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Abstract—The data explosion of Internet-of-Things (IoTs)
and machine learning tasks raises a great demand on highly
efficient computing hardware and paradigms. Brain-inspired
hyperdimensional computing (HDC) is becoming a promising
computing paradigm, which encodes data as hypervectors with
homogeneous elements instead of numbers, and can perform
learning/classification tasks through simple logical or arithmetic
operations on the encoded hypervectors. Therefore HDC has
much lower computational complexity than conventional com-
putational models such as neural networks. However, due to its
high-dimensional data representation, processing and encoding
hypervectors in conventional Von-Neumann architectures (e.g.,
CPU and GPU) requires a large amount of energy- and time-
consuming data transfer, thus weakening its efficiency benefiting
from low complexity. In this paper, we proposed an ultra-low
power and fast computing-in-Memory (CiM) design based on
non-volatile (NV) Ferroelectric FET (FeFET) for HDC encoding.
The proposed design mainly support hyperdimensional bit-wise
XOR and parallel majority vote (MAJ) operations for HDC
encoding, which are implemented by FeFET based memories
together with CMOS peripheral circuits. The 1FeFET1T based
memory cell effectively mitigates the impact of transistor varia-
tions on the operation. A highly parallel and pipelined computing
workflow of the proposed design further boosts the energy
efficiency and performance with negligible extra area overhead.
Experimental results demonstrate that our proposed design
achieves 5.04× energy efficiency improvement over other CiM
designs for HDC encoding.

I. INTRODUCTION

Hyperdimensional computing (HDC) is an emerging cog-
nitive computational framework based on the imitation of the
behavior of human brains where key aspects of memory, per-
ception and cognition can be explained by hyperdimensional
space pattern activities [1]. Instead of processing numbers,
HDC alogrithm exploits hypervector (HV) with thousands of

This work was supported in part by NSFC (92164203, 62104213), National
Key Research and Development Program of China (2022YFB4400300),
Zhejiang Provincial NSF (LQ21F040006, LD21F040003), SGC Cooperation
Project (M-0612), Zhejiang Lab (2021MD0AB02).

Q. Huang and Z. Yang are with the College of Information Science and
Electronic Engineering, Zhejiang University, Hangzhou, China.

K. Ni is with the Department of Electrical & Microelectronic Engineering,
Rochester Institute of Technology, Rochester, USA.

M. Imani is with the Department of Computer Science at University of
California Irvine, Irvine, USA.

C. Zhuo is with School of Micro-Nano Electronics, Zhejiang University,
ZJU-Hangzhou Global Scientific and Technological Innovation Center and
Key Laboratory of Collaborative Sensing and Autonomous Unmanned Sys-
tems of Zhejiang Province, Hangzhou, China. E-mail: czhuo@zju.edu.cn.

X. Yin is with the College of Information Science and Electronic Engi-
neering, Zhejiang University, Key Laboratory of Collaborative Sensing and
Autonomous Unmanned Systems of Zhejiang Province, and Zhejiang Lab,
Hangzhou, China. E-mail: xzyin1@zju.edu.cn.

homogeneous, independent and identically distributed (i.i.d.)
dimensions (e.g., 10k) as the basic data unit. Since the
dimensionality is at thousands, the ultra-long HVs are quasi-
orthogonal, thus introducing algorithmic redundancy and ro-
bustness, and enabling high parallelism for HDC systems.
The HDC computing model typically consists of training
and inference phases. The training process firstly encodes
the original training data into HVs, then combines such
HVs into several class HVs using a set of well-defined
operators. Unlike a conventional DNN that requires many
iterations involving intensive forward and back propagation
to converge the training, an unique advantage of HDC is
that the training usually works in only one- or few- pass,
and the dataflow is unidirectional. The inference is realized
by checking the similarities between queries and class HVs.
Comparable accuracy to DNN models has been demonstrated
on multiple applications such as robotics, computer vision,
speech detection, etc., [2]–[7].

As HDC mainly performs mostly bit-wise operations de-
fined in hyperdimensional space such as binding (bit-wise
XOR), bundling (bit-wise majority vote) and permutation
over the HVs stored in memory [1], and is intrinsically
robust to a few failures in HV dimensions due to the quasi-
orthogonal property of HVs, recently, non-volatile (NV) device
based in-memory computing (IMC) becomes a suitable and
promising candidate for efficient HDC implementation. By
specifically designing computational memory arrays (e.g., As-
sociative memories (AM) [8]–[12]) or computing units located
near memories, IMC enables highly parallel computations
in-memory to alleviate the massive and costly data transfer
between processor and memory, thus breaks the“memory wall”
bottleneck [13]. Moreover, emerging NV memories (NVMs)
such as resistive random access memory (ReRAM) further
improve the memory density and the computational energy
efficiency, while the computational errors induced by the
limited storage precision and device variations of NVMs
can be well tolerant by HDC framework, thus maintaining
the IMC implementation accuracy. Many prior works have
proposed memristor based IMC designs implementing the
main operations of HDC, such as bit-wise XOR [14], majority
vote (MAJ) [3], [15], addition [16], and pattern searching [17],
[18]. Memristor based IMC HDC systems have also been
fabricated [14], [19]. However, the two-terminal structure,
low ON/OFF resistance ratio and current-driven write/read
scheme of memristor devices lead to significant energy and
area overheads associated with write and computation, which
is hardly elucidated in prior works.
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As a promising technology, ferroelectric field effect transis-
tor (FeFET) has been fabricated and studied for IMC circuit
designs [20]–[23]. Compared with the aforementioned IMC
designs, FeFET based designs have exhibited higher energy
efficiency and better write/read performance due to the three
terminal structure, relatively high ON/OFF current ratio and
voltage-driven write scheme, which make the FeFET a natural
candidate for efficient HDC hardware. In this paper, we hereby
propose a FeFET based IMC architecture which implements
the key operations of HDC encoding based on FeFET memory
arrays. We leverage a FeFET memory array to perform the HV
binding and permutation, and another FeFET memory array to
perform HV bundling which was hardly implemented using
the NVM array in prior works. A pipeline interface between
the two memory arrays is proposed, thus achieving the entire
HDC encoding process. The major contributions of our paper
are as follows:
• A Complete In-Memory HDC Encoder: We propose

IMC designs that support binding, bundling and permu-
tation, which are the major operations used for HDC
encoding phase in both inference and training. The IMC
designs consists of two FeFET based arrays that imple-
ment bit-wise XOR/permutation and MAJ, respectively,
achieving higher energy efficiency than prior IMC based
implementations.

• Pipeline Interface for the FeFET based HDC Encoder:
Prior works mainly focus on proposing IMC designs for
the HDC binding and bundling operations, while the
interface between these designs is hardly studied. We
hereby propose a novel charge based and pipeline write
scheme. The proposed scheme hides the write latency of
FeFETs by pipelining the intermediate HV result transfers
between the proposed IMC arrays, thus realizing the
interface between the proposed IMC arrays and achieving
a complete HDC encoder.

• Approximate MAJ operation for large scale HDC
encoding: Given the limited size of IMC array for MAJ
operation, we demonstrate that iterative mini-batch MAJ
operations implemented by multiple IMC arrays still re-
semble the original bundling operation of HDC encoding,
with negligible hardware overhead and HDC algorithm
accuracy degradation.

The rest of this paper is organized as follows, Sec. II pro-
vides background of this work, including HDC preliminaries,
FeFET basics and related works. Sec. III introduces the FeFET
based IMC HDC design. Sec. IV introduces the algorithm-
level approximate MAJ operation method. Evaluations at both
circuit level and system level are provided in Sec. V. Sec. VI
concludes.

II. BACKGROUND

A. FeFET Basics

The structure of FeFET is similar to a MOSFET, except
that a ferroelectric (FE) layer is replacing the high-κ dielectric
in the gate stack, as shown in Fig. 1(b)(d). The compatibility
with CMOS VLSI technology brings great advantages of HfO2

FeFET and makes it a promising candidate for novel memory
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Fig. 1. (a)/(c) Write pulse for and (b)/(d) physical structure of FeFET in
low/high threshold state, (e) Id − Vg characteristics of FeFET, (f) Id − Vg
curves and the operating voltages of FeFET in serials with a resistor [24].

technologies and IMC designs. As the ferroelectricity in thin
Si doped HfO2 layer was demonstrated [25], the feasibility
of integrating FeFET on advanced technology platforms has
been further validated, such as the 28 nm bulk [26] and 22 nm
FDSOI technology [27], accelerating the FeFET based IMC
design.

The hysteresis of FE makes its threshold voltage (Vth)
adjustable, in general, the binary encoded FeFET can be set to
low-Vth state by simply applying write pulse with relatively a
large amplitude +VW on its gate, as shown in Fig. 1(a)(b), and
similarly reset to high-Vth state by a negative pulse. However,
this direct write method may cause write disturbances when
writing an FeFET array [28], as the FeFETs in a same
row/col always have their gates/sources connected together.
[29] proposed the disturb inhibition scheme ” 1

2VGS/B” which
applies opposite write pulses with half amplitude to both gate
and source of the target FeFET as shown in Fig. 1(c), while
for other FeFETs in the array, their gate-source voltages are
not sufficient to change the polarization states due to the
coercive effect of the HfO2 FE layer [30], thus inhibiting
write disturb to unselected cells. In this work, we combine
the aforementioned write schemes and propose a novel charge
based write method for the FeFET memory array, which is
described in Sec. III-B.

Fig. 1(e) shows the experimental measured ID−VGS curves
of high-Vth and low-Vth states for 60 FeFET devices [24], read
voltage Vread can be selected between the two Vth states, thus
sensing the IDS as read output, i.e., ION for low-Vth and
IOFF for high-Vth, respectively. However, the device process
variation causes significant IDS variation, which severely
affects the read or computing results. In this work, we exploit a
1FeFET1R cell design proposed in [24], [31] and experimental
demonstrated in [32] to alleviate the variability of ION by
integrating a series resistor. The simulation characteristics of
the 1FeFET1R cell using the experimental calibrated FeFET
compact model [33] are shown in Fig. 1(f).

B. Hyperdimensional Computing

HDC is a light-weight and robust learning system [1],
motivated by the understanding that the human brain operates

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3253766

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 19,2023 at 22:44:43 UTC from IEEE Xplore.  Restrictions apply. 



3

on high-dimensional representations of data originated from
the large size of brain circuits [34]. It thereby models the
human memory using points of a high-dimensional space, that
is, with hypervectors. The hyperspace typically refers to tens
of thousand dimensional vectors (e.g., D = 10k) with i.i.d.
components. This indicates that the computation over different
dimensions can be parallelized. Recently, HDC has been vastly
applied to a wide range of learning problems [35], [36] HDC
is well suited to perform learning tasks on emerging memory
technologies as: (i) HDC has a memroy-centric architecture as
well as simple arithmetic operations, thus it is computationally
efficient to train and amenable to memory-centric hardware
optimization [2], [3], and (ii) HDC provides strong robustness
to noise, defect and hardware variations due to the fault
tolerance of quasi-orthogonal hyper-dimensions, which is a
critical advantage for NVM technologies.

The first step of HDC model is encoding input data
into high-dimensional space. The two most commonly used
encoding methods are record-based encoding and N-gram
encoding [4]. Assume a feature vector F = {f1, f2, · · · , fm}
into is encoded high-dimensional space. The goal of HDC
encoding is to keep the information of feature values along
with their position in the feature vector. The record-based
encoding generates two set of binary HVs: (i) position HVs,
i.e., {~P1, ~P2, · · · , ~Pm}, where ~Pi ∈ {0, 1}D, (ii) feature HVs
that can be computed by quantizing the feature values to
q linear or non-linear levels, i.e., {~L1, ~L2, · · · , ~Lq}, where
~Li ∈ {0, 1}D. For example, the pixel values of a black and
white image (no gray color) can be quantized by two HVs
(q = 2), and L1 and L2 represent the positions of black and
white pixels, respectively. To this end, record-based encoding
performs the encoding by associating each feature HV with the
corresponding position HV, and then summing the results [37]:

~H = ~P1 ⊕ ~L′1 + ~P2 ⊕ ~L′2 + · · ·+ ~Pm ⊕ ~L′m (1)
where ⊕ is an XOR operation and ~L′s are the level HVs cor-
responding to the feature values. The N-gram-based encoding
uses a unique permutation instead of position HVs to associate
position information into encoding, the positions of features
are reflected by the permutation number of the corresponding
feature HVs. For example, a feature HV corresponding to the
N th feature in the feature vector can be permuted for N − 1
times. The N-gram HV is thus formulated as below:

~G = ~L′1 ⊕ ρ~L′2 ⊕ ρ2~L′3 ⊕ · · · ⊕ ρN−1~L′N (2)
where ρ represents permutation. The permutation function is
usually implemented by (circular) shift hardware [4]. N is a
preset parameter, whose values are typically 3, 4, 5 (i.e., Tri-
gram, Quad-gram, Penta-gram). Generally, the length of fea-
ture vector m is always much larger than N (e.g., a text string
in language recognition contains thousands of characters).
The N-gram-based encoding firstly encodes all sub-vectors
containing N adjacent elements of the original feature vector
separately using Eq. 2, then the obtained N-gram HVs are
further combined by addition to generate the HV representing
the original feature vector. To keep the HV binary, the encoded
HV is binarized by comparing each HV element value with
m/2, which is defined as thresholding. Intuitively, the N-gram-
based encoding pays attention to the patterns composing of

adjacent elements, rather than the absolute positions of all
elements.

In above encoding methods, XOR and Addition are the
key functions. while XOR operation can be parallelized over
different feature dimensions, the addition operation is a slow
process. Prior work [16] implemented the encoding by sequen-
tially adding the XOR outputs or using a tree based addition
structure to obtain an non-binary output. Then the sum result is
performed with thresholding operation to generate the output.
Instead, we propose an in-memory MAJ logic to efficiently
realize the addition and thresholding. The MAJ output is ’1’
when the number of ’1’s in MAJ inputs is more than the
number of ’0’s, otherwise MAJ outputs ’0’. Compared with the
time-consuming addition and thresholding implementation in
prior work, our proposed in-memory MAJ design can process
parallel MAJ over all HV dimensions in one clock cycle.

C. Related Work

Various NVM based IMC designs for HDC encoding accel-
eration have been proposed. For example, [19] designed an in-
memory bit-wise multiplication-addition-permutation (MAP)
kernel based on a configurable 3-D vertical ReRAM pillar,
achieving more than 2 orders of magnitude area efficiency
and ∼2× energy efficiency improvement over digital counter-
parts due to the compact 3-D structure and in-memory logic
design. Another ReRAM based work [16] fully exploits the
connectivity of memristive crossbars to efficiently implement
parallel in-memory logic as well as the dataflow. However,
both works need to rewrite the target output device to store
the output value during the in-memory computation, while
the rewrite takes hundreds of nanosecond and consume up
to picojoule levels of energy due to its current-driven write
scheme [38]. [14] presents a phase change memory (PCM)
based IMC design implementing the bit-wise XOR for N-
gram-based HDC encoding, while the costly addition and
thresholding operations are still implemented by digital pe-
ripherals. SearcHD [3] exploited multiple memristor based
IMC arrays to implement the XOR and MAJ operations,
while the time- and energy- consuming programming from the
XOR IMC arrays into MAJ IMC array significantly limits the
utilization of the IMC arrays, as well as the energy and area
efficiency. FeFET based counterpart MIMHD [39] leveraged
multi-bit storage FeFET to improve the density, and introduced
analog-digital converters (ADCs) and shift registers to avoid
the intermediate HVs write back, thus outperforms SearcHD
in energy by ∼ 13×. RelHD [40] extends the capability of
HDC algorithm and hardware accelerator to graph computing.
While the circuit design is similar to MIMHD, it has been en-
hanced with architectural techniques to process large data sets,
including the memory allocation and calculation scheduling.
However, both of them suffer from degraded parallelism and
performance due to the costly ADC overheads. [15] presents
FeFET based IMC designs that support single- and multi-input
logic, including XOR similar to [20] and multi-input MAJ.
However, these two IMC designs are only discussed at circuit
level, the possibility of using these designs for HDC encoding,
and the further reliability issues have rarely included.
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[20], [41] both support in-memory XOR logic function.
These designs select two rows as the input, and the XOR
output is generated by comparing the bitline current of each
column with a reference current, and then written back to
the memory array for the HDC encoding. Since both designs
support various logics and need intermediate result write back,
complex sense amplifiers (SAs) are employed, and two-step
operation schemes are required, thus leading to large delay
and energy consumption. On the contrary, our proposed in-
memory design performs XOR operation on a selected row
with the external input word, and XOR logic gates and shift
registers are exploited to generate the output and pass the
intermediate results, which are more suitable for the sequential
XOR operations in HDC encoding.

III. IMC DESIGN FOR HYPERDIMENSIONAL ENCODING

In this section we present our proposed FeFET based IMC
design for HDC encoding. Fig. 2 shows the overview of the
design. It consists of 2 IMC arrays: the in-memory XOR array
and the in-memory MAJ array. Besides, we propose a pipeline
interface for the 2 arrays.

A. In-Memory XOR

The schematic of our proposed in-memory XOR array is
depicted in Fig. 3(a), the basis HVs in Eq. 2 is stored row-
wise in the FeFET memory array. In every clock cycle, the
array computes the bit-wise XOR between the HV stored in
the register and the HV in the activated array row, whose
WordLine (WL) is set to high while the WLs of other rows
are set to low. 2 FeFETs storing complementary values are
exploited in our cell design (i.e., a bit value is mapped to the
Vth of one FeFET in a cell, and its complementary value is
mapped to the other). According to Fig. 1, when applying a
read voltage on the device gate (e.g., Vg = 1V ), an FeFET
can perform bit-wise AND operation upon its stored state
(St) (i.e., high/low Vth representing ‘0’/‘1’) and the voltage
applied to the drain, generating an output current flowing
through the drain-source path. To compute the XOR results,
complementary voltages are applied to the drains of 2 FeFETs
in a cell (i.e., BLa and BLb), therefore the minterms of XOR
(i.e., a ⊕ b = ab + ab) are generated at the device sources
(i.e., ANDa and ANDb). An NOR gate is used to combine the
AND terms. Fig. 3(b) shows the truth table of the FeFET based
IMC XOR array. In our proposed IMC XOR array, all columns
execute the bit-wise XOR operation within 1 clock cycle in
parallel. The XOR output result bits are then latched in the
register as the partial results of the N-gram HV formulation
in Eq. 2.

Eq. 2 is implemented by repeatedly performing the above
bit-wise XOR operation for N times. Upon the begin of N-
gram encoding, the registers of the array are initiated to ‘0’,
and the HV bits of the activated row are read out to the
registers as the first XOR operation. The rest (N-1) XOR
operations are then performed between a HV stored in an
activated array row and the partial results in the registers.
Note that the output of the NOR gate in the i-th column is
connected to the input of the (i+1)-th D-flip flop (DFF), such
that the shift (permutation) operation in Eq. 2 can be naturally
realized in the IMC XOR array. Compared with the IMC XOR
design in [14], our proposed design significantly reduces the
number of devices per cell to 2, therefore achieving nearly
50% area overhead saving. Moreover, our design computes
accurate XOR operations over the HVs in the memory array,
while the design in [14] implements an approximation for the
minterms of the XOR operation.

B. In-Memory MAJ

Fig. 4 shows our proposed IMC MAJ array for HDC
encoding. Different from the cell we employed in the IMC
XOR array, the memory cell utilized in MAJ array (Fig. 4(a))
only contains 1 FeFET for 1-bit storage and a PMOS as
an access transistor. A series resistor is integrated with the
FeFET to alleviate the variability of FeFET ON current as
described in Sec. II-A. The control signals including Ground-
LineEnable (GLE), WordLineFeFET (WLF), WordLineMOS
(WLM), BitLine (BL) are summarized in Table. I. Such array
writes the output HVs of IMC XOR array to the 1FeFET-1T
memory array and performs bit-wise MAJ operations across
the array once the write process completes. During the MAJ
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TABLE I
SUMMARY OF THE MAIN CONTROL SIGNALS

Control
Signals Value Definition

WLF
VW /VW

2
FeFET write Voltage

Vconduct
Voltage that turns the FeFET ON, slightly larger
than high-Vth, as shown in Fig. 1(f)

Vshutdown
Voltage that turns the FeFET OFF, slightly
lower than low-Vth, as shown in Fig. 1(f)

Vread FeFET read voltage

WLM ‘ON’ Gate voltage that turns PMOS ON
‘OFF’ Gate voltage that turns PMOS OFF

BL
VW /2 Half Write Voltage according to [29]
GND

‘Compute’ Bitline voltage for MAJ execution.

GLE ‘ON’ Gate voltage that turns NMOS ON
‘OFF’ Gate voltage that turns NMOS OFF

computation, BLs are set to ‘Compute’, WLFs, WLMs and
GLEs corresponding to unselected rows are ‘OFF’. For the
selected rows, WLMs are set to turn PMOS on, passing the
voltage at BL to the FeFET source, WLFs are set to Vread
to read the corresponding FeFET cells, GLEs are also set to
‘ON’. The FeFET cells storing ‘1’ value contribute ION to
IBL while the other cells only conduct leakage currents.

The column current IBL is then converted to voltage VBL

by a load resistor, and sensed by the sense amplifier (SA).
The 2-stage SA contains a differential amplifier as shown in
Fig. 4(b) and a StrongARM Latch based comparator as shown
in Fig. 4(c) [42]. Besides VBL as one input of the differential

Step 1: Erase(Write ‘1’ to all cell in a selected row)

BL1

Step 2: Write ‘0’ cells 
Phase 1: Charge 

... ...
WLFx :
-Vw/2

WLMx :
‘ON’

BL1 : +Vw/2

GLE:
‘OFF’

GND

BLy : GND

+Vw/2
~GND...
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-Vw/2
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GND
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GND GND

BL1 BLy

GL
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Fig. 5. The proposed charge based and pipeline write scheme.

amplifier, the other input is the reference voltage Vref , which
is generated by a reference column, storing the same number
of ‘0’s and ‘1’s. Vref is shared by all SAs, however, the
dynamic CLK in StrongARM Latch based comparator may
introduces significant kickback noise [42] to VBL and Vref
due to parasitic capacitance, thus severely distorting VBL and
Vref and inducing comparison errors. To tackle this problem, a
differential amplifier as shown in Fig. 4(b) is added as a buffer
stage. The differential amplifier can suppress the kickback
noise by its open loop gain, and isolates the second stage
strongARM Latch based comparator as shown in Fig. 4(c),
thus ensuring the SA function and the parallelism of the MAJ
array. The SA compares VBL and Vref , and the outputs Vout
and V ′out indicate the MAJ result of corresponding column,
i.e., Vout/V ′out=‘1’/‘0’ means MAJ output is ‘1’, and vice
versa.

C. Pipeline Interface for IMC arrays

With our proposed IMC XOR and MAJ arrays, writing
the output HVs of XOR array is still time-consuming, as
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Fig. 6. Time diagram of the proposed charge based write scheme.

programming the FeFET is much slower than the XOR opera-
tion, causing speed mismatch between the XOR array and the
MAJ array, and thus the performance bottleneck of the whole
encoder. [3] directly implement parallel writing by increasing
the number of write drivers to shorten the overall write time,
however, such method brings significant extra area and energy
overhead.

To address above problem, we propose a pipeline interface
for the XOR array and the MAJ array, in which we design a
2-step charge based write scheme for writing the 1FeFET-1T
memory, as shown in Fig. 5. The first step writes all cells of
the selected row x to ‘1’ (low-Vth) by simply applying the
write voltage +VW to WLFx and setting GLEx to ‘ON’ to
ground the GroudLine(GL) and the FeFET sources, the WLM
remains ‘OFF’ to keep PMOS off. Step 2 includes 3 phases:
Charge, Keep, and Discharge. In Charge phase, WLMx of the
selected row x is set to ‘ON’, and the BL voltages are passed
to the sources of FeFETs, WLFx is set to − 1

2VW . For the
cells to be written with ‘0’, the corresponding BLs are set
to + 1

2VW such that the corresponding FeFET VGS = −VW .
The BLs of other cells are connected to GND so that the
voltage on FeFET sources can not exceed the PMOS threshold
voltage Vth(PMOS), and these cells remain ‘1’. In Keep phase,
WLMx switches to ‘OFF’ to turn PMOS off, and the voltages
on FeFET sources are retained till the write is complete. In
phase 3, the sources of all FeFETs are discharged to GND by
switching WLFx and GLEx to ‘ON’.

Note that the BL voltages are passed to FeFET sources
in phase 1, while in phase 2 and 3 WLMx turns the access
PMOS off. Therefore the BLs can be then applied to other
rows, indicating a pipeline of the 3 phases. Fig. 6 shows a
workflow of our proposed pipeline interface, while the FeFET
write time is hidden by the phase pipeline, and the equivalent
write latency of a row is reduced to the duration of phase
1, which is much less than the FeFET write time. In this
way, our charge based pipeline write method can match the
operation speed of XOR array and significantly reducing the
write time of XOR array, thus bringing great improvement in
overall system performance.

IV. APPROXIMATE MINI-BATCH MAJ
For most HDC learning tasks, the amount of learning data

for HDC encoding can be more than millions, which is far

(a) t = m·Tw (b) t = 2m·Tw+TMAJ

(c) t = m2·Tw+mTMAJ
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Fig. 7. (a-c)The workflow of the proposed mini-batch MAJ; (d) array
segmentation for reducing BL charging energy.

more than the practical size of our proposed IMC arrays.
Moreover, storing all the input data for encoding and per-
forming a MAJ operation across the entire array is physically
infeasible. In this section, we introduces Mini-Batch MAJ,
which accommodates the large amount data associated with
HDC encoding given the limited size of our proposed IMC
designs.

To tackle above problems, we propose an iterative mini-
batch MAJ method, which performs multiple and multi-level
MAJ with a small number of inputs, to approximate the one
shot MAJ operation over the entire learning data. Fig. 7(a-c)
explain the workflow of our proposed method, where mini-
batch MAJ with pre-selected input number m (i.e., batch size)
is used for encoding a large amount of N-Gram HVs. MAJm
is used to refer to mini-batch MAJ operations with batch size
m. (1) write m N-Gram HVs to the first m rows of the MAJ
array one by one, then perform mini-batch MAJ across them
to generate the level-1 HV1 and write it back to the MAJ
array (Fig. 7(a)); (2) write another m N-Gram HVs to the first
m rows of the MAJ array (i.e., overwrite the m N-Gram HVs
stored here which are written in the previous step) and perform
mini-batch MAJ (Fig. 7(b)), repeat this step by m − 1 times
thus level-1 HV2 ∼ HVm are obtained; (3) perform mini-batch
MAJ across the m level-1 HVs to generate a level-2 (Fig. 7(c));
(4) repeat step (1)(2)(3), until all N-Gram HVs are processed,
and once the number of level-l HVs reaches m, we perform a
mini-batch MAJ to generate a level-(l+ 1) HVs. The highest
level HV is the approximation of encoding result.

Given the total number of N-Gram HVs Y , the number
of levels is logm(Y ), and each level occupies m rows of
the memory array, thus the total memory size required by
mini-batch MAJ method is only mlogm(Y ). For example,
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Fig. 8. (a) Latency and (b) energy of the proposed in-memory XOR array; (c) energy of the proposed In-memory MAJ array.

encoding 10000 N-Gram HVs using the conventional one shot
MAJ needs a 10000-row array, while the proposed mini-batch
MAJ method with a batch size m=100 only needs 200 rows.
therefore the proposed method can significantly alleviate the
memory overhead.

However, writing a HV to a row needs to charge BLs and
the overall charging energy for writing an array is proportional
to the number of rows. Storing multiple level HVs may still
consume a large array, thus causing high write energy. To
further improve the energy efficiency, we partition the MAJ
array into several segments, as shown in Fig. 7(d), where
every segment has local BLs, and is connected to the global
BLs through switches. Only one memory segment rather than
the entire array is charged in a HV write, thus significantly
reducing the write energy.

It should be noted that generally the iterative mini-batch
MAJ is only needed in the training phase, where a large
amount of training objects are encoded and combined together.
During the inference, the number of N-Grams in a query is
relatively small (e.g., 152 in average in language identification
task), thus all N-Gram HVs from one inference query can be
directly processed by one MAJ operation using our IMC MAJ
array.

V. EVALUATION

In this section, we evaluate our proposed designs at both
circuit level and system level, and compare the results with
the state-of-the-art in-memory HDC accelerators [14], [16],
[19].

A. Experimental Setup

We perform SPICE simulations on the proposed IMC XOR
and MAJ arrays using Cadence Spectre Simulator. Both arrays
are built using a compact multi-domain FeFET model [33]
and the 40nm MOSFET based on the Predictive Technology
Model (PTM). The FeFET write pulse VW is 4V and the
FeFET threshold voltage Vth variation is extracted from data
in Fig 1(e), the standard deviation is 0.059V/0.14V for low-
/high-Vth, and the resistor value refers to [24]. Furthermore,
we build a cycle-accurate and variation-aware simulator, which
can perform Monte Carlo simulations with the circuit level
variation model and support system level energy calculation,
for evaluating the robustness and performance of our design. A
typical application of HDC—European language identification
task is exploited for algorithm/system-level simulation.

B. Circuit-Level Evaluation

We first evaluate the IMC XOR array. The latency of the
array is measured under the worst case, where a 3-sigma
deviation on FeFET Vth is considered, thus the FeFET with the
smallest conductance corresponds to the latency. The results in
Fig. 8(a) show that the computation latency increases linearly
with the number of rows of the array. This is because that
the capacitance of BLs include the source capacitance of all
FeFETs in the same column, thus the charge time tcharge is
depicted as below:

tcharge ∝ RON × CSL = RON × (m× Csource) (3)

where RON is the equivalent resistance of FeFET with ’ON’
state and m is the number of rows of array. The energy
results of a single XOR operation are measured and shown
in Fig. 8(b). The total energy increases linearly with the
number of rows. This is because that the array energy, which is
dominated by the BLs charging, is proportional to the number
of rows, while the peripheral energy remains almost constant.

Next we evaluate the latency and energy consumption of
MAJ operations based on a 255-row IMC MAJ array with
varying numbers of inputs. The latency of MAJ is almost
constant, as the latency is dominated by charging the parasitic
capacitance of cells. The energy consumption increases with
the number of activated MAJ inputs as shown in Fig. 8, which
is due to the increase of bitline current IBL.

We then analyze the robustness of our proposed IMC
MAJ design considering the following hardware variations:
(1) Memory variation including the FeFET variation and the
resistor variation. Due to the large resistor value, the effect of
FeFET variation can be negligible [24]. The resistor variation
deviates the bitline current IBL from its expected value, and
may cause the MAJ error. We hereby verify the robustness to
resistor variation of the MAJ design by initiating Monte Carlo
simulation. The worst input patterns are considered, where
the number of ‘1’s in the MAJ inputs is closest to half of
the total number of MAJ inputs (e.g., 127 ‘1’s and 128 ‘1’s
are the worst input patterns for MAJ255=0 and MAJ255=1,
respectively). These worst input patterns differ by ION , while
the deviation of IBL caused by device variation increases as
the MAJ input size grows. Therefore, as can be shown in
Fig. 9(a-t), MAJ with larger input size has low tolerance to
device variation. The scalability of our design is also studied
in Fig. 9(a-t). It can be seen that our proposed MAJ array
can accurately execute MAJ operation with input size up to
255 under 1% resistor variation (Fig. 9(q)). When variation
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is larger (e.g., 10%), our design can still at least support
MAJ15 (Fig. 9(d)). Fig. 10(a) shows the distributions of bitline
voltage VBL under different resistor variation, and shows how
variation causes the MAJ error. The error rates of MAJ255 in
Fig.10(b) indicate that the variation mainly affects the MAJ
operations whose input patterns is closer to the worst case.

(2) The SA offset which can be considered as the overall
effects of the imperfections associated with SA such as PVT
variations. It can be equivalent to an offset of reference voltage
Vref (shown by the dotted blue line in Fig. 10(b)), and it

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED IMC ARRAYS WITH

STATE-OF-THE-ART IMC DESIGN.

Metrics XOR MAJ3
Latency(ns) Energy(fJ) Latency(ns) Energy(fJ)

The proposed 0.557 6.21 1.70 24.9
FELIX [16] ∼3 34.97 ∼3 65.65

Improvement ∼5.39× 5.63× ∼1.76× 2.64×
PCM work [14] 2.8 9.8 / /

Improvement 5.03× 1.58× / /

causes MAJ error especially when VBL is close to Vref .
Though the hardware variations may cause the MAJ opera-

tion error, however, in the following subsection we will show
that partially incorrect MAJ operations due to the variations
are still tolerable for HDC algorithms.

Table II concludes the performance metrics of our proposed
IMC arrays, with comparison with state-of-the-art IMC de-
signs for HDC [14], [16]. For XOR operation, our design
achieves 4.85× to 5.39× and 1.58× to 5.63× improvements
in latency and energy efficiency, respectively. For MAJ3
operation, our design with a 255-row MAJ array can also
outperform FELIX [16] by 1.76 × in latency and 2.64×
in energy, respectively. Moreover, our design can support
MAJ operations with varying input numbers (e.g., MAJ16 ∼
MAJ255), obtaining more improvements.

C. System-Level Evaluation

We first measure the impact of our approximate mini-batch
MAJ on inference accuracy, the results are listed in table III.
It can be seen that the impact of our proposed mini-batch
MAJ method on the inference accuracy is negligible. Note that
when the MAJ batch size is 255, the corresponding mini-batch
MAJ method only contains 256 MAJ operations and achieves
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TABLE III
ACCURACY OF HDC USING MINI-MAJ METHOD UNDER DIFFERENT MAJ INPUTS SIZE.

Batch size Baseline1 3 7 15 31 63 127 255
Number of MAJ levels / 12 7 5 4 3 2 2

Number of MAJ operations / 266k 137k 54.2k 30.7k 4.03k 128 256
The amount of N-Grams 1M 531k 824k 759k 923k 250k 16.1k 65.0k

Accuracy Tri-Gram, D=2000 94.45% 94.06% 94.37% 94.33% 94.62% 94.46% 93.40% 94.17%
Quad-Gram, D=10000 97.16% 97.05% 97.09% 97.25% 97.21% 97.14% 96.29% 96.83%

1 Encoding the training data using conventional accurate accumulate and thresholding.
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Fig. 11. The accuracy of language identification task using our proposed design for (a)(b) both training and inference, and (c)(d) for inference only, considering
various resistor variations levels and SA offsets.

comparable accuracy to the baseline, while the number of
N-grams and accumulation operations needed for encoding
reaches 1 million. We hereby use this batch size 255 in the
evaluation.

With the aforementioned hardware variation at circuit level,
we then evaluate the robustness of our proposed IMC encoder
design at system/algorithm level in the context of HDC lan-
guage identification tasks. MAJ255 is employed, and 2-level
approximate mini-batch MAJ method is applied to encode
the training data (i.e., 65025 HVs). The encoder design is
employed in both training and inference, and the identification
task accuracy results are shown in Fig.11(a)(b), which repre-
sent 2 typical N-Gram based HDC methods: Tri-Gram with
D = 2000 and Quad-Gram with D = 10000, respectively [2],
[3]. The results shows that our proposed IMC encoder can
achieve less than 1% accuracy loss with resistor variation
up to 10% and SA offset standard deviation up to 5mV.
More variation and offset can be tolerated if further relaxing
the accuracy (e.g., ∼5% accuracy loss with resistor variation

TABLE IV
COMPARISON OF ENERGY EFFICIENCY OF THE PROPOSED DESIGN WITH

STATE-OF-THE-ART IMC HDC ACCELERATOR.

Design NV devices Energy per
Query(nJ) Normalized Energy

Proposed
(Quad-Gram,

D=10000)
FeFET 85.39 1×

[14] PCM 430.3 5.04×
[19] RRAM 318000 3724×

up to 15% and SA offset up to 15mV standard deviation).
Moreover, when our encoder is employed for HDC inference
only (i.e., the accurate trained model is used), the accuracy
can be improved, resulting in less than 1% loss with up to
15% ∼ 20% resistor variation and 15 ∼ 20mV SA offset, as
shown in Fig. 11(c)(d).

We further evaluate the energy efficiency of HDC query
encoding implemented by our IMC design, and compare it
with state-of-the-art IMC accelerators for HDC [14], [19].
The results are listed in Table IV. It can be seen that by
fulling utilizing the 3-terminal structure and energy efficient

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3253766

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 19,2023 at 22:44:43 UTC from IEEE Xplore.  Restrictions apply. 



10

voltage driven read/write scheme of FeFET, our proposed IMC
HDC encoder, which consists of a compact XOR design and a
MAJ design that supports single cycle efficient MAJ operation,
achieves 5.04× and 3724× energy efficiency improvements
compared with PCM based [14] and RRAM based [19]
counterpart, respectively.

VI. CONCLUSION

In this paper, we proposed an efficient IMC design for fast
and energy-efficient HDC encoding. Exploiting the unique
characteristics of FeFET, 2 IMC arrays are designed for
accelerating the binding, permutation and bundling operations
of HDC. The 2-FeFET storage cell based XOR array improves
the data density, and the in-memory MAJ array supports costly
accumulation and thresholding by performing a single-cycle
MAJ operation. A highly pipelined write scheme maximizes
the utilization of the proposed designs thus boosts the per-
formance. Evaluations of our designs as well as application
benchmarking demonstrate that our design outperforms other
IMC based counterparts at least 1 order of magnitude in energy
efficiency, with excellent robustness to hardware variation and
negligible accuracy loss.
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