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Abstract—Brain-inspired Hyper-dimensional computing (HDC)
has recently shown promise as a lightweight machine learning
approach. Despite its success, there are limited studies on the
robustness of HDC models to adversarial attacks. In this pa-
per, we introduce the first comparative study of the robustness
between HDC and deep neural network (DNN) to malicious
attacks. We develop a framework that enables HDC models
to generate gradient-based adversarial examples using state-of-
the-art techniques applied to DNNs. Our evaluation shows that
HDC with a proper neural encoding module provides significantly
higher robustness to adversarial attacks than existing DNNs. In
addition, HDC models have high robustness to adversarial samples
generated for DNNs.

I. INTRODUCTION

Big data-powered deep learning has found impressive ad-
vances in many real-world applications. However, deep learning
algorithms are vulnerable to almost imperceptible perturbations
of their inputs. Algorithms that seek to find such adversarial
samples are called adversarial attacks [1]. Understanding ad-
versarial perturbations are imperative for two reasons: (1) it
concerns the security of deployed machine learning algorithms
for security-critical applications, e.g., self-driving cars; and (2)
it fills the gap between the sensory information processing
in humans and machines and thus provides guidance towards
robust, brain-like learning.

We exploit neurally-inspired Hyper Dimensional Computing
(HDC) as an alternative paradigm that mimics important brain
functionalities and has high-efficiency and noise-tolerant com-
putation [2], [3]. Recently, HDC has shown several advantages
over competing learning solutions: (1) it is highly parallel and
suitable for online on-device learning [4]; (2) it enables single-
pass learning with just a few samples [5]; and (3) it is robust
against noise and corrupted data [6].

Despite all these successes, there are limited investigations
into HDC’s robustness to adversarial perturbation. Recently,
HDC algorithms have found uses in security-critical appli-
cations in industry. Therefore, it is critical to explore the
vulnerability of HDC algorithms to adversarial samples fully.
In addition, HDC has become of interest due to its potential as
a brain-inspired model, which could lead to human-like robust
architectures.

In this paper, we develop a novel framework that enables
HDC models to generate gradient-based adversarial examples.
We define a loss function and back-propagation on the HDC
model, which enables us to generate adversarial samples using
state-of-the-art attack methods. We also introduce a compara-
tive study on the robustness of HDC and DNN models versus
adversarial samples generated by themselves and by each other.

II. HDC ADVERSARIAL ATTACK

An intriguing discovery in 2014 [7] showed the weakness
of DNN models to adversarial attacks. Adversarial samples
are any perturbation to the original input that can change
the predicted label and, more often, cause the model to have
high confidence in the wrong class. White-box attacks such as
FGSM [8], JISMA [9] and Deep Fool [10] have gained traction.
They have become widely used to test the robustness of models
due to their ability to generate highly successful adversarial
inputs in a very efficient manner using the gradient of the
model’s loss function.

There is not a lot of literature on HDC against adversarial
attacks. The first publication [11] demonstrates that HDC is
vulnerable to black-box attacks, specifically genetic algorithms,
and proposes negative training as a defense technique. However,
it has the following limitations: (1) the study is limited only
to binary hypervectors, (2) It does not cover effective and
popular white-box attacks such as gradient-based attacks, and
(3) it does not compare its results with traditional neural
networks. Subsequent publications, study the robustness of
HDC against black-box attacks in different domains, such as
voice recognition. However, they fail to show gradient-based
methods to generate the samples (white box) or compare them
to DNNs.

Figure 1 shows the overview of our HDC model with
holographic gradient-based computation. During inference, the
model predicts the class based on the similarity of a query
with all class hypervectors. We pass the similarities through an
additional softmax layer. We define a loss function with the goal
of changing the class similarity values in the desired direction.
We retrieve an adversarial hypervector from the loss function
(@), and then we go back to the original space through the
activation function (@) and the encoding matrix (), giving
us the desired adversarial noise. Although backpropagation
through the HDC model can be accurate since our attacks
were successful using this framework, our encoding method
exploits a periodic activation function and high-dimensional
encoding matrix that generates quasi-orthogonal hypervectors
and introduces non-linearity.

A. Fast Gradient Sign Method

The first white-box attack we use is the Fast Gradient Sign
Method (FGSM), which consists of an algorithm that produces
malicious samples from the gradient of the cost function
relative to the inputs. In FGSM, the perturbations are calculated
as

n= esign(VIJ(F),x,y)), (D
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Fig. 1. Hyperdimensional computing with non-linear encoding. The backpropagation of the model could formal loss function.

where € is the perturbation magnitude, 6 are the model param-
eters, = is the input of the model, y is the target label, and J
is the loss function. In the case of DNN, we take J to be the
MSE loss function.

B. Jacobian Based Saliency Map Attack

Jacobian-Based Saliency Map Attack (JSMA) is another
gradient-based white-box method. A saliency map is used to
select the dimension which produces the maximum error using
the following equation (1):
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Where f¢,(x) corresponds to the softmax probability for
class C; predicted by the victim model, ie. fc,(z) =
softmax(g(x));, where g(z) is the output of the DNN (with
no softmax layer).

C. DeepFool Attack

DeepFool [12] is a recent white-box attack that each iteration

t begins by going over all the classes (C;) and storing the

minimum difference between the gradient of the original image

and that of each one of the classes, and also the difference in

outputs. Given these values for every class, we compute the
closest hyperplane for the input xg as:
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Then, we derive the minimal vector that projects x onto the

closest hyperplane from the previous step:
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D. Evaluation

Our DNN consists explicitly of a 3-layer Convolutional
Neural Network. Our models are evaluated on three popular
datasets: MNIST [13], an extended MNIST (EMNIST) [14]
and Fashion-MNIST [15]. Figure 2 compares the robustness
of HDC and DNN models to adversarial samples generated
by different attack mechanisms. Our evaluation shows that
DNN is highly vulnerable to adversarial samples generated
by a DNN model. In contrast, HDC using our non-linear
encoding provides natural robustness to adversarial attacks. For
the example with the MNIST dataset and the same perturbation
magnitude, our HDC model achieves 11.15%, 57.16% and
20.19% higher accuracy than DNN models using FGSM, Deep
Fool, and JSMA attacks, respectively. Comparing different
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Fig. 2. Adversarial accuracy of HDC and DNN models for different datasets.

attack mechanisms, we observe that HDC has the highest
sensitivity to DeepFool attacks. As explained in Section II,
HDC exploits non-linear and non-convex encoding methods,
thus making gradient-based attacks relatively unsuccessful.
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