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Hyperdimensional computing (HDC) is a brain-inspired computational framework that relies on long
hypervectors (HVs) for learning. In HDC, computational operations consist of simple manipulations
of hypervectors and can be incredibly memory-intensive. In-memory computing (IMC) can greatly
improve the efficiency of HDC by reducing data movement in the system. Most existing IMC
implementations of HDC are limited to binary precision which inhibits the ability to match software-
equivalent accuracies. Moreover, memory arrays used in IMC are restricted in size and cannot
immediately support the direct associative search of large binary HVs (a ubiquitous operation, often
over 10,000+ dimensions) required to achieve acceptable accuracies. We present a multi-bit IMC
system for HDC using ferroelectric field-effect transistors (FeFETs) that simultaneously achieves
software-equivalent-accuracies, reduces the dimensionality of the HDC system, and improves energy
consumption by 826x and latency by 30x when compared to a GPU baseline. Furthermore, for the
first time, we experimentally demonstrate multi-bit, array-level content-addressable memory (CAM)
operations with FeFETs. We also present a scalable and efficient architecture based on CAMs which
supports the associative search of large HVs. Furthermore, we study the effects of device, circuit, and
architectural-level non-idealities on application-level accuracy with HDC.

Hyperdimensional computing (HDC) is an emerging neuro-inspired computational framework. HDC is based
on the mathematical properties of hyper-dimensional spaces and is closely associated with cognition and per-
ception in human memory'. The computational units in HDC are hyper-dimensional vectors, called hypervec-
tors (HVs), which are (pseudo-)random, holographic vectors with identically and independently distributed
(i.i.d.) elements. HDC is lightweight in nature and is suitable for power-constrained environments such as edge
computing. Furthermore, HDC can learn by looking at a small number of training images as opposed to neural
networks and other machine learning approaches, which is also desired for edge implementations. HDC systems
are commonly comprised of an encoding module and an associative search module. The encoding module maps
the input data to a high-dimensional space and the associative search module stores encoded data and consid-
ers its similarity with given queries for inference. HDC has shown promise in a wide range of applications that
involve temporal patterns, such as classification?, signal processing’, robotics*, and cognitive computing®. HDC
has achieved similar or better accuracies compared to convolutional neural networks*, support vector machines?,
and gradient boosting® for the aforementioned applications.

HDC is particularly amenable to in-memory computing (IMC) implementations using (emerging) memory
technologies as: (i) HDC performs basic element-wise operations on HVs, such as binding, bundling, and
permutation to compute and learn that can greatly benefit from the parallelism offered by IMC; (ii) due to the
holographic nature of HVs, no HV element is more important than any other, which improves resilience to
errors and variations” (especially important when considering IMC architectures based on emerging devices);
(iii) HDC can work with low precision HV elements which is (at least at present) more commonplace with IMC
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realizations. Indeed, representative work in the literature has considered designs, demonstrations, and investiga-
tions of the viability of IMC for HDC using traditional CMOS technology, as well as emerging technologies such
as resistive random access memories (RRAMs)®? and phase-change memories (PCMs)'?.

Although IMC is an excellent candidate to accelerate HDC, there are still challenges that need to be addressed.
First, it is imperative that energy, latency, and area improvements of IMC implementations do not come at the
cost of accuracy loss'*. While binary IMC implementations are highly efficient, they suffer from accuracy loss
compared to software implementations running on traditional computers'. This represents a likely impedi-
ment when considering the adoption/deployment of HDC solutions. To compensate for low precision elements,
binary IMC solutions often operate on HVs with more than 10k elements which can produce more accept-
able - although still not software-equivalent—accuracies'®. Moreover, larger HV's diminish the net energy and
latency improvements derived from IMC. Finally, existing IMC HDC implementations rely heavily on ternary
content-addressable memories (TCAMs) for Hamming distance measurements®!! or crossbar arrays for binary
dot-product operations'?, i.e., to approximate the cosine distance function commonly employed in HDC algo-
rithms. As such, fast and energy efficient multi-bit circuit primitives for comparison of HVs are imperative for
a path to software-equivalent accuracies.

Second, scalable and realistic architectures must be developed to support operations on long HVs. Memory
arrays used to store HVs and compute with them are fundamentally limited in size due to considerations like
IR-drop', sensing'’, etc. Although this might be manageable for encoding - which mainly consists of independ-
ent computations for each dimension of HVs - it is much more challenging for associative search that must
accumulate information across HV dimensions'’. Previous work has considered the accumulation aspect of
associative search in two different ways: (i) work in'! assumed it to be possible to store all HVs in a single array
(optimistic as will be seen), and (ii) work in®!>!* used multiple subarrays to aggregate the results in the digital
or analog domain. The latter introduces new challenges as aggregating results in the analog domain can be quite
susceptible to noise® and requires the ability to drive large amounts of current from subarrays to the periphery'.
Aggregation in the digital domain is more realistic, but has been mainly explored using expensive analog-to-
digital converters (ADCs)**. A recent PCM demonstration partitioned a large array and stored HVs on multiple
rows which is in principle akin to using multiple sub-arrays®.

We consider the use of ferroelectric field-effect transistor (FeFETs)"® to implement an HDC architecture and
improve the efficiency of HDC algorithms, all while charting a path to iso-accuracy versus a software-based
solution. FeFETs have attracted interest since the discovery of ferroelectricity in hafnium oxide'®, which enabled
CMOS-compatible realizations of FeFET devices®. FeFETs are non-volatile three-terminal devices, have high
Ion/Iog ratios, and allow for a wide range of circuit designs such as crossbar arrays?', CAMs?~%*, oscillators?,
frequency multipliers, and functional hardware obfuscation?”. FeFETs have been used to accelerate deep neu-
ral networks (DNNs)?*%2, few-shot learning®****!, spiking neural networks (SNNs)*, and neural sampling
machines®. Ferroelectric plasticity allows FeFETSs to store multiple states via partial polarization switching
and enables multi-bit computation®. Although there are single-cell multi-bit demonstrations of 2-8 bits in the
literature?!?+2>3*3_ array-level demonstrations of multi-bit programming and computation remain a challenge.

To address the aforementioned challenges, we adopt a cross-layer design perspective'*. Our work is motivated
from a top-down perspective, but our solution is best presented from a bottom-up perspective which inspires
bi-directional cross-layer design and analysis. Specifically, (i) we experimentally demonstrate, for the first time,
multi-bit array-level programming and computation with FeFETs in the form of multi-bit content-addressable
memories®!. We demonstrate in-situ parallel similarity search based on the squared Euclidean distance function.
(ii) We propose a high-dimensional scalable CAM-based architecture for associative search that uses low-power,
voltage-based sense-amplifiers (SAs) and voting to aggregate results between sub-arrays. (iii) We propose an
FeFET IMC solution for HDC where we use multi-bit crossbar arrays for matrix-vector multiplication (MVM)
during encoding, and multi-bit CAMs (MCAMs) for associative search. These allow us to surmount the limita-
tions of binary implementations, and achieve iso-accuracy with respect to software implementations, all while
delivering further energy and latency gains compared to binary implementations. (iv) We study the impact of
errors and non-idealities from different design layers, including device-to-device variation®, SA limitations, and
voting, on the application-level accuracy of different datasets that are commonly used in the HDC literature.

Results
FeFET MCAM concept. FeFETs are realized by integrating a ferroelectric (FE) layer (usually hafnium
oxide) on top of an interface layer in the gate stack of a metal-oxide-semiconductor field-effect transistor (MOS-
FET), resulting in a metal-ferroelectric-insulator-semiconductor (MFIS) structure®® (Fig. 1a). The non-volatile
polarization orientation of FE domains in the FE layer impact the threshold voltage (V) of the underlying MOS-
FET. Polarization switching is the process of reorienting the polarization of FE domains in the FE layer by apply-
ing voltage pulses to the gate of the FeFET, which allows setting and resetting an FeFET’s V;. Typically, FeFETs
represent ‘0’ and ‘1" in high V; and low V/ states, respectively. As shown recently, accumulative pulse schemes can
be used to gradually transition from a high V; state to a low V; state and vice versa, enabling multi-bit operation
of FeFETs?!. The state transitions in MFIS structures are defined by current percolation paths (CPPs) formed in
the transistor channel®. Therefore, the microstructure of the FE layer plays a major role in controlling multi-
bit operations in scaled FeFETs*® and material stack optimization is necessary for achieving desired multi-bit
behavior®. Figure 1b demonstrates the measured data for multi-bit programming of an FeFET device to 8 states
(3 bits). Multi-bit programming of FeFETs is highly desired as it enables higher density memory designs.
FeFETs enable the most compact content-addressable memory (CAM) design® as they both serve as the
selector and the non-volatile memory element. At the cell level, Fig. 1¢ shows the universal 2FeFET CAM design
that can act as a ternary®, multi-bit*, or analog*! CAM depending on the programming and input scheme. To
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Figure 1. (a) Illustration of FeFET device concept where a FE layer is incorporated in the gate stack of a
MOSFET. (b) Measurement results of an FeFET device in an AND array programmed to 8 distinct states. (c)
Diagram of the universal 2FeFET CAM cell. (d) Measurement results of a 2FeFET MCAM cell in an AND
array programmed to 8 distinct states. (e) Measured distance function (Ip, vs. Vpr) of the 2FeFET MCAM for
different ML voltages. (f) Differential of the 2FeFET MCAM distance function showing quadratic behavior for
higher ML voltages and linear behavior for lower ML voltages.

program this design, voltage pulses are applied to dataline (DL) and DL which tune the V; of the FeFETs. Dur-
ing search, the matchline (ML) is pre-charged and the input patterns are applied to DL and DL. If the ML stays
high, there is a match, and if ML discharges, there is a mismatch. In a CAM row, multiple cells are connected via
the ML and all cells must match for the ML to stay high and report a match; if any cell observes a mismatch, the
ML is discharged and the row reports a mismatch. This is called exact match search'” as the input pattern must
exactly match the pattern stored on the CAM.

To program the 2FeFET CAM as a b-bit MCAM, we need 2P distinct FeFET V; values { Vi1, Vi, ..., V). To
program the cell to state s where s € {1,2,...,2%}, the right_V; (Fig. 1c) is programmed to V and the left_V;
(Fig. 1c) is programmed to V,;5_¢ ). As such, we can store 2° non-overlapping ranges where each range is a
state (Supplementary Fig. 1). For example, to program a 3-bit MCAM cell to state 3, the right and left V; are pro-
grammed to V3 and Vi, respectively. Similarly, to search the 2FeFET CAM as a b-bit MCAM, we need 25 distinct
search voltage values { V1, V5, ..., Vi }. To search for input state s where s € {1,2, ..., Zb}, Vpr and Vr (Fig. 1c) are
setto Viand Vo, ), respectively. For example, to search for state 3 in a 3-bit MCAM, Vpr and Vpr are set to
V3 and Vg, respectively. This programming and input scheme is based on the analog inverse principle*>*’ where
for any s, right_V; + left_V; = Vi1 + Vipp = 2 % Vienter and Vpr + Vpr = Vi + Vb = 2 % Viener where center
is the analog center. Supplementary Fig. 1 shows the V; and V. values for our 2- and 3-bit implementations and
the examples in this paragraph.

Figure 1d shows the measured ML current of a 3-bit MCAM cell for different cell states. We use FeFET AND
memory arrays* where the equivalent MCAM cell (Fig. 1c) is constructed by using two FeFETs which are con-
nected along their drain contacts, while their source contacts are connected to ground (Supplementary Fig. 2).
DL voltage is swept, and the DL voltage is determined by Vpr, + Vpr = 1.1V (analog inverse). For each cell
state (different colors), the ML current should be lowest when there is a match; this represents how the exact
match search works. The current of the MCAM cell differentiates between the different degrees of mismatches.
Fig. 1d suggests that the further away the input is from the matching range, the higher the ML current of the
cell. As such, the ML current is a function of the distance between the cell state and the input state, and can be
employed to compute a distance function®’. In this design, the distance function is effectively the FeFET transfer
characteristic (Ip — Vs curve) as only one of the FeFETs in the cell is “ON” when there is a mismatch®!, which
in turn determines the ML current. As such, the behavior of the distance function depends on the operation
regime of the FeFET (linear or saturation) which in turn depends on the ML voltage*’. FeFETs follow field-effect
transistor characteristics, therefore:

Vs — Vi > Vps =gt; Ip =~ B % (Vgs — Vi) * Vps (linear regime)
Vs — Vi < Vps=>1Ip~ /2% (Vgs — Vt)2 * Vps (saturation regime)

where Vs is the gate-source voltage, Vps is the drain-source voltage, and Ip is the drain current. The FeFET drain
current has a linear relation with Vgs — V; in the linear regime and a quadratic relation in the saturation regime.
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In the MCAM cell, Vs is determined by the input state (Vpy and Vr), V; is determined by the cell state (right _V;
and left_V}), and Vps and Ip are the ML voltage and current, respectively. Thus, the ML voltage determines the
linear or quadratic behavior of the distance function, and the input and cell states determine the ML current.
(Note that these characteristics may be slightly different for highly scaled devices due to short channel effects®,
but can still realize useful distance functions*?).

Figure le and f show the measured transfer characteristics of a FeFET (distance function) and its differential
with different ML voltages, respectively. As expected, with lower ML voltages, the differential of the distance
function is a horizontal line which indicates a linear relation between input voltage and ML current. For higher
ML voltages, the differential is linear which indicates a quadratic relation between input voltage and ML current.
For 0.25 V and 0.5 V ML voltages, the differential is initially linear and then turns into a horizontal line effectively
transitioning from the saturation regime to the linear regime. As such, the FeFET MCAM cell can support three
types of distance functions, namely, linear (Manhattan), quadratic (squared Euclidean), and a quadratic-linear
combination which was previously termed as a sigmoid-like distance function*’. As we will show, MCAM dis-
tance functions can facilitate more intricate search operations than the traditionally used exact match search'”.
In this paper, we focus on the squared Euclidean distance function (which is interchangeable with Euclidean for
comparison of data*) as it is widely used and achieves state-of-the-art accuracies 7+,

In an MCAM row, the current contribution of each CAM cell is added along the ML based on Ohm’s law'”.
Thus, the total ML current of an MCAM row represents the similarity of the pattern stored on it with the query
pattern, based on the distance function. When searching an MCAM array, we can measure the similarity of query
with multiple patterns in O(1) time. Finding the ML with the lowest current, which should represent the pattern
most similar to the query or its nearest neighbor, and is called a best match search!’. To do this, it is possible to
directly convert the ML currents to digital values via analog-to-digital converters (ADCs) and compare them
to find the lowest value®, although ADCs introduce significant energy and area overheads. Another approach
is to pre-charge the ML and sense the discharge rate of the ML with SAs which, as we will show, is much less
expensive than ADCs.

FeFET MCAM demonstration. For the first time, we experimentally demonstrate best match search with
FeFET MCAM:s. This includes multi-bit programming of FeFET arrays and parallel search among multiple MLs
and DLs. The MCAMs are constructed from FeFET AND arrays (see Methods). To the best of our knowl-
edge, previous demonstrations of FeFET CAMs are limited to binary precision” or single cell measurements®.
Unlike single cell programming of FeFETs, array-level control of FeFETS is particularly challenging due to write
disturbances®. Programming multiple states further exacerbates the challenges as the target V; values will be
in closer proximity to each other, and disturbances and device-to-device variations*** are more likely to lead
to programming errors. Moreover, smaller FeFET devices are harder to program due to a smaller number of
domains in the FE layer®. The FeFETs used in our demonstration have a channel width and length of 450 nm
and 450 nm, respectively, and are the smallest devices demonstrated for multi-bit array-level programming
in the literature. As such, we demonstrate array-level programming and single-step parallel search for a 2-bit
MCAM, while our 3-bit demonstrations are for single-cell programming. We characterize three AND arrays to
which we will refer to as MCAMs (MCAM 1, MCAM 2, and MCAM 3) in the remainder of this section.

We consider HDC applications for 2-bit MCAM demonstrations and generate seven near-orthogonal (in
Euclidean space) 4-dimensional patterns to store on the MCAMs. Supplementary Table 1 shows the patterns
stored on the MCAMs in both integer values (0-3) and target values of the left_V; and right_V; (Fig. 1c). A
detailed description of MCAM programming is presented in Methods. Fig. 2a and Supplementary Fig. 3a-c show
the difference between the programmed V;s and the target V;s (called programming error) for MCAM 1 and all
MCAMs, respectively. We are able to program most of the FeFETs to within 100mV of their target V;, although
there are some devices that observe more significant programming errors. These errors are due to the limited
number of domains in scaled FeFETs, which define the formation of CPPs in the transistor channel. Thus, the
probability exists that a wide percolation path is abruptly formed, resulting in a sudden V; change. This behavior
is accompanied by device-to-device variations in the switching process and a unidirectional write scheme which
makes the FeFETSs susceptible to target V; overshooting. The programming errors can be further mitigated by
using more sophisticated write-verify schemes as described in*® and that are not readily implementable given
our current experimental setup.

Figure 2b shows the distribution of the programming errors for all three arrays. Individual array distributions
are shown in Supplementary Fig. 3d-f. Results show a negatively skewed mean for the distributions and outli-
ers primarily with negative programming error. This is because programming operations gradually transition a
device’s V; from high to low, and stop when the V; is lower than the target. Due to the experiment setup, writing
FeFET states is solely done over the DLs, while inhibiting FeFETs that share the active DLs is solely done over
the MLs and SLs. With this write scheme, write pulses are limited to only positive voltages to avoid body-diode
leakage currents in the p-n-junctions of the FeFETs which would occur when utilizing negative inhibit voltages.
Therefore, when inhibit voltages have to be applied, V; states can only be set from high to low and not in reverse
direction. It is possible to utilize a source/drain erase scheme®' to implement more sophisticated write-verify
schemes® to correct the devices programmed to a much lower V; than the target, but as noted above, our current
experiment setup does not allow such implementations. There are also some outliers with positive programming
errors, since shortly after a FeFET is programmed, relaxation effects and charge detrapping can lead to partial
backswitching of domains, impacting CPPs and therefore increasing V;. As expected, there are variations in the
programming and the standard deviations of the distributions reflect this quantitatively.

Previous single device measurements with larger devices* have reported better standard deviations since the
device sizes used are larger and their measurements are not affected by array-level write disturbances. As such,
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Figure 2. (a) Shows the difference between the programmed V; and the target V; (programming error) for
MCAM 1 with 2-bit precision. (b) shows the distribution of programming errors for all MCAM:s with 2-bit
precision. (c) shows the distribution of programming errors for all the MCAMs with respect to different target
Vis. (d) shows the distribution of programming errors for 1500 FeFETs with 3-bit precision. (e) shows the
distribution of programming errors for all MCAM:s with respect to different target Vis.

our results reflect a more realistic path toward scaling and array-level control for multi-bit FeFETs. Figure 2¢
shows the distribution of the programming errors for all three arrays with respect to the different V; targets.
Individual array distributions are shown in Supplementary Fig. 3d-j. Common single-pulse write schemes that
choose a fixed write voltage for each state typically show much sharper distributions for the fully programmed
and fully erased states than for the intermediate states*’. Although the lowest and highest V; states show a slightly
sharper distribution, our results show little differences in programming error with respect to different V; states
because: (i) better control of inner states is possible with an iterative write-verify scheme, (ii) the low V; state
is more susceptible to charge trapping because it is set with the highest write voltages and the highest number
of write pulses, and (iii) the write process starts from the highest V; state which exposes the devices with high
V targets to the largest number of passive inhibit pulses, and thus increases the probability of an accumulated
disturb. It should be noted that the devices under study here are square-shaped state-of-the-art FeFET devices.
It is to be expected that with FeFETs optimized for multi-level operation, e.g. by considering CPP formation
in conjunction with microstructure-dependent width/length scaling optimization, programming errors could
be further reduced. Recent observations in stack optimization could also be incorporated. It was shown that
multi-level capability can be further increased by using laminated HfO2 layers®? or by avoiding CPP influences
when using a MEMIS structure®.

After programming the MCAMs, we perform parallel best match search. We generate 7 queries per pattern
stored on the MCAM s for a total of 49 patterns per MCAM. To generate the 7 queries, we start from the stored
pattern and modify it to increase the squared Euclidean distance. Supplementary Table 2 shows the 7 queries
generated based on the pattern stored on the first ML in Supplementary Table 1. The generation of the other
queries follows the same method. To search the MCAMs, the queries are applied to the DLs and the ML currents
are measured. The ML with the lowest current is reported as the best match for each of the 3 MCAMs. The three
MCAMs correctly decide the best match for 37, 43, and 43, of the queries, respectively, for an aggregate accuracy
of 84%. Although there is a general correlation between the magnitude of variations and correct search output,
the specific location of the variations, queries, and stored patterns affect the output as well. For example, Fig. 2a
shows that the cell in row 1 and column 3 has observed significant negative V; shift for both FeFETs. This results
in high ML current contribution from this cell for a variety of inputs. Given the specific inputs and the specific
variations in the programming of the MCAMs, MCAM 1 with the lowest magnitude of variations achieved lower
accuracy than MCAM 2 and MCAM 3 with higher magnitudes of variations. Further, given that the patterns only
have 4 dimensions, erroneous contributions of each cell can significantly impact the similarity of the patterns.
In contrast, patterns with larger dimensions are more robust to errors (a main reason for robustness to errors in
HDC). Overall, given the magnitude of variations, the small number of pattern dimensions, experiment setup
limitations, and the material stack of the measured devices, the achieved demonstration accuracy is acceptable.

We also demonstrate single-cell programming of FeFETs for a 3-bit precision using a write-verify without
inhibit scheme (see Methods). Figure 2d shows the distribution of 3-bit programming errors for 1500 FeFETs.
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The results show a higher standard deviation compared to the 2-bit results in Fig. 2b due to the following: (i)
The target V; values are closer to each other (150 mV vs. 300 mV) and it is not guaranteed to be able to achieve
every target V; due to the limited number of available domains. (ii) The programming V; range is larger (1050
mV vs. 900 mV) which makes it harder for devices to be programmed to the lowest V; targets. (iii) As FeFETs are
programmed in arrays, when programming an MCAM cell and no inhibit scheme is utilized, all other FeFETs on
the same DL are not voltage protected and therefore stressed/hole-trapped, which is potentially more destructive
that the disturbance effects when programming an array in parallel. Further, the mean of the distribution for
3-bit results is positive whereas the 2-bit results show a negative mean. This is due to the difference in program-
ming scheme, since in 3-bit single-cell programming, FeFETs are initially programmed to a low V; state and then
gradually programmed to higher V; states with negative voltage pulses.

Figure 2e shows the achieved Vs with respect to the 8 target states. As explained above, the V; range is cho-
sen larger compared to the 2-bit-case to accommodate all 8 states. The low V; state has the widest distributions
because a single pulse is used to program the FeFETs to the lowest V;, and due to device-to-device variations,
the V; might not be reachable for all FeFETs. Similar to our 2-bit results, due to the better control over the inter-
mediate states by utilizing a write-verify scheme, we can achieve tighter distributions for the intermediate states.
The high V; states show the sharpest distributions, which indicates that we are operating in the sweet spot region
where (i) the target V; value can be achievable by most FeFETs, (ii) we are in a switching range where the tendency
to overshoot decreases, and (iii) the more gradual switching when erasing allows the state to be set more reliably.

CAM-based architecture for associative search. CAMs can perform fast and energy efficient search
operations, but are practically limited in terms of the number of dimensions they can store and search. Although
CAMs (primarily TCAMs) are mainly used in network routing®, they have recently gained attraction and
showed prominence for similarity search and attention mechanisms® in machine learning applications such
as few-shot learning®**>* and hyperdimensional computing®!>*’. These applications require high-dimensional
search support, especially when solving complex problems/datasets. Thus, scalable and realistic architectures
must be devised to support high-dimensional search with CAMs. Given that increasing the number of CAM
dimensions (i.e., the number of columns in an array) faces physical challenges such as IR-drop’®, sensing"’, etc.,
the need to aggregate results from multiple sub-arrays in the analog or digital domain, is inevitable. While prior
efforts aim to aggregate results in the analog domain®!?, we consider aggregation in the digital domain as we can
save energy and be more robust to noise and variations.

Recent work proposed using time-domain circuits for aggregating HDC associative search results between
RRAM-based CAM sub-arrays® where each sub-array holds 16 dimensions of the class HVs. Each sub-array
has a voltage-to-time converter which converts the number of matched cells to a time signal. The time signals
from different sub-arrays are then added with a time-to-voltage converter to obtain the total number of match-
ing cells for each class HV. That said, the simulation results presented only show the addition of time signals
from two sub-arrays, whereas the paper suggests that to achieve 1k dimensions, the addition of 64 time signals
is required. As mentioned by the authors of the paper?, this approach can be highly susceptible to noise and is
limited in scalability. Another approach uses ADCs to count the number of mismatches and adds the results
across different slices of binary HVs". ADCs can have significant energy and area overhead and often dominate
total energy and area®. In this work, a 512x2048 PCM memory array is employed where the array is partitioned
into ‘f” slices and holds 10,000-dimensional HVs. This is similar to having multiple sub-arrays as the search
query for each partition is different, and f” steps are required to search all 10k dimensions of the HVs. Further,
they face structural non-idealities in programming the PCM array due to the large array size which has negative
effects on application-level accuracy>.

Here, we propose a tiled CAM architecture that can support high-dimensional associative search via voting.
Figure 3a shows the proposed architecture where 8 sub-arrays are tiled together to create an ‘Array, 4 Arrays
create a ‘Mat, and 4 Mats create a ‘Bank’. This architecture is scalable as it can increase the number of Banks to
support more dimensions. To use the proposed architecture for HDC, each sub-array holds d dimensions of
D-dimensional class HVs, and up-to 32 class HV's (32 rows in each sub-array), where d is the number of columns
(dimensions) of sub-arrays. The HVs are partitioned into d-dimensional slices and spread across different sub-
arrays. As an example, Fig. 3b shows how 32 128d-dimensional HVs can be stored on the CAM architecture.
The colors of the HV slices in Fig. 3b match where they are stored in Fig. 3a. During search, the D-dimensional
query is also sliced into d-dimension slices and sent to the corresponding sub-arrays. Each sub-array outputs (i.e.,
votes for) the row that is most similar to the query based on the best match search demonstrated in the previous
section, and sends its vote to the peripherals in the Array, which include registers and adders. The votes from
Arrays are then added using the peripherals (adders and registers) in Mats. Votes from Mats are added using the
peripherals (adders and registers) in Banks. Global peripherals including registers, adders, and comparators are
used to add all the votes from Banks and find the row that has been voted for the most number of times, which
is reported as the most similar HV to the query.

We designed a custom low-power SA (Supplementary Fig. 4) for the sub-arrays that can identify the row most
similar to query by sensing the ML voltages of all rows. The SA latches the output of the last ML to discharge
(i.e., the ML with the slowest discharge rate), and thereby indicating the best match. A detailed description of
SA operation is available in Supplementary Note 1. The designed SA is agnostic of the targeted CAM precision,
as well as the targeted distance function, as long as a ML pre-charge search approach is employed. Put another
way, TCAMs with Hamming distance and MCAMs with squared Euclidean and sigmoid-like distance func-
tions can all use the SA by (i) employing a ML pre-charge approach, and (ii) representing the similarity of data
stored on CAM rows with the query via the discharge rate of the ML. Thus, identifying the ML with the slowest
discharge, regardless of the CAM type and precision, is equivalent to finding the row that is most similar to an
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Figure 3. (a) proposed CAM-based architecture for associative search where each sub-array stores d
dimensions of the HV's and sub-arrays are arranged in Arrays, Mats, and Banks. (b) an example of mapping 32
D-dimensional HVs to the proposed architecture where the colors of HV slices correspond to the colors of the
architecture. (c) energy, (d) latency, and (e) normalized EDP of a single search with the proposed architecture
for SA-based implementations.

input query. (Note that for an MCAM with a Manhattan distance function, the ML voltage is too low for a ML
pre-charge approach.)

Figure 3c-e illustrate the energy, latency, and normalized energy-delay-product (EDP) of the proposed archi-
tecture for binary, 2-bit, and 3-bit implementations (see Methods for details of evaluations). The x-axis of the
heatmaps is the total number of dimensions that are supported (D), and the y-axis is the sub-array dimensions
(d). The D values on the x-axis are multiples of 1024 (1k) and the d values. Figure 3¢ shows that energy consump-
tion scales almost linearly when increasing D since we need more sub-arrays and peripherals as D increases.
For the same D, larger d results in lower energy consumption because as d increases, fewer peripherals and less
levels (Array, Mat, and Bank) are required as well. For example, for D = 1k, when d = 128 we only need one
array, but when d = 16, we need one Mat which consists of four Arrays and 32 sub-arrays. Moreover, the binary
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implementation on average achieves 1.24x and 1.31x energy improvement compared to 2-bit and 3-bit implemen-
tations, respectively. These improvements are associated with the higher ML and DL voltages (see Supplementary
Fig. 1 for DL voltages) of the multi-bit implementations to ensure a squared Euclidean distance function where
ML voltage is 0.8 V and 1 V for binary and multi-bit CAMs, respectively. The other elements of the architecture
are identical and thus the energy consumption and latency of the binary and multi-bit implementations are
comparable. Note that bit precision will have a significant impact on the application-level accuracy.

To understand the latency results in Fig. 3d, it is important to note that the latency of the SA scales inversely
with the capacitance of the ML. For larger values of d, the capacitance of the ML is larger, and the ML discharges
more slowly. For example, the SA latency for d=16 is 1.14 ns and for d=128 is 5.8ns. Moreover, all search opera-
tions happen in parallel and SA latency is constant with respect to D. On the other hand, the peripheral overhead
(which includes interconnect) assuming smaller values of d is greater than when larger values of d are employed.
Further, when D is sufficiently large (HV's with 6k elements), we require Bank-level peripherals regardless of d.
Here, peripheral latency is constant and the only differentiating factor is SA latency. Thus, for larger values of
D, d=16 achieves the best latency, and for smaller values of D, d=32 is best. The binary implementation on aver-
age achieves a 9% latency improvement compared to 2-bit and 3-bit implementations. This is due to the higher
latency of the SA when the ML is pre-charged to 1 V for multi-bit implementations. Figure 3e illustrates EDP
results, which can help identify design “sweet-spots”, and d=64 is often superior. This is explained by the fact
that small values of d result in high energy consumption and larger values of d result in high latency. Obviously,
the larger the D, the higher the EDP. However, D is an important parameter for application-level accuracy as
will be discussed in the next section.

The proposed architecture can utilize ADCs instead of the proposed SA to perform the same operations. This
can be achieved by using ADCs to digitize ML current, registers to store the outputs of the ADCs, and compara-
tors to find the best match in each sub-array. The rest of the operations are identical to the SA-based implementa-
tion discussed above. This implementation is less expensive than work in the literature where outputs of the ADCs
are aggregated across the architectural hierarchy such that final similarity results can be compared®"®. This is due
to the overhead of moving the similarity data across the architectural hierarchy. Supplementary Fig. 5a-c show
energy, latency, and EDP for 3-bit SA-based and ADC-based implementations of the proposed architecture. For
each figure of merit, the heatmaps are plotted considering the same color bar. The precision of the ADCs used
are log(d) to support sufficient precision for comparison of the similarities of the CAM rows and the query. Sup-
plementary Fig. 5a shows that the SA-based implementation requires less energy than an ADC-based approach
with additional peripheral overhead. The SA-based implementation is on average 4.73x more energy efficient
than the ADC-based implementation. Supplementary Fig. 5b shows that the SA-based implementation is also
faster than the ADC-based implementation. This is due to the fact that the SA compares 32 MLs simultaneously
while the ADC-based implementation digitizes 32 ML currents and then compares them to find the best match.
The SA-based implementation is on average 1.30x faster than the ADC-based implementation. Further, in terms
of EDP, the SA-based implementation is preferred as shown in Supplementary Fig. 5¢.

Notably, the proposed architecture can also support applications that require nearest neighbor search, which
includes, but is not limited to nearest neighbor classification®, clustering®, few-shot learning®, class-incremental
few-shot learning®, HDC'"?, reinforcement learning®', and bioinformatics®?. The scalability of the proposed
architecture allows realistic implementations of applications that need a large number of dimensions. That
said, the proposed architecture (unlike other efforts®!?) can impact application-level accuracy due to voting-
induced errors. Supplementary Fig. 6 shows a simple example of how voting can introduce errors for a binary
implementation; multi-bit implementations are also prone to similar errors. In the next section, we present an
end-to-end cross-layer evaluation of HDC applications using FeFET IMC compute kernels and investigate the
device, circuit, and architecture non-idealities which includes the negative effects of voting in HDC applications
with respect to d and D. It is noteworthy that our proposed architecture can utilize different CAM cell technolo-
gies for implementation. We evaluate a SRAM-based implementation of our architecture and compare it with
FeFET-based implementations in Supplementary Fig. 7.

In-memory HDC with FeFETs. HDC systems generally consist of an encoding module and an associative
search module. The encoding module embeds the input data to hyperdimensional space and represents it with
HVs. The encoding module is designed to map similar data (e.g., from the same class) to HVSs that are similar to
each other in the hyperdimensional space. The encoding module is initialized only once and is fixed during both
training and inference. The associative search module stores the class HVs generated during training and finds
the class HVs most similar to queries during inference. We implement a state-of-the-art non-linear encoding
module design based on the Radial Basis Function (RBF) kernel®. Fig. 4a shows this module where base HV's
(Bj,1 < i < D) are randomly generated from a standard normal distribution (1 = 0,0 = 1) and quantized to
p bits of precision where p is the precision of the HDC system. Base HVs are generated only once and are then
fixed throughout training and inference. To encode input data F with m features, we compute:

Qi = quantize(tanh(F - B;),p),1 <i <D (1)

where the hyperbolic tangent (tanh) of the dot product of each base HV and the input data is computed. The
quantize(., p) function linearly quantizes the values to p bits. The encoding mainly consists of MVMs that we can
also perform/accelerate using FeFET crossbar arrays?"%. The tanh and quantization function are approximated
together in hardware by taking the p MSB bits of the registers holding the outputs of the dot-product as the
quantized values (see Supplementary Note 2). Further, unlike associative search, the computation is independ-
ent for each dimension of the query. Thus, all computation can happen in parallel using a tiled crossbar array
architecture (Supplementary Fig. 9). Since MVM with crossbar arrays is a well-studied topic of research and is
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Figure 4. (a) HDC inference involves encoding the test data and searching for the most similar class HV in the
associative search module. (b) Accuracy results for the ISOLET dataset using the proposed in-memory HDC
system for different bit precisions. Similar to Fig. 3, the x-axes and y-axes are D and d of the associative search
module, respectively. The heatmap plots share the same color bar where the highest accuracy is the accuracy of
an FP32 4k-dimensional HDC implementation on GPU. (c) Effects of programming errors in terms of sigma of
variation on the application-level accuracy of 5k-dimensional HDC models for the ISOLET dataset. (d) and (e)
Mlustrate the improvement of FeFET IMC implementations over a GPU implementation in terms of energy and
latency for a single inference. The second y-axis shows the achieved accuracy of the models and the x-axis labels
describe the implementation, precision, and dimensionality of the models.

not the main focus of our work, we adopt the methods from the NeuroSim tool®® for our implementation and
analysis (see Methods).

Figure 4a shows the flow of HDC inference where input data is encoded using the encoding module to a
D-dimensional query HV. The query is then compared with the k class HVs (C; where1 < i < k) stored on the
associative search module, with each C; representing a class. The class HV with the smallest distance (with dis-
tance function §) from the query is the predicted class. Similar to'?, we train the HDC class HVs using software,
while considering hardware constraints. To do this, we initialize the encoding module with a p-bit precision
(p € {1,2,3}), and use it to encode all training data. The average of all encoded data belonging to the same class
i will be the representative class HV C;, which is the starting point of the class HVs. We further improve the
accuracy of class HVs with an iterative training approach® while considering the underlying hardware. We keep
two copies of the class HVs, the main copy and the auxiliary copy. The main copy consists of the quantized class
HVss that will be stored and searched for in the associative search module during inference. The main copy uses
the distance function of the associative search module (i.e., Hamming distance for binary and squared Euclidean
for multi-bit) and makes predictions based on the voting method to match the inference process of the hardware.
Further, the squared Euclidean distance function is based on single MCAM cell measurements (Fig. 1d). The
auxiliary copy has 32-bit floating-point (FP32) precision and helps accumulate information during the itera-
tive training process. In each iteration, training data is encoded and inference is performed. For query Q, if the
prediction of the inference I’ matches the data label I, no updates are needed. If I’ # 1, class HVs Cyand Cl/ in the
auxiliary copy are updated as follows:
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where §; = §(C;, Q), 8y = §(Cy, Q), and nyis akin to learning rate in neural network training. With this approach,
the updates are proportional to the distance of the query and the class HVs. The FP32 precision of the auxiliary
model ensures sufficient precision for learning. At the end of each training iteration, the main copy is updated
with the quantized version of the auxiliary model. At the end of training, the main copy is stored on the proposed
CAM architecture (Fig. 3a and b).

We evaluate the accuracy of the proposed solutions with widely used datasets in the HDC literature for voice
recognition (ISOLET®), activity recognition (UCIHAR® and PAMAP2%), and image classification (MNIST®®
and FACE®). Supplementary table 3 shows the details of these datasets. Fig. 4b and Supplementary Fig. 10 show
the accuracy of HDC inference for the ISOLET and other datasets using binary, 2-bit, and 3-bit FeFET imple-
mentations. The x-axes and y-axes of the plots are D and d of the associative search module, respectively. On
the y-axes, d =Max assumes that a single CAM can store and search for D dimensions, which is an ideal case
and is intended to show the degradation due to the voting approach. For each dataset, the three subplots share
the same color bar. The lowest accuracy of the color bar is set to 70% if there are outliers. The highest accuracy
on the color bar is the highest accuracy a FP32 HDC implementation on GPU can achieve (96% for ISOLET).

In Fig. 4b, d =Max shows that an ideal 3-bit (2-bit) implementation can achieve iso-accuracy when D > 4k,
where the ideal binary implementation fails to achieve iso-accuracy even with the largest D (D = 10k). Moreover,
for some datasets (ISOLET, and FACE), the accuracy trends saturate when D is sufficiently large. This shows
that accuracy improvements from continual increase in D will eventually be limited. The precision together
with the non-linearity of the multi-bit distance function enable higher accuracies than the binary implemen-
tation given the same amount of resources. For example, the binary implementation (2-state elements) with
D = 8k (8k x 2 = 16k) has as much precision as the 3-bit implementation (8-state elements) with D = 2k
(2k x 8 = 16k), but fails to achieve similar accuracies. Further, 2-bit results are better than the binary results
and often achieve iso-accuracy. Results from other datasets in Supplementary Fig. 10 follow the same trends.
Binary implementations might be sufficient to achieve iso-accuracy for smaller datasets such as PAMAP2 (Sup-
plementary Fig. 10b). However, multi-bit implementations are necessary for iso-accuracy when working on
larger datasets (all other datasets studied).

HDC HVs are holographic in nature and HVs belonging to different classes are encoded to be orthogonal
to each other. Thus, votes on the similarity of d-dimensional slices of the HVs (stored on the sub-arrays) can
represent the overall similarity of the HVs. However, as illustrated in Supplementary Fig. 6, voting can have
negative effects on the application-level accuracy. We study these effects by exploring d from 16 to 128 while also
sweeping D from 1k to 10k. In this way we change the total number of votes (D/d), the capacity of the HVs to store
information, and resilience to errors due to redundancy. Fig. 4b shows that for all implementations the accuracy
loss is most significant when d = 128 and total number of votes are small. Thus, each vote is more impactful on
the final prediction. For example, when d = 128 and D = 1k, there are a total of 8 votes which makes an erro-
neous classification more probable. When D is smallest, accuracy decline is highest because the HVs have the
lowest capacity and redundancy and are susceptible to errors. Conversely, when D is largest, little to no accuracy
degradation is observed. Moreover, the accuracy of the binary implementation is severely degraded by the vot-
ing approach while the 3-bit implementation achieves iso-accuracy when D > 6k with multiple d values across
all datasets. The 2-bit implementation also loses accuracy but can often achieve iso-accuracy when D = 10k.

As discussed in Section "Methods", FeFET device variations can also adversely impact search accuracy and
in turn application-level accuracy. Our demonstration shows that variations are expected when programming
FeFETs. We study these effects by modeling the variations as Gaussian distributions*?. Variations lead to shifts
in an FeFET’s V; and can increase/decrease the cell’s current contribution to the ML which is the output of the
cell’s distance function (Supplementary Fig. 11). Fig. 4c (Supplementary Fig. 12) shows the effects of variations
on the application-level accuracy of a 5k-dimensional HDC model for the ISOLET dataset (other datasets).
The x-axis is the standard deviation (sigma) of the variation and is swept from 0 mV (no variations) to 250 mV
(significant variations). For each sigma of variation o, we randomly sample values from a Gaussian distribution
with a standard deviation of o and add it to the class HVs and then perform inference. The encoding module
is instantiated randomly and is not affected by randomness in programming. We show the accuracy trends for
binary and multi-bit implementations and compare it with the highest accuracy of a FP32 implementation. The
binary implementation is more resilient than the multi-bit implementations due to the fact that the binary FeFETs
are programmed with high and low V;s and are more robust to variations. Similarly, 2-bit implementations are
more robust than 3-bit implementations due to more space between target V; values. However, all implementa-
tions are quite resilient to variations such that there is no accuracy degradation for sigmas less than 100 mV for
most of the datasets. The 2-bit array-level MCAM measurements in Fig. 2b show less than 100 mV sigma and
support that the programming variations of current FeFET technology do not negatively impact HDC accuracy.

As discussed in Supplementary Note 1, the SA does have some limitations with respect to how accurately it
can detect the distances between a query and patterns stored on a CAM. The main parameter that impacts SA
accuracy is minimum detectable distance, which is defined as the minimum distance required for differentiat-
ing between the best match and the second-best match. For example, for a TCAM with a minimum detectable
Hamming distance of 1, if the best match is a Hamming distance of 3 away from the query, the second-best
match must be at least a Hamming distance of 4 away from the query for an accurate identification of the best
match. For MCAMs, due to the complexity of the distance function, it is difficult to discuss the SA accuracy
directly. Thus, for MCAMs, we report the minimum detectable distance as a percentage of the range of possible
ML conductance. Minimum and maximum ML conductance are the conductance when all cells match their
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inputs (minimum cell conductance), and all cells observe the largest mismatch (maximum cell conductance).
The largest mismatch for a b-bit cell occurs when it is in state 1 and its input is in state 2b (or vice versa). Sup-
plementary Fig. 13 shows how the accuracy of the SA affects the application-level accuracy. We ensure that our
designed SA has a minimum detectable distance of 1 Hamming distance or 1.5% for no accuracy degradation.
It is possible to relax SA accuracy for faster operation (see Supplementary Note 1), but we maintain high SA
accuracy to make our CAM architecture amenable to applications that are more sensitive to such errors such as
class-incremental few-shot learning®.

We evaluate the end-to-end energy and latency of the proposed IMC HDC system and compare our results
with GPU-based implementations. An important parameter when profiling the GPU is the number of queries
in a batch. More number of queries in a batch allows the GPU to parallelize the computation and improve the
throughput with little to no latency overhead. Thus, we consider a single query and a thousand query batches
to represent cases where batching the queries is and is not possible. Ultimately, this will be a function of the
application-level use case. For example, if a real-time response is needed, batches may trend smaller; if not, larger
batches may be possible. We profile the execution time of HDC inference on a GPU and show the breakdowns
for encoding and associative search in Supplementary Fig. 14. Details of implementation are available in Meth-
ods. For both cases, the associative search dominates the execution time even though the encoding has more
parameters than the associative search (e.g., 617xD vs 26xD for ISOLET). This is because the GPU is not as well
optimized for similarity measurements as it is for MVMs. As such, the proposed CAM architecture can play a
key role in IMC implementations by accelerating search.

Figure 4d and e illustrate the total energy and latency of a single inference for the ISOLET dataset (see Supple-
mentary Fig. 15 for other datasets). We use double-axis plots to simultaneously consider accuracy in conjunction
with energy and latency. Here, we consider d = 64 and the value of D that leads to the highest accuracy for each
bit precision for IMC implementations. The binary IMC implementation outperforms all other implementations
in terms of energy and latency, but fails to achieve software-equivalent accuracies. The 2-bit IMC implementation
achieves better accuracies than the binary implementation but may not reach iso-accuracy for some datasets. The
3-bit IMC implementation consistently achieves iso-accuracy at only 6k dimensions. We report results for infer-
ence of a single query on GPU at 4k dimensions for batch sizes of a single query (q=1) and a thousand queries
(q=1000). As expected, the case with a thousand query batch achieves a significant improvement over the single
query batch case due to the parallelism of GPU. We compare our IMC implementations with the thousand query
batch case. The 3-bit IMC implementation on average reduces energy consumption and latency by 826x and
30x, respectively, when compared to a GPU implementation. Although when running on GPU, the applications
are search dominant, in IMC implementations, encoding dominates energy and latency. This is due to the 8-bit
precision of the inputs requiring 8 cycles to compute the output using ADCs, accumulating data from crossbars
across the architectural hierarchy, and the number of features which is much larger than the number of classes.
However, it is essential to accelerate both encoding and associative search to achieve maximum end-to-end
improvements as the encoding can be a significant portion of the workload when running on GPU. Further,
there are other applications ripe for acceleration with IMC implementations that are search dominant. It is worth
noting that an IMC implementation can also achieve higher throughput by architectural-level optimizations to
achieve further improvements over the GPU.

Discussion

FeFET is a promising technology for IMC implementation. We showed that multi-bit FeFETs are not only desired,
but also necessary for HDC applications with software-equivalent accuracy requirements. Both 2-bit and 3-bit
FeFETs achieve higher accuracies than binary FeFETs and our 2-bit demonstration shows a path towards multi-bit
FeFET IMC realizations for HDC applications. Although we did not consider the material layer in our cross-
layer design analysis, material stack optimizations are highly sought after and can propel FeFETs towards higher
bit-precision, lower variation, and smaller size realizations. Although, even at the current state, we showed that
FeFETs are viable for IMC implementations.

In this article, we presented FeFET-based IMC systems for HDC applications that can achieve software-
equivalent accuracies. We adopted a cross-layer design perspective and proposed solutions for challenges in
the device, circuit, architecture, and application layers. We demonstrated, for the first time, array-level parallel
FeFET MCAM operations. We proposed a scalable and efficient CAM-based architecture that can support high-
dimensional associative search and is not restricted to only HDC applications. We evaluated the accuracy, energy,
and latency of the proposed IMC systems for HDC applications and achieved significant energy efficiency and
speedup compared to GPU implementations. We studied the effects of non-idealities from different design layers
on application-level accuracy and ensured software-equivalent accuracies. The methods used in our work are
extendable to other devices, circuits, architectures, and applications.

Methods
FeFET fabrication. The FeFET-based AND array test structures are fabricated in GlobalFoundries’ 28 nm
high-k/metal gate technology node, for which co-integration with CMOS devices has been demonstrated”.

FeFET MCAM array-level characterization. For the electrical characterization, passive 9x7 logical-
AND connected FeFET arrays are utilized. The test-structure enables direct access to row-wise connected gate-
contacts along wordlines (WL) and source-/drain-contacts, connected column-wise along sourcelines (SL) and
bitlines (BL). The FeFETSs are characterized using a PXI-Express system from National Instruments. Each con-
tact of the array-structures can be controlled by a NI PXIe-6570 pin parametric measurement unit (PPMU) and
NI PXIe-4143 source measure unit (SMU). Source selection for each contact is handled by a custom switch-
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matrix, which connects to the array-structures via the probecard (Supplementary Fig. 16 and Supplementary
Fig. 17). Prior to read/write operations, all FeFETs are preconditioned for 50 cycles with WL pulses of +4.5 V
and -5V at a pulse length of 500 ns each. For programming and erasing, the SMUs are utilized, keeping SLs and
BLs at ground. After each program pulse, the devices are read after 300 ms to ensure sufficient time for charge
detrapping. The FeFET read operation is done with the SMUs by applying a voltage ramp from 0 V to 1.4 V in
0.1 V increments while measuring current at the drain terminals, which are biased to 1.1 V. The bulk and source
terminals are kept at ground. The read operation takes approximately 1 ms. To enable array-level multi-level
operation a write-verify scheme is used. Initially all FeFETs of the array are set to a high V; state by a single erase
pulse of -5 V for 500 ns, applied to all WLs, while having all other contacts grounded. Writing is done in parallel
per WL. To mitigate device-to-device variations in the switching behavior, write voltages ranging from 1.25 V to
a 5.5 V with pulse lengths of 100 ns in increments of 40 mV are applied using the SMUs. The V; of every FeFET
is read after each program pulse to monitor the states. Once a FeFET reaches its target V3, it is put on inhibit. The
inhibit voltages are based on a VDD/3 scheme, therefore the inhibited FeFETs on the active WL are set to a SL/
BL voltage of 3.2 V and the FeFETs on the passive WLs are set to a WL voltage of 1.6 V. After all FeFETs along
one WL are set, writing is continued on the next WL.

The MCAMs are constructed from the AND-arrays. The BLs represent the MLs, the WLs represent the DLs,
where 0odd WLs correspond to a DL and even WLs correspond to a DL. Therefore, the 9x7 arrays allow for
creation of 4x7 MCAMs. The WL9 is not used and the FeFETs connected to WL9 are kept in high V; state at all
times to suppress leakage currents. One MCAM cell is constructed by two FeFETs that share the same BL and SL
(Supplementary Fig. 2). The two FeFETs of a MCAM cell are programmed to opposing target V7’s individually.
For MCAM verification on array-level, a pattern (Supplementary Fig. 1) is written per WL into the AND-array
by using the write-verify and inhibit schemes described above. The query search is performed with the PPMU,
applying one static search condition at a time on all gate-terminals while sweeping the BLs in parallel from 0.1
Vto 1.0 V in steps of 0.1 V and measuring their currents. The first query is supposed to match the stored pattern
of BL1. Afterwards, 6 additional queries with increasing squared Euclidean distance are verified, as shown for
BL1 in Supplementary Fig. 2. The search is repeated for all other 6 BLs, resulting in 49 search-patterns.

FeFET MCAM single-cell characterization. For the single-cell MCAM characterization a 3-bit preci-
sion is explored. The V; states are distributed between 0.1 V to 1.15 V in steps of 150 mV. The states are set by
erase operation, which is typically more gradual due to the intrinsic CPP effects’””!. The erase voltages range
from —-0.8 V to —5.0 V with pulse lengths of 100 ns in decrements of —50 mV. For the single-device characteriza-
tion no inhibit-scheme is used. An MCAM cell is constructed as in the array-level characterization from two
FeFETs of different WLs (Supplementary Fig. 2). To avoid leakage currents on the active BLs, the whole array is
fully erased before an MCAM measurement. Afterwards, the two active WLs of the MCAMs are programmed
to the lowest V;. Subsequently, the setting of the two target V; states is performed by a write-verify scheme as
described above, except that this time the V; state is shifted from the low V; state toward the high V; state. After
a single MCAM cell is successfully programmed and read, the whole array is fully erased again, and the method
can be repeated with the next two FeFETs.

Latency and energy estimation. To evaluate and benchmark energy efficiency and latency of the pro-
posed associative architecture, a combination of SPICE and pre-RTL simulations are employed. The Preisach
FeFET model’* is used in HSPICE to simulate FeFET CAMs in 22 nm technology node. The Preisach model is
not scalable and only supports FeFET device sizes of 200 nm by 100 nm in channel width and length. ML and
DL parasitic capacitance are estimated based on the methods in*’. The SA circuit is designed and evaluated with
HSPICE assuming a 22 nm predictive technology model”®. Adders, registers, and comparators are evaluated
based on pre-RTL simulations in Aladdin’. Array (8 CAMs) interconnect is evaluated based on RC modeling
following 22 nm design rules extracted from NVsim”. Flash ADCs (4 MLs time-share 1 ADC) are used for the
ADC-based implementation and are evaluated with NeuroSim®. The components required for realization of the
architecture with different D and d are calculated, and the total energy consumption is estimated by adding the
energy consumption of all modules and a 10% global interconnect overhead as in’®. The latency is estimated by
adding the latency of components in the longest execution path, i.e., CAM and sense-amplifier latency, Array-
level peripherals, Mat-level peripherals, Bank-level peripherals, and global peripherals. Again, a 10% global
interconnect overhead is added. The encoding module is evaluated using NeuroSim® in the 22 nm technology
node. NeuroSim is an integrated framework that supports device-circuit-architecture hierarchical evaluations of
crossbar designs. Supplementary Fig. 9 illustrates the tile-based encoding module. FeFET crossbar arrays of size
128x128 are utilized. 8-bit inputs are applied in a bit-serial fashion to the WLs, and 4 BLs time-share a 5-bit flash
ADC. The GPU energy and latency measurements are based on an NVIDIA Quadro RTX 6000 GPU built on the
16 nm process. The latency is measured for HDC applications implemented with Pytorch”” based on HVs with
int32 datatype. Power consumption is measured using the NVIDIA System Management Interface (nvidia-smi)
tool and energy consumption is calculated based on E = Pt.

Data availability
The data supporting plots within this paper and other findings of this study are available with reasonable requests
made to the corresponding author.
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