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ABSTRACT

Breakthroughs in deep learning (DL) continuously fuel innovations
that profoundly improve our daily life. However, DNNs overwhelm
conventional computing architectures by their massive data move-
ments between processing and memory units. As a result, novel
computer architectures are indispensable to improve or even re-
place the decades-old von Neumann architecture. Nevertheless,
going far beyond the existing von Neumann principles comes with
profound reliability challenges for the performed computations.
This is due to analog computing together with emerging beyond-
CMOS technologies being inherently noisy and inevitably leading
to unreliable computing. Hence, novel robust algorithms become a
key to go beyond the boundaries of the von Neumann era. Hyper-
dimensional Computing (HDC) is rapidly emerging as an attractive
alternative to traditional DL and ML algorithms. Unlike conven-
tional DL and ML algorithms, HDC is inherently robust against
errors along a much more efficient hardware implementation. In
addition to these advantages at hardware level, HDC’s promise to
learn from little data and the underlying algebra enable new possi-
bilities at the application level. In this work, the robustness of HDC
algorithms against errors and beyond von Neumann architectures
are discussed. Further, the benefits of HDC as a machine learning
algorithm are demonstrated with the example of outlier detection
and reinforcement learning.
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1 INTRODUCTION

The last decade saw a fundamental change in the approach to com-
puting. Instead of compute-heavy tasks, to focus shifted to data-
centric applications. Big data, video streaming, and the massive
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amount of sensor data from IoT devices are only a few examples
where data processing is dominant. Machine learning (ML) is an-
other data-centric application, especially during training. Massive
datasets are required to achieve the high inference accuracies for
large deep neural networks. This fundamental change towards data-
centric applications exposes the bottleneck in the predominant von
Neumann architecture. The separation of compute and storage cre-
ates the memory wall, where data transfers dominate the overall
power consumption. To address this challenge, custom data-centric
architectures have been proposed.

Not only the architecture creates challenges but also transistor
technology scaling is reaching its limits. Advanced 2 nm process
nodes are impacted by quantum effects, aging effects are magnified,
and process variation decreases yield. Emerging technologies such
as FeFET are impacted similarly [10]. However, traditional compu-
tation methods rely on accurate and error-free hardware. A robust
algorithm can relax the demands on the hardware and use it more
efficiently. Hyperdimensional computing (HDC) is an emerging
ML concept and has proven to be robust against noise and errors
from the hardware [29, 35-37]. At the same time, HDC has been
explored for in many different application domains, such as circuit
reliability [8], modeling of transistor aging [7], natural language pro-
cessing [27], anomaly detection [30, 31], and bio-informatics [18].

Recently, HDC has been used in anomaly detection, a classical
and important application in multiple domains such as IoT, au-
tonomous systems, and finance. It achieves comparable or even
better performance than neural networks-based methods such as
autoencoder [30, 31]. Another direction of importance in the IoT
and edge domain are autonomous systems. Through reinforcement
learning, an intelligent agent is trained to act in their environment.
Both directions are essential applications for future computing and
discussed in this paper. In addition, we focus on hardware imple-
mentations of HDC for the beyond von Neumann era.

2 BRAIN-INSPIRED HYPERDIMENSIONAL
COMPUTING

2.1 HDC Background

In HDC domain, hyper-vectors (HVs) are the general computing
elements which are holographic, high-dimensional (e.g., dimension
of HVs D = 10, 000), and elements in HVs are randomly generated
and independent and identically distributed (i.i.d.) [15]. Equation (1)
shows a D dimension HV where h; means the element i in this HV.

HV = (hy,..., hy) (1)
In the hyper-dimensional space, for instance the dimension of
HV D = 10000, two arbitrary HVs are close to orthogonal [15]. The
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purpose of HVs is to integrate and contain information from various
scales, and this quasi-orthogonality property of HVs enables HDC
to represent and integrate information using different operations.

The two core HV operations in HDC, as Equation (2) illustrated,
are bundling and binding operation. The bundling operation and
binding operation take two HVs as input and perform element-wise
addition and multiplication respectively. The computing output
maintains the property of HVs, including high-dimensionality and
quasi-orthogonality.

Bundling(I-TVi, H_Vj) = (hit + hjt, ..., hig + hyg) @
N 2
Binding(HV,—, HV]) = <hi1 * hjl ..... hid * hjd)

In the meantime, to reveal the relationship between two HVs,
HDC utilizes the distance metric § to measure the similarity be-
tween two HVs. As Equation (3) shows, here we use the Hamming
distance metric which has the following properties, if the Hamming
distance between two HVs is close to 0, the information encoded
in the two HVs are highly correlated. On the other hand, if the
Hamming distance is close to 1, which means the two HVs are
literally not similar. Moreover, the Hamming distance of any two
arbitrary HVs is close to 0.5 in the hyper-dimensional space.

5(1{_\/;, ITV;) = Hamming(}TV,-, H—V,) 3)

2.2 Establishing an HDC Model

Three main processes are required to establish an HDC model,
named the encoding process, the training process, and the infer-
ence process. The following description in this section contains the
specific implementation of the each HDC process.

Firstly, encoding is the process to represent a data sample in
the hyper-dimensional space with an HV. Encoding is the critical
process which may influence the performance of HDC, and there-
fore variant and sophisticated encoding methods are proposed [6].
Here we use the Record-based encoding strategy as an example.
The encoding process requires some extra HVs to encode feature
value and feature position in a sample, named item memory (IM)
in HDC. The general HDC encoding process can be represented in
Equation (4).

HV = Encoding(I, IM) (4)

During the Record-based encoding process, assume as input
we have a gray-scale image I = (pi,...,pn) with n pixels. HDC
then randomly generates n quasi-orthogonal base HVs HVjp
{1-73{ e IWBn } for each pixel and 256 quasi-orthogonal level HVs
HVL, = {IVL(; ,..., HVp,. } representing the value of each pixel in
the range of [0, 255]. In this case IM contains two sets of HVs IM =
{HVp, HV1}. Then, for the encoding of each pixel, HDC binds the
corresponding base HV with the level HV. As an example, if the
first pixel have value 255, then the corresponding HV (pixel HV)
can be computed by HV), = Binding(HVp,, HVL,). At the end of
encoding process, HDC encode the entire gray-scale image in to a
single image HV HV = Bundling(ITpl, e I—Tpn) by aggregating
all the pixel HVs.

Then, the training process is to build an HDC model over all
the training samples, a.k.a associate memory (AM). Considering
an m-class classification task, HDC first encodes each training
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sample into HVs using IM. Then HDC bundles all the training HVs

HV'into m class HVs according to their label i, as illustrated in
Equation (5). After the training process, HDC model use m class
HVs {HVc,,...,HVc,} in AM to represent all the training samples.

AM = (HVG, ..., HVe,} = {Bundling(HVY). . .., Bundling(HV™)} (5)

Finally, the inference process is to determine the category of a
testing sample. HDC first encodes the query sample Q into a query
HV I?VQ following the same encoding strategy as Equation (4).
Then HDC measures the Hamming distance between the query
HV H—Vé and the m class HVs H—VC’ in AM to obtain the inference
result. As Equation (6) shows, index of the class HV with the lowest
Hamming distance indicates the prediction result ypyeq.

Ypred = argmin(8(HVg, HVG,), ...,

8(HVg, HVc,,) (6)

3 FROM ACCELERATION TO IN-MEMORY
COMPUTING

HDC is based on large vectors with thousands of bits or numbers.
Many hypervectors are required for encoding and classification.
The amount of data of all those hypervectors quickly overwhelms
smaller caches, causing repeated data transfers. Each transfer re-
duces the system’s throughput, increases power consumption and
thus heat [11]. In this section, we describe the potentials for HDC
acceleration starting at a special instruction for inference to a dedi-
cated in-memory computing system. Further, we explore the poten-
tial for approximate computing and the impact of errors on different
memories used for HDC.

3.1 Special Inference Instruction

Each class is represented by one hypervector. During inference
for binary hypervectors, the Hamming distance with the query
hypervector is computed. This computation comprises two phases,
first an XOR operation followed by counting the resulting ones
(popcount). While advanced CPU cores have a popcount instruction,
low-end CPUs typically lack it. Hence, an accelerator fusing the
XOR and popcount operation reduces the latency of an inference.

To evaluate this gain, a custom accelerator is integrated into
a RISC-V single-core Rocket CPU. Based on Chipyard [3], this
accelerator is exposed as a special instruction to the CPU. The C-
code is adopted to use it during an inference. The accelerator is
tightly integrated and sends memory requests to the L1 cache. Thus,
the data of the hypervectors has to be transferred from the off-chip
memory if it is not already present in the caches. Once the (partial)
class and query hypervectors are loaded into the accelerator, the
XOR and popcount operations are executed and the result stored
in a register of the accelerator. If the hypervectors are larger than
the internal memory of the accelerator, then they are divided into
chunks and the operation is repeated for each chunk.

The Rocket CPU with an L1 cache of 1KiB and L2 cache of
256 KiB serves as a baseline. The CPU does not have an accelerator
nor a popcount instruction. The following three configurations
are shown in Fig. 1. A design with very large caches (16 KiB L1,
1024 KiB L2) represents a non-HDC specific approach to increase
performance. The accelerator is coupled once with the same-sized
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Figure 1: Speedup with a dedicated Hamming distance accel-
erator or larger caches compared to the baseline.

caches (1 KiB L1, 256 KiB L2) and also with enlarged caches (256 KiB
L1, 256 KiB L2). Even though the accelerator speeds up the execu-
tion by approximately 5 % to 10 %, very large caches yield even
higher speedups of up to 40 %. However, a large SRAM-based on-
chip memory comes at a high cost of chip area, almost 2x and 3.2x
for the enlarged and largest caches, respectively. In conclusion, a
dedicated instruction to accelerate the HDC inference computation
does not improve the performance as much as larger on-chip mem-
ories showing that HDC is memory limited. The resulting large
memory footprint of HDC motivates further research in the area
of in-memory computing.

3.2 In-memory Design

The previous evaluation focuses on the Hamming distance compu-
tation between a query and a class hypervector. However, encoding
the real-world data into a query hypervector consumes most of the
computation time [9]. Many hypervectors are required during the
encoding process, for image processing more than 1000. Therefore,
the encoding process has the highest memory footprint and thus
generates the most data transfers between the processing unit and
the off-chip memory. In this section, we describe an FPGA-based
accelerator for encoding and inference, which will also serve as a
test bed to evaluate approximate computing and error injection [25].
Other dedicated in-memory computing architectures have been
proposed and employ CMOS [28] or emerging technologies [29].

A general overview of the design is shown in Fig. 2. The tar-
get platform is an AMD-Xilinx Zynq FPGA XC7Z020 featuring an
ARM CPU (called PS) and the FPGA fabric (PL). The external DDR3
memory is accessed through up to four 64-bit high-performance
(HP) ports and provides either already encoded query hypervectors
or the raw real-world data to be encoded. The experiments were
conducted with the image recognition dataset MNIST [17]. It con-
tains 28x28 pixel grayscale images of the ten digits (i.e., ten classes)
written by hand. The dataset contains 60 000 images for training
and another 10 000 images as test samples.

Similar to the accelerator, a Hamming distance computation core
is created for a dimension of 8192-bit hypervectors. If both, class
and query, have to be transferred to the FPGA to compute their
Hamming distance, then one pass over the test dataset takes 77 ms.
The effective memory bandwidth is halved to transfer the query and
the class at the same time. More importantly, the class hypervectors
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Figure 2: Overview of a Zynq-based FPGA design with op-
tional error injection.

have to be repeatedly transferred every time since they are not
stored. To eliminate this overhead, the BlockRAM of the FPGA is
utilized to store the ten class hypervectors as an AM. Now only the
query has to be transferred and the ten Hamming distances can be
computed in parallel. A speedup of more than 10x is achieved by
moving the computation and memory closer together.

As described above, the encoding process consumes most of
the compute time during an inference. Hence, the FPGA design is
extended by an encoder block, including its IM. The 28x28 pixel
images in the MNIST dataset can be represented as a features vector
of size 784 requiring 784 item hypervectors. Due to this significantly
increased demand for on-chip storage, the resources of the FPGA
limit the achievable dimension to 1024 bits. Nevertheless, it still
enables research for approximate computing and on the impact of
errors on HDC.

3.3 Approximate Computing for HDC

Approximate computing aims at reducing the complexity of com-
putations and through that simplifying their implementation in
hardware. A large potential has the bundling operation defined
through the majority operation. For each component, the number
of 1s and 0s in the input hypervectors is counted. Because of the
limited width of the memory interface, only a few features are
processed per clock cycle. Hence, the intermediate count for each
component has to be stored. With a dimension of 1024 bits and 784
features in the MNIST dataset, 1024 10-bit counters are required.
One approach to reduce the hardware cost is approximate adders.
The results demonstrate a significant loss in inference accuracy
with no reduction in resource utilization. The root cause is the
mismatch of the bit-width in the operands. The small numbers
added per cycle are ignored by many approximate adders. Further
research in this direction is required.

Alternatively, instead of approximating the adder, the size of the
accumulator to count the 1s can be limited. For most elements in
the query vector, the number of 0s and 1s is balanced and does not
reach 784. Counting only 1s, the threshold for the majority is 392.
If zeros are treated as -1, then the threshold drops to 0. Assuming
a balanced stream of 0s and 1s, the accumulator count alternates
around 0 and does not require 10 bits. Hence, the bit-width of the
accumulator can be reduced to reduce the resource utilization. If
the count is larger than the size of the accumulator allows, then it
overflows and results in an incorrect bit in the query hypervector.
Since HDC is robust against errors, some are tolerable and do not
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Figure 3: Reduced resource utilization from approximate
computing, with an about 3 % loss in inference accuracy with
a 5-bit accumulator without overflow checks (dashed). The
error can be limited if the accumulator saturates instead
(dotted). However, the additionally required LUTs can be
saved by using a 6-bit accumulator.

2€ Associate memory =®=Raw sample data =r=Item memory

E -
-
2 0.8 - i
< .
- ‘—_
! _-
S 0.6 1 P
s -
8 ’,f
s 0.4 - - ’x___—_-
5 -~ -_ —_——
: o ~ ¢
S P - o
£ 024 f’,a -
= * -
R=| _
k : : , . .
0.6 0.8 1.0 1.2 1.4

Fault rate per bit (%)

Figure 4: Loss in inference accuracy if the stored item and
class hypervectors are subject to bit flip errors. Bit flips in
the raw image data have a higher impact.

impact the inference accuracy. To avoid over/underflows, a check is
added to limit the count to its maximum or minimum (“saturation”
in Fig. 3). Such a check reduces the loss in inference accuracy for 5-
bit accumulators from 3.3 % to 0.3 %. However, additional resources
(LUTs) are required. Depending on the overall utilization of the
FPGA, 6-bit accumulators offer a tradeoff. The increase in flip flips
can be compensated by a decrease in LUTs, because the saturation
checks are no longer necessary.

3.4 Error injection

HDC is known to be very robust against noise and errors from
the underlying memory [16] or computations [29]. Several sources
of errors have been explored, each with different errors models,
probabilities, and location of the errors. Because such models are
probabilistic, an evaluation has to be repeated many times to get
statistically meaningful results. Further, the different error models
complicate the use of GPU-accelerated HDC frameworks like On-
lineHD [13], which implement only correct computations. Hence,
an evaluation is often performed with custom software solutions,
which results in very long computation times for the evaluation,
limiting the viability for a comprehensive design space exploration.
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AnFPGA-based HDC implementation offers a significant speedup
compared to a pure software evaluation. A complete test run of the
MNIST test set, including encoding, takes about 7 ms. The design
shown in Fig. 2 is extended with error injection modules. Each mod-
ule can be configured individually with an error probability and
triggers bit flips in the data. Other error models can be implemented
as well. Fig. 4 demonstrates the impact of different error rates on
the inference accuracy. Errors in the AM are injected during the
read of the class hypervectors, the XOR and popcount operation
is performed accurately. Similarly, the encoder is affected through
errors while reading the item hypervectors. Both modules, AM and
IM, demonstrate the robustness of HDC against errors. In contrast,
the error injection in the four HP ports impacts the raw sample
data. Here, the impact is the highest since a bit flip changes the
pixel values leading to a different query hypervector.

4 ANOMALY DETECTION USING
HYPERDIMENSIONAL COMPUTING

Anomaly/outlier detection is an everlasting problem across different
fields such as IoT and finance. We have developed two HDC-based
methods for anomaly detection: HDAD [31] detects anomalies based
on reconstruction errors, while ODHD [30] presents a one-class
HV-based approach.

4.1 Reconstruction Error-based Anomaly
Detection

Inspired by autoencoder-based anomaly detection, which detects
anomalies based on reconstruction errors, we develop anomaly
detection based on the reconstruction errors of HVs, as shown in 5.

For the anomaly detection pipeline in HDAD, HDAD first en-
codes training data with normal patterns into HVs then generates a
reference HV aggregating all the training HVs representing all the
normal patterns in the training set. In the inference stage, HDAD
encodes query data following the same encoding strategy, named
query HV HV,. HDAD adds HVj; to the reference HV then recon-
structs and decodes the query data from the reference HV. For the
purpose of anomaly detection, HDAD computes the reconstruction
error, which is the distance between the original input and recon-
structed data and utilizes a predefined threshold to filter out the
anomalies. The data with distance higher than the threshold will

Encoded
Pattern
Hypervector

Training .
sample

~

Il —

< Restored

Testing
sample

Surpooag

Testing
sample

Reconstruction Error Checking

Figure 5: Overview of HDAD process [31]
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be detected as an abnormal sample. Three different distance met-
rics are employed in HDAD, including mean squared error (MSE),
mean absolute error (MAE) and cosine distance, to determine the
reconstruction error.

To evaluate the performance of HDAD, we use the data from
the AEGIS Big Data Project [14], which is an autonomous driving
dataset containing data from variant types of sensors including bus
temperature and pressure sensors, IMU sensors and GPS sensors.
The dataset contains continuous generated data from sensors during
a driving trip. We use data collected during the first 100 seconds,
considered as the normal vehicle states, to formulate a principle
pattern for outlier detection on the follow up stage. And we test
the HDAD based on the following 100 seconds data with random
injected anomalies. We use MSE, MAE and cosine similarity to
measure the reconstruction error and to separate the anomalies
from the normal data. The results are shown in Fig. 6, where we
can see that HDAD achieves 100% accuracy in detecting anomalies
using all three metrics.

4.2 One-Class HV-based Anomaly Detection

We also develop a one-class HV based anomaly detection, referred
to as ODHD [30], which follows a P-U learning scenario. That
is, ODHD is trained with only normal data, and is tested with
unseen data samples (can be either normal data or anomalies). The
architecture of ODHD is illustrated in 8. In this case, ODHD can
extract the normal patterns or representations from ground truth
data. By establishing the one-class HV, ODHD learns the standard
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Figure 8: ODHD architecture with six key phases [30].

pattern of normal data, where all the data samples deviated from
the standard representation will be recognized as anomalies. By
measuring the distance between different HVs, which is also the
similarity between different patterns, HDC is capable of finding the
anomalies or outliers from the normal patterns.

We evaluate the performance of ODHD on six datasets selected
from the Outlier Detection Datasets (ODDS) Library [23] span-
ning multiple application domains across medical diagnosis, image
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recognition and wireless communication. These datasets are widely
used as benchmarks in existing outlier detection studies [1, 24, 38].
Each dataset contains a certain number of outliers specified by the
ODDS library. We compare ODHD with baseline models including
OCSVM, Isolation Forest (IF) and autoencoder. We employ all the
outlier detection models in the same P-U learning format where
the evaluation dataset is a mixture of inliers and outliers. In this
scenario, we use accuracy, average precision (AP), F1-score and area
under receiver operating characteristic curve (ROC-AUC) score to
evaluate the performance of ODHD. The experiment results are il-
lustrated in Fig. 7, showing that ODHD outperforms all the baseline
models for every dataset in all the metrics.

5 POWERING REINFORCEMENT LEARNING
ALGORITHMS WITH HYPERDIMENSIONAL
COMPUTING

The latest advancements in Reinforcement Learning (RL) has opened
up new opportunities to solve a wide range of complex decision-
making tasks. Compared to supervised and unsupervised learning
methods, RL does not have direct access to labeled training data.
Instead, it trains a self-learning agent using the observations of
states and rewards from the environment as shown in Fig. 9 [5]. The
learning process of RL is similar to how humans learn to perform
new tasks. Initially, the RL agent interacts with the environment
and selects an action A; in a given state S; with no prior knowledge
or past experience. Upon selecting an action, it receives feedback
from the environment, called the reward r;, to update its decision-
making process. There are multiple approaches to accomplishing
this with the main divide being between model-based and model-
free learning. The former trains an agent by simulating the agent’s
environment in order to predict the system behavior, while the
latter involves an agent directly interacting with its environment to
accumulate experience for training. The ultimate goal of every RL
agent, irrespective of its approach, is to maximize the total returned
rewards.

Many of these RL algorithms (e.g., Deep Q-Learning ([19], Policy
Proximal Optimization[22]) are implemented using deep neural
networks, putting high computational costs on edge devices. The
disadvantages of deep learning include a high demand of resources
due to the costly back-propagation and gradient-based methods in
training[15], extreme sensitivity to noise in data, network, or under-
lying hardware, as well as lacking human-like cognitive support for
long-term memorization and transparency. HDC addresses these
challenges, which is why it is advantageous to be used in combina-
tion with RL for various tasks. Recent work has demonstrated that
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Figure 11: HDPG and PPO performance and energy efficiency
on CPU and FPGA platforms (normalized to PPO).

HDC is successful in powering RL agents in multiple model-free
learning approaches [20, 21], as well as achieving a higher quality
of learning (e.g., faster convergence), and improved computational
efficiency on multiple devices. In the next sections, we delve into
the HDC-based RL algorithms and the applications in which they
excel in.

5.1 Policy-Gradient Reinforcement Learning

The first HDC-based RL algorithm developed is HDPG, a model-
free policy-gradient algorithm that uses the Actor-Critic frame-
work. This policy-based RL algorithm features an actor for decision-
making and a value-based critic for variance reduction, which are
both constructed using HDC. At each step, the observed state is
encoded to two different hypervectors using a non-linear encoder
and an exponential encoder respectively. The actor selects an ac-
tion and the critic generates a state value using the HDC models.
The reward and state values are then used for training both the
actor and critic models. The steps of this algorithm are shown in
Fig. 10, where it demonstrates how the critic plays an important in
updating the actor’s policy. We trained this algorithm on multiple
Atari games including HalfCheetah and Walker2D and compared it
to the Policy Proximal Optimization (PPO) algorithm as shown in
Fig. 12. The HDC is able to attain higher rewards, as well as being
more energy efficient, which is shown in Fig. 11.

5.2 Value-Based Reinforcement Learning

The latter sub-class of model-free RL that we designed with HDC
uses the value-based Q-Learning algorithm. Given an RL environ-
ment, this approach approximates the expectation of future rewards,
referred to as the Q-Function, and relies on these values to inform
the agent in its next move. The original Q-Learning algorithm pro-
posed Tabular Q-Learning [32], which could only handle simple
environments due to the exponential growth of the state space,
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Figure 12: Learning curve comparison between HDPG and
PPO for HalfCheetah and Walker2D.

referred to as the state explosion problem[2]. However, this imple-
mentation does not scale for increasingly more complex state and
action spaces, which is why Deep Q-Learning was introduced to
handle more complex problems by utilizing a neural network to
calculate these values [19].

Analogous to this approach, we use an HDC model in place of a
neural network to predict the Q-values. Given a state in the envi-
ronment, we first encode the state into hyperdimensional space by
using an exponential kernel to encode the features of the observa-
tion space (i.e., state). The encoded state hypervector is then binded
to each class hypervector of the HDC model, which represents each
encoded action in the environment. This regression model yields a
value that represents the Q-value; thus, the action with the largest
corresponding Q-value is selected as the next step in the environ-
ment. We iterate through this process, collecting feedback (e.g.,
rewards), from the environment until the episode terminates. Using
the Bellman Equation or Dynamic Programming Equation we are
able to update the HDC model to compute the error in Q-value
prediction and calculate more accurate Q-values [4]. This approach
has been tested on multiple Atari game environments, including Lu-
narLander, Acrobot, and Cartpole, to demonstrate a higher learning
quality and computational efficiency, compared to DQN [20].

5.3 Solving Network Intrusion Problems

RL has demonstrated its ability in detecting cyber attacks, as well as
its potential to recognize new ones. The application of RL to various
security problems have been prolific, but most applications have
dealt with securing high-powered devices. Thus, the need to extend
these systems to resource-constrained edge devices is a necessity
henceforth. Harnessing the lightweight, computationally efficiency
of HDC, we are able to design an RL Network Intrusion Detection
System (NIDS) algorithm that is better equipped to develop robust
and more effective security strategies. We demonstrate this by
utilizing a modified version of the QHD model to be applied to an
abstract Markov game environment for simulating an intrusion
detection security problem [12].

The selected cybersecurity environment is modeled as a zero-
sum Markov game involving two agents: a cyber attacker and an
Intrusion Detection System (IDS). The attacking agent’s objective is

559

ASP-DAC 2023, Janurary 16-19, 2023, Tokyo, Japan

Table 1: Comparison of the computational efficiency between
the DQN [19] and HDC algorithm on the NVIDIA Jetson Orin
I various power settings.

15W 30W 50W MAX
DQL 1.9 x 103 1.5 x 103 1.6 x 103 1.0 x 103
HDC 1.4 %103 1.0 x 103 1.3 %103 0.8 %103

to compromise a network, while the IDS’s opposing task is to secure
the computer network and detect any attempted security breaches.
The game terminates when either agent completes its defined goal.
The environment is implemented to simulate a computer network
of interconnected computing devices, where each device has its
designated security defense attributes. The attacking agent has
a portfolio of actions it can select to compromise a node in the
network, while the defending agent selects actions to counter and
detect the agent.

Using value-based RL, we implement both agents using HDC to
successfully develop robust attack and defense strategies. We test
our design on multiple devices, including the NVIDIA Jetson Orin
L, to achieve a more effective and efficient solution. The efficiency
results, compared to DQN [19] with the Jetson board are presented
in Tab. 1 on various low-power settings.

5.4 Optimizing End-Edge-Cloud Networks

The rise of distributed systems and smart devices has made Resource
Management an increasingly prevalent orchestration problem to
learn to optimize. RL has demonstrated its potential in solving
dynamic resource management and scheduling problems [33, 34],
which is why we chose to employ HDC RL to solve this type of prob-
lem. The algorithm developed, HDHL, is a hybrid learning approach
that is used for orchestrating an end-edge-cloud architecture for a
deep learning inference task [22, 26]. Hybrid Learning combines
model-free and model-based RL to exploit each approach’s advan-
tages while diminishing their shortcomings. To further improve
the HDC Q-Learning algorithm, we incorporate model-based rein-
forcement learning to learn a system model and include a planning
phase to leverage faster training. This approach is sectioned into
three phases: (1) the first phase is used for exploring the network

Training Overhead
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—800
2 -10001
—1200 A
—— HDHL — DQN
—1400 A
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Step x10*

Figure 13: Learning Overhead for DQN and HDHL
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environment for data collection, (2) the second for training a system
model to learn and simulate the network environment, and (3) a
planning phase which involves training the Q-Learning agent using
the learned system model from the previous phase.

This hybrid learning approach quickly learns the system’s op-
timal configuration for orchestrating the network, outperforming
both the DQN and QHD approaches in terms of computational
efficiency and learning quality. HDHL also achieves as much as a
21.0x speedup in the total training and experience time, as well as
requiring 4.8x fewer direct interactions with the system environ-
ment to learn a near optimal configuration as shown in Fig. 13. As
a result, our algorithm significantly speeds up training by reducing
the number of real-time interactions with the system and enabling
computationally efficient learning.

6 CONCLUSION

Computing beyond the von Neumann era will fundamentally change.

Novel technologies will enable new computer architectures. To
exploit them most efficiently, new robust algorithms have to be
deployed. In this work, we have presented HDC as a promising
emerging algorithm. We have investigated hardware implemen-
tations for HDC and two applications, namely outlier detection
and reinforcement learning. Both areas combined demonstrate that
HDC enables computing beyond the von Neumann era.
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