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ARTICLE INFO ABSTRACT

Available online 11 January 2023 Melt pool dynamics represent key information on defect creation in the laser powder bed fusion (LBPF)
additive manufacturing process. In-situ sensing of the melt pool is now integrated with LPBF machines.
Infrared cameras, optical emission spectroscopies, and photodiodes are utilized for real-time monitoring of
thermal process signatures to mitigate defects for improving build quality. The detection of phenomena,
including melt pool oscillations, laser modulation, plume formation, and spatter calls upon significant data
acquisition rates, and photodiodes alone offer the necessary bandwidth. However, the high data velocity
presents a significant computational challenge for training machine learning methods to supervise real-
time monitoring. We propose a novel cognitive-based hyperdimensional computing (HDC) for one-pass
learning of defects using measurements from photodiodes. We introduce several sampling strategies,
namely, no sampling, temporal sampling, spatial sampling, and spatial-temporal sampling for in-situ defect
detection. Experimental results based on a real-world case build with overhang layers show that HDC is
better at detecting defects than SVM (by 103.150%), KNN (by 104.545%), LDA (by 40.999%), and QDA (by
51.346%) while requires merely 0.273 + 0.008 s for training. The proposed HDC is shown to be effective for
fast single-pass training and eliminates the necessity of costly retraining for in-process monitoring in
various additive manufacturing processes.
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Introduction

Laser powder bed fusion (LPBF) is a family of additive manu-
facturing (AM) processes that leverage the high-power laser to melt
the powder and form intricate 3D geometries layer by layer. Despite
the potential to revolutionize manufacturing, fabricated LPBF builds
currently suffer from quality issues, including anisotropic micro-
structure, lack-of-fusion, gas porosity, crack, inferior surface finish,
recoater crash, and geometry distortion (e.g., overhang or failure in
anchoring support) [1-3]. Defect incident in LPBF is associated with
thermal dynamics such as cooling, melting, remelting, and solidifi-
cation of powder, and can be categorized at two main levels [4-6].
The first is at the scan track level, where the rapid laser scan action
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and persistent material melting at intense temperatures cause ele-
vated cooling and heating cycles [7]. As a result, thermal history (i.e.,
nonuniform spatial-temporal temperature distributions) is created,
which leads to residual stress and deformation of build [8]. The
second level is related to the melt pool, where the stir-up of molten
material is formed through the absorption of laser energy. Here, the
morphology of melt pool varies relying on process factors together
with material attributes [9]. The shape and temperature distribution
of melt pools impact the microstructure properties, thereby leading
to crack and porosity [10].

Since the thermal history and melt pool characteristics can sig-
nificantly impact the quality of the LPBF build, in-situ measurements
of thermal behavior are collected and analyzed to detect and miti-
gate various quality issues on the fly [11]. Popular sensing ap-
proaches at the scan-track level include tracking the layer
temperature with infrared (IR) or near-infrared (NIR) thermal cam-
eras and off- and co-axial pyrometers [12-14|. These sensors can
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capture emissions and rapid transient phenomena throughout the
scanning task. The objective is to detect irregular cooling patterns by
characterization of spatial-temporal data layerwisely.

The melt pool level characterization, on the other hand, is per-
tinent to properties of molten regions such as size, geometry in-
tensity, and the radiation spectrum. Co-axial and off-axis mounted
pyrometers (i.e., one or multiple photodiodes), co-axial video ima-
ging, and optical emission spectroscopy are prevalent sensing
techniques for measuring the melt pool radiation, size and shape,
and emission spectrum [15,16].

While video imaging is useful for defect detection, phenomena
such as melt pool oscillation and laser modulation often demand
data measuring rates above 10 kHz [11,17]. In contrast, an in-
expensive co-axial photodiode can provide a high-frequency 2D map
of melt pool intensities by synchronizing with laser coordinates. As a
single-point sensor, a photodiode has the temporal bandwidth to
capture process signatures at the expense of spatial information.
However, its high-speed data reading prevents monitoring non-
stationary melt pool dynamics through powerful learning methods
such as Bayesian inferences and convolutional neural networks
(CNN), recurrent neural networks (RNN), and generative adversarial
networks (GAN) [18]. As an example, consider an incipient defect
that has to be addressed before the next pass to perform recoating
and re-processing the defect with new powder. This window is of
the order of 0.5-1 min, which is the major gap for the current
quantitative models to capture and analyze data with high accuracy
and robustness. In particular, neural networks require significant
computational time and suffer from generalizability concerns due to
the different geometries of parts in the LPBF process [19].

This study introduces a novel cognitive-based computing method
to extract key features from the photodiode signal and detect in-
cipient defects in the LPBF process in real time. The proposed hy-
perdimensional computing (HDC) is inspired by the fact that the
human brain (i.e., cerebellum cortex lobes) recalls and differentiates
basic and sophisticated concepts and notions with the help of hy-
pervectors, not just singular values.

As shown in Fig. 1a), HDC represents human memory and de-
velops more flexible operations supporting AM information asso-
ciation, memorization, and attention through mapping data in high-
dimensional space. Fig. 1b) illustrates that each element of hy-
pervector mimics the functionality of neurons to incorporate
learning capability. Here, there exist a large number of high-di-
mension vectors that are approximately orthogonal. The orthogon-
ality enables jointing hypervectors through common mathematics
and restoring the knowledge with strong likelihood.

To further improve the learning capability, we integrate the no-
tion of dynamical change (i.e., regeneration) in neurons (see Fig. 1¢)
[20]. In addition to the enhanced learnability of new information, the
concept of regenerated brain cells augments the entire brain-in-
spired computing for refined adaptation and innovation. Therefore,
HDC is able to capture important features within one iteration with
limited data while providing robust learning results at the same
time. In our experimental design, we first select the best encoding

CIRP Journal of Manufacturing Science and Technology 41 (2023) 380-390

dimension for the proposed HDC. Then, we compared various sam-
pling strategies, namely no sampling, temporal sampling, spatial
sampling, and spatial-temporal sampling to prevent the burden of
high computational cost. Finally, we compare HDC with other ma-
chine learning methods regarding the capability to identify overhang
issues from photodiode measurements in an LPBF build. The HDC
provides cognitive functionalities such as (1) single-pass training
that eliminates the necessity of costly retraining, (2) self-adaption to
any problems with no or limited hyper-parameter selection, (3)
faster convergence and few sample learning, and (4) robustness
against manufacturing noise in photodiode measurements.

The remainder of this paper is organized as follows: Research
background reviews state-of-the-art methods on in-situ thermal
characterization and the cognitive computing. Methodology presents
the proposed methodology. Experimental design and results of a
parallel equipped build based on a real-world study are given in
Experimental results. Conclusions concludes this research by featuring
deficiencies of learning methods for melt pool characterization in
AM and then discussing the future direction of the study.

Research background
Melt pool in-process monitoring

In-process monitoring requires high-rate measurements of
emission and quick transient phenomena in the laser-based additive
manufacturing process. While various sensors have been recently
integrated to provide in-situ process signatures of the LPBF process,
melt pool analysis has been at the center of many investigations.
Comprehensive review articles recently published relating to current
in-situ sensing trends for this popular AM process are [21-23].

Although optical and infrared cameras are conducive to capturing
high-resolution data related to build quality [24-27], they are not as
useful for capturing critical thermal spikes, a vital process signature.
Photodiodes, which are single-point sensors, have a fast response
rate and, as a result, can measure thermal spikes and are sig-
nificantly cheaper [28]. Previous publications have focused on uti-
lizing single-spot thermal reading for measuring radiation intensity
with high-temporal resolution. For example, Craeghs et al. [29] de-
signed a co-axial layout for monitoring LPBF melt pool using a visible
camera and a near-infrared photodiode with a bandwidth of
400-900 nm. Yadroitsev et al. [30] installed two pyrometers to attain
emissions in melt pool at various wavelengths in addition to a
charge-coupled device camera for combining image radiance in
transversal and longitudinal directions. Albert et al. [31] used a
photodiode to explore the relationship between build density of
Inconel 718 and thermal emission through measuring deviation in
volume energy. Nadipalli et al. [32] and Bisht et al. [17] applied a
similar approach for measurements of the melt pool that not only
enables the collection of radiation signals, but also captures emis-
sions from surrounding hot areas. Montazeri et al. [33] studied a co-
axial photodiode that captures melt pool radiation and distinguishes
the material composition for cross-contamination analysis.
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Fig. 1. Overview of the proposed hyperdimensional computing methodology.
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Taherkhani et al. [34] designed an in-process sensing platform that
leverages the intensity of radiated light from the melt pool to re-
cognize porosity caused by lack of fusion.

Machine learning methods are also being integrated with LPBF
processes to exploit in-situ photodiode data for defect detection
[35]. For example, Okaro et al. [36] implemented a Gaussian mixture
model for semi-supervised classification of photodiode signals of
Inconel 718 component in LPBF. They reported a successful classifi-
cation of void defects based on results with 49 tensile test bars.
Jayasinghe et al. [37] developed a singular value decomposition
method to obtain process signatures from photodiode data during
the fabrication process. The K-means and Gaussian mixture models
were applied to cluster the density of builds. They also utilized a
Gaussian process regression method to estimate the density of AM
builds in a supervised learning manner. Recently, Mitchell et al. [ 16]
investigated a Gaussian filter model to detect outlier images and
conditions that represent porosity in the build using pyrometry data.

Although previous works are conducive for melt pool char-
acterization and monitoring using high-rate data, they are compu-
tationally expensive in online learning of high-velocity photodiodes
data (i.e., Gaussian process and CNN), or they are dependent on ar-
duous extraction of handcrafted features (e.g., PCA and K-mean).
There is a need for more effective computing paradigms that can
work directly with the high-speed data stream from single-point
photodiodes and can perform real-time monitoring of defects in the
LPBF process.

Brain-inspired hyperdimensional computing

Hyperdimensional computing is a type of cognitive paradigm in
which data are processed in high-dimensional space to provide se-
mantic reasoning and structured knowledge analysis. HDC encodes
data and performs learning with similar precision compared to
state-of-the-art while significantly reducing computational costs.
The holographic representation of data in HDC makes the computing
robust to communication errors. HDC entails encoding and ar-
ithmetic operations as two primary steps in computing. The en-
coding step, which maps raw data to the hypervectors, can have a
length of 50,000 elements. There are various encoding methods in
HDC, such as binary, ternary, dense, and sparse. In the second step,
the basic operations, including nearest neighbor search and
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rotations, are utilized to accelerate high-performance and cognitive
learning in one-pass or multiple iterations [38].

HDC is inspired by investigations on the human brain that de-
monstrate handling basic psychological circumstances involves si-
multaneous operations of various detached nervous systems [39].
Motivated by this fact, HDC assigns a particular notion to activation
pattern in several elements of hypervector [40]. Due to this encoding
capability, the learning is immune to communication noise and can
achieve a comparable accuracy with respect to the state-of-the-art
methods within a few epochs and a limited number of training
data [41].

Hence HDC has received considerable attention from different
domains such as security, health diagnosis, DNA pattern matching,
and robotics. For example, Imani et al. [42] introduced HDC for
realizing agile security and privacy. Zou et al. [43] designed an HDC-
based model called SpikeHD to tackle the problem with efficient and
low-power computation on edge devices. Despite the promising
capability of hyperdimensional computing for one-pass and real-
time learning in various domains, the previous works have been
limited to realizing in-process defect monitoring using high-tem-
poral photodiode data in additive manufacturing processes.

Methodology

In this paper, we explore hyperdimensional computing with
high-velocity manufacturing data. As shown in Fig. 2, this research
contains two main steps. Using laser power and photodiode mea-
surements, we first explore the best encoding dimension of the
proposed HDC. Then, several sampling strategies, namely no sam-
pling, temporal sampling, spatial sampling, and spatial-temporal
sampling, are studied to decrease the computational complexity of
HDC. Finally, we compare the proposed computing with other ma-
chine learning methods to show a comparable performance for build
monitoring in the LPBF process.

Hyperdimensional computing operations

Hyperdimensional computing is a novel approach to information
processing, where input data are encoded to higher dimensional
vectors, which are then processed to represent information related
to the domain of interest. Hyperdimensional computing uses a large
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number of approximately orthogonal hypervectors, each being
thousands of dimensions in length [44]. These hypervectors are in-
tegrated into one high-dimensional vector through suitable ar-
ithmetic operators to retain the information of the initial space with
high likelihood. The components of hypervectors are independent
and identically distributed (i.i.d.) random variables, which leads to a
holographic representation of long vectors [45]. Consequently, in-
formation is evenly distributed among the elements of each hy-
pervector, which, in turn, prevents any piece of the hypervector from
representing more features than others.

Consider 77 V_; as two created hypervectors (17 e {-1, +1}?)
and A(ﬁ, "/’j’) = 0. In HDC, the following operations are performed
on (V_) , 1/_2) ):

e Binding (*) of the two hypervectors 1/_1) and % is performed
through element-wise multiplication and is expressed as VT * /_z) .
This operation creates an additional hypervector that is different
from parent vectors i.e., A(VT*V_{, VT) = 0. Hence this binding
operation associates two hypervectors, which is crucial for cog-
nitive operations such as mapping and association.
Bundling (+) is the addition of hypervectors in an element-wise
manner and is expressed as V_l) + V_z) . The bundling operation
provides a memorization capability, maintaining the information
of multiple data. The bundled hypervector conserves similarity to
the parent hypervectors i.e., A("/_f + V_{ V_f) > > 0. Thus, the
bundling function is appropriate for set representation.

> . — .
Permutation (p) p"(7"), shifts elements of »~ through an n-bit
(s) permutation. This operation generates a reversible and a near-
orthogonal hypervector, i.e., A(p”("/_)), 17) ~ 0 when n#0 and
o (p”(V_) ) 7. Asa result, the orders and sequences can be
protected.
Reasoning is performed by using the correlation between hy-
pervectors. The cosine similarity is defined via A(V_), 172)).

Hyperdimensional computing basics

HDC comprises of following steps: encoding, single-pass training,
inference, and retraining. Hypervectors, as the fundamental piece of
computation in HDC, are created by encoding raw signals. During
training, HDC superimposes encoded signal values to create a com-
posite representation of a phenomenon of interest known as a “class
hypervector”. Then, the nearest neighbor search identifies an ap-
propriate class for the encoded query in inference.

Encoding

We first utilize an encoding algorithm to transform all data into a
high-dimensional space. HDC is designed to work with various en-
coding methods in line with the fact that data are separated in high-
dimensional space if they are a long way apart in the normal space
[46]. Therefore, two encoded hypervectors will be orthogonal (i.e.,
the cross product of two vectors will be zero) if the two corre-
sponding original data points are entirely different from each other.
We denote the 7 = {fi» f5,--.fy}, as a vector with N features that is
mapped to a hypervector using an encoding function. The hy-
pervector is represented as 7 = {vy, va,..,vp} with D dimensions
(D > > N). The encoding procedure can be shown as

- N -
7 =) ler %k
k; (1)

where jk) represents orthogonal hypervectors with binary base to
retain the time-space properties of input features, and D < 50k.
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Therefore, we have % €{-1,1}°, and the cosine simi-
larity A (Z, ) ~ 0.

Training

Single-pass training aims to discover the global attributes in the
data. HDC leverages binding or bundling operations to construct a
class hypervector (i.e., in the classification task) by linearly com-
bining hypervectors in each class. For the classification task with K
classes .7 = {g?, ?5 @%} and . inputs with label I, the class hy-

—l —l 7z —l
pervector ¢ is denoted as % =Y; 77;.

However, the hypervector generation method described above
might result in misclassification due to the saturation of class hy-
pervectors for prevailing patterns. Hence we propose an adaptive
training model that determines and removes widespread attributes
to prevent class hypervector saturation. Our new model combines
each encoded data to class hypervectors according to the amount of
additional information each pattern provides.

Fig. 3a) illustrates HDC procedure for adaptive training. For a new

training data il , HDC estimates the closeness to entire class hy-

pervectors using the cosine similarity function, i.e., A(17 , 7 l). Ac-
cording to the results of the cosine similarity function, A, the HDC is
updated. For instance, we update the model through the following
equation, if data point [ is linked to class I’

=

G <4 +n(1-A)7

G — @ —n(1-28)7
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where 5 represents the learning rate. When a query data holds dif-
ferent patterns than existing ones in HDC, (Eq. (2)) updates to a
higher value (1 - A;~ 1). Otherwise, we only add a lower value of the
query to the class hypervector (1- A; ~ 0).

Inference

This step is designed to calculate the correlation between class
hypervector and input testing data. First, testing data is encoded into
a hypervector 7. Since there might be multiple classes where
testing data can manifest high similarity, the query hypervector is
appointed to a class with maximum correlation. In the last step, HDC
is retrained by removing the mispredicted queries from pertinent
classes and assigning them to the proper class.

Retraining

Fig. 3b) shows the adaptive learning capability of HDC. Similar to
the initial training, adaptive learning offers more weight and pos-
sibility to unseen patterns to describe the trained model. Particu-
larly, this procedure checks if HDC yields the correct label of an
encoded query "fl. If Ehe correct label l is%mispredicted by I', we
leverage A= A(7", % ) and Ay = A(7", 4 ) to compute the cor-
relation of query hypervector with mispredicted and correct classes
using Eq. (2). This step guarantees HDC is adjusted according to the
amount of miss-classification in the training data point. In addition,
the distinct factors for mispredicted and correct labels enable the
proposed framework to update each hypervector of each class in-
dependently.

Experimental results

In this section, we first discuss the LPBF experiment performed
and the dataset utilized in this research. Then, we describe how to
obtain the best encoding dimension for the dataset when learning
with the proposed HDC. Considerations underlying the selection of
the best sampling method to reduce the calculation burden are then
explained. Finally, HDC is benchmarked with other state-of-the-art
machine learning methods.

Experiment and dataset

We evaluate and validate the proposed methodology through an
open-source dataset run by Politecnico di Milano [47] and Trumpf
[48]. The specimen is fabricated with a Trumpf TruPrint 5000 multi-
laser LPBF production system [49]. First, the CAD design is converted
to a stereolithography (STL) file prior to the printing process and is
approximated and sliced to encompass the layerwise information of
printing geometry [50]. The printing procedure is captured with two
photodiodes during the fabrication process (See Fig. 2). This research
leverages data collected by indium gallium arsenide (InGaAs) pho-
todiode, a spatially-integrated sensor that is co-axially mounted in
the chamber of the machine. Here, photodiode 2 deals with the melt
pool radiation in the range of near or short infrared. The melt pool’s
side and top views along the laser path are illustrated in Fig. 4, and
are the region the laser liquefies the powder. This is the main focus
in any laser-based additive manufacturing process since the beam-
material interplay governs process dynamics and is responsible for
the quality of the final build.

The build printed in the experiment is a parallelepiped of size
10x 10 x 25 mm. Fig. 5 is a graphical representation of the fabricated
part with bulk layers, unexposed layers, and overhang layers. The
build is fabricated vertically along the z-direction with AISi10Mg
powder, a laser spot diameter of 100 pm, a laser power of 480 W, and
a scan speed of 1500 mm/s. As shown in Fig. 5, the dataset does not
include the information related to the bottom layers as the process
was not in regime conditions at the base areas. The bulk layers are
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Fig. 4. Views of laser scan direction and the melt pool: a) top view, and b) side view.

fully printed layers without any gaps and hence are considered as in-
control data in this study. The unexposed layers correspond to the
intentionally blocked areas designed to force heat exchange
anomalies for overhang layers. The quantity of concealed layers in-
side each undisclosed cube elevated from 1 to 10 along the z-di-
rection. Overhang layers are out-of-control layers in red. The
overhang problem in LPBF often occurs when printing on loose
powder instead of solid bulk materials. In the experiment, un-
exposed blocks (See Fig. 5) are designed to be printed with the
number of unexposed layers that increases along the build direction.
Therefore, the first layer (at the top) of the unexposed block has a
large overhanging area with loose powder underneath. The heat
exchange in this overhanging layer, also in a few of the layers that
follow it, is altered by the fact that the loose powder has sub-
stantially smaller conductivity than the bulk material. Based on the
observation from the post-process X-ray computed tomography, the
first three layers following an unexposed block have overhang pro-
blem, which is considered to be out-of-control in the following
analysis [49].

The dataset represents nine variables - the X and Y positions,
NominalPower, NominalSpeed, NominalSpotDiameter, LaserPowerCurrent,
SignallnGaAs, IDbulkLayer, and IDoocLayer. The X and Y coordinates are
measured at the center of the photodiode’s field of view. The
NominalPower, NominalSpeed, and NominalSpotDiameter are nominal
machine parameters specified for the build. LaserPowerCurrent and
SignallnGaAs vary point-to-point and are the two variables focused on in
this research. Note that the initial sampling rate of InGaAs is 100 kHz;
however, it is down-sampled to achieve a single data point every 30 pm in
the direction of the laser path. The direction of scan changes in every layer
as is commonly implemented in LPBE. In total, 7 different scanning pat-
terns are created as shown in Fig. 6. IDbulkLayer and IDoocLayer are two
indicator variables related to the quality condition (i.e., in-control or out-
of-control) of each layer. Detailed information related to each of the
variables is shown in Table 1.

We select signals from SignallnGaAs of two layers, a control layer
(i.e., layer 45) and an out-of-control layer (i.e., layer 61), for visua-
lization. Fig. 7 shows the heatmap related to melt pool temperature
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Bulk Layers

» Process assumed to be
stable and in-control

Unexposed Blocks

» Gap thickness ranging
from 1 to 10 consecutive
layers

Overhang Layers

» First few overhang
layers after a gap.
Anomalous pattern
induced by unexposed
layers underneath

Not Included in Dataset

Fig. 5. Summary of the fabricated build with bulk layers, unexpected blocks, and overhang layers. The bulk layers in green are fully printed without any gaps and are considered in
control. The overhang layers in red are out-of-control and are introduced by the exposed blocks in white. The first three layers above unexposed blocks are considered overhang

layers. The data relating to the unexposed blocks are excluded from this research.

Fig. 6. Illustration of various scan paths in consecutive layers.

Table 1

Detailed information of variables contained in the dataset.
Data Description
X Laser position in X direction (mm).
Y Laser position in Y direction (mm).

NominalPower
NominalSpeed
NominalSpotDiameter

Standard power (W).
Standard scan speed (mmy/s).
Standard diameter of laser point (in xm).

Binary variable, where 1 represents the bulk layers, and 0 indicates the layers related to unexposed blocks. The bulk layers are considered in-

LaserPowerCurrent Captured laser power (W).
SignallnGaAs Measuring obtained through the photodiode, proxy of the melt pool temperature.
IDbulkLayer
control in this study.
IDoocLayer Variable indicate the overhang layers. The value of this integer variable ranges from 0 to 9, where 0 indicates the first overhang layers

introduced by the first unexposed block at the bottom, and 9 represents the last overhang layer related to the block at the top.

distribution across the layer. The dark solid lines indicate the travel
path of the laser beam. As a common practice in LPBF, the direction
of the laser path was changed in every layer. The blue arrow re-
presents the starting point of the laser. In both layers, the laser
travels in a chevron pattern to form a solid layer.

Selection of encoding dimension

As mentioned in Methodology, HDC first encodes the data into a
hot vector. Fig. 8 illustrates the accuracy of HDC when the encoding
dimension increases. Note that accuracy is calculated as

ACC = (TN + TP)/(IN + TP + FP + FN) (3)

where TN, TP, FP, and FN, represent true negative, true positive, false
positive, and false negative in the confusion matrix, respectively. It is
worth mentioning that the ACC counts the number of correctly
predicted data points (i.e.,, TN and TP) and divides them by the total

385

number of data points. When the embedding dimension is small, the
accuracy of the proposed algorithm is small. This shows that the
encoder cannot capture enough information to characterize the melt
pool property. The accuracy converges when D = 10,000. Simulta-
neously, the computational cost utilized for the algorithm increases
linearly as the dimension gains. We keep the encoding dimension to
10,000 for the next steps.

Selection of sampling method

Next, we explore the effect of data sampling strategies on the
performance of HDC. The detailed information on various sampling
strategies is as follows:

e No Sampling: Utilizing the original data, we concatenate the two
signals, LaserPowerCurrent and SignallnGaAs, of each layer to a
long vector for the proposed HDC.



R. Chen, M. Sodhi, M. Imani et al. CIRP Journal of Manufacturing Science and Technology 41 (2023) 380-390

2000

—80 —80 4

1750
—82 82

1500
-84 -84 ‘ 1250

1000
—86 —86

750
—88 —88 ‘ | ‘ 500

250
a) -8 —26 —24 —22 —20 —18 b) -8 —26 —24 —22 —20 -18

Fig. 7. Heatmaps of melt pool temperatures for a) layer 45, an in-control layer, and b) layer 61, an out-of-control layer. The blue arrow indicates the travel direction of the laser.
Dark solid lines show the travel path of the laser beam.

1.0 15 10
/ & 081 — r— | A
0.8 1 N " —A— e 2 4 —A 2
T 0.6 1
_ ¥, 10 < —— ACC
£0.6 1 7 0.4 +— - - - - - - - . .
£ s 10 20 30 40 50 60 70 80 90 100
3 g Window Size
= 0.4 1 s
Fig. 10. Model performance under various window sizes.
0.2 1
n 10 to 100 with a step size of 10. Results show that the variation in
0.0 = window size has little impact on the model performance. As the

0 5000 10000 15000 20000 25000 30000

. . next step, w =20 was selected for further analysis as it provides
Dimension

the best performance in the comparison. Distributions between
Fig. 8. Model performance (in green) and computational complexity (in red) under de?ta m ea.ch window Iplght be. dlff.erent. For exam.ple, the‘ dis-
various HDC embedding dimensions. tribution in the first window (i.e., in green color) is negatively
skewed, while the distribution in the third window (i.e., in blue
color) is skewed positively. In comparison with the mean value,
the median of the distribution is less sensitive to extreme values
as they are common in real-world datasets. Consequently, we
evaluate the median and deviation of each window and con-
catenate them into a long vector.
e Spatial Sampling: In the dataset, the range of X coordinates is
(- 18, - 28), and the range of Y coordinates is (- 80, - 90). We
mask a 10-by-10 grid for each layer to perform spatial sampling.

b i coans As shown in Fig. 11, the white arrow in (a) indicates the sequence
of concatenation in each layer. For each layer, we start sampling
Median 1 Median2 ~ ~ Median 3 at the top left block and sample in the same sequence. After lo-
Std.1 Std. 2 Std. 3 cating the signal in each block, we export the median and stan-
dard deviation of each block. Fig. 11 shows heatmaps of median
Median I:I:I:I:l snn S I:EI:I:' i and standard deviation of melt pool temperatures of two layers,
layer 45 (i.e., an in-control layer) and layer 61 (i.e., an out-of-
control layer), respectively. Therefore, each layer is downsampled
Fig. 9. lllustration of temporal sampling of a signal. Median and standard deviation of to a vector of size 200.

distribution i h wind tracted and tenated for furth lysis. . . A
istribution in each window are extracted and concatenated for further analysis o Spatial-temporal Sampling: In the actual fabrication process,

the laser path does not follow the spatial masks. For example, in

° Temporal Sampling: We Sample the Origina] datain a temporal layer 45, the laser path travels back and forth multlple times in a
manner. Fig. 9 demonstrates the idea of temporal sampling. For block. Therefore, in spatial-temporal sampling, we consider not
each layer (e.g., LaserPowerCurrent, SignalinGaAs), we sample only the spatial relationship among data, but also the temporal
from signal data with a window size of ®. Generally, the choice of information. As such, we extract the standard deviation and
Window Sizes (i‘e" w) depends on the data acquisition rate’ the median of the distribution each time the laser StayS within a
dimensionality of input data (number of channels), the dynamics block. The size of each vector is longer than the vector when
of captured data, and the complexity of learning task (e.g., performing spatial sampling.
number of classes in classification). Fig. 10 shows the accuracy
and the computational complexity of the proposed model re- In total, we have 297 bulk layers and 27 layers with overhang

garding various window sizes w. We varied the window size from  quality issues in our dataset. To prevent the overfitting of the
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Fig. 11. Examples of median and variances extracted for spatial sampling. a) Median extracted from layer 45, an in-control layer; b) Median extracted from layer 61, an out-of-
control layer; c) Standard deviation extracted from layer 45, an in-control layer; and d) Standard deviation extracted from layer 61, an out-of-control layer. Dark solid lines show
the travel path of the laser beam. The white arrow in a) shows the concatenation detail of spatial sampling.
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Fig. 12. An illustration of the K-fold experiment involved in the experiment.

learning process, K-fold cross validation (i.e., K = 5 in our case) is
implemented to assess the performance of HDC, without being
concerned about the overfitting problem. As shown in Fig. 12, we
randomly select 27 bulk layers from the in-control group and train
them together with the out-of-control layers to prevent introducing
bias. Therefore, we have 54 data points in each iteration, including
the same number of in-control and out-of-control layers. We also
keep the dataset small due to the key capability of HDC to work with
a limited amount of training data. In total, we perform our experi-
ment for 100 iterations, with 70% training and 30% testing. We cal-
culate the testing accuracy as well as the F-score for performance
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comparison. The accuracy is represented in Methodology, and F-score
is calculated by the following equations:

TP

F — score = —
TP + E(FP + FN)

(4)

Again, TP, FP, and FN represent true positive, false positive, and
false negative in the confusion matrix, respectively. Fig. 13 shows the
performance comparison between different proposed sampling
methodologies.

Here, all sampling methodologies impact the model performance
and the best performance is achieved when we do not perform
sampling. When only considering the temporal information, the
impact is less than adding the spatial information. The accuracy and
the F-score significantly decrease when performing the spatial
sampling. This is because spatial sampling is limited to incorporating
the travel path of the LPBF laser. When sampling the data both with
spatial-temporal information, the performance of the HDC is slightly
better than only sampling with the spatial information. In addition,
the variance of the accuracy and F-score is smaller when performing
the temporal sampling. This indicates that this sampling metho-
dology is more robust in comparison with the other two. From the
result in Fig. 13, the temporal relationship between data contains
more meaningful knowledge related to process characteristics
compared to the spatial statistics.
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Fig. 13. Comparison among various sampling methodologies regarding a) Accuracy; and b) F-score.

Table 2

Training time of the proposed HDC under various sampling methodologies.
Sampling Method Time (s)
No Sampling 4.839 + 0.067
Temporal Sampling 0.273 + 0.008
Spatial Sampling 0.081 £ 0.005
Spatial-temporal Sampling 0.078 + 0.008

Table 3
Parameter setting for benchmark methods.

Benchmark Method Parameters

Kernel function: Radial basis function
Number of neighbors: 2, Distance
Metric: Euclidean

Solver: Singular value decomposition
Solver: Singular value decomposition

Support Vector Machine
K Nearest Neighbor

Linear Discriminant Analysis
Quadratic Discriminant Analysis

The results show that HDC is not only robust but also efficient.
Here, we also report the time utilized for model training under
different sampling methodologies in Table 2. Although our training
process only takes, on average, 4.839 s even without sampling, the
temporal sampling shortens the training time by 94.36%. It can also
be noted that temporal sampling requires slightly more training
time than spatial sampling and spatial-temporal sampling. There-
fore, considering both the model performance (i.e., Accuracy and F-
score) and the computational complexity (i.e., computational time),
we choose temporal sampling to compare our proposed metho-
dology with common machine learning methods.

HDC performance

Finally, we compare the HDC with four other machine learning
methods, namely support vector machine (SVM) [51], K-nearest

1.0 1

o

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

a)

HDC SVM KNN LDA QDA

Table 4

Accuracy and F-score based on test results from the proposed HDC and the benchmark
methods support vector machine, k nearest neighbor, linear discriminant analysis,
and quadratic discriminant analysis.

Methodology Accuracy F-score

HDC 0.805 + 0.163 0.745 £ 0.214
Support Vector Machine 0.385 + 0.077 0.324 + 0.286
K Nearest Neighbor 0.540 + 0.183 0.399 + 0.296
Linear Discriminant Analysis 0.489 + 0.127 0.501 + 0.174
Quadratic Discriminant Analysis 0.668 + 0.153 0.710 + 0.148

neighbor (KNN) [52], linear discriminant analysis (LDA) [53], and
quadratic discriminant analysis (QDA) [54], respectively. All bench-
mark methods are implemented through Python Sckit-learn library.
A detailed summary of the parameters of all benchmark methods is
presented in Table 3. Note that the number of neighbors K in the
KNN model is optimized based on the best testing accuracy (i.e.,
selected from range [1,15]).

Here, the testing accuracy and F-scores for all methods are cal-
culated based on their corresponding results. Similar to the previous
experiment, the TP, FP, FN, and TN are first calculated by comparing
prediction results with ground truth. Then, the accuracy and F-score
are calculated according to Eqs. (3) and (4). As shown in Fig. 14, the
proposed HDC outperforms other methods with regard to both
testing accuracy and F-scores. Specifically, the HDC provides a
testing accuracy that is 103.150% better than SVM, 104.545% better
than KNN, 40.999% better than LDA, and 51.346% better than QDA,
respectively. Further, the exact number of testing accuracy as well as
F-score are summarized in Table 4. Therefore, the experimental re-
sult shows that our proposed HDC offers superior performance to
other state-of-the-art algorithms and shows strong potential in un-
derstanding small AM datasets.
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0.0 1

b)

+

T T

LDA QDA

HDC SVM  KNN

Fig. 14. Performance comparison between the proposed HDC and other methods regarding a) Accuracy and b) F-score.
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Conclusions

Despite the effectiveness of in-situ photodiode sensing in cap-
turing melt pool dynamics of laser powder bed fusion additive
manufacturing, the high-temporal bandwidth is a challenge for on-
line defect detection using current learning methods. We proposed a
novel hyperdimensional computing (HDC) paradigm to analyze the
high-velocity laser powder bed fusion additive manufacturing data.
First, the optimal encoding dimension of the proposed HDC was
investigated to enable a parsimonious representation of data.
Second, various sampling strategies, namely no, temporal, spatial,
and spatial-temporal, are introduced to realize authentic online
learning via the proposed methodology. Third, the proposed HDC
has been compared with widely used learning methods through
accuracy and F-score criteria. Experimental results show that the
proposed HDC leads to more robust results in the real-time detec-
tion of overhang defects in comparison with other machine learning
methods. Furthermore, based on our observation, the temporal in-
formation of the signal from photodiode plays a more critical role
than the spatial information from the part design. Future works
include novel encoding methodologies that consider spatial in-
formation for high-dimensional data.
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