L))

Check for
Updates.

Beyond von Neumann Era:
Brain-inspired Hyperdimensional Computing to the Rescue

Hussam Amrouch?, Paul R. Genssler*, Mohsen Imani®, Mariam Issa®, Xun Jiao®, Wegdan
Mohammad®, Gloria Sepantai, and Ruixuan WangT
jFUniversity of Stuttgart, Germany, SUC Irvine, USA, "Villanova University, USA
Corresponding author: amrouch@iti.uni-stuttgart.de

ABSTRACT

Breakthroughs in deep learning (DL) continuously fuel innovations
that profoundly improve our daily life. However, DNNs overwhelm
conventional computing architectures by their massive data move-
ments between processing and memory units. As a result, novel
computer architectures are indispensable to improve or even re-
place the decades-old von Neumann architecture. Nevertheless,
going far beyond the existing von Neumann principles comes with
profound reliability challenges for the performed computations.
This is due to analog computing together with emerging beyond-
CMOS technologies being inherently noisy and inevitably leading
to unreliable computing. Hence, novel robust algorithms become a
key to go beyond the boundaries of the von Neumann era. Hyper-
dimensional Computing (HDC) is rapidly emerging as an attractive
alternative to traditional DL and ML algorithms. Unlike conven-
tional DL and ML algorithms, HDC is inherently robust against
errors along a much more efficient hardware implementation. In
addition to these advantages at hardware level, HDC’s promise to
learn from little data and the underlying algebra enable new possi-
bilities at the application level. In this work, the robustness of HDC
algorithms against errors and beyond von Neumann architectures
are discussed. Further, the benefits of HDC as a machine learning
algorithm are demonstrated with the example of outlier detection
and reinforcement learning.

KEYWORDS

Brain-Inspired Computing, Computer Architecture

ACM Reference Format:

Hussam Amrouch, Paul R. Genssler, Mohsen Imani, Mariam Issa, Xun Jiao,
Wegdan Mohammad, Gloria Sepanta, Ruixuan Wang. 2023. Beyond von
Neumann Era: Brain-inspired Hyperdimensional Computing to the Rescue.
In 28th Asia and South Pacific Design Automation Conference (ASPDAC °23),
January 16-19, 2023, Tokyo, Japan. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3566097.3568354

1 INTRODUCTION

The last decade saw a fundamental change in the approach to com-
puting. Instead of compute-heavy tasks, to focus shifted to data-
centric applications. Big data, video streaming, and the massive

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASP-DAC 2023, Janurary 16—19, 2023, Tokyo, Japan

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9783-4/23/01.

https://doi.org/10.1145/3566097.3568354

553

amount of sensor data from IoT devices are only a few examples
where data processing is dominant. Machine learning (ML) is an-
other data-centric application, especially during training. Massive
datasets are required to achieve the high inference accuracies for
large deep neural networks. This fundamental change towards data-
centric applications exposes the bottleneck in the predominant von
Neumann architecture. The separation of compute and storage cre-
ates the memory wall, where data transfers dominate the overall
power consumption. To address this challenge, custom data-centric
architectures have been proposed.

Not only the architecture creates challenges but also transistor
technology scaling is reaching its limits. Advanced 2 nm process
nodes are impacted by quantum effects, aging effects are magnified,
and process variation decreases yield. Emerging technologies such
as FeFET are impacted similarly [10]. However, traditional compu-
tation methods rely on accurate and error-free hardware. A robust
algorithm can relax the demands on the hardware and use it more
efficiently. Hyperdimensional computing (HDC) is an emerging
ML concept and has proven to be robust against noise and errors
from the hardware [29, 35-37]. At the same time, HDC has been
explored for in many different application domains, such as circuit
reliability [8], modeling of transistor aging [7], natural language pro-
cessing [27], anomaly detection [30, 31], and bio-informatics [18].

Recently, HDC has been used in anomaly detection, a classical
and important application in multiple domains such as IoT, au-
tonomous systems, and finance. It achieves comparable or even
better performance than neural networks-based methods such as
autoencoder [30, 31]. Another direction of importance in the IoT
and edge domain are autonomous systems. Through reinforcement
learning, an intelligent agent is trained to act in their environment.
Both directions are essential applications for future computing and
discussed in this paper. In addition, we focus on hardware imple-
mentations of HDC for the beyond von Neumann era.

2 BRAIN-INSPIRED HYPERDIMENSIONAL
COMPUTING

2.1 HDC Background

In HDC domain, hyper-vectors (HVs) are the general computing
elements which are holographic, high-dimensional (e.g., dimension
of HVs D = 10, 000), and elements in HVs are randomly generated
and independent and identically distributed (i.i.d.) [15]. Equation (1)
shows a D dimension HV where h; means the element i in this HV.

HV = (hy,..., hy) (1)
In the hyper-dimensional space, for instance the dimension of
HV D = 10000, two arbitrary HVs are close to orthogonal [15]. The

ASP-DAC 2023, Janurary 16-19, 2023, Tokyo, Japan

purpose of HVs is to integrate and contain information from various
scales, and this quasi-orthogonality property of HVs enables HDC
to represent and integrate information using different operations.

The two core HV operations in HDC, as Equation (2) illustrated,
are bundling and binding operation. The bundling operation and
binding operation take two HVs as input and perform element-wise
addition and multiplication respectively. The computing output
maintains the property of HVs, including high-dimensionality and
quasi-orthogonality.

Bundling(I-TVi, H_Vj) = (hit + hjt, ..., hig + hyg) @
N 2
Binding(HV,—, HV]) = <hi1 * hjl hid * hjd)

In the meantime, to reveal the relationship between two HVs,
HDC utilizes the distance metric § to measure the similarity be-
tween two HVs. As Equation (3) shows, here we use the Hamming
distance metric which has the following properties, if the Hamming
distance between two HVs is close to 0, the information encoded
in the two HVs are highly correlated. On the other hand, if the
Hamming distance is close to 1, which means the two HVs are
literally not similar. Moreover, the Hamming distance of any two
arbitrary HVs is close to 0.5 in the hyper-dimensional space.

5(1{_\/;, ITV;) = Hamming(}TV,-, H—V,) 3)

2.2 Establishing an HDC Model

Three main processes are required to establish an HDC model,
named the encoding process, the training process, and the infer-
ence process. The following description in this section contains the
specific implementation of the each HDC process.

Firstly, encoding is the process to represent a data sample in
the hyper-dimensional space with an HV. Encoding is the critical
process which may influence the performance of HDC, and there-
fore variant and sophisticated encoding methods are proposed [6].
Here we use the Record-based encoding strategy as an example.
The encoding process requires some extra HVs to encode feature
value and feature position in a sample, named item memory (IM)
in HDC. The general HDC encoding process can be represented in
Equation (4).

HV = Encoding(I, IM) (4)

During the Record-based encoding process, assume as input
we have a gray-scale image I = (pi,...,pn) with n pixels. HDC
then randomly generates n quasi-orthogonal base HVs HVjp
{1-73{ e IWBn } for each pixel and 256 quasi-orthogonal level HVs
HVL, = {IVL(; ,..., HVp,. } representing the value of each pixel in
the range of [0, 255]. In this case IM contains two sets of HVs IM =
{HVp, HV1}. Then, for the encoding of each pixel, HDC binds the
corresponding base HV with the level HV. As an example, if the
first pixel have value 255, then the corresponding HV (pixel HV)
can be computed by HV), = Binding(HVp,, HVL,). At the end of
encoding process, HDC encode the entire gray-scale image in to a
single image HV HV = Bundling(ITpl, e I—Tpn) by aggregating
all the pixel HVs.

Then, the training process is to build an HDC model over all
the training samples, a.k.a associate memory (AM). Considering
an m-class classification task, HDC first encodes each training

554

Amrouch et al.

sample into HVs using IM. Then HDC bundles all the training HVs

HV'into m class HVs according to their label i, as illustrated in
Equation (5). After the training process, HDC model use m class
HVs {HVc,,...,HVc,} in AM to represent all the training samples.

AM = (HVG, ..., HVe,} = {Bundling(HVY). . .., Bundling(HV™)} (5)

Finally, the inference process is to determine the category of a
testing sample. HDC first encodes the query sample Q into a query
HV I?VQ following the same encoding strategy as Equation (4).
Then HDC measures the Hamming distance between the query
HV H—Vé and the m class HVs H—VC’ in AM to obtain the inference
result. As Equation (6) shows, index of the class HV with the lowest
Hamming distance indicates the prediction result ypyeq.

Ypred = argmin(8(HVg, HVG,), ...,

8(HVg, HVc,,) (6)

3 FROM ACCELERATION TO IN-MEMORY
COMPUTING

HDC is based on large vectors with thousands of bits or numbers.
Many hypervectors are required for encoding and classification.
The amount of data of all those hypervectors quickly overwhelms
smaller caches, causing repeated data transfers. Each transfer re-
duces the system’s throughput, increases power consumption and
thus heat [11]. In this section, we describe the potentials for HDC
acceleration starting at a special instruction for inference to a dedi-
cated in-memory computing system. Further, we explore the poten-
tial for approximate computing and the impact of errors on different
memories used for HDC.

3.1 Special Inference Instruction

Each class is represented by one hypervector. During inference
for binary hypervectors, the Hamming distance with the query
hypervector is computed. This computation comprises two phases,
first an XOR operation followed by counting the resulting ones
(popcount). While advanced CPU cores have a popcount instruction,
low-end CPUs typically lack it. Hence, an accelerator fusing the
XOR and popcount operation reduces the latency of an inference.

To evaluate this gain, a custom accelerator is integrated into
a RISC-V single-core Rocket CPU. Based on Chipyard [3], this
accelerator is exposed as a special instruction to the CPU. The C-
code is adopted to use it during an inference. The accelerator is
tightly integrated and sends memory requests to the L1 cache. Thus,
the data of the hypervectors has to be transferred from the off-chip
memory if it is not already present in the caches. Once the (partial)
class and query hypervectors are loaded into the accelerator, the
XOR and popcount operations are executed and the result stored
in a register of the accelerator. If the hypervectors are larger than
the internal memory of the accelerator, then they are divided into
chunks and the operation is repeated for each chunk.

The Rocket CPU with an L1 cache of 1KiB and L2 cache of
256 KiB serves as a baseline. The CPU does not have an accelerator
nor a popcount instruction. The following three configurations
are shown in Fig. 1. A design with very large caches (16 KiB L1,
1024 KiB L2) represents a non-HDC specific approach to increase
performance. The accelerator is coupled once with the same-sized

Beyond von Neumann Era: Brain-inspired Hyperdimensional Computing to the Rescue

€ Accelerator (1KiB) =r=Accelerator (256KiB) =®=Larger cache (1MB)

%1.4' /.—————— ——————)

E 7

& 1.3 //

@ '

= 4

2 1.2 7 .—-‘——_(

é _———*

% 11 - ---"" X

oo _——y————__..f——’______—-——
%ﬁfé_ e S

1.0 T T T T

1024 4096 8192 16384

Hypervector dimension (bits)

Figure 1: Speedup with a dedicated Hamming distance accel-
erator or larger caches compared to the baseline.

caches (1 KiB L1, 256 KiB L2) and also with enlarged caches (256 KiB
L1, 256 KiB L2). Even though the accelerator speeds up the execu-
tion by approximately 5 % to 10 %, very large caches yield even
higher speedups of up to 40 %. However, a large SRAM-based on-
chip memory comes at a high cost of chip area, almost 2x and 3.2x
for the enlarged and largest caches, respectively. In conclusion, a
dedicated instruction to accelerate the HDC inference computation
does not improve the performance as much as larger on-chip mem-
ories showing that HDC is memory limited. The resulting large
memory footprint of HDC motivates further research in the area
of in-memory computing.

3.2 In-memory Design

The previous evaluation focuses on the Hamming distance compu-
tation between a query and a class hypervector. However, encoding
the real-world data into a query hypervector consumes most of the
computation time [9]. Many hypervectors are required during the
encoding process, for image processing more than 1000. Therefore,
the encoding process has the highest memory footprint and thus
generates the most data transfers between the processing unit and
the off-chip memory. In this section, we describe an FPGA-based
accelerator for encoding and inference, which will also serve as a
test bed to evaluate approximate computing and error injection [25].
Other dedicated in-memory computing architectures have been
proposed and employ CMOS [28] or emerging technologies [29].

A general overview of the design is shown in Fig. 2. The tar-
get platform is an AMD-Xilinx Zynq FPGA XC7Z020 featuring an
ARM CPU (called PS) and the FPGA fabric (PL). The external DDR3
memory is accessed through up to four 64-bit high-performance
(HP) ports and provides either already encoded query hypervectors
or the raw real-world data to be encoded. The experiments were
conducted with the image recognition dataset MNIST [17]. It con-
tains 28x28 pixel grayscale images of the ten digits (i.e., ten classes)
written by hand. The dataset contains 60 000 images for training
and another 10 000 images as test samples.

Similar to the accelerator, a Hamming distance computation core
is created for a dimension of 8192-bit hypervectors. If both, class
and query, have to be transferred to the FPGA to compute their
Hamming distance, then one pass over the test dataset takes 77 ms.
The effective memory bandwidth is halved to transfer the query and
the class at the same time. More importantly, the class hypervectors

555

ASP-DAC 2023, Janurary 16-19, 2023, Tokyo, Japan

i . Error Injection | HDC (Top Module) i
: TN passssssssssssssssey | |
i DDR HP Ports / Interface \ i
DDR 4_5» Controller || (4x 64-bit) s, Control / Eeelay |
i i !
i Associative i
i 2-Core R GP Ports Load Class Vectors Memory i
E ARM CPU (2x 32-bit) Return Inference & Hamming i
: Results Distance :
i PS PL | :

Figure 2: Overview of a Zynq-based FPGA design with op-
tional error injection.

have to be repeatedly transferred every time since they are not
stored. To eliminate this overhead, the BlockRAM of the FPGA is
utilized to store the ten class hypervectors as an AM. Now only the
query has to be transferred and the ten Hamming distances can be
computed in parallel. A speedup of more than 10x is achieved by
moving the computation and memory closer together.

As described above, the encoding process consumes most of
the compute time during an inference. Hence, the FPGA design is
extended by an encoder block, including its IM. The 28x28 pixel
images in the MNIST dataset can be represented as a features vector
of size 784 requiring 784 item hypervectors. Due to this significantly
increased demand for on-chip storage, the resources of the FPGA
limit the achievable dimension to 1024 bits. Nevertheless, it still
enables research for approximate computing and on the impact of
errors on HDC.

3.3 Approximate Computing for HDC

Approximate computing aims at reducing the complexity of com-
putations and through that simplifying their implementation in
hardware. A large potential has the bundling operation defined
through the majority operation. For each component, the number
of 1s and 0s in the input hypervectors is counted. Because of the
limited width of the memory interface, only a few features are
processed per clock cycle. Hence, the intermediate count for each
component has to be stored. With a dimension of 1024 bits and 784
features in the MNIST dataset, 1024 10-bit counters are required.
One approach to reduce the hardware cost is approximate adders.
The results demonstrate a significant loss in inference accuracy
with no reduction in resource utilization. The root cause is the
mismatch of the bit-width in the operands. The small numbers
added per cycle are ignored by many approximate adders. Further
research in this direction is required.

Alternatively, instead of approximating the adder, the size of the
accumulator to count the 1s can be limited. For most elements in
the query vector, the number of 0s and 1s is balanced and does not
reach 784. Counting only 1s, the threshold for the majority is 392.
If zeros are treated as -1, then the threshold drops to 0. Assuming
a balanced stream of 0s and 1s, the accumulator count alternates
around 0 and does not require 10 bits. Hence, the bit-width of the
accumulator can be reduced to reduce the resource utilization. If
the count is larger than the size of the accumulator allows, then it
overflows and results in an incorrect bit in the query hypervector.
Since HDC is robust against errors, some are tolerable and do not

ASP-DAC 2023, Janurary 16-19, 2023, Tokyo, Japan

2¢ LUTs (overflow) =#=Flip Flops (both) ¥ LUTs (saturation)
1.0 . z

0.8

0.6

Loss in inference accuracy (%)

Normalized Resource Utilization

Bit-width of accumulator

Figure 3: Reduced resource utilization from approximate
computing, with an about 3 % loss in inference accuracy with
a 5-bit accumulator without overflow checks (dashed). The
error can be limited if the accumulator saturates instead
(dotted). However, the additionally required LUTs can be
saved by using a 6-bit accumulator.

2€ Associate memory =®=Raw sample data =r=Item memory

E -
-
2 0.8 - i
< .
- ‘—_
! _-
S 0.6 1 P
s -
8 ’,f
s 0.4 - - ’x___—_-
5 -~ -_ —_——
: o ~ ¢
S P - o
£ 024 f’,a -
= * -
R=| _
k : : , . .
0.6 0.8 1.0 1.2 1.4

Fault rate per bit (%)

Figure 4: Loss in inference accuracy if the stored item and
class hypervectors are subject to bit flip errors. Bit flips in
the raw image data have a higher impact.

impact the inference accuracy. To avoid over/underflows, a check is
added to limit the count to its maximum or minimum (“saturation”
in Fig. 3). Such a check reduces the loss in inference accuracy for 5-
bit accumulators from 3.3 % to 0.3 %. However, additional resources
(LUTs) are required. Depending on the overall utilization of the
FPGA, 6-bit accumulators offer a tradeoff. The increase in flip flips
can be compensated by a decrease in LUTs, because the saturation
checks are no longer necessary.

3.4 Error injection

HDC is known to be very robust against noise and errors from
the underlying memory [16] or computations [29]. Several sources
of errors have been explored, each with different errors models,
probabilities, and location of the errors. Because such models are
probabilistic, an evaluation has to be repeated many times to get
statistically meaningful results. Further, the different error models
complicate the use of GPU-accelerated HDC frameworks like On-
lineHD [13], which implement only correct computations. Hence,
an evaluation is often performed with custom software solutions,
which results in very long computation times for the evaluation,
limiting the viability for a comprehensive design space exploration.

556

Amrouch et al.

AnFPGA-based HDC implementation offers a significant speedup
compared to a pure software evaluation. A complete test run of the
MNIST test set, including encoding, takes about 7 ms. The design
shown in Fig. 2 is extended with error injection modules. Each mod-
ule can be configured individually with an error probability and
triggers bit flips in the data. Other error models can be implemented
as well. Fig. 4 demonstrates the impact of different error rates on
the inference accuracy. Errors in the AM are injected during the
read of the class hypervectors, the XOR and popcount operation
is performed accurately. Similarly, the encoder is affected through
errors while reading the item hypervectors. Both modules, AM and
IM, demonstrate the robustness of HDC against errors. In contrast,
the error injection in the four HP ports impacts the raw sample
data. Here, the impact is the highest since a bit flip changes the
pixel values leading to a different query hypervector.

4 ANOMALY DETECTION USING
HYPERDIMENSIONAL COMPUTING

Anomaly/outlier detection is an everlasting problem across different
fields such as IoT and finance. We have developed two HDC-based
methods for anomaly detection: HDAD [31] detects anomalies based
on reconstruction errors, while ODHD [30] presents a one-class
HV-based approach.

4.1 Reconstruction Error-based Anomaly
Detection

Inspired by autoencoder-based anomaly detection, which detects
anomalies based on reconstruction errors, we develop anomaly
detection based on the reconstruction errors of HVs, as shown in 5.

For the anomaly detection pipeline in HDAD, HDAD first en-
codes training data with normal patterns into HVs then generates a
reference HV aggregating all the training HVs representing all the
normal patterns in the training set. In the inference stage, HDAD
encodes query data following the same encoding strategy, named
query HV HV,. HDAD adds HVj; to the reference HV then recon-
structs and decodes the query data from the reference HV. For the
purpose of anomaly detection, HDAD computes the reconstruction
error, which is the distance between the original input and recon-
structed data and utilizes a predefined threshold to filter out the
anomalies. The data with distance higher than the threshold will

Encoded
Pattern
Hypervector

Training .
sample

~

Il —

< Restored

Testing
sample

Surpooag

Testing
sample

Reconstruction Error Checking

Figure 5: Overview of HDAD process [31]

Beyond von Neumann Era: Brain-inspired Hyperdimensional Computing to the Rescue

Reconstruction result analysis

Reconstruction result analysis

ASP-DAC 2023, Janurary 16-19, 2023, Tokyo, Japan

Reconstruction result analysis

—— Threshold 0.5 —— Threshold —— Threshold
1.0 . Normal samples X . Normal samples . Normal samples
% Anomaly samples X % Anomaly samples 1.0 % Anomaly samples
08 X X X X x X 0.45 X X >x< o - .
. X : A

N . x i
s 5 0.4 X ()
2 2 X X » - .
5 « 5 X % x x x X Sos v’—‘\/'/“ ?
§06 X X X X §0.35 X X £
g g X % % E 0.7
Zo.4 % 03 £
2 X X 2 a
£ X 5 §] 306 "
& X €025 Ao, I‘ X

02 x* x X X X X " e 4 W £k 05 X « X

. i H s ? . X X X X X X
02 i i f .) X « %
i 5. : K] 0.4 X
0.0 - ; “ ol h % ~
015 & 03 X

o 250 500 750 1000 1250 1500 1750 2000

Sample index

500

750

1000 1250 1500 1750 2000
Sample index

500 750 1000 1250 1500 1750 2000

Sample index

Figure 6: Evaluation result of HDAD anomaly detection for sensor reading data (based on MSE error, MAE error and cosine

distance respectively) [31].

WBC MNIST CARDIO LYMPHO SATI2 MAMMO

14
®

14
o
>

o
°
=

o
°
o

i

WBC MNIST CARDIO LYMPHO SATI2 MAMMO

o

.0

s OCSVM

@ Isolation Forest

1.0

o o o
IS >

o
o

0.0

BN Autoencoder

1.0

o o4 e
IS >

o
©

WBC MNIST CARDIO LYMPHO SATI2 MAMMO

Juii

WBC MNIST CARDIO LYMPHO = SATI2 MAMMO
s ODHD

0.0

Figure 7: Evaluation result of ODHD outlier detection [30] (based on four metrics: accuracy, average precision, F1-score and
ROC-AUC respectively). WBC, MNIST, CARDIO, LYMPHO, SATI2 and MAMMO are the corresponding dataset in [23]

be detected as an abnormal sample. Three different distance met-
rics are employed in HDAD, including mean squared error (MSE),
mean absolute error (MAE) and cosine distance, to determine the
reconstruction error.

To evaluate the performance of HDAD, we use the data from
the AEGIS Big Data Project [14], which is an autonomous driving
dataset containing data from variant types of sensors including bus
temperature and pressure sensors, IMU sensors and GPS sensors.
The dataset contains continuous generated data from sensors during
a driving trip. We use data collected during the first 100 seconds,
considered as the normal vehicle states, to formulate a principle
pattern for outlier detection on the follow up stage. And we test
the HDAD based on the following 100 seconds data with random
injected anomalies. We use MSE, MAE and cosine similarity to
measure the reconstruction error and to separate the anomalies
from the normal data. The results are shown in Fig. 6, where we
can see that HDAD achieves 100% accuracy in detecting anomalies
using all three metrics.

4.2 One-Class HV-based Anomaly Detection

We also develop a one-class HV based anomaly detection, referred
to as ODHD [30], which follows a P-U learning scenario. That
is, ODHD is trained with only normal data, and is tested with
unseen data samples (can be either normal data or anomalies). The
architecture of ODHD is illustrated in 8. In this case, ODHD can
extract the normal patterns or representations from ground truth
data. By establishing the one-class HV, ODHD learns the standard

557

Seed HVs generation Encoding
S max — F=1[f1, fare s fml
se[1[afafa[a]-[a[1]1[1]1]
-)fup(s £)
| s;: 1 I 1 ‘-1 1 -1: :1: 1 : 11)[llp(sz 5 So S S
. REREIENITE . 0 1] ... am=1|
IESRER 111. 1111)fltp(S3E) p}p\ 0 \
| EYENEN EY S EY EN KN ENEN
:) flinCsees
P £ N E RN o
Training Threshold Calculation Fine-Tunning Outlier Detection
T = {Hp, .., Hpy} T = {Hp,, ..., Hp, } H, Hoc Hy Hoc
| [|
| |
s s s I s
I ! !
Sim, Simy
S = {Simy, ..., Simy} l <R <R
| one class HV Hy¢ | Hoe += H, Outlier
o | Threshold R I o o G

Figure 8: ODHD architecture with six key phases [30].

pattern of normal data, where all the data samples deviated from
the standard representation will be recognized as anomalies. By
measuring the distance between different HVs, which is also the
similarity between different patterns, HDC is capable of finding the
anomalies or outliers from the normal patterns.

We evaluate the performance of ODHD on six datasets selected
from the Outlier Detection Datasets (ODDS) Library [23] span-
ning multiple application domains across medical diagnosis, image

ASP-DAC 2023, Janurary 16-19, 2023, Tokyo, Japan

; N
Policy-based policy Update Ex :wn
RLAlgorithm ooy PXPETIENGE

1T (A¢|Se) {Se,Ae, 1}
i
State é Take Action 4,
St ’

Get Reward 1

/‘P
Environment

Figure 9: Reinforcement Learning overview.

recognition and wireless communication. These datasets are widely
used as benchmarks in existing outlier detection studies [1, 24, 38].
Each dataset contains a certain number of outliers specified by the
ODDS library. We compare ODHD with baseline models including
OCSVM, Isolation Forest (IF) and autoencoder. We employ all the
outlier detection models in the same P-U learning format where
the evaluation dataset is a mixture of inliers and outliers. In this
scenario, we use accuracy, average precision (AP), F1-score and area
under receiver operating characteristic curve (ROC-AUC) score to
evaluate the performance of ODHD. The experiment results are il-
lustrated in Fig. 7, showing that ODHD outperforms all the baseline
models for every dataset in all the metrics.

5 POWERING REINFORCEMENT LEARNING
ALGORITHMS WITH HYPERDIMENSIONAL
COMPUTING

The latest advancements in Reinforcement Learning (RL) has opened
up new opportunities to solve a wide range of complex decision-
making tasks. Compared to supervised and unsupervised learning
methods, RL does not have direct access to labeled training data.
Instead, it trains a self-learning agent using the observations of
states and rewards from the environment as shown in Fig. 9 [5]. The
learning process of RL is similar to how humans learn to perform
new tasks. Initially, the RL agent interacts with the environment
and selects an action A; in a given state S; with no prior knowledge
or past experience. Upon selecting an action, it receives feedback
from the environment, called the reward r;, to update its decision-
making process. There are multiple approaches to accomplishing
this with the main divide being between model-based and model-
free learning. The former trains an agent by simulating the agent’s
environment in order to predict the system behavior, while the
latter involves an agent directly interacting with its environment to
accumulate experience for training. The ultimate goal of every RL
agent, irrespective of its approach, is to maximize the total returned
rewards.

Many of these RL algorithms (e.g., Deep Q-Learning ([19], Policy
Proximal Optimization[22]) are implemented using deep neural
networks, putting high computational costs on edge devices. The
disadvantages of deep learning include a high demand of resources
due to the costly back-propagation and gradient-based methods in
training[15], extreme sensitivity to noise in data, network, or under-
lying hardware, as well as lacking human-like cognitive support for
long-term memorization and transparency. HDC addresses these
challenges, which is why it is advantageous to be used in combina-
tion with RL for various tasks. Recent work has demonstrated that

558

Amrouch et al.

A~N(u, %)
Non-linear HDC Actor Action Action
Encoding =" Model Distribution = A,
Different t oActor Update e
Encoding - I I
Exponential _, HDC Critic State

il Encoding g Model »ValueVst‘ Rewand

Critic Update

Figure 10: HDPG: hyperdimensional policy-based RL.

HalfCheetah Walker2D HalfCheetah Walker2D
>
212
2
L9
&
> 6
<
23
w 0
< 4 D €< o « < <« D < <
T 0r 0 & 6 a s 2 32 6 a8 6 a0
O a g a O o oo o gao a8 o g8
'S 'S _l-l-j ;I.I.j \ ') 'S \ e 'S
PPO HDPG PPO HDPG PPO HDPG PPO HDPG

Figure 11: HDPG and PPO performance and energy efficiency
on CPU and FPGA platforms (normalized to PPO).

HDC is successful in powering RL agents in multiple model-free
learning approaches [20, 21], as well as achieving a higher quality
of learning (e.g., faster convergence), and improved computational
efficiency on multiple devices. In the next sections, we delve into
the HDC-based RL algorithms and the applications in which they
excel in.

5.1 Policy-Gradient Reinforcement Learning

The first HDC-based RL algorithm developed is HDPG, a model-
free policy-gradient algorithm that uses the Actor-Critic frame-
work. This policy-based RL algorithm features an actor for decision-
making and a value-based critic for variance reduction, which are
both constructed using HDC. At each step, the observed state is
encoded to two different hypervectors using a non-linear encoder
and an exponential encoder respectively. The actor selects an ac-
tion and the critic generates a state value using the HDC models.
The reward and state values are then used for training both the
actor and critic models. The steps of this algorithm are shown in
Fig. 10, where it demonstrates how the critic plays an important in
updating the actor’s policy. We trained this algorithm on multiple
Atari games including HalfCheetah and Walker2D and compared it
to the Policy Proximal Optimization (PPO) algorithm as shown in
Fig. 12. The HDC is able to attain higher rewards, as well as being
more energy efficient, which is shown in Fig. 11.

5.2 Value-Based Reinforcement Learning

The latter sub-class of model-free RL that we designed with HDC
uses the value-based Q-Learning algorithm. Given an RL environ-
ment, this approach approximates the expectation of future rewards,
referred to as the Q-Function, and relies on these values to inform
the agent in its next move. The original Q-Learning algorithm pro-
posed Tabular Q-Learning [32], which could only handle simple
environments due to the exponential growth of the state space,

Beyond von Neumann Era: Brain-inspired Hyperdimensional Computing to the Rescue

3 2000
£ 1500
&
s 1000
(=)
o 500
[
z 0
0 2000 4000 6000 0 500 1000 1500
Episode Runtime (s)
(a) HalfCheetah
gwoo § 1000
% 800 % 800
£ 600 & 600
o 400 g 400
S 200 S 200
3 3
z 00— z 0
0 3000 6000 9000 0 500 1000 1500 2000
Episode Runtime (s)

(b) Walker2D
Figure 12: Learning curve comparison between HDPG and
PPO for HalfCheetah and Walker2D.

referred to as the state explosion problem[2]. However, this imple-
mentation does not scale for increasingly more complex state and
action spaces, which is why Deep Q-Learning was introduced to
handle more complex problems by utilizing a neural network to
calculate these values [19].

Analogous to this approach, we use an HDC model in place of a
neural network to predict the Q-values. Given a state in the envi-
ronment, we first encode the state into hyperdimensional space by
using an exponential kernel to encode the features of the observa-
tion space (i.e., state). The encoded state hypervector is then binded
to each class hypervector of the HDC model, which represents each
encoded action in the environment. This regression model yields a
value that represents the Q-value; thus, the action with the largest
corresponding Q-value is selected as the next step in the environ-
ment. We iterate through this process, collecting feedback (e.g.,
rewards), from the environment until the episode terminates. Using
the Bellman Equation or Dynamic Programming Equation we are
able to update the HDC model to compute the error in Q-value
prediction and calculate more accurate Q-values [4]. This approach
has been tested on multiple Atari game environments, including Lu-
narLander, Acrobot, and Cartpole, to demonstrate a higher learning
quality and computational efficiency, compared to DQN [20].

5.3 Solving Network Intrusion Problems

RL has demonstrated its ability in detecting cyber attacks, as well as
its potential to recognize new ones. The application of RL to various
security problems have been prolific, but most applications have
dealt with securing high-powered devices. Thus, the need to extend
these systems to resource-constrained edge devices is a necessity
henceforth. Harnessing the lightweight, computationally efficiency
of HDC, we are able to design an RL Network Intrusion Detection
System (NIDS) algorithm that is better equipped to develop robust
and more effective security strategies. We demonstrate this by
utilizing a modified version of the QHD model to be applied to an
abstract Markov game environment for simulating an intrusion
detection security problem [12].

The selected cybersecurity environment is modeled as a zero-
sum Markov game involving two agents: a cyber attacker and an
Intrusion Detection System (IDS). The attacking agent’s objective is

559

ASP-DAC 2023, Janurary 16-19, 2023, Tokyo, Japan

Table 1: Comparison of the computational efficiency between
the DQN [19] and HDC algorithm on the NVIDIA Jetson Orin
I various power settings.

15W 30W 50W MAX
DQL 1.9 x 103 1.5 x 103 1.6 x 103 1.0 x 103
HDC 1.4 %103 1.0 x 103 1.3 %103 0.8 %103

to compromise a network, while the IDS’s opposing task is to secure
the computer network and detect any attempted security breaches.
The game terminates when either agent completes its defined goal.
The environment is implemented to simulate a computer network
of interconnected computing devices, where each device has its
designated security defense attributes. The attacking agent has
a portfolio of actions it can select to compromise a node in the
network, while the defending agent selects actions to counter and
detect the agent.

Using value-based RL, we implement both agents using HDC to
successfully develop robust attack and defense strategies. We test
our design on multiple devices, including the NVIDIA Jetson Orin
L, to achieve a more effective and efficient solution. The efficiency
results, compared to DQN [19] with the Jetson board are presented
in Tab. 1 on various low-power settings.

5.4 Optimizing End-Edge-Cloud Networks

The rise of distributed systems and smart devices has made Resource
Management an increasingly prevalent orchestration problem to
learn to optimize. RL has demonstrated its potential in solving
dynamic resource management and scheduling problems [33, 34],
which is why we chose to employ HDC RL to solve this type of prob-
lem. The algorithm developed, HDHL, is a hybrid learning approach
that is used for orchestrating an end-edge-cloud architecture for a
deep learning inference task [22, 26]. Hybrid Learning combines
model-free and model-based RL to exploit each approach’s advan-
tages while diminishing their shortcomings. To further improve
the HDC Q-Learning algorithm, we incorporate model-based rein-
forcement learning to learn a system model and include a planning
phase to leverage faster training. This approach is sectioned into
three phases: (1) the first phase is used for exploring the network

Training Overhead
—400 1 Iy
—600 1
—800
2 -10001
—1200 A
—— HDHL — DQN
—1400 A
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step x10*

Figure 13: Learning Overhead for DQN and HDHL

ASP-DAC 2023, Janurary 16-19, 2023, Tokyo, Japan

environment for data collection, (2) the second for training a system
model to learn and simulate the network environment, and (3) a
planning phase which involves training the Q-Learning agent using
the learned system model from the previous phase.

This hybrid learning approach quickly learns the system’s op-
timal configuration for orchestrating the network, outperforming
both the DQN and QHD approaches in terms of computational
efficiency and learning quality. HDHL also achieves as much as a
21.0x speedup in the total training and experience time, as well as
requiring 4.8x fewer direct interactions with the system environ-
ment to learn a near optimal configuration as shown in Fig. 13. As
a result, our algorithm significantly speeds up training by reducing
the number of real-time interactions with the system and enabling
computationally efficient learning.

6 CONCLUSION

Computing beyond the von Neumann era will fundamentally change.

Novel technologies will enable new computer architectures. To
exploit them most efficiently, new robust algorithms have to be
deployed. In this work, we have presented HDC as a promising
emerging algorithm. We have investigated hardware implemen-
tations for HDC and two applications, namely outlier detection
and reinforcement learning. Both areas combined demonstrate that
HDC enables computing beyond the von Neumann era.

ACKNOWLEDGMENTS

This research was supported in part by Advantest as part of the
Graduate School “Intelligent Methods for Test and Reliability” (GS-
IMTR) at the University of Stuttgart, National Science Foundation
#2202310, #2127780, Semiconductor Research Corporation (SRC),
Department of the Navy, Office of Naval Research, and the Air
Force Office of Scientific Research.

REFERENCES

Charu C Aggarwal and Saket Sathe. 2015. Theoretical foundations and algo-
rithms for outlier ensembles. Acm sigkdd explorations newsletter, 17, 1.
Hooman Alavizadeh, Hootan Alavizadeh, and Julian Jang-Jaccard. 2022. Deep
q-learning based reinforcement learning approach for network intrusion de-
tection. Computers, 11, 3, 41.

Alon Amid et al. 2020. Chipyard: integrated design, simulation, and implemen-
tation framework for custom socs. IEEE Micro, 40, 4, 10-21.

Richard Bellman. 1952. On the theory of dynamic programming. Proceedings of
the National Academy of Sciences of the United States of America, 38, 8, 716.
Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare,
Joelle Pineau, et al. 2018. An introduction to deep reinforcement learning.
Foundations and Trends® in Machine Learning, 11, 3-4, 219-354.

Lulu Ge and Keshab K. Parhi. 2020. Classification using hyperdimensional
computing: a review. IEEE Circuits and Systems Magazine, 20, 2, 30-47.

Paul R Genssler, Hamza E Barkam, Karthik Pandaram, Mohsen Imani, and Hus-
sam Amrouch. 2022. Modeling and predicting transistor aging under workload
dependency using machine learning. arXiv preprint arXiv:2207.04134.

Paul R. Genssler and Hussam Amrouch. 2022. Brain-inspired computing for
circuit reliability characterization. IEEE Transactions on Computers.

Paul R. Genssler and Hussam Amrouch. 2021. Brain-inspired computing for
wafer map defect pattern classification. In IEEE International Test Conference.
Paul R. Genssler, Victor Van Santen, Jorg Henkel, and Hussam Amrouch. 2022.
On the reliability of fefet on-chip memory. IEEE Transactions on Computers, 71,
4, 947-958.

Paul R. Genssler, Austin Vas, and Hussam Amrouch. 2022. Brain-inspired
hyperdimensional computing: how thermal-friendly for edge computing? IEEE
Embedded Systems Letters.

Kim Hammar and Rolf Stadler. 2020. Finding effective security strategies
through reinforcement learning and Self-Play. In International Conference on
Network and Service Management (CNSM 2020) (CNSM 2020). Izmir, Turkey.

560

[13]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Amrouch et al.

Alejandro Hernandez-Cane, Namiko Matsumoto, Eric Ping, and Mohsen Imani.
2021. Onlinehd: robust, efficient, and single-pass online learning using hyper-
dimensional system. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 56-61.

Christian Kaiser, Alexander Stocker, and Andreas Festl. 2019. Automotive CAN
bus data: An Example Dataset from the AEGIS Big Data Project. (2019).
Pentti Kanerva. 2009. Hyperdimensional computing: an introduction to com-
puting in distributed representation with high-dimensional random vectors.
Cognitive computation, 1, 2.

Shubham Kumar, Swetaki Chatterjee, Simon Thomann, Paul R. Genssler, Yo-
gesh S. Chauhan, and Hussam Amrouch. 2022. Cross-layer fefet reliability
modeling towards robust hyperdimensional computing. In IFIP/IEEE 30th Inter-
national Conference on Very Large Scale Integration (VLSI-SoC’22).

Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
Dongning Ma et al. 2021. Molehd: automated drug discovery using brain-
inspired hyperdimensional computing. (2021).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, lIoannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Yang Ni, Danny Abraham, Mariam Issa, Yeseong Kim, Pietro Mercati, and
Mohsen Imani. 2022. Qhd: a brain-inspired hyperdimensional reinforcement
learning algorithm. (2022).

Yang Ni, Mariam Issa, Danny Abraham, Mahdi Imani, Xunzhao Yin, and Mohsen
Imani. 2022. Hdpg: hyperdimensional policy-based reinforcement learning for
continuous control. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC 22). Association for Computing Machinery, 1141-1146.
Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and Kam-Fai Wong. 2018.
Integrating planning for task-completion dialogue policy learning.

CoRR, abs/1801.06176.

Shebuti Rayana. 2016. Outlier detection datasets (odds) library. (2016).

Saket Sathe and Charu Aggarwal. 2016. Lodes: local density meets spectral
outlier detection. In SIAM international conference on data mining.

Gloria Sepanta. Optimal hardware implementation of hyperdimensional com-
puting. MSc thesis, Shahid Bahonar University of Kerman, (2022).

Richard S. Sutton. 1990. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Machine Learning
Proceedings 1990. Morgan Kaufmann, San Francisco (CA), 216-224.

Rahul Thapa, Bikal Lamichhane, Dongning Ma, and Xun Jiao. 2021. Spamhd:
memory-efficient text spam detection using brain-inspired hyperdimensional
computing. In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
Simon Thomann, Paul R Genssler, and Hussam Amrouch. 2022. Hw/sw co-
design for reliable in-memory brain-inspired hyperdimensional computing.
arXiv preprint arXiv:2202.04789.

Simon Thomann, Hong Lam Giang Nguyen, Paul R. Genssler, and Hussam
Amrouch. 2022. All-in-memory brain-inspired computing using fefet synapses.
Frontiers in Electronics, 3.

Ruixuan Wang, Xun Jiao, and Sharon Hu. 2022. Odhd: one-class brain-inspired
hyperdimensional computing for outlier detection. In IEEE/ACM Design Au-
tomation Conference (DAC).

Ruixuan Wang, Fanxin Kong, Hasshi Sudler, and Xun Jiao. 2021. Brief industry
paper: hdad: hyperdimensional computing-based anomaly detection for auto-
motive sensor attacks. In 2021 IEEE 27th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 461-464.

Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine
Learning, 8, 3, 279-292.

Yue Xu, Hyung Gyu Lee, Yujuan Tan, Yu Wu, Xianzhang Chen, Liang Liang,
Lei Qiao, and Duo Liu. 2019. Tumbler: energy efficient task scheduling for dual-
channel solar-powered sensor nodes. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), 1-6.

Siyu andothers Yue. 2012. Reinforcement learning based dynamic power man-
agement with a hybrid power supply. In 2012 IEEE 30th International Conference
on Computer Design (ICCD).

Sizhe Zhang, Mohsen Imani, and Xun Jiao. 2022. Scalehd: robust brain-inspired
hyperdimensional computing via adapative scaling. In 2022 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). IEEE.

Sizhe Zhang, Ruixuan Wang, Dongning Ma, Jeff Jun Zhang, Xunzhao Yin, and
Xun Jiao. 2022. Energy-efficient brain-inspired hyperdimensional computing
using voltage scaling. In 2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 52-55.

Sizhe Zhang, Ruixuan Wang, Jeff Jun Zhang, Abbas Rahimi, and Xun Jiao.
2021. Assessing robustness of hyperdimensional computing against errors in
associative memory. In 2021 IEEE 32nd International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 211-217.

Arthur Zimek et al. 2013. Subsampling for efficient and effective unsupervised
outlier detection ensembles. In KDD.

