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Abstract—This is the first work to present a reliable application
for highly scaled (down to merely 3nm), multi-bit Ferroelectric
FET (FeFET) technology. FEFET is one of the up-and-coming
emerging technologies that is not only fully compatible with
the existing CMOS but does hold the promise to realize ultra-
efficient and compact Compute-in-Memory (CiM) architectures.
Nevertheless, FeFETs struggle with the 10nm thickness of the
Ferroelectric (FE) layer. This makes scaling profoundly challeng-
ing if not impossible because thinner FE significantly shrinks the
memory window leading to large error probabilities that cannot
be tolerated. To overcome these challenges, we propose HDGIM,
a hyperdimensional computing framework catered to FeFET in
the context of genome sequence matching. Genome Sequence
Matching is known to have high computational costs, primarily
due to huge data movement that substantially overwhelms von-
Neuman architectures. On the one hand, our cross-layer FeFET
reliability modeling (starting from device physics to circuits)
accurately captures the impact of FE scaling on errors induced by
process variation and inherent stochasticity in multi-bit FeFETs.
On the other hand, our HDC learning framework iteratively
adapts by using two models, a full-precision, ideal model for
training and a quantized, noisy version for validation and
inference. OQur results demonstrate that highly scaled FeFET
realizing 3-bit and even 4-bit can withstand any noise given high
dimensionality during inference. If we consider the noise during
model adjustment, we can improve the inherent robustness
compared to adding noise during the matching process.

I. INTRODUCTION

Genome sequence matching is one of the key algorithms in
identifying and analyzing genomic data with several applica-
tions in identifying and curing diseases, including COVID-19.
Sequence matching consists of analyzing essential biological
characteristics such as nucleotide or protein sequences and
comparing them in terms of their similarity [1]. In sequence
matching, a DNA query is searched across large-scale refer-
ence DNA strings which typically comprise more than a hun-
dred million DNA bases [2]. Unfortunately, running genome
sequence matching on existing hardware is significantly slow
and inefficient as it demands a large amount of data movement
between the memory and computing cores.

A Computing in-Memory (CiM) architecture is a promising
solution to address data movement issues. By integrating basic
processing capabilities, the CiM paradigm enables operations
directly on the data stored in memory. Hence, CiM signif-
icantly reduces power consumption and enables faster com-
putations through less data movement. Non-volatile memories
(NVMs) are typically employed to build CiM architectures.

However, CiM suffers from NVM’s device-to-device variation
and inaccuracy from its analog implementations [3], thus
degrading the application-level accuracy.

Among different NVM technologies, FeFET has emerged as
a promising candidate due to its full CMOS compatibility [4],
low read/write energy [5], etc. However, FeFET devices are
often designed with a 10nm-thick ferroelectric layer in the gate
stack of the transistor in order to maintain the state. Such a
thick layer has several disadvantages. The +4V write voltage
is not available on modern ICs, requiring a new dedicated
power network inside the chip, incurring a large overhead.
Further, the high write voltage is a major source of reliability
and endurance challenges [6].

Nonetheless, if the write voltage could be reduced to the
typical I/O voltage of 1.8V, no additional power network
would be required, energy consumption decreases, and reli-
ability increase. Those challenges can be solved by reducing
the thickness of the FE layer. It enables technology scaling,
reduces energy consumption, and increases endurance [7], [8].
A 3nm FE-layer was explored in [7] and a write voltage of
+1.85V was sufficient. However, an additional back gate was
added to the FeFET to overcome the extremely high variation
during a read operation [8]. Such an extra gate increases the
complexity and area of a circuit.

The efficient but noisy CiM technology, when combined
with high-precision computation that many sequence matching
algorithms require [9], [10], calls for a robust computational
model. Hyperdimensional computing (HDC) has emerged
as an alternative computational model and data representa-
tion that mimics important brain functionalities toward high-
efficiency and noise-tolerant computation [11], [12]. Multiple
recent works have exploited HDC data representation to revisit
genome sequence matching algorithms for memory-centric
computation [13]-[18]. These CiM approaches translate se-
quencing matching to highly parallel search operations that can
be accelerated on content addressable memory (CAM) [15],
[19]. However, most existing HDC-based genomic algorithms
either assume the CiM is ideal, do not work with multi-
bit CiM, or the noise modeling is non-faithful to the tech-
nology being used. This paper presents a novel design that
effectively deals with the constraints of the FeFET-based CiM
architecture for the sequence matching problem and provides
realistic modeling of the hardware non-idealities. Our work is
fundamentally novel and provides the following contributions:
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« Faithful bridge between HDC algorithm and hardware
constraints: We employ physics-based FeFET models to
accurately capture their noise and variation. Instead of the
simple Gaussian distribution typically employed in other
works [20], our FeFET models provide a realistic noise
distribution for multi-bit precision, which we take into
consideration to design our learning framework.

o Although HDC representation provides robustness to the
genome sequence matching process; the enhanced algo-
rithms are still highly sensitive to technology noise during
in-memory computation. We propose a framework that iter-
atively teaches HDC-based sequence matching algorithms to
operate over non-ideal and noisy devices that exist in CiM
architecture. a

We extensively evaluate the effectiveness of our framework
in both theoretical and experimental settings. The evaluation
shows that our cross-layer FeFET reliability modeling accu-
rately captures the impact of FE scaling on errors induced
by process variation and inherent stochasticity in multi-bit
FeFETs. Our HDC learning framework iteratively adapts by
using two models, a full-precision, ideal model for training and
a quantized, noisy version for validation and inference. Our
results demonstrate that highly scaled FeFET realizing 3-bit
and even 4-bit can withstand any noise given high dimension-
ality during inference. If we introduce the noise during model
adjustment, we can improve the inherent robustness compared
to only adding noise during the matching process.

II. RELATED WORK

Most modern genome sequence machines can generate a
massive amount of data. Such effort is achieved by extracting
small random fragments called reads. These reads are con-
sidered substrings that pass through a computational process
known as read mapping, which takes each read, aligns it to
one or more possible locations within the reference genome,
and finds the matches and differences (i.e., distance) between
the read and the reference genome segment at that location
[21], [22].

With the advances in non-volatile memories, several CiM
paradigms have been proposed. For instance, crossbars based
on FeFET have been employed in neural networks [23]
and nearest neighbor search [24]. On the other hand, bi-
nary/ternary/analog content addressable memories (CAMs)
have been utilized in search-intensive tasks such as IP routers,
lookup tables, and associative searches [25], [26]. Specifically,
in conjunction with customized sense amplifiers (Figure 1(c)),
2-FeFET CAM (Figure 1(d)) designs demonstrate great poten-
tial as a high-density and energy-efficient associative memory
with Hamming and L, distance [5], [27].

CiM based on NVM technology has been widely used to
accelerate genome sequence matching problems. For exam-
ple, PIM-Aligner [28] and RAPID [29] are two recent CiM
accelerators for alignment based on magnetic and resistive
devices. However, the genome sequencing algorithms are not
memory-centric and often suffer from technology noise in CiM
architectures. HDC is introduced as a novel computational
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Fig. 1. (a) FeFET operation schematic. (b) SPICE simulation of FeFET Ip —
Vg curve for storing 1 and 0. (c) CAM array. (d) Single 2FeFET CAM. (e)
Ultra-compact 1 FeFET CAM [30].

model for robust and holographic data representation. Revisit-
ing genome sequencing algorithms based on HDC makes the
sequencing algorithms memory-centric and compatible with
CiM architectures [13], [15]. Recent work in [15] presented a
CAM architecture to accelerate a key functionality of HDC-
based genome sequence matching. However, the existing plat-
forms either assume the CiM or CAM is ideal, do not work
with multi-bit CiM or the noise modeling is non-accurate to the
technology being used. This paper presents a novel design that
effectively deals with the constraints of the FeFET-based CiM
architecture for the sequence matching problem and Provides
realistic modeling of the hardware non-idealities.

III. COMPUTE-IN-MEMORY WITH FEFET TECHNOLOGY
A. FeFET Basics

HfO»-based FeFET is a competitive candidate in low-power
and high-speed edge-computing applications due to its CMOS
compatibility [4], comparatively low read/write energy, and
short read latency [5]. A FeFET is based on a regular CMOS
MOSEFET with only one modification to the gate stack depicted
in Figure 1(a). A typically 10nm thick ferroelectric (FE) HfO,
layer is added, which can be polarized by applying a write
voltage pulse to the gate terminal. Applying a positive voltage
pulse sets the FE layer to the down polarization state and
Ip — Vg becomes high at the read voltage of about 1V as
shown in Figure 1(b). A negative voltage pulse results in
an up polarization and a low Ip — V. The two different
currents represents two different states, making a FeFET
a single device memory. The FE layer contains individual
domains, symbolically represented as green and red boxes in
Figure 2, which are flipped by the write pulse, and define the
polarization. However, flipping is a stochastic process over
time and thus the polarization (i.e., Ip — V() is an intermediate
value for short or lower voltage pulse. Such a property can
be exploited to create a multi-stage cell to store multiple
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Fig. 2. Our FeFET modeling considers the inherent stochasticity of the
domains in the ferroelectric layer. Their up/down polarization determines the
electron density of the channel and thus the drain-source current Ip — V.
bits of information [8]. Scaling the thickness of the FE layer
down reduces the number of domains, which become more
impactful on the overall polarization. Because of the inherent
stochasticity, the variability increases for highly scaled FeFET
devices with fewer domains [8].

Our FeFET modeling: In this work, we perform accurate
cross-layer reliability modeling with the multi-physics sim-
ulator TCAD. We start from the underlying device physics,
as follows: First, the FDOSI transistor is carefully calibrated
to reproduce experimental measurements of commercial 22nm
FDSOI [31]. Then, the parameters of the incorporated FE layer
(remnant polarization, saturation polarization, and coercive
field) are also calibrated against measurements [8]. Then, the
Ip — Vg characteristic is swept, and different FeFET states
are derived from that. To capture process variation and the
inherent stochasticity, Monte Carlo simulations are performed
resulting in a VT distribution for each stage of the cell. The
mean and variance are extracted and provided to the HDGIM
framework for further modeling at circuit level.

FeFET-based Content-Addressable Memory (CAM):
CAM can identify the stored sequence that exactly matches
the query [5]. With the FeFET-based CAM approach, given a
query sequence, one can efficiently search across all the stored
sequences in terms of Hamming distance. Specifically, During
the writing phase, the reference DNA strings are written
into CAMs by high/low voltages representing the nucleotides.
Then, when a query DNA comes, the high/low voltages are
again applied to the FeFET gate terminal to form a high/low
Ip. In this work, by leveraging the above accurate FeFET
modeling, we can characterize the non-idealities of CAMs.

B. Threshold Matching with CAMs

We propose HDGIM, a hyperdimensional genome sequence
matching framework that adapts to the non-idealities of Fe-
FET CAMs. An area-efficient three to four-bit ultra-compact
CAM that performs Hamming distance, i.e., bit-wise XOR
operation, is highly desired. In HDGIM, we propose to use
the binary CAM (BCAM) from [30]. Unlike conventional
single-bit CAM with 2 FeFETs (Figure 1(d)) and single step
search, single-bit ultra-compact CAM shown in Figure 1(e)

necessitates 1 FeFET with 2 step searches. As a result,
an N-bit CAM performing bit-wise XOR only requires N
FeFETs. Specifically, it can be seen that in step one, the
“storeOsearch1” (stOsrl) cell is detected, and in step two,
the ”storelsearchQ” (stlsrQ) cell is then detected. Since the
total Hamming distance between the query and a stored
vector is simply the number of storeOsearchl” cells and
“storelsearchQ” cells. By the fact that 151377 = IonNstosr1
and Isopp = ION(Ntotal - Nstler)’ we obtain [30]:

Ham.dist. = Ngtosr1 + Nst1sro X Isomr — Isivr (1)

Then, by changing the reference of the sense amplifier for
detecting rows exceeding the threshold, HDGIM framework,
illustrated in Section IV, is able to handle multi-bit CiM
genome sequence matching.

1V. HDGIM FRAMEWORK

Figure 3 shows an overview of genome sequence search
in the high-dimensional space. The first step is to encode
the genome sequence into a high-dimensional space. It as-
signs a hypervector corresponding to each base alphabet in
¥ = {A,C,G, T} for DNA. The encoding module depends
on the data type and the genomics task [14]. We aggregate
all encoded sequences to generate a reference genome, called
HDC Library that we will consider as our model. An HDC
library consists of several reference hypervectors, where each
hypervector memorizes thousands of genome sequences in
high-dimensional space. During the sequence searching, HDC
uses the same encoding to map a query sequence into a
hypervector. We perform a similarity computation between a
query and each reference hypervector. By searching for an
exact or approximate match, it identifies a query’s similarity
with thousands of memorized patterns stored in each HDC
library hypervector.

Our framework consists of two models: the full-precision
ideal model and the deployed model, which will be the one that
has been adapted in bit-precision and receives the noise effects,
in order to be used in a FeFET-based CAM. The framework
hyperparameters for initialization consist of the bit-precision
for the deployed model B, the number of dimensions in every
hypervector D, the chunk size n, and the discharge current
matrix M ¢, containing mapping values to compute similarities,
since we do not have available dot product as a similarity
function. The mapping values are the current discharges given
two symbols being compared.

A. HDGIM Encoding

In this step (@), the model encodes the given DNA se-
quence into high-dimensional space. To achieve this, the model
first samples D —dimensional vectors H, € {r eRl—-7<
x < 7}P uniformly randomly for each o € {A,C,G,T}.
Next, the model splits DNA sequence R into small overlapping
chunks R; with length n by window sliding. For example, if
we have R =< A,C,G,G, T > with n = 3, resulting small
chunks would be < A,C.G >, < C,G,G >, < G,G,T >.
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Fig. 3. Overview of HDGIM sequence matching in the hyperdimensional space.

After this, each chunk is encoded by binding the base hyper-
vectors into high-dimensional space S:' = H R; * pﬁ Rjpy *
pzﬁRj+2 SRRRES p"flﬁRanl, where p represents a rotational
shift. Lastly, the encoded hypervector of the DNA sequence
S is computed by bundling all its chunk hypervectors S;,

B. Hardware Adaptation Components

Before we describe the learning model, we proceed to
describe the adaptation of the hardware modeling to our
framework, which consists of a modified similarity function
based on our designed CAM, bit-precision quantization, to
convert our full-precision model to an N-bit precision that fits
the FeFET-based CiM used and the noise introduction to the
model.

Quantization: The quantization is conducted on the query
and on the model projection step (@), where we adapt the
ideal model to the bit-precision constraint. It quantizes the
components of the hypervector to B bit symbols. Since feature
values are not following uniform distribution in general, it cal-
culates scores of the HDC components and uses the cumulative
normal distribution function to quantize feature values.

Noise modeling: In order for the model to simulate a
FeFET-based CiM we use the noise modeling explained in
Section III. We use the experiment parameters to generate the
distribution. It causes a symbol v to increase or decrease to
v+ 1 or v — 1. Each value in the quantized hypervector has
a certain probability of stochastic variation. For instance, if
random changing probability is p, a value v in the hypervector
will be changed to the value of v+1 with probability p%9"** and

2B _1 left | right
v — 1 with probability p¢/* where 2izo Ué' i S p. If

v — 1 is less than 0 or v + 1 is greater than 25 — 1, only
an increase or decrease will be applied with probability p
respectively. We then apply the noise during inference on the
model projection step (@ ). The values remain unchanged until
the next model projection step.

Similarity function: Given two D B-bit(s) hypervectors
H, and Hs, current similarity §(H;, H3) is computed using
d = |Hy — Ho| and M€ indicating current matrix containing
mapping values for computing similarities (@). Now, the
similarity is computed as follows:

o]

S(Hy, Hy) =Y M&

i

.
I
o

Note that 0 < d; < |M¢| = 25,

C. lterative training

For each training step, training data with labels are given to
the full-precision model. Each data has a query DNA sequence
of n size, which is equal to the size of each chunk used in the
encoding step, with a label value indicating whether the query
DNA sequence is contained in the model’s DNA sequence R
or not. Once we reach the validation phase of our training,
instead of testing it with the full-precision model, we use
the quantized model. Since this is not a classification but a
detection task, the model requires threshold value T in order
to decide if a sequence pertains to the HDC library. Once the
evaluations are done, we test for multiple threshold values and
pick the value with the best accuracy, which is dependent on
the dimensionality of the hypervector and error probability.

For each query DNA sequence Q with label value, the full-
precision model is updated as follows (@ ):

S« S—a@Q if6(57,Q7/D>Tand Q¢ R

S« S+a@ if6(S1,G7)/D<Tand Q<R
where « indicates the learning rate and 7' indicates the
threshold value. Qq and S are quantized Cj and S to B-bit(s)
respectively. M€ is used in § which is computing similarity
between the given hypervectors. Finally, S4 s computed from
updated S by a model projection that repeats the quantization

step (@).

D. Capacity of hardware-based HDC

Following the methodology in [32], we define the memory
capacity as its information content: the mutual information
between true inputs and the inputs retrievable from the model
S. Notice that because the model is only for detection, the
analysis for the mutual information collapse to an analysis
over the distribution with respect to the membership of DNA
sequences instead of over that of DNA sequences themselves.
Let § be the random variable of the detector output and s
be the membership of a query. For simplicity, let the support
of §,s be {0,1}, indicating undetected/detected for § and
not present/present for s, respectively. Therefore, under fixed
parameter py and threshold 6, the mutual information between
the set of DNA sequences {S(9} and the model S is
I({59}, 5)

= Dk (Pr(8, s)|| Pr(5) Pr(s))

z Pr(s =i, =7)

,j€{0,1}

 Pr(s=i,s =)
108> 5205 =3 Pr(s = )
2
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Where Dy is the KL divergence [33]. By definition,
Pr(s) is described succinctly by ps (Pr(s = 1) = py).
Pr(s = 1) = tp-ps + fp- (1 — ps) is the marginal
probability with which the detector outputs “detected”. The
joint probability Pr(s, s) can be computed by the conditional
probability, whose values are the true/false positive/negative
rates of the detector. The memory capacity is simplified as

1({S"}, 8) = p,(tplogtp + (1 — tp) log(1 — tp) — log Z)
+ (1 —ps)(fplog fp+ (1 — fp)log(1l — fp) — log(1 — Z))
where Z = Pr(§ =1) =tp-ps + fp- (1 — ps), and €’ is
implicit.

V. EVALUATION

A. Experimental Setup

The proposed framework has been executed with a soft-
ware framework and a hardware accelerator. Our software
framework is implemented using Pytorch and supports HDC
encoding and classification. We study the effectiveness of our
technique over a randomly generated DNA sequence with
1,000 lengths. To test our model, we have a positive set of
50 samples generated as substrings of DNA sequence and a
negative set, which consisted of 50 random queries that did
not pertain to the DNA sequence.

We evaluate our framework with a FeFET model of 3nm
and 10nm thickness. Subsequently, we study the effect of
bit-precision, dimension of hypervectors, and noise quality.
Finally, we compare the effect of adding noise during train-
ing and inference. In hardware, we implement and test our
method on CiM using TCAD for FeFET device analysis
modeling, HSpice for circuit level evaluation, and our in-
house cycle-accurate simulator to verify HDGIM functionality
in architecture and application levels. All reported results are
end-to-end, including the overhead of codebook generation,
encoding, HDC library generation, iterative quantization, noise
modeling, and update of the model. Our simulator is connected
to PyTorch for easy programmability and maximum efficiency.

B. Highly Scaled FeFET performance

In this experiment, we evaluate HDGIM using the highly
scaled FeFET of 3nm thickness and compare it to the 10nm
thick one. The exploration was done through several dimen-
sionalities. The noise modeling applied had a 39.7% error
probability for the 3nm one and 1.03% for the 10nm. The noise
can shift one symbol to a neighboring one and the probability
is not equal for each side contrary to the experiment for the
noise exploration where it has equal probability for each side.
The noise was only considered during inference. Figure 4
demonstrates the high accuracy of our framework even for
the noisy 3nm cases, only requiring a hypervector dimension
of 6000 to achieve perfect performance. This confirms that
our framework when deployed to the FeFET-based CiM, will
offer great capabilities for a genome sequence task and thus
takes full advantage of a computing-in-memory architecture.
The results further show that highly scaled 3nm FeFET can
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Fig. 4. Performance of HDGIM modeling a 10nm and 3nm thick FeFET.

70

be employed for actual application tasks despite their high
variation.

C. Noise effect on bit-precision and dimension of hypervectors

Given the results achieved in the previous section, we de-
cided to analyze the impact of manipulating several parameters
on the model. We generated multiple instances of HDGIM
with different bit-precision and dimensions and applied a
probability of noise ranging from 0 to 60%. Figure 5 shows
the results of the exploration.

The results indicate that without noise HDGIM works
accurately at any bit-precision. It is able to memorize all the
patterns and not lose accuracy, compared to the full-precision
model. However, a probability of error in the range of 20-60%
impacts the accuracy of all the models. They require higher
dimensional hypervectors to maintain the same performance
as the full precision model. An exception is a 1-bit model,
which fails to improve with higher dimensions for more than
20% error probability.

We observe that a 4-bit precision FeFET-based CAM with
at least a dimension of 6000 is able to perform almost
as well as the full-precision model. Even though the error
probabilities can be high, since the hypervector patterns are
highly separated in the hyperspace and the changes are only
done to neighboring symbols, these effects are not enough
when we have enough representations of values. This is the
reason that the 4-bit precision is the only one to successfully
surpass the severe error constraint.

Considering that the smallest thickness of our FeFET model
is 3nm for 3-bit precision and that the probability of error
consists of 39.71%, this shows that we can work with any
bit-precision FeFET-based CiM, except the 1-bit, which was
considered in the previous implementation for Genome Se-
quence Matching on CiM [15], and in this case, would be
unable to perform under these circumstances.

D. Comparison of noise during training and inference

The next step is considering the impact of adding the
noise perturbations during iterative training, to observe if the
model is able to learn to adapt to the effect of the noise. We
considered only the cases from 2 to 4-bit precision. Figure 6(a)
corresponds to the noise added during inference and (b) during
iterative training.

The results show that introducing noise before inference re-
sults in better performance overall for the same dimensionality.
Most importantly, the 3-bit precision can achieve higher accu-
racy (lighter zones shown in Figure 6b) at lower dimensions.
The highlighted zones show that for the same area dependent
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on dimension and noise values, introducing noise during the
model adjustment increases accuracy by 8.4% on average. The
2-bit case starts to perform better for smaller noises but the
improvements are smaller for higher perturbations (range 60-
100%). Lastly, 4-bit was already robust, and introducing noise
during training does not significantly improve the accuracy.

VI. CONCLUSIONS

In this paper, we revisit genome sequence matching and
propose a framework able to perform FeFET-based Computing
in Memory. Our framework is designed to optimally operation
with FeFET non-idealities and in-memory architecture. Our
results indicate that our approach provides equivalent perfor-
mance to the full-precision model on a highly scaled FeFET-
based CiM. Our results demonstrate that highly scaled FeFET
realizing 3-bit and even 4-bit can withstand any noise given
high dimensionality during inference.
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