
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Agile Simulation of Stochastic Computing Image Processing with Contingency Tables

Sercan Aygun ID , M. Hassan Najafi ID , Mohsen Imani ID , Ece Olcay Gunes ID

Abstract—The rapid computerized simulation of stochastic computing
(SC) systems is a challenging problem. A method for agile simulation
of SC image processing is proposed in this work. The input operands
are processed with the aid of a correlation-controlled contingency table
(CT) construct without using actual stochastic bit-streams. The proposed
approach underlines the validity of CT simulation with (i) image
compositing, (ii) pattern detection, and (iii) bilinear interpolation case
studies. Using the corresponding error models, we emulate the state-
of-the-art pseudo-random and quasi-random bit-streams. Experimental
results show that the proposed approach achieves similar computation
accuracy to the traditional SC simulation while performing runtime- and
memory-efficient computations. The execution time reduces more than
200× for the image compositing task when emulating random bit-streams
with CT. Pattern detection and bilinear interpolation further showed 76×
and 22× lower memory usage, respectively, when employing CT.

Index Terms—Bit-stream processing, computer-aided simulation, con-
tingency table, image processing, stochastic computing.

I. INTRODUCTION

THE simulation of stochastic computing (SC) systems [1] faces
time and memory complexity challenges due to conducting very

long bit-by-bit processing. Especially, simulating SC-based process-
ing of high-density data like image matrices in row-column format
is very time-consuming. In SC, the precision of data and the quality
of the results are affected by the length of stochastic bit-streams [1].
The larger the bit-stream size (N), the higher the accuracy of the
computations [2]. Often very long bit-streams, in orders of 103 to 104

bits, must be processed for high-quality results. To have an output
bit-stream with a resolution of 8 bits, bit-streams of at least 216 bits
need to be processed [3].

SC has been popular for simple execution of complex image
processing tasks. Fig. 1 summarizes some important prior SC image
processing case studies and the bit-stream size used in each case.
Considering the large number of image data that need to be processed,
fast simulation of these SC-based systems is challenging even with
short bit-stream sizes of 100 bits. Sometimes large design space
explorations are done by varying the bit-stream size from hundreds
to tens of thousands bits to study the performance of an SC system.

Instead of explicitly generating and processing stochastic bit-
streams, this work performs SC in a radically different way. Sim-
ple arithmetic operations on scalar values replace traditional bit-
wise operations on stochastic bit-streams. The input operands are
processed with the aid of a contingency table (CT) construct [4]
without explicitly processing bit-streams. This allows latency-free
and memory-aware emulation of SC systems without impacting the
results. We show that similar accuracy to traditional stochastic bit-
stream processing is achieved with this approach. CT’s usage has
not been explored before at the application level. This work studies
the effect of CT in the simulation of SC image processing case
studies. We utilize some simple SC circuits (2-to-1 MUX , XOR,
and 4-to-1 MUX) for image compositing, pattern detection, and
bilinear interpolation tasks for the first time. In summary, the main
contributions of this work are as follows:

• Developing simple SC designs for three image processing tasks:
2-to-1 MUX (image compositing), XOR (pattern detection), and
4-to-1 MUX (bilinear interpolation).

Manuscript received XXXXXXXX XX, 2022; accepted XXXXXXXX
XX, 2023. Date of publication XXXXXXXX XX, 2023; date of current
version XXXXXXXX XX, 2023. This article was recommended by Associate
Editor XXXXXXX XXXXXXX. (Corresponding author: Sercan Aygun.)

Sercan Aygun is with the ECE Dept., Istanbul Technical Univ., 34469 Istan-
bul, Turkey, and also with the Sch. Comp. and Info., University of Louisiana
at Lafayette, Lafayette, LA, 70503, USA (e-mail: ayguns@itu.edu.tr).

M. Hassan Najafi is with the Sch. Comp. and Info., University of Louisiana
at Lafayette, Lafayette, LA, 70503, USA (e-mail: najafi@louisiana.edu).

Mohsen Imani is with the Department of Computer Science, University of
California Irvine, Irvine, CA, 92697, USA, (e-mail: m.imani@uci.edu).

Ece Olcay Gunes is with the ECE Dept., Istanbul Technical Univ., 34469
Istanbul, Turkey (e-mail: gunesec@itu.edu.tr).

Wang et al.

Onizawa et al.

Qian et al.

Abdellatef et al.

Boga et al.

N
a
j
a
f
i

e
t

a
l
.

Li et al.

R
a
n
j
b
a
r

e
t

a
l
.

Edge detection

Noise reduction

Frame differencing

Vector quantization

Depth perception

Contrast stretching

Gabor filtering

Gamma correction

Smoothing filtering

A
y
g
u
n

e
t

a
l
.

Li et al.

SC Image Processing Application vs. Bit-stream Size

0 500 1000 1500 2000 2500 10000

Onizawa et al.

...
N =

Fig. 1. Examples from the literature for SC image processing applications
and applied bit-stream size. (→ [5], → [6], → [7], → [8],

→ [9], → [10], → [11], [12], → [13], → [14].)

• Evaluating CT-based SC simulation for image processing case
studies.

• Emulating state-of-the-art Sobol-based low-discrepancy (LD),
binomial distributed, and linear-feedback shift register-based
(LFSR) bit-streams with CT.

• Runtime comparison of SC bit-stream processing and CT-based
simulation on CPU and GPU.

This article is organized as follows: Section II presents the mo-
tivation of the study and gives the basic concepts of SC and CT.
Section III is devoted to the methodology. Experiments results are
given in Section IV. Section V concludes the paper.

II. STOCHASTIC COMPUTING AND CONTINGENCY TABLES

SC is a re-emerging paradigm for the cost-efficient and fault-
tolerant design of digital systems. Data values are represented with
bit-streams with equal bit significance. Arithmetic operations are
implemented by performing simple bit-wise operations on the bit-
streams. For example, multiplication is realized by bit-wise AND
(XNOR) on unipolar (bipolar) bit-streams [6]. To accurately multiply
two n-bit precision data, bit-streams of at least 22n bits must be
processed [3]. Generating and processing such long bit-streams is
very time and memory consuming, especially when n increases.

The power of SC stems from the probabilistic behavior of random
bit-streams in which 1s and 0s occur randomly in no specific order.
The state-of-the-art distributions for stochastic bit-streams are: Bino-
mial distribution, Sobol-based LD, and LFSR-based pseudo-random.
During bit-stream generation, a stochastic bit-stream generator is
coupled with a comparator that compares a randomly generated
binary number with the to-be-encoded input scalar value. If the scalar
value is greater than the random number, the corresponding bit of
the bit-stream is 1; otherwise, it is 0. LFSR-based randomization is
the most popular bit-stream generation method in the literature [15].
LFSR provides pseudo-randomness with binary numbers that are
generated circularly. Some recent works use Sobol sequences to
generate quasi-random numbers. Sobol sequences are used to gen-
erate LD bit-streams for highly-accurate SC arithmetic [16], [17].
The third approach uses binomial distribution, and has been used
in the literature in quantifying the random fluctuation error of SC
operations. The probability P , represented by a stochastic bit-stream,
can be considered based on a set of samples from a random variable
(RV) having a Bernoulli distribution with a success probability of
P [18]. Bernoulli distribution is employed to produce bit-streams
with uniformly distributed bits. This distribution is obtained by using
N different Bernoulli trials.

As a bit-stream emulation construct, CT, is a 2 × 2 table of
four scalar values. As if i-bit bit-streams are generated, the binary
interaction between input operands (i.e., bit-streams) are recorded
for 11, 10, 01, and 00 logic pair overlaps in any i position of
the bit-streams. Fig. 2 (a) shows an example of generating a CT.
Logic pairs at any bit position i are cumulatively denoted using

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3243136

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 19,2023 at 22:47:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4615-7914
https://orcid.org/0000-0002-4655-6229
https://orcid.org/0000-0002-5761-0622
https://orcid.org/0000-0001-9186-7424

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

b = 1
c = 3
d = 3

b = 2
c = 4
d = 2

b = 0
c = 2
d = 4

AND

OR

XOR

NAND

NOR

XNOR

III.

II.

𝟏𝟎𝟏𝟎𝟎𝟎𝟎𝟎
𝟏𝟏𝟎𝟏𝟏𝟎𝟎𝟎

𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎

𝟎𝟎𝟎𝟎𝟏𝟏𝟏𝟏

𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎
𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎

Min.
Corr. Uncorr.

Max.
Corr.

෍𝟏𝐬

Physical Bit-stream Processing

𝑎𝑚𝑎𝑥 = 𝑚𝑖𝑛 2, 4 = 2

𝑎𝑚𝑖𝑛 = 𝑚𝑎𝑥(0, 2 + 4 − 8) = 0
I.

Example of CT

𝑎𝑚𝑖𝑛 = 0 𝑎𝑚𝑎𝑥 = 2𝑎𝑧𝑒𝑟𝑜 = 1 AND

OR

XOR

NAND

NOR

XNOR

b = X1 – 𝑎
c = X2 – 𝑎
d = N – (a + b + c)

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥I. Decide range of 𝑎:
𝑋1 𝑋2

II. Calculate 𝑏, 𝑐, 𝑑

III. Operate on logic operations
AND 𝑎

OR 𝑎 + 𝑏 + 𝑐

XOR 𝑏 + 𝑐

NAND 𝑏 + 𝑐 + d

NOR 𝑑

XNOR 𝑎 + 𝑑

Setting and Processing CT

*C
T-

ba
se

d
St

oc
ha

st
ic

 L
og

ic

𝒂min 𝒂max

min (X1, X2)
𝑆𝐶𝐶 ≈ 0

𝑎𝑚𝑖𝑛

𝑆𝐶𝐶 ≈ −1 𝑆𝐶𝐶 ≈ 1

𝑎𝑧𝑒𝑟𝑜 𝑎𝑚𝑎𝑥

max(0, X1+X2-N)

𝑆𝐶𝐶 ≈ 0

𝑎𝑚𝑖𝑛 = 0

𝑆𝐶𝐶 ≈ −1 𝑆𝐶𝐶 ≈ 1

𝑎𝑚𝑎𝑥 = 2

቞ ඈ
𝑋1 × 𝑋2

𝑁
= ඌ ඈ

2 × 4

8
= 1

Scalar
Processing

Bit-stream
Processing

𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎

𝑑𝑐

𝑎=1 No bit-stream
generation

and bit-wise logic
processing

𝑎 𝑐 𝑏 𝑐

𝑏=1
‘11’ ‘10’

‘01’
𝑐=3

‘00’
𝑑=3

Bit-stream
generation and

latency-bounded
processing

0 1 2

6 5 4

6 4 2

8 7 6

2 3 4

2 4 6

(a) (b)

(c) (d) (e)

𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎

𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟎𝟎𝟎 𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎

𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏 𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟎 𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝟎𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝟎𝟎𝟏𝟏𝟏𝟏𝟏𝟏

𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎 𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟏 𝟎𝟎𝟎𝟎𝟏𝟏𝟏𝟏

𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎 𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟏 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏

SCC Range

SCC Range

SCC Range

0 1 2

6 5 4

6 4 2

8 7 6

2 3 4

2 4 6

SCC Range

𝑎𝑑 − 𝑏𝑐

𝑁 × min 𝑎 + 𝑏, 𝑎 + 𝑐 − (𝑎 + 𝑏)(𝑎 + 𝑐)

𝑎𝑑 − 𝑏𝑐

𝑎 + 𝑏 𝑎 + 𝑐 − 𝑁 ×max(𝑎 − 𝑑, 0)
𝑒𝑙𝑠𝑒

𝑎𝑑 > 𝑏𝑐

,

,

𝑖𝑓
𝑆𝐶𝐶 =

Stochastic Cross Correlation

𝑆𝐶𝐶 ≈ 0
𝑆𝐶𝐶 ≈ −1 𝑆𝐶𝐶 ≈ 1

*CT-based
Stochastic Logic

𝑎𝑧𝑒𝑟𝑜

X1=2

X2=4

N=8

σ𝑎

σ𝑏

σ 𝑐

σ𝑑
CT

CT
(X1, X2,
N, corr.)

Logic-1s
count at

the
output

𝟏 𝟏 𝟎 𝟏 𝟏 𝟎 𝟎 𝟎

𝑑𝑑

Fig. 2. Summary of CT and bit-by-bit simulation including the theory behind CT and examples. (a) From bit-streams to scalar-only processing. (b) SCC
formula for quantifying correlation. (c) The steps for setting up CT, and the relation between CT primitives (a, b, c, d) and logic operations. (d) A numerical
example with X1 = 2, X2 = 4 from bit-streams to scalar-only processing. (e) The same example with actual bit-streams.

a, b, c, and d. These are called CT primitives. Logic operations
are defined using these primitives. For example, AND operation
corresponds to 11 (i.e., a) bit pairs between the two bit-streams,
X1 and X2. Without explicitly generating bit-streams, the CT is
directly generated from the scalar (binary equivalent) values of X1
and X2, where 0 ≤ X1, X2 ≤ N , and N is the bit-stream length.
Now the question is how to find a, b, c, and d values directly
from scalar values. The answer depends on “correlation”. For correct
functionality, some SC designs need input bit-streams with maximum
correlation. Some others need inputs with minimum correlation, and
some need uncorrelated inputs [1].

To emulate maximally correlated bit-streams, a is set maximally,
while for minimum correlation, a is minimum. a is the first CT
primitive we find. The formulas for the maximally (amax) and
minimally (amin) “11” occurrences are presented in Fig. 2 (c)-I.
After finding a, by using the scalar values of X1, X2, and N , the
other primitives (b, c, d) are found. The formulas are shown in Fig.
2 (c)-II. Finally, logic operations are converted to basic arithmetic on
the primitives. Fig. 2 (c)-III shows how different logic operations can
be obtained from CT primitives.

Besides the cases with maximum and minimum correlation, em-
ulating uncorrelated or independent bit-streams is important for
modeling SC systems. Stochastic Cross Correlation (SCC) (Fig. 2
(b)) [19] with range of [−1, 1] is suggested as a metric to quantify
the correlation level between two bit-streams. Two bit-streams are
uncorrelated if SCC ≈ 0. When the SCC formula is solved for
SCC = 0, the following equation is obtained to set up CT for zero
correlation: azero = ⌊X1×X2

N
⌉. Fig. 2 (d) provides an example of

setting up CT for X1 = 2 and X2 = 4. Steps I, II, and III depict
the CT formation for three correlation points: minimum, zero, and
maximum. The numeric table in step III shows the number of 1s in
the output bit-stream resulting from different logic operations. Fig. 2
(e) shows example bit-streams for X1 and X2 scalars for different
correlation points and the corresponding logic results using traditional
bit-by-bit processing. As it can be seen, the logic results shown in
Fig. 2 (d) and Fig. 2 (e) are the same, proving the correctness of the
CT method.

III. PROPOSED APPROACH
A. A Generic CT Set-Up

We first define a generic CT set-up for simulating multi-level
cascaded SC circuits. Fig. 3 depicts the encapsulated CT setting
followed from the circuits’ inputs to the output. Considering Y 1 and
Y 2 connected to any gate type at the mid-level, the AND reference
gate is temporarily evaluated using near-zero correlation, azero (Step
I). The deviation from the expected value (i.e., error-free multiplica-
tion value) is determined by random fluctuation error, ϵ, considering
the model of random sources that generate input bit-streams (Step
II). The actual value is estimated through ϵ. Finally, other CT
primitives are calculated based on actual a (Step III). For more
complex circuits with reconvergent paths (especially when processing
longer bit-streams, e.g., 512, 1024), the designer may benefit from the
reconvergence involving correlation. At the output of the reconvergent
paths, signal correlation can be used to define the expected value
via amin or amax. We observe that reconvergence awareness in CT
simulations may be beneficial to reduce error especially for complex
circuits (levels > 3) when processing long bit-streams (please see
the GitHub repository [20] for some examples.) Nevertheless, we
recommend the expected value assignment in Fig. 3 for the image
processing circuits (those having ϵ ̸= 0) in Section III-B.

B. Proposed SC Image Processing with CT-Based Random Source
Emulation

This work extends the SC-based image processing techniques
with three new case studies: (i) image compositing, (ii) pattern

Y2
𝑎𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑=𝑎𝑧𝑒𝑟𝑜
𝑎𝑎𝑐𝑡𝑢𝑎𝑙

𝑁
=
𝑎𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝑁
+𝜀

𝑐𝑏 𝑑

Reference
Gate

Logic Gate
Y1

Logic Gate

Logic Gate

AND

𝑎=𝑎𝑎𝑐𝑡𝑢𝑎𝑙

𝑎 𝑏
𝑐 𝑑 CT

random source
error model

CT-based
SC Logic

Steps of Generic CT Set-Up

I*.) Generate reference AND gate`s
𝑎 CT primitive (expected value)

II.) Estimate actual value via
𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 + 𝜀

III.) Find 𝑏, 𝑐, and 𝑑 via 𝑎𝑎𝑐𝑡𝑢𝑎𝑙

* In case of reconvergent paths in mid-
levels, the expected value can be selected
as 𝑎𝑚𝑖𝑛 (or 𝑎𝑚𝑎𝑥) instead of 𝑎𝑧𝑒𝑟𝑜

Generic CT
Set-Up

Fig. 3. Generic CT set-up.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3243136

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 19,2023 at 22:47:01 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

I. Image Compositing Pattern Detection Bilinear Interpolation

+

Background Image Foreground Image Composite Image

𝐵 × (1 − α) + 𝐹 × α

= SCGKKSJRIRMCSSCLCSCSCÖ

LSCLOOŞLMSCÖKSCNHHISCJ

SCKSCTIHRGBJSCKNDKNSCS

Let us calculate how many

SC occurs in this text.

SCGKKSJRIRMCSSCLCSCSCÖ

LSCLOOŞLMSCÖKSCNHHISCJ

SCKSCTIHRGBJSCKNDKNSCS
Main Image

?
SC🔍 Pattern

Pattern Hits

II. Model of SC MUX (2-to-1) II. Model of XOR

P𝐗𝟏 × 1 − P𝐒 + P𝐗𝟐 × P𝐒

SC design primitives

SC MUX Formula:

𝐗𝟏

𝐗𝟐

P𝐗𝟏

P𝐗𝟐 P𝐒 = 1/2

ഥ𝑺
𝑺

𝐘

P𝐘
P𝐗 1 − P𝐗

P𝐗𝟏
P𝐗𝟐

P𝐗𝟏 + P𝐗𝟐 − P𝐗𝟏P𝐗𝟐

P𝐗𝟏 × P𝐗𝟐P𝐗𝟏
P𝐗𝟐

negligible

P𝐗𝟏 P𝐗𝟐

≡
P𝐘

minimally
correlated

m𝑎𝑥(0, P𝐗𝟏−P𝐗𝟐)

minimally
correlated

P𝐗𝟏 P𝐗𝟐

P𝐗𝟏P𝐗𝟐

P𝐘

1 − P𝐗𝟐

P𝐗𝟏

maximally
correlated

≡

P𝐗𝟏 P𝐗𝟐

1 − P𝐗𝟏1 − P𝐗𝟐

P𝐘

m𝑎𝑥
(0, P𝐗𝟏−P𝐗𝟐)

P𝐗𝟏 − P𝐗𝟐 P𝐗𝟏 − P𝐗𝟐

III. SC MUX for image compositing

MUX

P𝑩 × 1 − P𝜶
+

P𝑭 × P𝜶

ഥ𝜶 𝜶
B F

𝜶
CT

Model
MUX

B Fഥ𝜶 𝜶
M

M, P Bit-streams

𝑏+𝑐

𝑏 = 𝑀 - 𝑎
𝑐 = 𝑃 - 𝑎

𝑎𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑀, 𝑃)

III. SC XOR for pattern detection

|P𝑴 − P𝑷|

CT
Model

I. I.

II. Model of SC MUX (4-to-1)

III. SC MUX for bilinear interpolation

m𝑎𝑥
(0, P𝐗𝟐−P𝐗𝟏)

×2, ×4,.. size

Input Image
Output Image

ҧ𝐼

𝒅𝒙𝐼

𝒅𝒚

.

4-to-1
MUX

𝑎 𝑏
𝑐 𝑑

𝑎 𝑏
𝑐 𝑑

𝑎𝑧𝑒𝑟𝑜 𝑎𝑧𝑒𝑟𝑜

𝑎 𝑏
𝑐 𝑑

𝑎𝑧𝑒𝑟𝑜

Random Fluctuation Model, Error: 𝜀

𝑎𝑧𝑒𝑟𝑜

𝑁
+𝜀2

𝑎

𝑁
=
𝑎𝑧𝑒𝑟𝑜

𝑁
+𝜀3

𝑎+𝑏+𝑐

CT
Model

𝑎 𝑏
𝑐 𝑑

Random Source Model, Error: 𝜀Correlated, Error: 𝜀=0

𝑎 𝑏
𝑐 𝑑

𝑀
𝑀,𝑃 Scalars

Scalars

𝑃P

𝑎 𝑏
𝑐 𝑑

𝑎 𝑏
𝑐 𝑑 𝑎 𝑏

𝑐 𝑑

𝑎
𝑐 𝑑

𝑎 𝑏
𝑐 𝑑

𝑎 𝑏
𝑐 𝑑

+𝜀

𝑎𝑧𝑒𝑟𝑜

𝑎𝑧𝑒𝑟𝑜

𝑏

𝑎𝑧𝑒𝑟𝑜

¬𝑆0 ∧ ¬𝑆1 ∧ 𝑋1 ∨ ¬𝑆0 ∧ 𝑆1 ∧ 𝑋2 ∨
𝑆0 ∧ ¬𝑆1 ∧ 𝑋3 ∨ 𝑆0 ∧ 𝑆1 ∧ 𝑋4

1 − P𝐝𝐱 1 − P𝐝𝐲 P𝐈11 + 1 − P𝐝𝐱 P𝐝𝐲 P𝐈12 +

P𝐝𝐱 1 − P𝐝𝐲 P𝐈21 + (P𝐝𝐱)(P𝐝𝐲)P𝐈22

1 − 𝑃𝒅𝒙 1 − 𝑃𝒅𝒚 𝑃𝑰11
+ 1 − 𝑃𝒅𝒙 𝑃𝒅𝒚 𝑃𝑰12
+ 𝑃𝒅𝒙 1 − 𝑃𝒅𝒚 𝑃𝑰21
+(𝑃𝒅𝒙)(𝑃𝒅𝒚)𝑃𝑰22

+𝜀

+𝜀

𝑰11 𝑰12 𝑰21 𝑰22

𝑆0
𝑆1

𝑌

𝒅𝒙
𝒅𝒚

Bit-stream
Processing

Binary
Logic

𝑃𝒀

𝑋1
𝑋2
𝑋3
𝑋4

𝐈11
𝐈12
𝐈21
𝐈22

𝑌

𝑃𝒀

𝒅𝒙
𝒅𝒚

(x, y)

𝐼11 𝐼21

𝐼22𝐼12

(a) (b) (c)

𝑎=𝑎𝑚𝑎𝑥 + (𝜀 = 0)

Y1 Y2

𝑎𝑧𝑒𝑟𝑜

𝑁
+𝜀1

CT1 CT2

CT3

Fig. 4. Proposed CT-based (a) image compositing, (b) pattern detection, and (c) bilinear interpolation.

detection, and (iii) bilinear interpolation. The first case study is image
compositing. Szeliski [21] elaborates image compositing by giving
the compositing (C) formula C = B(1− α) + Fα, where B is the
original background image, α is the foreground image opacity, and
F is the foreground image. Fig. 4 (a)-I shows an example of image
compositing. The image compositing formula reminds the equation
of an SC scaled adder implemented using a multiplexer (MUX):
MUX = PX1(1−PS)+PX2PS , where PS is the probability of the
select input [6]. The SC MUX formula is elaborated in Fig. 4 (a)-II.
As the image compositing and MUX formulas coincide, the image
compositing can be realized by simply using a MUX unit. The main
inputs are the background and foreground image pixel bit-streams,
and the select input is the foreground image opacity, α. The CT model
for a MUX (built from two AND and one OR gates) is obtained using
multiple tables as depicted in Fig. 4 (a)-III. Using the scalar values
of B, F , and α, first the near-zero-correlation CTs are created. Since
the AND operation result is the same as the “a” primitive, CT1 is
set by considering near-zero a (azero): CT1azero = ⌊B×(N−α)

N
⌉.

Likewise, CT2 is set by CT2azero = ⌊F×α
N

⌉. After calculating
the zero-correlated a value, the random fluctuation error (ϵ) from
the input bit-stream generators should also be taken into account by
carrying out the steps of the generic CT set-up shown in Fig. 3. In
this study, we emulate three different bit-stream generation models:
binomial distribution, Sobol LD, and LFSR.

For the binomial distribution case, a stochastic bit-stream having
probability P is considered as a set of samples from RV with a
Bernoulli distribution having a success probability, P . Considering
the Independent and Identically Distributed RV [22], a stochastic
number is represented yielding binomial distribution with a variance
σ2 = P (1−P)/N . As a reference, the AND operation (corresponding
to CT primitive “a”) has an expected output probability PY = E[Y],
yielding PX1×PX2 for independent variables. Nevertheless, the ob-
tained probability, P̂Y , may differ due to random fluctuations. Using
squared error, the random fluctuations error for the case of Bernoulli
RVs is obtained as errY = E[(PY − P̂Y)2] = PY (1− PY)/N [1],
[23]. From the squared error to the square-rooted format, the error
is ϵ=

√
errY . Considering AND as the reference and initial operation,

we include ±ϵ in the obtained CT output probability. Fig. 4 (a)-III
has AND gates in the first level of MUX . After obtaining azero, the
obtained output probabilities of CT1 and CT2, a

N
, are determined

via azero
N

± ϵ (our error calculations show that a
N

+ ϵ has better
error performance than a

N
− ϵ; therefore, we use +ϵ for the model.)

For the LFSR case, we model error by assuming hypergeometric
distribution as recommended by Baker and Hayes [24]. They define

the output deviation of performing bit-wise AND operation on LFSR-
based bit-streams as ϵ =

√
PX1×PX2×(1−PX1)×(1−PX2)

N−1
, where X1

and X2 are the inputs. Finally, unlike the binomial and LFSR cases,
the Sobol-based LD model almost equals the near-zero correlation
CT, i.e., azero, where ϵ=0.

In Fig. 4 (a)-III, after including the relevant error in CT1 and
CT2, a new CT is set for the next logic operation, which is an OR
operation. Similar to the first level of the circuit, the generic CT set-up
is followed for this level of logic. The expected output probability and
the input probabilities are important for calculating ϵ in the binomial
and LFSR-based random source error, respectively. The AND gate
model as a reference is initially calculated for the random source
error; thereby, the CT prior primitive a is first fine-tuned. Returning
to Fig. 4 (a)-III, for modeling MUX , CT3’s near-zero correlated
output probability, azero

N
, is updated with ϵ. After updating the CT

prior primitive, the other primitives (b, c, d) are calculated for the
final logic operation (e.g., OR gate: a+ b+ c, recall Fig. 2).

The second case study is pattern detection, shown in Fig. 4 (b)-
I. This task is based on maximum correlation. The two inputs from
the main image and the pattern image are maximally correlated to
utilize XOR gate as an SC subtractor. Fig. 4 (b)-II elaborates on the
formula and functionality of the XOR gate as an SC primitive. As
shown, when input bit-streams are positively correlated (i.e., have
maximum overlap between the position of 1’s), bit-wise XOR acts
as an absolute subtractor, |PX1 − PX2| [25]. This can be used for
pattern search in an image, where X1 relates to the main image (M),
and X2 holds the pattern (P) to be searched in X1. The difference
gives zero value for the exact pattern match. The CT for the pattern
detection task is elaborated in Fig. 4 (b)-III. The model of positively
correlated input operands is established in CT using amax. For this
case study, the generic CT setting assigns amax to the expected value,
which is also equal to the actual value since ϵ=0. First amax is found
using min(X1, X2) formula, and then the b and c primitives are
calculated. The XOR result is obtained from CT via b + c, without
explicit bit-stream computing. Thus, the difference between M and P
images is obtained. This operation can be considered a convolution-
like operation; P is shifted as a sliding window over M .

The third case study is bilinear interpolation used for image
resizing. This task is based on linear interpolations in both x (width)
and y (height) directions. By repeating linear interpolations for x and
y, bilinear interpolation is performed. Assume an image I defined by
a rectangular region with four points: (x1, y1), (x1, y2), (x2, y1), and
(x2, y2). A new pixel point in this region is denoted as (x, y), and
is to be estimated. Considering the unit square for the rectangular

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3243136

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 19,2023 at 22:47:01 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

TABLE I
COMPARING BIT-WISE BIT-STREAM PROCESSING AND CT APPROACH IN DIFFERENT COMPUTING PLATFORMS*: CPU AND GPU

Conventional Bit-stream Processing Contingency Tables
23 24 25 26 27 28 29 210 N 23 24 25 26 27 28 29 210

NO DATA DEPENDENCY NO DATA DEPENDENCY
72.63 151.01 316.65 636.81 1287.5 2539.4 5437.1 11472 CPU 1.522 1.480 1.504 1.494 1.499 1.661 1.518 1.560
1.854 2.744 3.842 6.055 9.871 17.701 33.397 61.108 GPU 0.430 0.433 0.470 0.445 0.438 0.442 0.432 0.428

DATA DEPENDENCY DATA DEPENDENCY
200.8 388.5 806.8 1637.8 3277.7 6621.1 13636 27960 CPU 2.792 2.673 2.626 2.891 2.885 2.777 2.823 2.811
4.008 5.348 8.028 13.438 22.877 41.099 76.869 147.31 GPU 0.740 0.633 0.644 0.648 0.638 0.640 0.637 0.641

*The runtime (in sec) analysis is performed on a system with Intel(R) Core i7-7700HQ CPU @2.80GHz, 16GB RAM, and with NVIDIA GTX 1070 GPU, using Python.

Random scalars

Encoding bit-streams with binomial distribution

Memory

Memory

Decoding output bit-streams

1st μO 2nd μO 3rd μO 4th μO 106 μOσ

Memory

Memory

Decoding

Random
scalars

Encoding

Memory

Memory

Memory

Memory

1st μO

2nd μO

3rd μO

4th μO

106 μOσ

NO DATA DEPENDENCY WITH DATA DEPENDENCY

CPU GPU

C
P
U

G
P
U

(a) (b)

OR
Processing in

P
r
o
c
e
s
s
i
n
g

i
n

Randomly
ordering four
logic gates

Fig. 5. Test procedure for simulating SC operations (a) with no data
dependency and (b) with data dependency.

region, the expression for I(x, y) is (1 − dx)(1 − dy)I11 + (1 −
dx)(dy)I12 + (dx)(1− dy)I21 + (dx)(dy)I22 [26], where I11, I12,
I21, I22 are neighbouring pixel values, and dx, dy are new pixel’s
relative positions that define resizing coefficient, ρ. An example of
bilinear interpolation is shown in Fig. 4 (c)-I. We use a 4-to-1 MUX
to realize this task in stochastic domain. Fig. 4 (c)-II shows the binary
logic of a 4-to-1 MUX and the corresponding transformation to bit-
stream processing using probabilities. dx, dy are connected to the
select ports of the MUX . Fig. 4 (c)-III depicts the CT model that
follows the same procedures in Fig. 3 and Fig. 4 (a)-III explained
above.

IV. TESTS AND RESULTS

In this section, we evaluate the performance of the proposed
technique compared to the conventional approach of simulating SC.
Before evaluating the performance of the SC image processing
designs, we conduct a preliminary analysis of computer-aided sim-
ulation of SC operations on CPU and GPU. We use Python for the
tests and the Cuda library for GPU simulations. The operations are
guaranteed to run on a single core for the CPU and in parallel for the
GPU tests. For simulating the conventional bit-stream processing, the
bit-streams are first generated and stored in memory and then used
for logic operations. We consider two cases of “no data dependency”
(Fig. 5 (a)) and “with data dependency” (Fig. 5 (b)) in the SC
operations. For the “no data dependency” case, simulations of single
and independent logic operations (i.e., 2-input AND, OR, XOR, and
XNOR) are evaluated. In this case, the logic operation does not depend
on the output of other operations. We denote the total number of logic
operations in each test by micro-operation (µO). N is selected from
{23, 24, ..., 210} during the tests. The cases “with data dependency”
include cascaded logic operations. In each test, four-level cascaded
logic operations are performed. Each operation waits for the result
of another operation (except the first operation), thereby having data
dependency. The processing times are reported in Table I for an
average of 1000 independent tests. As it can be seen, the conventional
bit-stream simulations are significantly slower than the CT-based
simulations. In all cases, the GPU-based simulation is faster than
CPU-based run. In particular, running on GPU reduces the simulation
time of the conventional bit-stream processing up to 189× compared
to running on CPU. We observe that the CT-based simulation is 142×
faster than the conventional approach for simple logic operations with
no data dependency, and delivers 229× better runtime for the case
with data dependency when running on GPU. We also conducted
an accuracy evaluation for the circuit structure shown in Fig. 5

(b). We first fed this four-level circuit by binomially distributed bit-
streams, and then constructed the corresponding CT-based model by
considering ϵ at each level. We compared the output probabilities
from the two models and measured the mean absolute error (MAE)
for 1000 times simulating the circuit with different random input
values. For N=1024, the MAE between two simulation models was
0.024.

Next, we evaluate the runtime, memory usage, and accuracy of
the three discussed image processing tasks, as shown in Fig. 6. Tests
are developed in the MATLAB tool. For the conventional simulation
method, the binornd() function is utilized for generating the
binomially distributed bit-streams. The MATLAB built-in Sobol
generator is used for generating LD sequences. For the LFSR-based
approach, random numbers are generated using the maximal-period
LFSRs described in [27].

First, different foreground images are embedded in different-sized
background images for the image compositing design with N=256
which can accurately represent 8-bit pixel values of grayscale images.
We evaluate five different cases: (i) SC using binomial random bit-
streams (SCRandom), (ii) SC using state-of-the-art Sobol bit-streams
(SCSobol) [16], (iii) CT-based SC with near-zero correlation (CT0),
and (iv) Conventional binary image processing (CONVN). We also
evaluate a case where the random fluctuations error of random bit-
streams is included in the CT method. Built-in fluctuations based
on Bernoulli distribution are considered during a primitive calcu-
lation. This is given as (v) CT-based SC with random fluctuations
(CTRAND).

We note that the emulation of random fluctuations is fairly con-
trolled as both SCRandom and CTRAND methods show similar
PSNR (peak signal-to-noise ratio) values in the image compositing
task. Besides, CT0 competently emulates Sobol-based bit-stream
processing (SCSobol) as their PSNR values also match. Therefore,
this study also provides a fast and efficient way to simulate LD
Sobol-based SC [17]. As it can be seen in Table II, for both
“People” and “Plane” test images of the image compositing task,
the CT-based approaches (CT0 and CTRAND) are far better in
runtime compared to SCSobol and SCRandom methods. Memory
performance of the image compositing task is enhanced by ∼1048.58
Bytes per MUX-based operation compared to the conventional bit-
stream processing. Since PSNR is an aggregate measure over all
image pixels, we also evaluate the per-pixel performance between
the composite images produced by the SCRandom and CTRAND
methods using MAE. First, excluding pixels that bring an absolute
error of zero (|CTRAND−SCRandom| = 0), we only considered
the pixels that have an error (|CTRAND−SCRandom| ≥ 1). The
MAEs were 5.897 and 5.352 for the people and plane test images,
respectively. MAEs, when including all pixels, were 2.762 and 2.496,
respectively. We also measured the PSNR values for the case of
having all pixels. The PSNR for the people example was 34.416
dB, and that for the plane example was 34.950 dB.

We evaluate the pattern detection case study in the following
scenarios: (i) SC with maximally correlated random bit-streams
(SCMax), (ii) CT with maximum correlation (CTMAX), and (iii)
Conventional binary image processing (CONVN). The simulation
results are shown in Table II.

For pattern detection, the proposed CTMAX method is as fast as
the conventional binary execution (CONVN). While the SCMax’s
runtime increases by increasing the bit-stream length (N), CTMAX’s
runtime remains constant. The CTMAX’s runtime was the same

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3243136

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 19,2023 at 22:47:01 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

 +

 =

+

 =

Let us calculate how many
SC occurs in this text.

SCGKKSJRIRMCSSCLCSCSCÖ
LSCLOOŞLMSCÖKSCNHHISCJ

SCKSCTIHRGBJSCKNDKNSCS

size: 232×434
size: 19×31

Image Compositing

(a)

600×900

People

size:

N = 256

SC 🔍

1015×1920

Plane
size:
v

N = 256

(b)

(c)

50×100 ϱ = 2

Pattern Detection

Bilinear Interpolation

N = 256

size:
v

size:
v 100×200

Fig. 6. Details of the image processing tasks under test and sample inputs.

TABLE II
SIMULATION RESULTS OF THE IMAGE PROCESSING TASKS

Image Compositing
People Plane

Method RT (sec) PSNR (dB) RT (sec) PSNR (dB)
SCRandom 46.34 31.17 166.5 31.80
CTRAND 0.194 30.66 1.101 31.25
SCSobol 604.2 50.42 2662.2 52.88

CT0 0.153 50.38 0.961 52.86
CONVN 0.072 ref. 0.618 ref.

Pattern Detection*
N CONVN SCMax (sec) CTMAX (sec) Memory
8

7.653 sec

91.43 7.59 × 5.075
16 128.69 7.62 × 9.819
32 211.60 7.60 × 19.305
64 384.88 7.61 × 38.277
128 755.64 7.62 × 76.223

*Accuracy: 100% Pattern hits are obtained in all tests.
Bilinear Interpolation

Method RT* (sec) PSNR (dB) Memory
SCRandom 8.186 30.496 × 22.792CTRAND 0.024 29.857

SCSobol 9.325 45.778 × 22.803CT0 0.015 44.661
SCLFSR 7.707 35.927 × 22.779CTLFSR 0.025 34.665
CONVN 0.009 ref.

*RT: RunTime. For memory monitoring, MATLAB whos command is utilized. Tests
are performed on a computer with Intel(R) Core(TM) i7-7700HQ CPU @2.80GHz,
16GB RAM.

until N = 232, after which MATLAB was unresponsive due to the
array size limit. A constant runtime independent of N is another
important advantage of the proposed technique. As Table II shows,
the memory efficiency of CT simulation improves compared to the
bit-stream processing as N increases. The MATLAB built-in absolute
value function (abs()) makes CONVN slightly slower in pattern
detection application. However, we observed that the MATLAB built-
in functions speed up for large number of iterations (> 105) when the
size of testing images increases. Our simulation results show that the
CT-based approach can address the long latency issue of simulating
SC image processing designs, completing the computations as fast as
conventional binary processing.

Finally, we evaluate the simulation of the bilinear interpolation
design. In addition to the previous computing scenarios, we include
conventional SC with LFSR-based bit-stream processing (SCLFSR)
and CT with LFSR-model fluctuations (CTLFSR) in our simulations.
We validated the emulation of the three random source methods.
Particularly, we considered hypergeometric distribution for emulating
LFSR-based bit-streams in the CT model. As expected, the run-times
were much shorter with CT, and the PSNR values were closely
followed. Memory efficiency was also 22× better with CT-based
simulations compared to conventional SC simulation.

V. CONCLUSION

This work proposes a fast method for simulation of SC image
processing systems. The data are processed with the aid of CTs

without actual bit-stream processing. The methodology is evaluated
on three SC image processing case studies: image compositing,
pattern detection, and bilinear interpolation. Experimental results
show that the proposed approach can simulate SC nearly as fast
as conventional binary processing with a substantial reduction in
memory usage. In future work, we will employ the CT-based SC
simulation technique for fast and efficient simulation of SC-based
deep learning systems.

ACKNOWLEDGMENT

This work was supported in part by National Science Foundation
(NSF) grants #2127780 and #2019511, SRC Global Research Col-
laboration, AIHW and HW Security, Department of the Navy, Office
of Naval Research, grant #N00014-21-1-2225 and #N00014-22-1-
2067, Air Force Office of Scientific Research, grant #22RT0060, the
Louisiana Board of Regents Support Fund #LEQSF(2020-23)-RD-A-
26, and generous gifts from Cisco, Xilinx, and Nvidia.

REFERENCES

[1] A. Alaghi et al. The promise and challenge of stochastic computing.
IEEE Trans. on Comp.-Aided Des. of Integ. Circ. and Syst., 37(8), 2018.

[2] A. Alaghi et al. Stochastic circuits for real-time image-processing
applications. In DAC, Austin, Texas, USA, 2013.

[3] M. H. Najafi et al. Performing stochastic computation deterministi-
cally. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
27(12):2925–2938, 2019.

[4] S. Aygun and E. O. Gunes. Utilization of contingency tables in stochastic
computing. IEEE Transactions on Circuits and Systems II: Express
Briefs, 69(6):2942–2946, 2022.

[5] M. H. Najafi and D. J. Lilja. High-speed stochastic circuits using
synchronous analog pulses. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 481–487, 2017.

[6] W. Qian et al. An Architecture for Fault-Tolerant Computation with
Stochastic Logic. Computers, IEEE Trans. on, 60(1):93–105, Jan 2011.

[7] M. Ranjbar et al. Using stochastic architectures for edge detection
algorithms. In 2015 23rd Iranian Conference on Electrical Engineering,
pp. 723–728, 2015.

[8] R. Wang et al. Stochastic circuit design and performance evaluation of
vector quantization for different error measures. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 24(10):3169–3183, 2016.

[9] S. Aygün et al. Sobel filter operation in image processing via stochastic
arithmetic-logic unit design. In 2017 IEEE SIU, 2017.

[10] P. Li et al. Computation on stochastic bit streams digital image
processing case studies. IEEE Trans. on Very Large Scale Integ. (VLSI)
Systems, 22(3), 2014.

[11] N. Onizawa et al. Gabor filter based on stochastic computation. IEEE
Signal Process. Lett., 22(9):1224–1228, 2015.

[12] N. Onizawa et al. An accuracy/energy-flexible configurable gabor-
filter chip based on stochastic computation with dynamic volt-
age–frequency–length scaling. IEEE J. Emerg. Sel. Top. Circuits Syst.,
8(3):444–453, 2018.

[13] K. Boga et al. Stochastic implementation of the disparity energy model
for depth perception. In SiPS, 2015.

[14] H. Abdellatef et al. Accurate and compact stochastic computations by
exploiting correlation. T. J. of Elect. Eng. and Comp. Sci., 27, 2019.

[15] J. H. Anderson et al. Effect of lfsr seeding, scrambling and feedback
polynomial on stochastic computing accuracy. In 2016 DATE, pp. 1550–
1555, Dresden, Germany, 2016.

[16] S. Liu and J. Han. Toward energy-efficient stochastic circuits using
parallel sobol sequences. IEEE Trans. VLSI Sys., 26(7), 2018.

[17] M. H. Najafi et al. Deterministic methods for stochastic computing using
low-discrepancy sequences. In 2018 ICCAD, 2018.

[18] A. Alaghi. The logic of random pulses: Stochastic computing. PhD
thesis, University of Michigan, Ann Arbor, USA, 2015.

[19] A. Alaghi and J. P. Hayes. Exploiting correlation in stochastic circuit
design. In IEEE 31st ICCD, pp. 39–46, 2013.

[20] S. Aygun et al. Github. https://github.com/serco425/
Agile-SC-Simulation, 2022.

[21] R. Szeliski. Computer vision algorithms and applications, 2011.
[22] R. Manohar. Comparing stochastic and deterministic computing. IEEE

Computer Architecture Letters, 14(2):119–122, 2015.
[23] B. Moons and M. Verhelst. Energy-efficiency and accuracy of stochastic

computing circuits in emerging technologies. IEEE J. Emerg. Sel. Topics
in Cir. and Sys., 4(4):475–486, 2014.

[24] T. Baker and J. Hayes. The hypergeometric distribution as a more
accurate model for stochastic computing. In DATE, France, 2020.

[25] V. T. Lee et al. Correlation manipulating circuits for stochastic
computing. In DATE’18, pp. 1417–1422, 2018.

[26] K. Kim et al. An alternative bilinear interpolation method between
spherical grids. Atmosphere, 10(3), 2019.

[27] P. Koopman. Maximal length lfsr feedback terms. https://users.ece.cmu.
edu/∼koopman/lfsr/.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3243136

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 19,2023 at 22:47:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/serco425/Agile-SC-Simulation
https://github.com/serco425/Agile-SC-Simulation
https://users.ece.cmu.edu/~koopman/lfsr/
https://users.ece.cmu.edu/~koopman/lfsr/

	Introduction
	Stochastic Computing and Contingency Tables
	Proposed Approach
	A Generic CT Set-Up
	Proposed SC Image Processing with CT-Based Random Source Emulation

	Tests and Results
	Conclusion
	References

