun@louisiana.edu

M. Hassan Naja�
University of Louisiana at Lafayette

Lafayette, LA, USA
naja�@louisiana.edu

Mohsen Imani
University of California Irvine

Irvine, CA, USA
m.imani@uci.edu

Ece Olcay Gunes
Istanbul Technical University

Istanbul, Turkey
gunesec@itu.edu.tr

ABSTRACT

Stochastic computing (SC) is an emerging paradigm that has come

to the fore in computer vision applications in the last decade. Com-

plex arithmetic circuitry is reduced to simple logic gates, fed with

uniform random bit-streams. Due to the requirement of long bit-

streams, the computer-aided simulation of SC systems is facing run-

time and memory-use challenges. This work presents an e�cient

approach for emulating SC-based systems. The proposed simulation

technique does not utilize actual bit-streams but produces similar

results as if the traditional stochastic bit-streams were processed.

The data are processed with the aid of a correlation-controlled

contingency table (CT) construct. Our technique emulates three

state-of-the-art stochastic bit-streams, namely, bit-streams with

binomial distribution, pseudo-random, and low-discrepancy bit-

streams. We validate the proposed technique by emulating three

new SC image processing designs. We propose novel SC designs

for (i) template matching, (ii) image compositing, and (iii) bilinear

interpolation. Our experimental results show that our simulation

technique provides comparable accuracy to processing actual bit-

streams, but at a signi�cantly lower run-time and memory usage.

CCS CONCEPTS

•Hardware→ Emerging simulation; • Computing method-

ologies → Computer vision.

KEYWORDS

computer vision, random sources, simulation, stochastic computing

ACM Reference Format:

Sercan Aygun, M. Hassan Naja�, Mohsen Imani, and Ece Olcay Gunes. 2023.

Bit-Stream Processing with No Bit-Stream: E�cient Software Simulation of

Stochastic Vision Machines . In Proceedings of the Great Lakes Symposium

on VLSI 2023 (GLSVLSI ’23), June 5–7, 2023, Knoxville, TN, USA. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3583781.3590217

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0125-2/23/06. . . $15.00
https://doi.org/10.1145/3583781.3590217

1 INTRODUCTION

Stochastic computing (SC) [5, 22] is re-emerging as an alternative

method of computing, replacing conventional binary computing. SC

o�ers hardware-friendly solutions for various applications, from vi-

sion to learning machines [4, 17–19, 23]. Low-implementation cost

and high tolerance to noise are the main advantages of computation

in the stochastic domain. Arithmetic operations are performed by

simple bit-wise operations on uniform (random) bit-streams. For

example, multiplication is realized by bit-wise AND operation on

the bit-streams [5]. Both approximate and accurate computations

are feasible with SC by structuring bit-streams and controlling their

length [22]. More than 50× to 100× reduction in the hardware cost

is common compared to the cost of binary counterparts [5]. Tolerat-

ing high rates of noise (e.g., 30%-50%) is another appealing property,

as all digits of an SC bit-stream have the same weight.

An important step in designing SC systems is evaluating their

performance and verifying their functionality by simulating their

bit-level operations with software programs. Scsynth [2] and Bit-

SAD [12] are examples of such programs. In SC, the accuracy of

computations increases by increasing the bit-stream length. To rep-

resent a data value with a binary resolution 1
2= , a bit-stream with

a length of at least # = 2= bits is needed [9]. This means that the

length of a stochastic bit-stream increases exponentially with the

resolution. Depending on the needed accuracy, SC systems process

bit-streams with di�erent lengths, from short lengths of 23 to longer

lengths of 103-104 bits. Computer simulation of SC systems with

long bit-streams often takes a long latency and a high amount of

memory. Even for simulation of basic SC operations such as multi-

plication of two data by bit-wise ANDing two operand bit-streams,

long latency is inevitable when very long bit-streams are processed.

Aygun and Gunes [9] recently proposed a contingency table (CT)

approach to perform stochastic logic operations without using bit-

by-bit processing. This work extends the CT-based technique of

simulating SC systems by modeling three state-of-the-art stochastic

bit-streams, namely bit-streams with binomial distribution, linear-

feedback shift register (LFSR)-based pseudo-random bit-streams,

and Sobol-based low-discrepancy (LD) bit-streams. In summary,

the main contributions of this work are as follows:

• Fast and e�cient CT-based emulation of state-of-the-art

stochastic bit-streams with binomial, LFSR-based pseudo-

random, and Sobol-based LD distribution.

273

https://doi.org/10.1145/3583781.3590217
https://doi.org/10.1145/3583781.3590217
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583781.3590217&domain=pdf&date_stamp=2023-06-05

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Sercan Aygun, M. Hassan Najafi, Mohsen Imani, & Ece Olcay Gunes.

v

Bit-by-bit processing

Scalar

processing

CT

primitives

Bit-stream generation Scalar processing

b = X1 – 𝑎
c = X2 – 𝑎
d = N – (𝑎 + b + c)

I IISetting CT𝒂𝒎𝒂𝒙 𝒂𝒎𝒊𝒏𝒂𝒛𝒆𝒓𝒐𝑆𝐶𝐶≈ 1 𝑆𝐶𝐶≈ −1❌
❌

(a) (b)

𝑎
‘11’ ‘10’

𝑏𝑐
‘01’ ‘00’

𝑑10101010

𝑏 𝑐 𝑑
𝑿𝟏
6 1

1 0

0

04

10111101𝑿𝟐
1

0 1𝑎
AND

OR

XOR

NAND

NOR

XNOR

𝑎𝑎 + 𝑏 + 𝑐𝑏 + 𝑐𝑏 + 𝑐 + 𝑑𝑑𝑎 + 𝑑
Figure 1: (a) Bit-by-bit processing, and solution with scalar

processing. (b) CT setting and logic operations with scalars.

• Proposing novel SC image processing designs for template

matching, image compositing, and bilinear interpolation.

• Evaluating the CT-based SC simulation at application level

for the three new image processing case studies.

• Signi�cant run-time and memory usage reduction.

2 BACKGROUND

2.1 Stochastic Bit-Stream Processing

This section brie�y reviews SC’s basics, including data encoding and

correlation/independence requirements. Unipolar encoding (UPE)

and bipolar encoding (BPE) are the two most common methods

for encoding data in SC. Both UPE and BPE can encode a positive

scalar value - where 0 ≤ - ≤ # (or a probability value -
where

0 ≤ -
≤ 1). However, BPE supports negative values −# ≤ - ≤

(or −1 ≤ -
≤ 1). The trade-o� is that BPE needs twice bit-stream

length for the same accuracy. The number of logic-1s in a bit-stream

determines the bit-stream value. Assume that ^ represents an en-

coded bit-stream and the 8Cℎ bit is accessed by ^ (8). In UPE, the

total number of logic-1s,
∑#
8=1 ^ (8), divided by # determines the

bit-stream value, so % =

∑

#

8=1 ^ (8)
. On the other hand, in BPE, the

bit-stream value is determined by % =

∑

#

8=1 ^ (8)
= (-# + 1)/2.

Correlation between stochastic bit-streams is another important

concept in SC. Some operations, such as multiplication using logical

AND, require uncorrelated or independent operand bit-streams for

accurate operation. Some other operations, such as absolute value

subtraction using XOR, minimum using AND, and maximum using

OR, require maximally correlated operands for correct performance.

Stochastic cross-correlation ((��) has been frequently used in the

literature to quantify the correlation between two bit-streams [3].

The piecewise (�� function shown in eq. (1) returns a correlation

value within the [−1, 1] interval. In the formula, the values denoted

by 0, 1, 2 , and 3 are logic pairs 11, 10, 01, and 00, respectively, from

the same bit positions of the two bit-streams.

(�� =

{

03−12
#×<8= (0+1,0+2)−(0+1)×(0+2)

, 8 5 03 > 12

03−12
(0+1)×(0+2)−#×<0G (0−3,0)

, 4;B4
(1)

2.2 Contingency Table (CT)

The CT approach has emerged as a promising solution for run-time-

e�cient and memory-aware simulation of SC systems [9]. Instead

of generating and processing actual stochastic bit-streams, the CT

method calculates the desired logic operation over the scalar input

operands that make up the bit-streams. For any two operands (bit-

streams), a CT is built. Correlation is the key parameter during the

setup of a CT. CT is a 2×2 table with four basic primitives: 0, 1, 2 ,

and 3 . Each primitive holds the cumulative sum of the four possible

states from all corresponding bit positions in the two bit-streams

(0: ^1(8) = 1, ^2(8) = 1 → ‘11’, 1: ^1(8) = 1, ^2(8) = 0 → ‘10’,

2: ^1(8) = 0, ^2(8) = 1 → ‘01’, and 3 : ^1(8) = 0, ^2(8) = 0 →

‘00’). Fig. 1 (a) compares traditional bit-stream processing and CT

approaches. The CT approach processes scalar values directly rather

than converting them to bit-stream format; thereby: (i) there is no

bit-stream generation, and (ii) latency-prone bit-by-bit processing

is avoided.

Fig. 1 (b) shows how a CT is set. The inputs are: 1) # , 2) the

input scalars (-1, -2), and 3) the target correlation. 0 is the �rst

CT primitive we �nd. It is called the prior primitive. Since 0 rep-

resents the number of overlapping 1s between two bit-streams, it

denotes the number of 1s that occur at the output of logical AND

operation. The determination of 0 is an antecedent for other primi-

tives and depends on the correlation. According to the (�� metric,

the three critical points in the correlation spectrum between −1

and 1 can be expressed with: 0<0G , 0<8= , and 0I4A> . Respectively,

these are the maximum correlation where (�� converges to 1, the

minimum correlation where (�� converges to −1, and near-zero

correlation where (�� is around zero. The near-zero correlation

is particularly critical for operations such as multiplication (AND

in UPE, XNOR in BPE) where uncorrelated bit-streams are needed.

As shown in Fig. 1 (b), the three critical correlation points, 0<0G ,

0I4A> , and 0<8= , are determined during CT setup and initiate the

corresponding�)"�- ,�) 0, and�)"�# tables, respectively. The

maximum value of 0, 0<0G , is determined by<8=(-1, -2). The min-

imum value of 0, 0<8= , is determined by<0G (0, -1 +-2−#).�) 0

is obtained by optimizing the (�� formula to zero, which yields

0I4A> = ⌊-1×-2
⌉ [9]. After �nding the prior primitive (0), the other

primitives (1, 2 , and 3) are determined by the formulas shown in

Fig. 1 (b). For example, 1 is found by -1 − 0. When CT is set, only

the CT primitives and their linear combinations with summation

are su�cient to obtain the output of logical operations. The scalar

processing table in Fig. 1 (b) can be used to �nd the total count of

1s in the output of the primary logic operations.

3 CT-BASED RANDOM SOURCE SIMULATION

In this section, we propose CT-based methodology for simulating

the three state-of-the-art random sources of SC.

Binomial Distribution. Bit-streams have binomial distribution

when each bit is a Bernoulli random variable (RV). Considering the

Independent and Identically Distributed RV, a stochastic bit-stream

has a binomial distribution with a variance f2 =
% (1−%)

, where % is

the success probability of the Bernoulli distribution. The expected

result from the SC operation is called the exact value or %. . How-

ever, the produced value at the output of the SC operation can di�er

from the expected value due to random �uctuations. The produced

value is called the estimated value or %̂. . The di�erence between

the exact and estimated values is evaluated with the mean squared

error (MSE). Alaghi et al. [1] indicate that the random �uctuation

errors are measured using MSE, 4AA>A = E[(%. − %̂.)
2], which

yields 4AA>A = %. (1 − %.)/# in Bernoulli RV case. The random

�uctuations error is de�ned such that the error decreases as #

increases. Ting and Hayes underline that the MSE results in the

variance f2 [28], with regards to output probability. Hence, the

274

Bit-Stream Processing with No Bit-Stream: E�icient So�ware Simulation of Stochastic Vision Machines GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

CT simulation approach can directly take f =

√

%. (1 − %.)/#

into account. While setting �)0 for uncorrelated bit-stream em-

ulation via 0 primitive, the error deviation is included in 0 with
0
+

√

%. (1 − %.)/# , where 0
is the output probability of an AND

gate in the no error case.

LFSR. We model LFSRs in CT approach (�)!�(') using the

hypergeometric distribution proposed by Baker and Hayes [10].

They show that LFSR-based bit-streams �t better to hypergeomet-

ric RV bit-stream generation than the binomial distribution. They

de�ne the output deviation of the bit-wise AND operation on LFSR-

based bit-streams as f =

√

%- 1×%- 2×(1−%- 1)×(1−%- 2)
#−1 . Since AND

output is related to the "0" primitive, we use this output deviation

after setting up the CT via "0". For the near-zero CT (�) 0), 0 must

be updated; So the output probability model for bit-wise ANDing

LFSR-based bit-streams becomes 0
+

√

%- 1×%- 2×(1−%- 1)×(1−%- 2)
#−1 .

Sobol. Sobol-based bit-streams achieve deterministic-like arith-

metic accuracy if long enough bit-streams are processed [21]. For

example, accurate result from multiplying two =-bit precision data

can be achieved by processing # × # -bit Sobol bit-streams where

= 2= . Since 0 = ⌊-1×-2
⌉ is obtained from (�� = 0 optimization

that guarantees high accuracy in AND multiplication, Sobol-based

and �) 0-based results are expected to be similar.

4 CT-BASED SC IMAGE PROCESSING

SC has been previously used for the simple execution of various

image processing tasks such as median �ltering, contrast stretching,

image segmentation, and edge detection [4, 18]. This work extends

the SC-based image processing domain with three new applications:

template matching, image compositing, and bilinear interpolation.

We propose three new SC architectures for these algorithms and

employ the CT approach to speedup their execution.

4.1 Template Matching

In template matching, a template is searched throughout an

image � , using a sliding window. Let � (A×2) be a grayscale image

with A × 2 size. The template, as a kernel (A ×2) , is a subset

of � like a 1-Dimensional (1D) or 2D window, where A < A and

2 < 2 . is applied on � by processing each intersecting pixel of �

and . The movement of is similar to the convolution operation.

The main objective of template matching is to catch the highest

similarity and get the exact template match. The conventional op-

eration is de�ned using) =

∑

5 (� ,), where 5 (� ,) can be any

of the following functions: (i) 5 = |� − |, (ii) 5 = (� −)2, or (iii)

5 = � × . The �rst function is an absolute di�erence operation and

the temporary matching image) is set as the sum of the absolute

di�erences (SAD). The second function is an MSE-related formula

based on the sum of the squared di�erences (SSD), and the third

one is a cross-correlation-based function [16]. Depending on the

selected method,) is processed to �nd its minimum-valued (if (i) or

(ii) is utilized) or maximum-valued (if (iii) is applied) positions that

indicate the template coordinates. In (iii), the correlation function is

similar to convolution without spatially �ipping the template. Nev-

ertheless, brighter pixels may cause a wrong template assignment.

"Normalization" is proposed as a solution for this issue [14, 16]. If

Random bit-streams:𝑲𝑹 𝑰𝑹 Max. correlated bit-streams:𝑲𝑴 𝑰𝑴𝐓𝟏 = 𝑰𝑹 𝐀𝐍𝐃𝑲𝑹Method-1

𝑇1 = 𝐾2 - sum(𝐓𝟏)
𝐓𝟐 = 𝑰𝑹 𝐀𝐍𝐃𝑲𝑹Method-2

𝑇2 = sum(𝐓𝟐)
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ = argmin(𝑇1)
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ = argmax(𝑇2)
𝐓𝟑 = 𝑰𝑴 𝐗𝐎𝐑 𝑲𝑴Method-3

𝑇3 = sum(𝐓𝟑)𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ = argmin(𝑇3)
maximum

correlation

zero

correlation

zero

correlation

SC Template Matching

(a) (b)

𝑃𝑩 × 1 − 𝑃𝜶+ 𝑃𝑭 × 𝑃𝜶selection

(c) (d)

SC Image Compositing

C
T

T
e
m
p
l
a
t
e

M
a
t
c
h
i
n
g

CT Image Compositing

𝒂𝒎𝒂𝒙 CTMAX

CT0

CTRAND

CTLFSR

𝒂𝒛𝒆𝒓𝒐𝒂𝒛𝒆𝒓𝒐 CT2𝑎 𝑎𝑎 + 𝑏 + 𝑐
SC Bilinear Interpolation

(e)

CT Bilinear Interpolation

.
.

..𝑎 + 𝑏 + 𝑐
(f)

4-to-1 MUX Model

(iii)

(iii)
(i)

CT0

CTRAND

CTLFSR

CT0

CTRAND

CTLFSR

CT0

CTRAND

CTLFSR

1 − 𝑃𝒅𝒙 1 − 𝑃𝒅𝒚 𝑃𝑰11+ 1 − 𝑃𝒅𝒙 𝑃𝒅𝒚 𝑃𝑰12 +𝑃𝒅𝒙 1 − 𝑃𝒅𝒚 𝑃𝑰21 +𝑃𝒅𝒙 𝑃𝒅𝒚 𝑃𝑰22
𝑰11𝑰12𝑰21𝑰22 𝒅𝒙 𝒅𝒚

4-to-1

MUX

2-to-1

MUX 𝜶 ഥ𝜶 𝜶𝑩 𝑭 ഥ𝜶 𝜶𝑩 𝑭 𝑎 𝑏𝑐 𝑑CT1𝑎 𝑏𝑐 𝑑
𝒂𝒛𝒆𝒓𝒐
CT3𝑎 𝑏𝑐 𝑑

𝒂𝒛𝒆𝒓𝒐
CT𝑎 𝑏𝑐 𝑑

𝒂𝒛𝒆𝒓𝒐
CT𝑎 𝑏𝑐 𝑑
CT𝑎 𝑏𝑐 𝑑

𝒂𝒛𝒆𝒓𝒐CT1𝑎 𝑏𝑐 𝑑 𝑎𝒂𝒛𝒆𝒓𝒐CT2𝑎 𝑏𝑐 𝑑 𝑎
CT11𝑎 𝑏𝑐 𝑑

𝑎
𝑎

𝑏 + 𝑐

Figure 2: Proposed SC image processing methods and their

CT simulation: (a) three methods for template matching and

(b) their corresponding CT-based emulation. (c) Image com-

positing using a 2-to-1 MUX, and (d) the cascaded CT model

of MUX. (e) Bilinear interpolation with a 4-to-1 MUX, and

(f) corresponding multi-level CT model with AND & OR.

pixel operations are kept in the [0, 255] interval, the brighter pixel

values may be assigned as the template, and [0, 1] normalized range

is recommended. At this point, SC can be used by processing data in

the [0, 1] interval. Lande et al. [15] discuss the correlation property

of SC based on AND operation. Therefore, the cross-correlation-

based approach (iii) �ts SC using the AND multiplier. Besides, in

SC-based template matching with (iii), performing AND operation

on probabilities brings normalization. Stefano et al. [26] perform

normalization by dividing
∑

(� ×) by the product of the main

image and the template !2 norms, |� |2 × | |2. This term is approxi-

mated as # × # coming from the denominator of %O × %Q , when

SC-based AND is applied.

Fig. 2 (a) presents our SC-based template matching method.

Method-1 and Method-2 use the multiplication property of (iii)

via AND operation, while Method-3 uses the absolute value subtrac-

tion of (i) with bit-wise XOR. In Method-1, bit-streams from � (O) and

bit-streams from (Q) are represented in UPE and must have zero

correlation for accurate multiplication. After bit-wise ANDing O and

275

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Sercan Aygun, M. Hassan Najafi, Mohsen Imani, & Ece Olcay Gunes.

Q , Z1 is decoded using a simple sum, i.e., the population count of 1s.

The result is expected to be
∑

�× . Method-1 subtracts
∑

�× from

 2, which produces a zero for an exact template match. Method-2

includes only an SC multiplication. It approximately targets the

maximum values, i.e., 2 on the exact matches and so is less ac-

curate than Method-1. Finally, Method-3 uses the absolute value

subtraction of (i) by performing bit-wise XOR on maximally corre-

lated bit-streams. This method �nds an exact match when decoding

Z3 produces a zero. Therefore, minimum-valued positions represent

the template coordinates. We note that, in each method, only the

bold parts are processed in the stochastic domain. Thus, Method-2

and Method-3 have only SC operations, while Method-1 also in-

cludes binary subtraction and square operation in the conventional

binary domain. For the CT approach, Method-1 and Method-2 are

performed with uncorrelated CT models targeting zero correlation

and random source simulation, as presented in Fig. 2 (b). We de-

note the binomial distribution using CT by�)'�#� and the LFSR

model with CT by�)!�('. The Sobol-based model is also given by

�) 0, which is the most accurate case. Method-3 requires maximum

correlation, and so uses �)"�- .

4.2 Image Compositing

For image compositing operation, we use a 2-input multiplexer

(MUX) to combine two images: background � and foreground � .

In conventional image processing, a composited image (�) is de-

noted by the formula� = �(1−U) + �U , where U is the foreground

image opacity [27]. A MUX with ^1 and ^2 input and Y select

bit-stream implements %^1 (1 − %Y) + %^2%Y [25]. The compos-

ited image � and the"*- formula are well-match by re-writing

I = %H (1 − %") + %L %" . As shown in Fig. 2 (c), connecting H, L ,

and " to a MUX yields the compositing operation. Fig. 2 (d) illus-

trates the CT model for a MUX. Multiple CTs are constructed with

near-zero correlation initially.

4.3 Bilinear Interpolation

The third SC design is bilinear interpolation used in image re-

sizing. Bilinear interpolation is based on linear interpolations in

both x (width) and y (height) directions of the xy plane. With

repetitive linear interpolations for x and y, bilinear interpolation,

a.k.a. bilinear �ltering, is obtained [24]. Let � be a 2D matrix with

x and y row-column structure. Four points in the coordinate sys-

tem de�ne the � rectangular region: (x1, y1), (x1, y2), (x2, y1), and

(x2, y2). A new point lying inside this region is denoted as (x, y).

Based on the vertices of � , � (x, y) is to be estimated. After x- and

y-related interpolations, the formula for bilinear interpolation is

denoted as [11]:

� (x, y) ≈ 011� (x1, y1) + 021� (x2, y1) + 012� (x1, y2) + 022� (x2, y2)

where 011 = [(x2 − x) (y2 − y)]/[(x2 − x1) (y2 − y1)]

021 = [(x − x1) (y2 − y)]/[(x2 − x1) (y2 − y1)]

012 = [(x2 − x) (y − y1)]/[(x2 − x1) (y2 − y1)]

022 = [(x − x1) (y − y1)]/[(x2 − x1) (y2 − y1)]

Bymapping � into the unit square via normalization of the values,

the vertices are now (x1 = 0, y1 = 0), (x2 = 1, y1 = 0), (x1 = 0, y2 =

Get initial binary seed;

Get X to be encoded in a bit-stream;

for i = 1:1:bitstream_length

%Imitate Comparator Operation

if X > BTD(seed)

bitstream(i) = 1;

else

bitstream(i) = 0;

Perform XOR operation(s) for taps;

Feedback & shift binary seed;

end

Get initial binary seed;

for i = 1:1:bitstream_length

LFSR_TABLE(i) = BTD(seed)

Perform XOR operation(s) for taps;

Feedback & shift binary seed;

end

for i = 1:1:bitstream_length

%Imitate Comparator Operation

if X > LFSR_TABLE(i)

bitstream(i) = 1;

else

bitstream(i) = 0;

end
i
n
c
l
u
d
e
d

i
n

r
u
n
-
t
i
m
e

b2d()

bi2de()

bit2int()

Algorithm-1: Dynamic Approach

Algorithm-2: Table-based Approach

BTD()

b2d()

bi2de()

bit2int()

BTD()

i
n
c
l
u
d
e
d

i
n

r
u
n
-
t
i
m
e

1), and (x2 = 1, y2 = 1) [13]. Thereby,

� (x, y) ≈ (1 − x) (1 − y)� (x1, y1) + (x) (1 − y)� (x2, y1)+

(1 − x) (y)� (x1, y2) + (x) (y)� (x2, y2)

� (A×2) represents an image with A rows and 2 columns, and the re-

sized image, �̄ (rA×r2) , is obtained by bilinear �ltering. By rewriting

the equity for � (x, y) we get (1−3G) (1−3~)�11 + (1−3G) (3~)�12 +

(3G) (1−3~)�21+(3G) (3~)�22 where �11, �12, �21, �22 are neighbouring

pixel values, and 3G , 3~ are relative positions.

For SC design, the probabilities of the neighboring pixels and

the relative positions are denoted as %O 11 , %O 12 , %O 21 , %O 22 , %dx , and

%d~ . By using the equation of � (x, y), we get

%O (x,y) = (1 − %dx) (1 − %d~)%O 11 + (1 − %dx) (%d~)%O 12+

(%dx) (1 − %d~)%O 21 + (%dx) (%d~)%O 22

As shown in Fig. 2 (e), this can be implemented with a 4-to-1 MUX,

where 3G and 3~ are connected to the select ports of the MUX [6, 8].

Fig. 2 (f) shows the CTs for modeling this MUX.

5 EXPERIMENTAL RESULTS

We evaluate the performance of the proposed techniques compared

to the conventional simulation of SC. First, we evaluate di�erent

approaches for performing basic two-input SC multiplication. Then,

we extend our evaluation to the three discussed image processing

techniques. We set up two separate environments for all tests: 1)

conventional approach of processing bit-streams and 2) CT-based

approach. The �rst case generates and processes actual bit-streams,

while the second one operates only on CTs’ scalar values. All our

simulations are carried out with the MATLAB tool.

For the conventional case of processing bit-streams, we simulate

the three random sources. We generate bit-streams with binomial

276

Bit-Stream Processing with No Bit-Stream: E�icient So�ware Simulation of Stochastic Vision Machines GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

Figure 3: Run-time (in seconds) comparison of di�erentmeth-

ods for two-input multiplication.

distribution ((�'0=3><), Sobol-based LD bit-streams ((�(>1>;),

and LFSR-based pseudo-random bit-streams ((�!5 BA). For LFSR

method, we implement a dynamic and a table-based approach for

generating bit-streams. The dynamic approach algorithmically gen-

erates random numbers every time running the simulation. In con-

trast, in the table-based approach, the random numbers are gen-

erated only once, stored in a table, and will be loaded at the run

time to compare with the input data and generate corresponding

bit-streams. Algorithm 1 and Algorithm 2 illustrate the pseudo-code

for the dynamic and table-based simulation of the LFSR-based ap-

proach, respectively. We explore three functions (b2d, bi2de, and

bit2int) in MATLAB for the needed binary to decimal (scalar)

conversion. Our simulations showed that b2d() [30] is faster than

bi2de() and bit2int() functions and provides the best run-

time. So for the best performance of the LFSR-based method, we

use this function in our simulations. We use the MATLAB built-in

Sobol sequence generator for the Sobol-based approach, and for

the binomial approach, we use the MATLAB binornd() function

to generate random numbers. For each of the three methods, we

measure the run-time 1000 times and report the average.

Two-Input Multiplication. Fig. 3 compares the run-time of dif-

ferent methods for basic two-input multiplication. The run-time is

reported for di�erent bit-stream sizes (#) to evaluate the scalability

of each method. As it can be seen, for most # sizes of all random

sources, the table-based approach provides a lower run-time than

the dynamic approach. In particular, the LFSR-based method gets

the most bene�t from loading random numbers from a table as its

dynamic simulation involves time-consuming base conversion. Evi-

dently, the run-time increases by increasing the bit-stream length

with conventional bit-stream processing. On the other hand, the CT

approach shows a constant run-time independent of the bit-stream

size. As it can be seen, the CT approach provides signi�cantly

shorter run-times compared to the conventional bit-stream process-

ing for all three random source methods. �) 0 is the fastest, as fast

as binary computing, then �)'�#� and �)!�(' come in turn.

The slower performance of�)!�(' is due to using hypergeometric

distribution that includes several multiplications.

Image Processing Case Studies. Next, we present the simula-

tion results for the proposed image processing methods.

Generate QR Code & Perform Style TransferI.

+

100% pattern-detectable images are ensured.

𝐼, 𝐾 𝑖, 𝑗 ∈ {0, 255}
𝐼

𝐾
Style ImageContent Image

𝐼, 𝐾 𝑖, 𝑗 ∈ [0, 255]

II. Apply Bulk Tests

Generating𝑛 = 100 QRs

Testing for

Hit Rate

Hit Rate෍1𝑛 pattern_Count × 100% =
3 × 𝑛

Figure 4: Test environment using style transferred QRs.

We use SC-based template matching for a visual -Quick Response

(QR)- code. QR codes are widely used in daily life. Textual informa-

tion is embedded in QR codes using a 2D structure. Tkachenko et al.

elaborate the main steps of the QR code recognition in [29]. After

�nder (position) pattern localization, �nder pattern (FP) coordinates

are obtained. This step can be performed using several methods,

such as the Hough transform, edge detection, and overlap of the

centroids of continuous regions. In this work, we use template

matching to search pattern in a QR code � . Due to the increas-

ing interest in QR beauti�cation with background images, logos,

and shapes [31], we generate and use an aesthetic QR code dataset

containing grayscale images instead of full black-white standard

QRs. We use the neural network-based technique proposed in [31]

for visual QR code generation. Each generated QR code has 100%

detectable patterns by readily-available QR cam scanners.

Fig. 4 shows the �ow of our experiment for template matching in

QR codes. After generating grayscale stylish QR codes, bulk tests are

applied using the template matching methods of Section 4. The hit

rate (HR) indicates the matching percentage in the dataset, consid-

ering that each QR code has three FPs. The total pattern_Count

indicates cumulative successful pattern matches.

Table 1 presents our results for the template matching task. We

compare the performance of the three proposed SC methods for

template matching (Method-1, Method-2, Method-3) for processing

conventional bit-streams ((�'0=3><, (�(>1>; , (�!5 BA , (�"0G),

and the CT approach (�)'�#� ,�) 0,�)!�(',�)"�-). The run-

time (purple bar plots: bit-stream processing, yellow bar plots: CT

method) and memory usage (MEM - blue bar plots) are compared

for di�erent bit-stream lengths.

We record the HR accuracy of the �rst # that gives the accu-

racy of the conventional binary computing (�$#+#). For instance,

(�'0=3>< with Method-1 reaches 97.66% accuracy with # = 256.

This accuracy is validated with �$#+# for Method-1. The ac-

curacy results in the bottom row of Table 1 underscore that the

conventional bit-stream processing and the proposed CT-based ap-

proach have the same accuracy. The Sobol-based approach achieves

the �$#+# accuracy with # = 32 due to its fast convergence

property [20]. Method-1 and Method-2 have comparable accuracy,

while Method-3 provides the best accuracy (100%). Compared to

conventional bit-stream processing, memory is occupied e�ciently

with the CT approach, especially when emulating larger bit-stream

sizes. Bit-stream processing of Method-3, which uses maximum cor-

related bit-streams, is relatively faster thanMethod-1 andMethod-2,

though it still su�ers from high memory usage.

Table 1 shows that conventional bit-stream processing with the

dynamic LFSR approach takes longer run-time compared to the

binomial distribution- and Sobol-based approaches.

277

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Sercan Aygun, M. Hassan Najafi, Mohsen Imani, & Ece Olcay Gunes.

Table 1: Performance Comparison of the Implemented Template Matching Methods

Dynamic Approach – Bit-stream Processing Conventional

Binary Processing Binomial Distribution Sobol LFSR
SCRandom CTRAND SCSobol CT0 SCLfsr CTLFSR No built-in functions are utilized.

The same O(n) is kept for template

matching like in bit-stream & CT
computations.

Computation using binomial
distribution for actual bit-streams 𝑎 = ⌊𝐼×𝐾𝑁 ⌉ ,

 𝑃𝑜𝑢𝑡 = 𝑎𝑁 + √(𝐼×𝐾𝑁×𝑁)×(1−(𝐼×𝐾𝑁×𝑁))𝑁

Computation using Sobol seq.s
for actual bit-streams

 𝑎 = ⌊𝐼×𝐾𝑁 ⌉ ,
 𝑃𝑜𝑢𝑡 = 𝑎𝑁

Computation using LFSR
for actual bit-streams

 𝑎 = ⌊𝐼×𝐾𝑁 ⌉ ,
 𝑃𝑜𝑢𝑡 = 𝑎𝑁 + √𝑃𝑰×𝑃𝑲×(1−𝑃𝑰)×(1−𝑃𝑲)𝑁−1

Method-1 Method-2 Method-3

RT:

0.011 sec

RT:

0.010 sec

RT:

0.011 sec

Template Matching Method-1 Template Matching Method-1 Template Matching Method-1

Accuracy

Method-1 Method-2 Method-3

97.66% 97.33% 100%

Accuracy

Maximum Correlation
SCMax CTMAX

Computation on

max. corr. bit-streams

 𝑎 = min (𝐼, 𝐾) , 𝑃𝑜𝑢𝑡 = 𝑏+𝑐𝑁

Template Matching Method-2 Template Matching Method-2 Template Matching Method-2 Template Matching Method-3

HR Accuracy: N value is reported where the first best Hit Rate is obtained

Template

Matching

Method-1

Template

Matching

Method-2

Template

Matching

Method-1

Template

Matching

Method-2

Template

Matching

Method-1

Template

Matching

Method-2

Template

Matching

Method-3

SCRandom CTRAND SCRandom CTRAND SCSobol CT0 SCSobol CT0 SCLfsr CTLFSR SCLfsr CTLFSR SCMax CTMAX

N=256

97.66%

N=256

97.66%

N=512

97.33%

N=512

97.33%

N=128

97.66%

N=128

97.66%

N=32

97.33%

N=32

97.33%

N=256

97.66%

N=256

97.66%

N=512

97.33%

N=512

97.33%

N=64

100%

N=64

100%
Tests are performed on a computer with Intel(R) Core(TM) i7-7700HQ CPU @2.80GHz, 16GB RAM, MATLAB 2017b. For memory monitoring, MATLAB whos command is

utilized. Results are based on the average of 1000 different rounds. Runtime: RT (sec), Memory: MEM, and Hit Rate: HR (%).

Next, we evaluate the performance of the CT approach for the

SC image compositing proposed in Section 4. Fig. 5 shows two

pairs of Background (�) and Foreground (�) images as two di�erent

examples. Run-time (RT) in seconds and the output quality in PSNR

(peak signal-to-noise ratio) are reported as the performance metrics.

Bit-stream size is #=256. As it can be seen from the PSNR values,

the CT approach successfully emulates di�erent bit-stream gener-

ation methods and provides comparable PSNRs to the bit-stream

processing. Comparing di�erent random sources, the Sobol-based

method achieves the best PSNRs, then the LFSR method, and �nally,

the binomial method. The (�'0=3>< and (�(>1>; run-time results

in Fig. 5 are obtained with the dynamic approach (the table-based

approach did not signi�cantly reduce the run-time for the binomial-

and Sobol-based bit-stream processing). However, the (�!5 BA∗∗

run-time is obtained using the table-based approach, which is faster

than the dynamic (�!5 BA∗ with run-times of 2278.5 sec for the

Deer, and 950.5 sec for the Elephant example. In both examples,

the CT approach signi�cantly reduces the run-time compared to

conventional bit-stream processing.

Finally, the SC bilinear interpolation proposed in Section 4 is

tested for r=4 scaling value. As with other tests, actual bit-stream

processing and the CT method are evaluated. The binomial distri-

bution and Sobol-based bit-stream processing are performed via

the dynamic method. The table-based approach is used for the

LFSR-based bit-stream processing. The results present PSNR values,

run-time in seconds, and memory usage, while the bit-stream size

is #=256. The results presented in Table 2 are the average of 1000

independent trials. According to the PSNR results obtained with

reference to the image produced by the conventional binary cal-

culation (�$#+#), all bit-stream processing results are emulated

very closely by the CT method. As expected, the Sobol method

achieves the best performance, followed by the LFSR and binomial

methods. CT-based simulation provides approximately 23 times

more e�cient memory usage than the conventional bit-streams.

6 CONCLUSIONS

In this work, we proposed three new SC-based image processing

designs for template matching, image compositing, and bilinear

interpolation tasks. The performance of each design was validated

with a new SC emulation technique based on the CT. The CTmethod

addresses the long latency and the high memory usage bottlenecks

in the traditional approach of simulating SC systems. CT-based

278

Bit-Stream Processing with No Bit-Stream: E�icient So�ware Simulation of Stochastic Vision Machines GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

Image Compositing

 + =

Deer Size: 684×1213

 + =

Elephant Size: 470×736

*Dynamic Approach, **Table-based Approach. Tests are performed on a computer

with Intel(R) Core(TM) i7-7700HQ CPU @2.80GHz, 16GB RAM, MATLAB 2017b.

Results are based on the average of 1000 different rounds.

Figure 5: Examples of image compositing with di�erent sizes.

Table 2: Bilinear Interpolation Results

SCRand CTRAND SCSobol CT0 SCLfsr CTLFSR CONVN

RT:

34.417

PSNR:

30.450

RT:

0.074

PSNR:

29.782

RT:

37.778

PSNR:

41.533

RT:

0.045

PSNR:

41.540

RT:

29.205

PSNR:

33.165

RT:

0.141

PSNR:

33.321

RT:

0.032

PSNR:

ref.

 MEM: ×23.506 MEM: ×23.520 MEM: ×23.508

 Tests are performed on a computer with Intel(R) Core(TM) i7-7700HQ CPU @2.80GHz,

 16GB RAM, MATLAB 2017b. Results are based on the average of 1000 different rounds.

original P
r
o
c
e
s
s
e
d

I
m
a
g
e
s

200×400 ϱ = 4

50×100

simulation especially �ts well for image processing applications.

We modeled the state-of-the-art stochastic bit-stream generation

approaches based on the binomial distribution, hypergeometric or

pseudo-random, and low-discrepancy random sources. Our experi-

mental results for simulation of the proposed SC image processing

methods show that the CT method performs more e�ciently than

the conventional bit-stream processing in both run-time and mem-

ory usage. In terms of accuracy (PSNR andHR), CT-based simulation

produces results with the same accuracy level as the results from

traditional bit-stream processing. The proposed technique can be

used for fast and e�cient emulation of SC systems in other applica-

tions, such as SC-based neural network systems. Our open-source

code of the CT framework can be accessed on GitHub [7].

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation

(NSF) grants #2127780 and #2019511, Semiconductor Research Cor-

poration (SRC), O�ce of Naval Research, grant #N00014-21-1-2225

and #N00014-22-1-2067, the Air Force O�ce of Scienti�c Research

under award #FA9550-22-1-0253, the Louisiana Board of Regents

Support Fund #LEQSF(2020-23)-RD-A-26, and generous gifts from

Cisco, Xilinx, and Nvidia.

REFERENCES
[1] Armin Alaghi. 2015. The logic of random pulses: Stochastic computing. Ph. D.

Dissertation. University of Michigan, Ann Arbor, USA.
[2] ArminAlaghi and EamonGa�ney. 2019. scsynth. https://github.com/arminalaghi/

scsynth. (Date accessed: Sept. 2022).
[3] Armin Alaghi and John P. Hayes. 2013. Exploiting correlation in stochastic circuit

design. In ICCD. Asheville, NC, USA, 39–46.
[4] Armin Alaghi, Cheng Li, and John P. Hayes. 2013. Stochastic circuits for real-time

image-processing applications. In 2013 DAC. Austin, TX, USA, 1–6.
[5] Armin Alaghi,Weikang Qian, and John P. Hayes. 2018. The promise and challenge

of stochastic computing. IEEE TCAD 37, 8 (2018).
[6] Sercan Aygun. 2022. Stochastic bitstream-based vision and learning machines.

Ph. D. Dissertation. Istanbul Technical University, Istanbul, Turkey.
[7] Sercan Aygun et al. 2023. Contingency tables for stochastic computing. https:

//github.com/serco425/CT. (Date accessed: April 2023).
[8] Sercan Aygun and Ece Olcay Gunes. 2021. On the limit of multiplexers in

stochastic computing. Int. Journal of Multi. Stu. Innov. Tech. 5, 1 (2021), 94 – 97.
[9] Sercan Aygun and Ece Olcay Gunes. 2022. Utilization of contingency tables in

stochastic computing. IEEE Trans. on Circ. and Syst. II: Expr. Br. 69, 6 (2022).
[10] Timothy Baker and John Hayes. 2020. The hypergeometric distribution as a more

accurate model for stochastic computing. In DATE’20.
[11] Changqing Cao et al. 2019. An improved faster R-CNN for small object detection.

IEEE Access 7 (2019).
[12] Kyle Daruwalla et al. 2019. BitSAD v2: Compiler optimization and analysis for

bitstream computing. ACM Trans. Archit. Code Optim. 16, 4, Article 43 (nov 2019).
[13] K.T. Gribbon and D.G. Bailey. 2004. A novel approach to real-time bilinear

interpolation. In IEEE DELTA. 126–131.
[14] M.B. Hisham et al. 2015. Template matching using sum of squared di�erence and

normalized cross correlation. In IEEE SCOReD.
[15] T.S. Lande et al. 2007. Running cross-correlation using bitstream processing.

Electronics Letters 43 (October 2007), 1181–1183(2). Issue 22.
[16] J.P. Lewis. 1995. Fast template matching. In Vision Interface 95.
[17] Bingzhe Li et al. 2019. Low-cost stochastic hybrid multiplier for quantized neural

networks. J. Emerg. Technol. Comput. Syst. 15, 2, Article 18 (March 2019).
[18] Peng Li et al. 2014. Computation on stochastic bit streams digital image processing

case studies. IEEE Trans. on VLSI Sys. 22, 3 (2014), 449–462.
[19] Zhe Li et al. 2019. HEIF: Highly e�cient stochastic computing-based inference

framework for deep neural networks. IEEE TCAD 38, 8 (2019), 1543–1556.
[20] Siting Liu and Jie Han. 2017. Energy e�cient stochastic computing with Sobol

sequences. In 2017 DATE. 650–653. https://doi.org/10.23919/DATE.2017.7927069
[21] M. Hassan Naja� et al. 2018. Deterministic methods for stochastic computing

using low-discrepancy sequences. In IEEE/ACM ICCAD (San Diego, CA, USA).
[22] M. Hassan Naja� et al. 2019. Performing stochastic computation deterministically.

IEEE Tran. on VLSI Sys. 27, 12 (2019), 2925–2938.
[23] M. Hassan Naja� and Mostafa E. Salehi. 2016. A Fast Fault-Tolerant Architecture

for Sauvola Local Image Thresholding Algorithm Using Stochastic Computing.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 2 (2016),
808–812. https://doi.org/10.1109/TVLSI.2015.2415932

[24] William Press et al. 1995. Numerical recipes in C: the art of scienti�c computing.
Camb. Univ. Press, New York, USA.

[25] Weikang Qian et al. 2011. An architecture for fault-tolerant computation with
stochastic logic. IEEE Trans. Comput. 60, 1 (2011).

[26] L. Stefano et al. 2003. An e�cient algorithm for exhaustive template matching
based on normalized cross correlation. In 12th Int. Conf. on Im. Analysis and Proc.

[27] Richard Szeliski. 2011. Computer vision algorithms and applications. http:
//dx.doi.org/10.1007/978-1-84882-935-0 (Date accessed: Sept. 2022).

[28] Paishun Ting and John P. Hayes. 2019. Exploiting randomness in stochastic
computing. In 2019 IEEE/ACM ICCAD. Westminster, CO, USA, 1–6.

[29] Iuliia Tkachenko et al. 2016. Centrality bias measure for high density QR code
module recognition. Signal Proc.: Image Comm. 41 (2016), 46–60.

[30] Zacharias Voulgaris. 2010. E�cient convertors between binary and decimal num-
bers. https://www.mathworks.com/matlabcentral/�leexchange/26447-e�cient-
convertors-between-binary-and-decimal-numbers (Date accessed: March 2022).

[31] Mingliang Xu et al. 2019. Stylized aesthetic QR code. IEEE Transactions on
Multimedia 21, 8 (2019), 1960–1970.

279

 https://github.com/arminalaghi/scsynth
 https://github.com/arminalaghi/scsynth
https://github.com/serco425/CT
https://github.com/serco425/CT
https://doi.org/10.23919/DATE.2017.7927069
https://doi.org/10.1109/TVLSI.2015.2415932
http://dx.doi.org/10.1007/978-1-84882-935-0
http://dx.doi.org/10.1007/978-1-84882-935-0
https://www.mathworks.com/matlabcentral/fileexchange/26447-efficient-convertors-between-binary-and-decimal-numbers
https://www.mathworks.com/matlabcentral/fileexchange/26447-efficient-convertors-between-binary-and-decimal-numbers

	Abstract
	1 Introduction
	2 Background
	2.1 Stochastic Bit-Stream Processing
	2.2 Contingency Table (CT)

	3 CT-based Random Source Simulation
	4 CT-based SC Image Processing
	4.1 Template Matching
	4.2 Image Compositing
	4.3 Bilinear Interpolation

	5 Experimental Results
	6 Conclusions
	References

