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ABSTRACT

Reinforcement Learning (RL) has opened up new opportunities
to enhance existing smart systems that generally include a com-
plex decision-making process. However, modern RL algorithms,
e.g., Deep Q-Networks (DQN), are based on deep neural networks,
resulting in high computational costs. In this paper, we propose
QHD, an off-policy value-based Hyperdimensional Reinforcement
Learning, that mimics brain properties toward robust and real-
time learning. QHD relies on a lightweight brain-inspired model
to learn an optimal policy in an unknown environment. On both
desktop and power-limited embedded platforms, QHD achieves
significantly better overall efficiency than DQN while providing
higher or comparable rewards. QHD is also suitable for highly-
efficient reinforcement learning with great potential for online and
real-time learning. Our solution supports a small experience replay
batch size that provides 12.3x speedup compared to DQN while en-
suring minimal quality loss. Our evaluation shows QHD capability
for real-time learning, providing 34.6X speedup and significantly
better quality of learning than DQN.
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1 INTRODUCTION

Smart systems and services generally reside in a highly-dynamic
yet unknown environment and require intelligent algorithms to
make optimal decisions with little prior knowledge. In recent years,
Reinforcement Learning (RL) has opened up new opportunities to
solve a wide range of complex predictions and decision-making
tasks that were previously out of reach for a machine [1]. Compared
to supervised and unsupervised learning methods, RL does not
have direct access to labeled training data. Learning through agent-
environment interaction makes RL appealing to dynamic control
and automated system optimization such as smart transportation
and smart grid, where the optimal policy is hard to define and is
constantly changing with its environment [1, 2].

RL methods are generally categorized into policy-based and
value-based RL. The policy-based method directly parameterizes
the policy and optimizes it via on-policy model training. On the
other hand, value-based RL supports off-policy training, i.e., all past
interactions can be used toward learning. Therefore, value-based
RL is much more sample-efficient. As one of the most popular value-
based methods, Deep Q-Networks (DQN) exploits DNN to learn an
approximation of the Q-value for every pair of actions and state.
Recently, there have been active developments for various DQN
applications such as playing computer games [3], Genomics [4], and
smart city [2, 5]. DQN is capable of learning complex tasks without
modeling the environment, but its power comes at a price, i.e., the
huge computation cost and long learning time. This makes it only
suitable for powerful computers in the cloud. However, offloading
RL to the cloud not only leads to extra communication overhead
but also causes security and privacy concerns.

Therefore, we redesign the RL algorithm by exploiting the brain-
inspired highly-efficient HyperDimensional Computing (HDC) [6].
HDC is motivated by how human brains process different kinds of
inputs, i.e., brains express information using a vast number of neu-
rons. The information is then processed and memorized in a holistic
and high-dimensional way. For inputs in the lower-dimensional
space, HDC encodes them to vectors of several thousand dimen-
sions, i.e., hypervectors. The learning process is based on highly-
parallelizable operations of hypervectors. HDC has been applied as
a lightweight machine learning solution to multiple applications
where it is capable of achieving comparable accuracy to DNN with
significantly higher efficiency [7, 8].
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However, current HDC solutions mainly focus on traditional
classification and clustering. In contrast, in this paper, we propose
QHD, a value-based Hyperdimensional Reinforcement Learning
algorithm with off-policy training, which mimics brain properties
towards robust and real-time learning. The main contributions of
the paper are listed as follows:

o To the best of our knowledge, QHD is the first off-policy value-
based hyperdimensional RL algorithm targeting discrete action
space. QHD relies on lightweight HDC models to learn an optimal
policy in an unknown environment. Our algorithm maps state-
action space into high-dimensional space for efficient decision-
making via novel brain-inspired HDC encoding and self-learning.

o Thanks to the brain-like hyperdimensional operations, QHD can
utilize even a small amount of available training data. It thereby
supports a much smaller training batch and experience buffer
than DQN while still providing high-quality results.

e We compare our QHD accuracy and efficiency with the DQN
algorithm for multiple dynamic control tasks. Our evaluation
shows that QHD achieves significantly better overall efficiency
than DQN, especially on the power-limited embedded platform,
e.g., up to about 15X speedup. For real-time learning, QHD pro-
vides 34.6x speedup and significantly better quality.

2 RELATED WORK

Reinforcement Learning: In recent years, RL algorithms have
obtained dramatically more attention because of the advancement
in deep learning. For example, DQN greatly expands the application
of RL to fields like computer games [3, 9], transportation optimiza-
tion [2, 10], and health care [11, 12]. In [10], researchers focus on
driver dispatch optimization within online ride-sharing services.
They use DQN to learn a policy for matching available drivers and
users to maximize the success rate while minimizing the wait time.
All works above utilize DNN to handle complex agent-environment
interactions, so they are computationally intensive with insufficient
efficiency. In contrast, we propose a brain-inspired reinforcement
learning solution with inherent efficiency and robustness.

Hyperdimensional Computing: Prior HDC works mainly pro-
vide solutions to classification and cognitive tasks, such as graph
reasoning [13], bio-signal processing [7, 8], speech recognition [14],

neuromorphic sensing [15] and multi-sensor signal classification [16].

In these highlighted applications, HDC has outperformed state-of-
the-art learning solutions, e.g., support vector machines [14] and
neural networks [16]. Recent orthogonal work proposes an HDC-
based policy-based RL specifically for continuous control tasks [17].
However, this work does not provide support for RL tasks with
discrete action space. In addition, as mentioned in Section 1, policy-
based RL methods are less sample-efficient due to the lack of off-
policy training. Unlike all prior works, this paper is the first effort
focusing on hyperdimensional off-policy value-based RL.

3 QHD: HYPERDIMENSIONAL Q-LEARNING
3.1 Overview

Fig. 1 shows an overview of QHD supporting hyperdimensional
reinforcement learning. In our RL task, there are two components
(Agent and Environment) and three variables (Action, State, and
Reward). Fig. 1(a) exploits a Cartpole example to illustrate these
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Figure 1: Overview of QHD reinforcement learning.
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Figure 2: HDC encoding with complex-valued position hy-
pervectors (HVs).

components and variables. As shown in Fig. 1, the interaction be-
tween the agent and environment forms a loop in which the action
taken based on the current state leads to the next state and reward.
The trajectory of each episode is saved in local memory for later
learning. In Fig. 1(b), we provide an overview of QHD algorithm
guiding the agent in the decision-making process.

3.2 QHD Hyperdimensional Encoding

QHD starts by mapping the current state vector from the original
to high-dimensional space, i.e., hypervector encoding. Notice that
we can create a large number of near-orthogonal hypervectors
through random sampling, i.e., their dot product p; - g2 = 0. Our
solution encodes inputs using hypervectors with random exponen-
tial elements, e.g., p1 belongs to {e“9 : 0 € |-, 7| }D. D is the
dimensionality of these hypervectors.

As Fig. 2 shows, through well-defined hypervector operations,
the original information is evenly distributed across all hypervec-
tor elements, i.e., a holographic representation. The advantage of
being holographic is that we can accumulate information by sim-
ply combining two hypervectors. The complex-valued position
hypervectors used in this paper enable the encoder to capture the
correlation between input features in finer granularity.

Next, we define the following HDC mathematics that manipu-
lates input information in high-dimensional space:

Continuous Binding: The goal of binding is to associate items
in hyperspace. Assuming we have an n-element state vector at
time step ¢ in the RL tasks: S; = {s1,s2, ..., sp}. Our encoding gen-
erates a random exponential hypervector for each state element

{P1, P2 én} and then associates state elements with these hy-
pervectors: Sy = 5, # g, % -+ % p,". We define ﬁksk to be the

component-wise exponential of py.

Bundling: This operation stands for component-wise addition
of hypervectors. The bundling operation is the core of memo-
rization for HDC models, in which the information from multi-
ple hypervectors is saved into one single hypervector. The bun-
dled hypervector is similar to every component hypervector, i.e.,
(p1 + p2) - p1 >> 0. Thus, we represent sets using the bundling
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operation. Bundling of several encoded states results in a model
hypervector: M = 51 + §2 +-o 4 §m. In Section 3.3, we leverage
a weighted bundling to represent it in high-dimensional space, i.e.,
M= a1§1 +a2§2 +-- -+(xm§m. The as are learned via HDC-based
regression.

Hypervector Similarity: Our HDC encoder aims at preserving
the distance relationship among inputs. It maps similar input state
vectors to similar locations in the high-dimensional space, i.e., the
similarity between encoded hypervectors is close to 1. To verify this,
we define a hypervector similarity metric: §(3 *-5 ¥) = g *-p '¥/D,
where 7Y is the element-wise conjugate. Then, assuming x ~ y,
we have: p* - 5 T¥/D=D71y elfa(y=2) ~ 1.

3.3 QHD Hyperdimensional Regression

We develop a regression model based on hyperdimensional math-
ematics. Our regression consists of multiple model hypervectors
{/\7[1,/\712, .. /\7(,1} where n is the size of the action space. For
evaluation of each action at time step t, we only select one of the
model hypervectors My that corresponds to a certain action A, and
the regression is operated on the current-step state hypervector
«§t- These model hypervectors are initialized to all zero elements
and have the same dimensionality as the encoded state hypervec-
tor, i.e, My € {0}2.In regression, the true value is given by the
ideal Q-function, and we use hyperdimensional regression to ap-
proximately calculate the Q-value. We explain the ground truth for
Q-value in Section 3.4 when we introduce QHD. On the other hand,
the approximated Q-value for action A equals the real component
in the dot product between the model hypervector and the encoded
state hypervector: qpreq = real(/\le -8 /D), where S Tisa con-
jugate of the encoded query with complex-valued elements (recall
Section 3.2). As for the regression model update, we use the error
between gpreq and qrrue (ground truth). We either add or subtract
a portion of the state hypervector to the model, weighted by the
regression error: A?(A = /\le +B(qtrue = Qprea) X S. This equation
ensures that the model gets updated more aggressively for higher
prediction error rates (qrrue — qprea > 0). The lightweight opera-
tions in our regression design, such as component-wise addition,
contribute to the fast learning process for QHD.

3.4 Hyperdimensional Value-based
Reinforcement Learning

In this section, we present the details for our QHD, a hyperdimen-
sional Q-learning algorithm. We start our introduction with how
agents with QHD make decisions at each time step. In QHD, we
use a greedy policy that prefers actions with higher Q-values. How-
ever, it is crucial to balance the exploration of the environment
and the exploitation of the learned model. We combine a random
exploration strategy with the greedy policy, i.e., e-decay policy.
Assuming the action space A and time step ¢:
random action A € A, with probability e
Ar = {argmaxAEﬂQ(St,A), with probability 1 — e )
The probability of selecting random actions will gradually drop
after the agent explores and learns for several episodes. In experi-
ments, we use a rate of changing e-decay less than 1; this ensures
that QHD agents start to trust their learned model more while
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gradually lessening the importance of exploration. In the equa-
tion above, Q(S;, A) is a hyperdimensional regression model that
returns approximated Q-values for input action-state pairs. Once
an action A; is chosen by QHD, the agent interacts with the envi-
ronment. We then obtain the new state S;4; for the agent and the
feedback reward R; from the environment. At the next time step
t + 1, QHD selects another action Az41. This chain of actions and
feedbacks form a trajectory or an episode until some termination
conditions are met. To train an RL algorithm, these episodes or past
experiences are usually saved to local memory as training samples.
More specifically, we save a tuple of four elements for each step in
the experience replay buffer: (S;, As, Ry, St+1)-

In DQN, the RL training process and parameter update are based
on DNN back-propagation, while the training in QHD utilizes more
efficient hypervector operations. The regression model in QHD is
trained at the end of each time step after saving current information
to the replay buffer. As in the DQN training process, we apply a
strategy called experience replay. The experience replays in QHD
samples a training batch and uses it for the regression model update.
The training batch includes multiple tuples of past experiences.

Now assume we sample a one-step experience tuple from past
trajectories to train our QHD, i.e., (St, A¢, Ry, Sr+1). In Section 3.3,
we introduce the regression model update based on the approxima-
tion error. We first encode the input state S; to the hypervector 5;
and the predicted value g; _,q is simply calculated as:

9t_prea = Q(St, Ar) = real(Ma, - S, /D) (2)
For regression training, we need a ground truth q; srye. We
cannot directly obtain the true Q-value because RL is not typical
supervised learning. For time step ¢, the feedback is the one-step
reward R; while the Q-value is the expectation of accumulated
rewards. The method to connect these two values is called the
Bellman Equation or Dynamic Programming Equation [18]. Since
most RL tasks can be viewed as a Markov Decision Process (MDP),
the Bellman equation gives a recursive expression for the Q-value
at step t, the expected sum of current rewards, and the Q-value
for step t + 1. To learn an optimal Q-function, we use the Bellman
optimality equation as shown below:

qt_true = Ry + YmaxAQI(SHLA) (3)

Recall that our objective in QHD is to achieve optimal policy
and maximize the accumulated rewards within one episode. The
Bellman optimality equation states that to achieve optimal results
for the whole task, we need to optimize each sub-task. Thus, the true
value q;_trye is the sum of R; and the max next-step Q-value. Instead
of using model Q to calculate the maximum next-step Q-value, we
use a delayed model Q" which gets updated periodically using
parameters in Q. This method is called Double Q-learning [19]; it
stabilizes the learning process and avoids the overestimation of
Q-value caused by the maximization in the Bellman equation. We
also include a reward decay term y that adjusts the effect of future
rewards on the current step Q-value.

After obtaining the predicted Q-value and true Q-value, we per-
form regression model updates. We update the model corresponding
to the action taken, using the regression error q:_true —q;_preq and
the encoded state hypervector. The learning rate is 5.

Ma, = Ma, + B(qt_true - qtﬁpred) x St (4)
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Figure 5: QHD and DQN Acrobot rewards comparison with
both episode index and runtime index.

4 EXPERIMENTAL RESULT

4.1 Experiment Settings

We implement our QHD algorithm using Python on both desktop
(Intel Core-i7 10700 with 65W TDP) and embedded hardware plat-
forms (RaspberryPi 4 with 6W TDP). We validate the functionality
of QHD with multiple control tasks in the OpenAl Gym [9]. For
comparison, we use the DQN algorithm for the same tasks in our
evaluation. In the following subsections, we compare these two
methods’ learning performance and efficiency in all tasks.

The regression model we used in QHD has dimensionality D =
6000 unless stated otherwise. This dimensionality setting provides
us with a balance between learning quality and runtime cost; a
larger dimensionality will generally lead to higher rewards achieved
in the RL tasks with the cost of larger computation. The DON is
powered by a neural network with two hidden layers. The first
layer has 128 neurons, and the second one has 256; except in the
LunarLander task, where we use 64 neurons for the first layer and
128 for the second layer. The experience replay is enabled for model
training in both methods, and we assume nearly unlimited replay
buffer capacity for rewards and runtime comparison. We select
different parameters for sampling training batches to ensure the
best learning quality for both methods. The QHD training batch
size is 4 for Acrobot/Cartpole and 10 for LunarLander, and the DQN
training batch size is 64 for all tasks. Rewards and runtime results
for both methods are averaged over multiple trials.
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Table 1: QHD and DQN goal-achieved runtime (Tj,,;) com-
parison on both desktop and embedded platforms

4.2 RL Rewards & Runtime comparison

Fig. 3 compares the performance of DQN and QHD over three
popular OpenAl control tasks. As shown in Fig. 3(a) and 4, QHD
achieves significantly higher final rewards in Cartpole compared
to DQN. Within 200 episodes, QHD provides an averaged episodic
reward over 660, which is nearly 4x higher than DQN. In the early
episodes, this may lead to smaller rewards; but after the warm-up,
QHD can quickly learn from accumulated experience and surpass
DOQN. Notice that considering the total execution time (shown in
Fig. 4b), QHD is significantly faster than DON and reaches higher
rewards within the same amount of time. We also present the result
for Acrobot in Fig. 3(b) and 5. Our QHD provides notably better
learning efficiency compared to DQN, e.g., about 10X faster in terms
of runtime and 2X fewer number of episodes. For LunarLander, we
compare the RL performance and runtime in Fig. 3(c). It shows that
compared to DQN, our QHD achieves the goal nearly 400 episodes
earlier than DQN and about 2600 seconds (2 times) faster in runtime.

In Table 1, we collect the results for the implementation of QHD
and DON on embedded CPU. We show that the efficiency benefit
of our algorithm remains significant in a power-limited environ-
ment. Thanks to the lightweight QHD learning process and the
hypervector representation, our algorithm scales better than the
deep network structure in DQN, i.e., a constantly smaller runtime
scale ratio. In addition, the speedup brought by QHD is about 15x
in Acrobot, 6X in Cartpole, and 3.55X in LunarLander.

4.3 Evaluate the effect of training batch size

Both QHD and DQN rely on experience replay, and since the ex-
perience replay buffer is ideally infinite, we need to sample the
training dataset from the large replay buffer with a preset batch
size. This parameter is rather crucial because it controls how much
past experience is available for the agent to learn from, thereby
deeply influencing the learning quality. A larger batch size pre-
vents the agent from forgetting past experiences while bringing
greater costs. Our QHD, on the other hand, aims to fully utilize the
provided training samples at each step. In Fig. 6, we explore the
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Figure 6: Explore the effect of batch size.

effect of replay batch size on both methods. Fig. 6a compares the
average rewards for the last 100 episodes, and it is clear that our
QHD performs significantly better. For example, when the batch
size is 2, QHD can still achieve the goal with an average of -102.9
rewards. On the other hand, DQN performs poorly with a reward of
-480.9. This means that DQN does not efficiently utilize the limited
available training samples.

Apart from better performance, our QHD also provides higher
efficiency. In Fig. 6(b), we provide both the QHD runtime for 500
episodes and when the goal is achieved. For DQN, only total runtime
is provided because DQN cannot achieve the goal with small batch
sizes from 2 to 30. Our QHD is constantly faster: with the batch size
of 2 (15), our QHD is about 6.5 (1.7x) faster than DQN in terms of
total runtime. Focusing on the actual runtime when achieving the
target, QHD shows an even larger improvement, e.g., the speedup
is about 12.3X (2.6X) with a batch size of 2 (30).

4.4 QHD vs. DQN with Limited Size of
Experience Replay Buffer

In the above sections, we set the RL experience replay to have
infinite capacity, i.e., the agent has access to all previous experiences
during the training. However, in practical implementations, the
memory available for experience replay is limited due to energy and
space budgets. Thus, in this section, we evaluate the performance
of our QHD with a tighter cap on the maximum replay buffer size
and compare it to the DQN results.

In Fig. 7(a), we present the average reward achieved by both
methods under different buffer sizes. The reward is averaged over
the last 100 episodes. When collecting these results, we fix the
training batch size; the batch size is 4 for QHD and 64 for DQN.
The figure shows that DQN performs poorly when the buffer size
is 64 and 128, with an average reward of -500. However, our QHD
can reach that goal even with a buffer size as large as its batch size.
These results show that QHD can perform RL tasks with online
learning, i.e., a tiny replay buffer.

We also take one step further to explore the QHD capability
of real-time learning. We set both the batch and buffer sizes to 1,
which means the agent will learn based on only the current sample.
We use DQN with a 256 buffer size and 64 batch size as an online-
learning comparison. As shown in Fig. 7(b), with a larger buffer and
batch size, DQN achieves significantly lower rewards (-345.4). For a
500-episode training, our QHD achieves average rewards of -113.7
using 83 seconds, which leads to a 34.6X speedup in total runtime.

5 CONCLUSION

We propose a novel lightweight value-based off-policy RL algorithm
based on brain-inspired HDC. QHD utilizes HDC for high-quality
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Figure 7: QHD learning efficiency with tiny replay buffer.

Q-value approximation and self-learning agent training. Our evalu-
ation of several tasks shows that QHD provides significantly better
efficiency and learning quality than DQN.
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