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Abstract—Brain-inspired Hyper-dimensional computing (HDC)
has recently shown promise as a lightweight machine learning
approach. Despite its success, there are limited studies on the
robustness of HDC models to adversarial attacks. In this pa-
per, we introduce the first comparative study of the robustness
between HDC and deep neural network (DNN) to malicious
attacks. We develop a framework that enables HDC models
to generate gradient-based adversarial examples using state-of-
the-art techniques applied to DNNs. Our evaluation shows that
HDC with a proper neural encoding module provides significantly
higher robustness to adversarial attacks than existing DNNs. In
addition, HDC models have high robustness to adversarial samples
generated for DNNs.

I. INTRODUCTION

Big data-powered deep learning has found impressive ad-

vances in many real-world applications. However, deep learning

algorithms are vulnerable to almost imperceptible perturbations

of their inputs. Algorithms that seek to find such adversarial

samples are called adversarial attacks [1]. Understanding ad-

versarial perturbations are imperative for two reasons: (1) it

concerns the security of deployed machine learning algorithms

for security-critical applications, e.g., self-driving cars; and (2)

it fills the gap between the sensory information processing

in humans and machines and thus provides guidance towards

robust, brain-like learning.

We exploit neurally-inspired Hyper Dimensional Computing

(HDC) as an alternative paradigm that mimics important brain

functionalities and has high-efficiency and noise-tolerant com-

putation [2], [3]. Recently, HDC has shown several advantages

over competing learning solutions: (1) it is highly parallel and

suitable for online on-device learning [4]; (2) it enables single-

pass learning with just a few samples [5]; and (3) it is robust

against noise and corrupted data [6].

Despite all these successes, there are limited investigations

into HDC’s robustness to adversarial perturbation. Recently,

HDC algorithms have found uses in security-critical appli-

cations in industry. Therefore, it is critical to explore the

vulnerability of HDC algorithms to adversarial samples fully.

In addition, HDC has become of interest due to its potential as

a brain-inspired model, which could lead to human-like robust

architectures.

In this paper, we develop a novel framework that enables

HDC models to generate gradient-based adversarial examples.

We define a loss function and back-propagation on the HDC

model, which enables us to generate adversarial samples using

state-of-the-art attack methods. We also introduce a compara-

tive study on the robustness of HDC and DNN models versus

adversarial samples generated by themselves and by each other.

II. HDC ADVERSARIAL ATTACK

An intriguing discovery in 2014 [7] showed the weakness

of DNN models to adversarial attacks. Adversarial samples

are any perturbation to the original input that can change

the predicted label and, more often, cause the model to have

high confidence in the wrong class. White-box attacks such as

FGSM [8], JSMA [9] and Deep Fool [10] have gained traction.

They have become widely used to test the robustness of models

due to their ability to generate highly successful adversarial

inputs in a very efficient manner using the gradient of the

model’s loss function.

There is not a lot of literature on HDC against adversarial

attacks. The first publication [11] demonstrates that HDC is

vulnerable to black-box attacks, specifically genetic algorithms,

and proposes negative training as a defense technique. However,

it has the following limitations: (1) the study is limited only

to binary hypervectors, (2) It does not cover effective and

popular white-box attacks such as gradient-based attacks, and

(3) it does not compare its results with traditional neural

networks. Subsequent publications, study the robustness of

HDC against black-box attacks in different domains, such as

voice recognition. However, they fail to show gradient-based

methods to generate the samples (white box) or compare them

to DNNs.

Figure 1 shows the overview of our HDC model with

holographic gradient-based computation. During inference, the

model predicts the class based on the similarity of a query

with all class hypervectors. We pass the similarities through an

additional softmax layer. We define a loss function with the goal

of changing the class similarity values in the desired direction.

We retrieve an adversarial hypervector from the loss function

(•d ), and then we go back to the original space through the

activation function (•e ) and the encoding matrix (•f ), giving

us the desired adversarial noise. Although backpropagation

through the HDC model can be accurate since our attacks

were successful using this framework, our encoding method

exploits a periodic activation function and high-dimensional

encoding matrix that generates quasi-orthogonal hypervectors

and introduces non-linearity.

A. Fast Gradient Sign Method

The first white-box attack we use is the Fast Gradient Sign

Method (FGSM), which consists of an algorithm that produces

malicious samples from the gradient of the cost function

relative to the inputs. In FGSM, the perturbations are calculated

as

η = ϵ sign(∇xJ(θ, x, y)), (1)
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Fig. 1. Hyperdimensional computing with non-linear encoding. The backpropagation of the model could formal loss function.

where ϵ is the perturbation magnitude, θ are the model param-

eters, x is the input of the model, y is the target label, and J
is the loss function. In the case of DNN, we take J to be the

MSE loss function.

B. Jacobian Based Saliency Map Attack

Jacobian-Based Saliency Map Attack (JSMA) is another

gradient-based white-box method. A saliency map is used to

select the dimension which produces the maximum error using

the following equation (1):

S+(x(i), Ci) =







0 if
∂fCi

(x)

∂x(i)
< 0 or

∑

C′ ̸=Ci

∂fCi
(x)

∂x(i)
> 0

−
∂fCi

(x)

∂x(i)
·
∑

C′ ̸=Ci

∂fCi
(x)

∂x(i)
otherwise

(2)

Where fCi
(x) corresponds to the softmax probability for

class Ci predicted by the victim model, i.e. fCi
(x) =

softmax(ŷ(x))i, where ŷ(x) is the output of the DNN (with

no softmax layer).

C. DeepFool Attack

DeepFool [12] is a recent white-box attack that each iteration

t begins by going over all the classes (Ci) and storing the

minimum difference between the gradient of the original image

and that of each one of the classes, and also the difference in

outputs. Given these values for every class, we compute the

closest hyperplane for the input x0 as:

l̂(x0) = argmin
Ci ̸=y0

|fCi
(x0)− fy0(x0)|

||wCi
− wy0

||2
(3)

Then, we derive the minimal vector that projects x onto the

closest hyperplane from the previous step:

r∗(x0) =
|f

l̂(x0)
(x0)− fy0(x0)|

||w
l̂(x0)

− wy0
||22

(w
l̂(x0)

− wy0
) (4)

D. Evaluation

Our DNN consists explicitly of a 3-layer Convolutional

Neural Network. Our models are evaluated on three popular

datasets: MNIST [13], an extended MNIST (EMNIST) [14]

and Fashion-MNIST [15]. Figure 2 compares the robustness

of HDC and DNN models to adversarial samples generated

by different attack mechanisms. Our evaluation shows that

DNN is highly vulnerable to adversarial samples generated

by a DNN model. In contrast, HDC using our non-linear

encoding provides natural robustness to adversarial attacks. For

the example with the MNIST dataset and the same perturbation

magnitude, our HDC model achieves 11.15%, 57.16% and

20.19% higher accuracy than DNN models using FGSM, Deep

Fool, and JSMA attacks, respectively. Comparing different

20

40

60

80

100

A
c

c
u

ra
c

y
 (

%
)

MNIST FMNIST EMNIST

HDC Attacking HDC DNN Attacking DNN

Fig. 2. Adversarial accuracy of HDC and DNN models for different datasets.

attack mechanisms, we observe that HDC has the highest

sensitivity to DeepFool attacks. As explained in Section II,

HDC exploits non-linear and non-convex encoding methods,

thus making gradient-based attacks relatively unsuccessful.
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