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ABSTRACT

Stochastic computing (SC) is an emerging paradigm that has come
to the fore in computer vision applications in the last decade. Com-
plex arithmetic circuitry is reduced to simple logic gates, fed with
uniform random bit-streams. Due to the requirement of long bit-
streams, the computer-aided simulation of SC systems is facing run-
time and memory-use challenges. This work presents an efficient
approach for emulating SC-based systems. The proposed simulation
technique does not utilize actual bit-streams but produces similar
results as if the traditional stochastic bit-streams were processed.
The data are processed with the aid of a correlation-controlled
contingency table (CT) construct. Our technique emulates three
state-of-the-art stochastic bit-streams, namely, bit-streams with
binomial distribution, pseudo-random, and low-discrepancy bit-
streams. We validate the proposed technique by emulating three
new SC image processing designs. We propose novel SC designs
for (i) template matching, (ii) image compositing, and (iii) bilinear
interpolation. Our experimental results show that our simulation
technique provides comparable accuracy to processing actual bit-
streams, but at a significantly lower run-time and memory usage.
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1 INTRODUCTION

Stochastic computing (SC) [5, 22] is re-emerging as an alternative
method of computing, replacing conventional binary computing. SC
offers hardware-friendly solutions for various applications, from vi-
sion to learning machines [4, 17-19, 23]. Low-implementation cost
and high tolerance to noise are the main advantages of computation
in the stochastic domain. Arithmetic operations are performed by
simple bit-wise operations on uniform (random) bit-streams. For
example, multiplication is realized by bit-wise AND operation on
the bit-streams [5]. Both approximate and accurate computations
are feasible with SC by structuring bit-streams and controlling their
length [22]. More than 50x to 100X reduction in the hardware cost
is common compared to the cost of binary counterparts [5]. Tolerat-
ing high rates of noise (e.g., 30%-50%) is another appealing property,
as all digits of an SC bit-stream have the same weight.

An important step in designing SC systems is evaluating their
performance and verifying their functionality by simulating their
bit-level operations with software programs. Scsynth [2] and Bit-
SAD [12] are examples of such programs. In SC, the accuracy of
computations increases by increasing the bit-stream length. To rep-
resent a data value with a binary resolution zin a bit-stream with
a length of at least N = 2" bits is needed [9]. This means that the
length of a stochastic bit-stream increases exponentially with the
resolution. Depending on the needed accuracy, SC systems process
bit-streams with different lengths, from short lengths of 2% to longer
lengths of 103-10* bits. Computer simulation of SC systems with
long bit-streams often takes a long latency and a high amount of
memory. Even for simulation of basic SC operations such as multi-
plication of two data by bit-wise ANDing two operand bit-streams,
long latency is inevitable when very long bit-streams are processed.
Aygun and Gunes [9] recently proposed a contingency table (CT)
approach to perform stochastic logic operations without using bit-
by-bit processing. This work extends the CT-based technique of
simulating SC systems by modeling three state-of-the-art stochastic
bit-streams, namely bit-streams with binomial distribution, linear-
feedback shift register (LFSR)-based pseudo-random bit-streams,
and Sobol-based low-discrepancy (LD) bit-streams. In summary,
the main contributions of this work are as follows:

e Fast and efficient CT-based emulation of state-of-the-art
stochastic bit-streams with binomial, LFSR-based pseudo-
random, and Sobol-based LD distribution.
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Figure 1: (a) Bit-by-bit processing, and solution with scalar
processing. (b) CT setting and logic operations with scalars.

e Proposing novel SC image processing designs for template
matching, image compositing, and bilinear interpolation.

o Evaluating the CT-based SC simulation at application level
for the three new image processing case studies.

e Significant run-time and memory usage reduction.

2 BACKGROUND

2.1 Stochastic Bit-Stream Processing

This section briefly reviews SC’s basics, including data encoding and
correlation/independence requirements. Unipolar encoding (UPE)
and bipolar encoding (BPE) are the two most common methods
for encoding data in SC. Both UPE and BPE can encode a positive
scalar value X where 0 < X < N (or a probability value % where
0< % < 1). However, BPE supports negative values —-N < X < N
(or-1< % < 1). The trade-off is that BPE needs twice bit-stream
length for the same accuracy. The number of logic-1s in a bit-stream
determines the bit-stream value. Assume that X represents an en-
coded bit-stream and the it? bit is accessed by X (i). In UPE, the
total number of logic-1s, Zﬁl X (i), divided by N determines the

. >N X3) .
bit-stream value, so P = sE——=.0n the other hand, in BPE, the

bit-stream value is determined by P = w = (% +1)/2.

Correlation between stochastic bit-streams is another important
concept in SC. Some operations, such as multiplication using logical
AND, require uncorrelated or independent operand bit-streams for
accurate operation. Some other operations, such as absolute value
subtraction using XOR, minimum using AND, and maximum using
OR, require maximally correlated operands for correct performance.
Stochastic cross-correlation (SCC) has been frequently used in the
literature to quantify the correlation between two bit-streams [3].
The piecewise SCC function shown in eq. (1) returns a correlation
value within the [—1, 1] interval. In the formula, the values denoted
by a, b, ¢, and d are logic pairs 11, 10, 01, and 00, respectively, from
the same bit positions of the two bit-streams.

i ad—bc
SCC = { NXmln(a+b;lad+_cl)J; (a+b)x(a+c)
(a+b)x (a+c)—Nxmax(a—d,0)

, if ad > bc

, else

2.2 Contingency Table (CT)

The CT approach has emerged as a promising solution for run-time-
efficient and memory-aware simulation of SC systems [9]. Instead
of generating and processing actual stochastic bit-streams, the CT
method calculates the desired logic operation over the scalar input
operands that make up the bit-streams. For any two operands (bit-
streams), a CT is built. Correlation is the key parameter during the
setup of a CT. CT is a 2x2 table with four basic primitives: a, b, c,
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and d. Each primitive holds the cumulative sum of the four possible
states from all corresponding bit positions in the two bit-streams
(a: X1(i) = 1, X2(i) = 1 - ‘11, b: X1(i) = 1, X2(i) = 0 — 10/,
¢ X1(i) = 0, X2(i) = 1 — ‘01, and d: X1(i) = 0, X2(i) = 0 —
‘00°). Fig. 1 (a) compares traditional bit-stream processing and CT
approaches. The CT approach processes scalar values directly rather
than converting them to bit-stream format; thereby: (i) there is no
bit-stream generation, and (ii) latency-prone bit-by-bit processing
is avoided.

Fig. 1 (b) shows how a CT is set. The inputs are: 1) N, 2) the
input scalars (X1, X2), and 3) the target correlation. a is the first
CT primitive we find. It is called the prior primitive. Since a rep-
resents the number of overlapping 1s between two bit-streams, it
denotes the number of 1s that occur at the output of logical AND
operation. The determination of a is an antecedent for other primi-
tives and depends on the correlation. According to the SCC metric,
the three critical points in the correlation spectrum between —1
and 1 can be expressed with: amax, dmin, and azero. Respectively,
these are the maximum correlation where SCC converges to 1, the
minimum correlation where SCC converges to —1, and near-zero
correlation where SCC is around zero. The near-zero correlation
is particularly critical for operations such as multiplication (AND
in UPE, XNOR in BPE) where uncorrelated bit-streams are needed.
As shown in Fig. 1 (b), the three critical correlation points, dmax,
Azero> and amin, are determined during CT setup and initiate the
corresponding CTMAX, CT0, and CTMIN tables, respectively. The
maximum value of a, amqy, is determined by min(X1, X2). The min-
imum value of a, amin, is determined by max(0,X1+ X2 — N). CT0
is obtained by optimizing the SCC formula to zero, which yields
Azero = L%] [9]. After finding the prior primitive (a), the other
primitives (b, ¢, and d) are determined by the formulas shown in
Fig. 1 (b). For example, b is found by X1 — a. When CT is set, only
the CT primitives and their linear combinations with summation
are sufficient to obtain the output of logical operations. The scalar
processing table in Fig. 1 (b) can be used to find the total count of
1s in the output of the primary logic operations.

3 CT-BASED RANDOM SOURCE SIMULATION

In this section, we propose CT-based methodology for simulating
the three state-of-the-art random sources of SC.

Binomial Distribution. Bit-streams have binomial distribution
when each bit is a Bernoulli random variable (RV). Considering the
Independent and Identically Distributed RV, a stochastic bit-stream
has a binomial distribution with a variance o2 = M, where P is
the success probability of the Bernoulli distribution. The expected
result from the SC operation is called the exact value or Py. How-
ever, the produced value at the output of the SC operation can differ
from the expected value due to random fluctuations. The produced
value is called the estimated value or Py. The difference between
the exact and estimated values is evaluated with the mean squared
error (MSE). Alaghi et al. [1] indicate that the random fluctuation
errors are measured using MSE, error = E[(Py — Py)?], which
yields error = Py(1 — Py)/N in Bernoulli RV case. The random
fluctuations error is defined such that the error decreases as N
increases. Ting and Hayes underline that the MSE results in the
variance o [28], with regards to output probability. Hence, the
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CT simulation approach can directly take ¢ = 4/Py(1— Py)/N
into account. While setting CTO0 for uncorrelated bit-stream em-

ulation via a primitive, the error deviation is included in a with
~ +VPy(1 = Py)/N, where £ is the output probability of an AND
gate in the no error case.

LFSR. We model LFSRs in CT approach (CTLFSR) using the
hypergeometric distribution proposed by Baker and Hayes [10].
They show that LESR-based bit-streams fit better to hypergeomet-
ric RV bit-stream generation than the binomial distribution. They
define the output deviation of the bit-wise AND operation on LFSR-

Px1XPxsX(1-Px1)X(1=Px3) q:

~N—1 . Since AND
output is related to the "a" primitive, we use this output deviation
after setting up the CT via "a". For the near-zero CT (CT0), a must

be updated; So the output probability model for bit-wise ANDing

LFSR-based bit-streams becomes & + JPXlXPXZX(l_PXI)X(I_sz) .

Sobol. Sobol-based bit-streams achieve deterministic-like arith-
metic accuracy if long enough bit-streams are processed [21]. For
example, accurate result from multiplying two n-bit precision data
can be achieved by processing N X N-bit Sobol bit-streams where
N = 2" Sincea = L%] is obtained from SCC = 0 optimization
that guarantees high accuracy in AND multiplication, Sobol-based
and CT0-based results are expected to be similar.

based bit-streams as o = \/

4 CT-BASED SC IMAGE PROCESSING

SC has been previously used for the simple execution of various
image processing tasks such as median filtering, contrast stretching,
image segmentation, and edge detection [4, 18]. This work extends
the SC-based image processing domain with three new applications:
template matching, image compositing, and bilinear interpolation.
We propose three new SC architectures for these algorithms and
employ the CT approach to speedup their execution.

4.1 Template Matching

In template matching, a template K is searched throughout an
image I, using a sliding window. Let I(, ) be a grayscale image
with r X ¢ size. The template, as a kernel K(,, x¢, ), is a subset
of I like a 1-Dimensional (1D) or 2D window, where rg < r and
ckx < c. K is applied on I by processing each intersecting pixel of I
and K. The movement of K is similar to the convolution operation.
The main objective of template matching is to catch the highest
similarity and get the exact template match. The conventional op-
eration is defined using T = }; f(I,K), where f(I,K) can be any
of the following functions: (i) f = |I - K|, (ii) f = (I - K)?, or (iii)
f =IxK. The first function is an absolute difference operation and
the temporary matching image T is set as the sum of the absolute
differences (SAD). The second function is an MSE-related formula
based on the sum of the squared differences (SSD), and the third
one is a cross-correlation-based function [16]. Depending on the
selected method, T is processed to find its minimum-valued (if (i) or
(ii) is utilized) or maximum-valued (if (iii) is applied) positions that
indicate the template coordinates. In (iii), the correlation function is
similar to convolution without spatially flipping the template. Nev-
ertheless, brighter pixels may cause a wrong template assignment.
"Normalization" is proposed as a solution for this issue [14, 16]. If
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Figure 2: Proposed SC image processing methods and their
CT simulation: (a) three methods for template matching and
(b) their corresponding CT-based emulation. (c) Image com-
positing using a 2-to-1 MUX, and (d) the cascaded CT model
of MUX. (e) Bilinear interpolation with a 4-to-1 MUX, and
(f) corresponding multi-level CT model with AND & OR.

pixel operations are kept in the [0, 255] interval, the brighter pixel
values may be assigned as the template, and [0, 1] normalized range
is recommended. At this point, SC can be used by processing data in
the [0, 1] interval. Lande et al. [15] discuss the correlation property
of SC based on AND operation. Therefore, the cross-correlation-
based approach (iii) fits SC using the AND multiplier. Besides, in
SC-based template matching with (iii), performing AND operation
on probabilities brings normalization. Stefano et al. [26] perform
normalization by dividing (I X K) by the product of the main
image and the template Ly norms, |I|2 X |K|2. This term is approxi-
mated as N X N coming from the denominator of Pr X Pk, when
SC-based AND is applied.

Fig. 2 (a) presents our SC-based template matching method.
Method-1 and Method-2 use the multiplication property of (iii)
via AND operation, while Method-3 uses the absolute value subtrac-
tion of (i) with bit-wise XOR. In Method-1, bit-streams from I (I) and
bit-streams from K (K) are represented in UPE and must have zero
correlation for accurate multiplication. After bit-wise ANDing I and
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K, T1is decoded using a simple sum, i.e., the population count of 1s.
The result is expected to be ) IXK. Method-1 subtracts }; IxK from
K?, which produces a zero for an exact template match. Method-2
includes only an SC multiplication. It approximately targets the
maximum values, i.e., K? on the exact matches and so is less ac-
curate than Method-1. Finally, Method-3 uses the absolute value
subtraction of (i) by performing bit-wise XOR on maximally corre-
lated bit-streams. This method finds an exact match when decoding
T3 produces a zero. Therefore, minimum-valued positions represent
the template coordinates. We note that, in each method, only the
bold parts are processed in the stochastic domain. Thus, Method-2
and Method-3 have only SC operations, while Method-1 also in-
cludes binary subtraction and square operation in the conventional
binary domain. For the CT approach, Method-1 and Method-2 are
performed with uncorrelated CT models targeting zero correlation
and random source simulation, as presented in Fig. 2 (b). We de-
note the binomial distribution using CT by CTRAND and the LFSR
model with CT by CTLFSR. The Sobol-based model is also given by
CTO, which is the most accurate case. Method-3 requires maximum
correlation, and so uses CTMAX.

4.2 Image Compositing

For image compositing operation, we use a 2-input multiplexer
(MUX) to combine two images: background B and foreground F.
In conventional image processing, a composited image (C) is de-
noted by the formula C = B(1 — ) + Fa, where « is the foreground
image opacity [27]. A MUX with X1 and X2 input and S select
bit-stream implements Px1(1 — Ps) + Px2Ps [25]. The compos-
ited image C and the MUX formula are well-match by re-writing
C = Pg(1 — Py) + PFPy. As shown in Fig. 2 (c), connecting B, F,
and a to a MUX vyields the compositing operation. Fig. 2 (d) illus-
trates the CT model for a MUX. Multiple CTs are constructed with
near-zero correlation initially.

4.3 Bilinear Interpolation

The third SC design is bilinear interpolation used in image re-
sizing. Bilinear interpolation is based on linear interpolations in
both x (width) and y (height) directions of the xy plane. With
repetitive linear interpolations for x and y, bilinear interpolation,
ak.a. bilinear filtering, is obtained [24]. Let I be a 2D matrix with
x and y row-column structure. Four points in the coordinate sys-
tem define the I rectangular region: (x1,y1), (X1,¥2), (X2, y1), and
(x2,y2). A new point lying inside this region is denoted as (x, y).
Based on the vertices of I, I(x, y) is to be estimated. After x- and
y-related interpolations, the formula for bilinear interpolation is
denoted as [11]:

I(x,y) = anl(x1,y1) + a211(x2,y1) + a121(x1, y2) + az2I(x2,y2)

where — [(x2 — %) (2 — )1/ [(x2 = x1) (72 — y1)]

az1 = [(x —x1)(y2 =)/ [(x2 — x1)(y2 = y1)]
a2 = [(x2 =) (y = yD)1/[(x2 = x1)(y2 = y1)]

azz = [(x =x1)(y = yD1/[(x2 = x1)(y2 = y1)]
By mapping I into the unit square via normalization of the values,
the vertices are now (x1 = 0,y1 =0), (x2 = 1,y1 =0), (x1 =0,y2 =
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Algorithm-1: Dynamic Approach

Get initial binary seed;

E Get X to be encoded in a bit-stream;
v for i = l:l:bitstream_length BTD()
s sImitate Comparator Operation ==
S if X > BTD(seed) b2d ()
S bitstream(i) = 1; 4\bi2de()
3  si== bit2int ()
§ bitstream(i) = 0; ‘\
3 Perform XOR operation(s) for taps;
5 Feedback & shift binary seed;
end

Algorithm-2: Table-based Approach

Get initial binary seed;

for i = 1l:1l:bitstream length
LFSR_TABLE (i) = BTD(seed)
Perform XOR operation(s) for taps;
Feedback & shift binary seed;

BTD ()
b2d()

@\ bi2de ()
4\bit2int ()

end
for i = l:l:bitstream_ length
$Imitate Comparator Operation
if X > LFSR_TABLE (i)
bitstream(i) = 1;
else
bitstream(i) = 0;
end

included in run-time

1), and (x2 = 1,y2 = 1) [13]. Thereby,
I(xy) » (1-x)(1=y)I(x1,y1) + (x) (1 = y)I(x2, y1)+

(1 =x) (VI (x1,y2) + () () (x2,y2)

I(rxc) represents an image with r rows and ¢ columns, and the re-
sized image, I(y,xoc), is obtained by bilinear filtering. By rewriting
the equity for I(x,y) we get (1 —dx)(1—dy)l11 + (1 —dx)(dy)12+
(dx)(1-dy)I21+(dx)(dy) 22 where I11, I12, I21, I2 are neighbouring
pixel values, and dx, dy are relative positions.

For SC design, the probabilities of the neighboring pixels and
the relative positions are denoted as Pr,,, Pr,,, Pr,, PI,,» Pdyx, and
Pgy. By using the equation of I(x,y), we get

Pr(xy) = (1= Pax)(1 = Pay)Pr,y + (1= Pay) (Pgy) Pr,,+

(Pax)(1 = Pgy)Pr, + (Pax)(Pay)Pr,
As shown in Fig. 2 (e), this can be implemented with a 4-to-1 MUX,
where dx and dy are connected to the select ports of the MUX [6, 8].
Fig. 2 (f) shows the CTs for modeling this MUX.

5 EXPERIMENTAL RESULTS

We evaluate the performance of the proposed techniques compared
to the conventional simulation of SC. First, we evaluate different
approaches for performing basic two-input SC multiplication. Then,
we extend our evaluation to the three discussed image processing
techniques. We set up two separate environments for all tests: 1)
conventional approach of processing bit-streams and 2) CT-based
approach. The first case generates and processes actual bit-streams,
while the second one operates only on CTs’ scalar values. All our
simulations are carried out with the MATLAB tool.

For the conventional case of processing bit-streams, we simulate
the three random sources. We generate bit-streams with binomial
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N

Figure 3: Run-time (in seconds) comparison of different meth-
ods for two-input multiplication.

distribution (SCRandom), Sobol-based LD bit-streams (SCSobol),
and LFSR-based pseudo-random bit-streams (SCLfsr). For LESR
method, we implement a dynamic and a table-based approach for
generating bit-streams. The dynamic approach algorithmically gen-
erates random numbers every time running the simulation. In con-
trast, in the table-based approach, the random numbers are gen-
erated only once, stored in a table, and will be loaded at the run
time to compare with the input data and generate corresponding
bit-streams. Algorithm 1 and Algorithm 2 illustrate the pseudo-code
for the dynamic and table-based simulation of the LFSR-based ap-
proach, respectively. We explore three functions (b2d, bi2de, and
bit2int)in MATLAB for the needed binary to decimal (scalar)
conversion. Our simulations showed that b2d () [30] is faster than
bi2de () and bit2int () functions and provides the best run-
time. So for the best performance of the LFSR-based method, we
use this function in our simulations. We use the MATLAB built-in
Sobol sequence generator for the Sobol-based approach, and for
the binomial approach, we use the MATLAB binornd () function
to generate random numbers. For each of the three methods, we
measure the run-time 1000 times and report the average.

Two-Input Multiplication. Fig. 3 compares the run-time of dif-
ferent methods for basic two-input multiplication. The run-time is
reported for different bit-stream sizes (N) to evaluate the scalability
of each method. As it can be seen, for most N sizes of all random
sources, the table-based approach provides a lower run-time than
the dynamic approach. In particular, the LFSR-based method gets
the most benefit from loading random numbers from a table as its
dynamic simulation involves time-consuming base conversion. Evi-
dently, the run-time increases by increasing the bit-stream length
with conventional bit-stream processing. On the other hand, the CT
approach shows a constant run-time independent of the bit-stream
size. As it can be seen, the CT approach provides significantly
shorter run-times compared to the conventional bit-stream process-
ing for all three random source methods. CTO is the fastest, as fast
as binary computing, then CTRAND and CTLFSR come in turn.
The slower performance of CTLFSR is due to using hypergeometric
distribution that includes several multiplications.

Image Processing Case Studies. Next, we present the simula-
tion results for the proposed image processing methods.
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II. Apply Bulk Tests

Generating ’

I. Generate QR Code & Perform Style Transfer
Content Image Style Image

n =100 QRs
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Hit Rate

Hit Rate (%) =

n
{(Z patterrLCount) X 10%
T

3Xn

LK(@,j) €
100% pattern-detectable images are ensured.

1LK(i,j) € {0,255} [0,255]

Figure 4: Test environment using style transferred QRs.

We use SC-based template matching for a visual -Quick Response
(QR)- code. QR codes are widely used in daily life. Textual informa-
tion is embedded in QR codes using a 2D structure. Tkachenko et al.
elaborate the main steps of the QR code recognition in [29]. After
finder (position) pattern localization, finder pattern (FP) coordinates
are obtained. This step can be performed using several methods,
such as the Hough transform, edge detection, and overlap of the
centroids of continuous regions. In this work, we use template
matching to search K pattern &l in a QR code I. Due to the increas-
ing interest in QR beautification with background images, logos,
and shapes [31], we generate and use an aesthetic QR code dataset
containing grayscale images instead of full black-white standard
QRs. We use the neural network-based technique proposed in [31]
for visual QR code generation. Each generated QR code has 100%
detectable patterns by readily-available QR cam scanners.

Fig. 4 shows the flow of our experiment for template matching in
QR codes. After generating grayscale stylish QR codes, bulk tests are
applied using the template matching methods of Section 4. The hit
rate (HR) indicates the matching percentage in the dataset, consid-
ering that each QR code has three FPs. The total pattern_Count
indicates cumulative successful pattern matches.

Table 1 presents our results for the template matching task. We
compare the performance of the three proposed SC methods for
template matching (Method-1, Method-2, Method-3) for processing
conventional bit-streams (SCRandom, SCSobol, SCLfsr, SCMax),
and the CT approach (CTRAND, CT0, CTLFSR, CTMAX). The run-
time (purple bar plots: bit-stream processing, yellow bar plots: CT
method) and memory usage (MEM - blue bar plots) are compared
for different bit-stream lengths.

We record the HR accuracy of the first N that gives the accu-
racy of the conventional binary computing (CONVN). For instance,
SCRandom with Method-1 reaches 97.66% accuracy with N = 256.
This accuracy is validated with CONVN for Method-1. The ac-
curacy results in the bottom row of Table 1 underscore that the
conventional bit-stream processing and the proposed CT-based ap-
proach have the same accuracy. The Sobol-based approach achieves
the CONVN accuracy with N = 32 due to its fast convergence
property [20]. Method-1 and Method-2 have comparable accuracy,
while Method-3 provides the best accuracy (100%). Compared to
conventional bit-stream processing, memory is occupied efficiently
with the CT approach, especially when emulating larger bit-stream
sizes. Bit-stream processing of Method-3, which uses maximum cor-
related bit-streams, is relatively faster than Method-1 and Method-2,
though it still suffers from high memory usage.

Table 1 shows that conventional bit-stream processing with the
dynamic LFSR approach takes longer run-time compared to the
binomial distribution- and Sobol-based approaches.
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Table 1: Performance Comparison of the Implemented Template Matching Methods

Dynamic Approach - Bit-stream Processing

Conventional

Binary Processing
No built-in functions are utilized.
The same O(n) is kept for template
matching like in bit-stream & CT
computations.
Method-2

Method-1 Method-3

RT:
0.011 sec

RT:
0.010 sec

RT:
0.011 sec

Accuracy
Method-2

Method-1 Method-3

97.66% 97.33%

Maximum Correlation
SCMax \ CTMAX
Computation on
max. corr. bit-streams

a=min(l,K) , Py = 2

!
| Template Matching Method-3

Bit-stream, Runtime (sec) 0.516
0.216 0.259 0.288 0.292 0.334
23 26 28 210 oM 213
CT, Runtime (sec]
b8 i) 02

HR Accuracy: N value is reported wher

Template Template Template Template

Matching Matching Matching Matching

Method-1 Method-2 Method-1 Method-2
SCRandom | CTRAND | SCRandom | CTRAND | SCSobol | CT@ [SCSobol CcTo
N=256 N=256 N=512 N=512 | N=128 N=128 N=32 N=32

97.66% |97.66%| 97.33% |97.33%] 97.66% | 97.66% | 97.33% | 97.33%

Binomial Distribution Sobol LFSR
SCRandom | CTRAND SCSobol | cTe SCLfsr | CTLFSR
Computation using binomial Computation using Sobol seq.s Computation using LFSR
distribution for actual bit-streams for actual bit-streams for actual bit-streams
a= llxl(] IXK
~ | a= [le(] a= l )
(LWL N’ N
a - a
P = =4 [NxNT . ONxNT P == _a PyxPgx(1-Pp)x(1-Pg)
out N N out — Pout = v + —
Template Matching Method-1 Template Matching Method-1 Template Matching Method-1
Bit-stream, Runtime (sec) 17.59 Bit-stream, Runtime (sec) 14.14 Bit-stream, Runtime (sec) 7715
0478 0487 1496 2995  4.594 0216 0547 1524 2902 LT3 0697 4914 2119 _85.6 1766
23 26 28 210 211 213 23 26 23 210 211 213 23 26 28 210 211 213
" CT, Runtime (sec) .
0.027 CT, Runtime (sec) 0.013 5855 0.013 0.026  0.025 CT, Runtime (sec)
0024 5018 o016 0019 go15 S e 0.011 0025 CF Buntime (529 0017 o0.016
23 26 zs 210 211 213 23 26 28 210 211 213 23 26 28 210 211 213
MEM (Bit-stream / CT) 2309.16 MEM (Bit-stream / CT) 2335.216 MEM (Bit-stream / CT) 2224.758
2337 14620 7285 289.158 577.566 3,025 18975 73,666 292.416 584.083 2895 17,669 70,225 278.725 556.733
23 26 2 210 RI KB 23 26 28 210 M P 23 26 28 910 oM P
N N N
Template Matching Method-2 Template Matching Method-2 Template Matching Method-2
Bit-stream, Runtime (sec) 17.58 Bit-stream, Runtime (sec) 13.96 Bit-stream, Runtime (sec) 766.1
054 0445 1.392 2793  4.535 0224 0442 1364 2619 4303 0753 5.56 2112 9006 1784
23 25 28 210 211 213 23 25 28 210 211 213 23 25 28 210 211 213
. CT, Runtime (sec) i
0.023 0.025 CT,Runtime (sec) 0.013 0012 0013 0012 0012 0012 | go99 0026 c:oz““"';‘:};“’
0.013  0.014  0.013 0.013 A ,—‘ 2 E 0.015  0.015
23 25 28 210 211 213 23 25 28 210 211 213 23 25 28 210 211 213
MEM (Bit-stream / CT) 2306.24 MEM (Bit-stream / CT) 2334.114 MEM (Bit-stream / CT) 2223.855
2301 14,606 72,816 288,997 ST6.776 3,021 18663 73.23 292331 583.855 2654 17424 69,735 277.921 555.373
23 26 28 210 211 213 23 28 28 210 211 213 23 26 28 210 211 213
N N N

e the first best Hit Rate is obtai

Template Template
Matching Matching
Method-1 Method-2

SCLfsr | CTLFSR | SCLfsr | CTLFSR
N=256 N=256 N=512 N=512
97.66% | 97.66% | 97.33% | 97.33%

23 26 28 210 211 213
MEM (Bit-stream / CT) 2225.776
2995 18096 71,333 278799 SS6.958
23 26 28 210 211 213
N

Template
Matching

Method-3
SCMax CTMAX
N=64 N=64
100% 100%

Tests are performed on a computer with Intel(R) Core(TM) i7-7700HQ CPU @2.80GHz, 16GB RAM, MATLAB 2017b. For memory monitoring, MATLAB whos command is
utilized. Results are based on the average of 1000 different rounds. Runtime: RT (sec), Memory: MEM, and Hit Rate: HR (%).

Next, we evaluate the performance of the CT approach for the
SC image compositing proposed in Section 4. Fig. 5 shows two
pairs of Background (B) and Foreground (F) images as two different
examples. Run-time (RT) in seconds and the output quality in PSNR
(peak signal-to-noise ratio) are reported as the performance metrics.
Bit-stream size is N=256. As it can be seen from the PSNR values,
the CT approach successfully emulates different bit-stream gener-
ation methods and provides comparable PSNRs to the bit-stream
processing. Comparing different random sources, the Sobol-based
method achieves the best PSNRs, then the LFSR method, and finally,
the binomial method. The SCRandom and SCSobol run-time results
in Fig. 5 are obtained with the dynamic approach (the table-based
approach did not significantly reduce the run-time for the binomial-
and Sobol-based bit-stream processing). However, the SCLfsr**
run-time is obtained using the table-based approach, which is faster
than the dynamic SCLfsr* with run-times of 2278.5 sec for the
Deer, and 950.5 sec for the Elephant example. In both examples,
the CT approach significantly reduces the run-time compared to
conventional bit-stream processing.

Finally, the SC bilinear interpolation proposed in Section 4 is
tested for p=4 scaling value. As with other tests, actual bit-stream
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processing and the CT method are evaluated. The binomial distri-
bution and Sobol-based bit-stream processing are performed via
the dynamic method. The table-based approach is used for the
LFSR-based bit-stream processing. The results present PSNR values,
run-time in seconds, and memory usage, while the bit-stream size
is N=256. The results presented in Table 2 are the average of 1000

independent trials. According

to the PSNR results obtained with

reference to the image produced by the conventional binary cal-
culation (CONVN), all bit-stream processing results are emulated
very closely by the CT method. As expected, the Sobol method

achieves the best performance,

followed by the LFSR and binomial

methods. CT-based simulation provides approximately 23 times
more efficient memory usage than the conventional bit-streams.

6 CONCLUSIONS

In this work, we proposed three new SC-based image processing
designs for template matching, image compositing, and bilinear
interpolation tasks. The performance of each design was validated
with a new SC emulation technique based on the CT. The CT method

addresses the long latency and

the high memory usage bottlenecks

in the traditional approach of simulating SC systems. CT-based
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Image Compositing

Deer

[EEBit-stream

Table-based
164.63

PSNR (dB)
31.246

Runtime (sec)

SCLfsr**

‘1 B

SCRandom SCLfsr

45.21

: 684x1213

[EEBit-stream

CTLFSR

Elephant

Runtime (sec)

SCLfsr

45.658

=cT|

Size: 470x736
47.027

n L L
CTRAND CTo CTLFSR CTRAND CcTo CTLFSR

*Dynamic Approach, **Table-based Approach. Tests are performed on a computer

with Intel(R) Core(TM) i7-7700HQ CPU @2.80GHz, 16GB RAM, MATLAB 2017b.
Results are based on the average of 1000 different rounds.

Figure 5: Examples of image compositing with different sizes.

Table 2: Bilinear Interpolation Results

original

Tests are performed on a computer with Intel(R) Core(TM) i7-770@HQ CPU @2.80GHz,
16GB RAM, MATLAB 2017b. Results are based on the average of 1000 different rounds.

simulation especially fits well for image processing applications.
We modeled the state-of-the-art stochastic bit-stream generation
approaches based on the binomial distribution, hypergeometric or
pseudo-random, and low-discrepancy random sources. Our experi-
mental results for simulation of the proposed SC image processing
methods show that the CT method performs more efficiently than
the conventional bit-stream processing in both run-time and mem-
ory usage. In terms of accuracy (PSNR and HR), CT-based simulation
produces results with the same accuracy level as the results from
traditional bit-stream processing. The proposed technique can be
used for fast and efficient emulation of SC systems in other applica-
tions, such as SC-based neural network systems. Our open-source

code of the CT framework can be accessed on GitHub [7].

o

SCRand CTRAND | SCSobol CcTo SCLfsr CTLFSR | CONVN 5 §
_ m

RT: RT: RT: RT: RT: RT: RT: 50x100 @
34.417 0.074 37.778 0.045 29.205 0.141 0.032 ]
A

PSNR: PSNR: PSNR: PSNR: PSNR: PSNR: PSNR: . 3
30.450 29.782 41.533 41.540 | 33.165 33.321 ref. " f H
MEM: x23.506 MEM: x23.520 MEM: x23.508 0=4 200%x400
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