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Abstract—Hyperdimensional computing (HDC) has been pro-
posed to more closely model the brain from the abstract and
functionality level. Compared to the traditional sequential re-
gression model, HDC based regression model naturally supports
parallel operation, making it an ideal algorithm to be accelerated
on the FPGA platform. In this paper, we propose HyDRAF, an
FPGA acceleration of hyperdimensional regression supporting
online learning. To overcome the computation overhead from the
long-size hypervector, we introduce multiple FPGA optimizations
to efficiently handle long vector access, such as on-chip storage
partitioning. Furthermore, we optimize the model update process
by using efficient sparse matrix representation. We also integrate
the encoding module into the accelerator to realize online
training by reducing off-chip DRAM access, thus enhancing
FPGA resource utilization. We also evaluate the effectiveness
of our approach on a wide range of regression problems. Our
results show that the FPGA platform provides, on average, 11.8x
speedup and 27.5x energy efficiency compared to the state-of-the-
art regression method running on NVIDIA GTX 1080 GPU. On
a Xilinx Alveo U200 accelerator card platform drawing less than
4 Watt for kernel Virtex Ultrascale+ XCU200 FPGA, HyDRAF
demonstrates up to 1.2 million data classifications per second.

1. INTRODUCTION

Regression is supervised learning which is used to predict
continuous values. It is widely used to estimate the relationship
between a dependent variable. Regression is applied to predict
the outputs, forecast the data, analyze the time series, and
find the causal effect dependencies between the variables [1].
Regression techniques need to rely on sophisticated and costly
deep learning algorithms. However, running these algorithms
during training results in significant computational power
and storage, which is beyond the capability of existing edge
devices [2]. As a result, many devices cannot enable on-device
learning; thus, they stream most data to the cloud for analysis.
This data transmission leads to scalability, security, and privacy
concerns. Therefore, it is essential to enable robust, scalable,
and real-time learning on embedded devices with limited
computing capability and off-chip memory.

Hyper-Dimensional Computing (HDC) is introduced as an
alternative computing model mimicking crucial brain proper-
ties [3], [4] for energy efficiency and robust computation. HDC
is motivated by the observation that the human brain operates
on high-dimensional data representations. In HDC, objects
are thereby encoded with high-dimensional vectors, called
hypervectors, which have thousands of elements [5]. HDC
incorporates learning capability along with typical memory
functions of storing/loading information. It mimics important

functionalities of the human memory model with vector opera-
tions, which are computationally tractable and mathematically
rigorous in describing human cognition. HDC provides several
advantages as compared to existing deep learning solutions:
(1) being highly parallel and suitable for online on-device
learning [5], (2) exposing hidden features; enabling single-
pass learning with just a few samples [6], [7], and (3) being
robust against noise and corrupted data [8], [9].

Since the HDC needs to compute many values for a single
operation, the conventional CPU-centric architecture would
not be the best platform to run the HDC applications. HDC is
easily parallelizable and can benefit from hardware accelera-
tors. Prior work showed how the high-dimensional and parallel
nature of HDC is ideal for acceleration in traditional hardware
platforms, such as FPGA and ASIC [10], [11], [12], [13].
However, prior work primarily focused on HDC classification
acceleration [11], [12], [14], [15]. In contrast, in this paper, we
present a design to accelerate hyperdimensional regression and
support online learning on various different FPGA platforms.
Our solution, called HyDRAF (Hyperdimensional Regression
Accelerator on FPGA), introduces several architectural opti-
mizations to maximize throughput by getting the best use of
FPGA resource utilization. Here are the main contributions of
the paper:

o« HyDRAF is an online learning framework for accelerat-
ing hyperdimensional regression on FPGA. Our regression
exploits hyperdimensional primitives to encode raw data
into high-dimensional space. Then, it performs the model
learning process by similarity checking of the distance of
an encoded query with a model in high-dimensional. By
implementing HD encoding, training, and inferring at the
same platform, our solution, therefore, is a real full-stack
HD computing accelerator.

« We conduct hardware/software co-design targeting online
regression task. First, we introduce an on-chip storage
partitioning to efficiently handle long vector. Second, we
optimize the model update process by using efficient sparse
matrix representation. We integrate the encoding module
into the accelerator to realize online training by reducing off-
chip DRAM access (I/O utilization), thus enhancing FPGA
resource utilization.

« Unlike the existing method that encodes data once offline,
our solution explores the opportunity of iterative data encod-
ing. Our solution stores raw data in off-chip DRAM and re-
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Fig. 1. Hyperdimensional regression process.

encode data in every iteration. On the one hand, this ensures

the off-chip memory bandwidth is not a computational

bottleneck. On the other hand, this reduces on-chip data
storing overhead. Encoding data on-chip also enhances the
training and inferring process’s flowing capabilities.

We also evaluate the effectiveness of our approach on a wide
range of regression problems. Our results show that the FPGA
platform provides, on average, 11.8x speedup and 27.5x
energy efficiency compared to the state-of-the-art regression
methods running on NVIDIA GTX 1080 GPU. On a Xilinx
Alveo U200 accelerator card platform drawing less than 4
Watt for kernel Virtex Ultrascale+ XCU200 FPGA and total
41.7 Watt for the whole board, HyDRAF demonstrates up to
1.2 million data classifications per second. During training,
HyDRAF also processes 0.32 million data per second at each
epoch, enabling online learning from the data stream.

II. HYPERDIMENSIONAL REGRESSION

Hyperdimensional Computing (HDC) is introduced by neu-
roscientists as an alternative computing method to model
human memory [3], [12]. HDC mimics crucial properties
of human memory using high-dimensional vectors, called
hypervectors. For example, the brain efficiently aggregates
and memorizes the relationship between data. In the HDC,
the addition of hypervectors imitates the data aggregation,
and we can quantify the inter-data relationship based on the
hypervector similarity.

Figure 1 shows an overview of Hyperdimensional regres-
sion [4]. The first step in HDC is to map each data points
into high-dimensional space. The mapping procedure is often
referred to as encoding. The regression function operates over
encoded data. During regression, we first create two sets
of models: Cluster Model to cluster data points with high
similarity, and Regression Model to perform the prediction.
Each model consists of multiple vectors with the same dimen-
sionality as encoded data points. Each vector in the regression
model corresponds to a cluster of inputs aggregated in a
cluster hypervector. During training, HyDRAF first checks the
similarity of a data point with the input model. Depending on
the search result, we update the cluster and regression model
accordingly. Here, we explain the details of HDC regression.

Hyperdimensional Encoding: Encoding is the first op-
eration involved in HDC. Here, we consider the state-of-
the-art encoding method for feature vector. Let us consider
an encoding function that maps a feature vector F =
{f1, fo,..., fn}, with n features (f; € R) to a hypervector

H = {h1, h2,..., hp} with D dimensions (h; € R). We
generate each dimension of encoded data by calculating: H=
S 0o fi - Bi, where B; € {0,1}P are randomly generated
base hypervectors. Since randomly generated hypervectors are
nearly orthogonal (§(B;,, B;,) ~ 0, where § denotes the cosine
similarity), each base hypervector can retain the spatial or
temporal location of each feature in an input.

Model Learning: Let us assume HyDRAF with k&
models. HyDRAF stores two sets: cluster hypervectors
(C = {C1,Cq,---,Ck}) and model hypervectors (M =
{/\711,/\;1'2, e ,M k })- The cluster hypervectors are initial-
ized to random binary values, while model hypervectors are
initialized as zero hypervectors. Figure 1 shows the function-
ality of regression over encoded data. We first check the simi-
larity of S with all cluster hypervectors. Each similarity value
shows the confidence that a data point belongs to that cluster
(@). For the same encoded data, we also perform regression
on the k available models (@). Then, we predict the output
value using all models and their_corresponding confidence
value (@): § = Zfil 4(5,C;) M;.S. The predicted value
is the weighted accumulation of all regression models. The
weight of each model, §(S, C;), determines the confidence of
each cluster center for having S. During training, HyDRAF
updates the model based on how far is this prediction from the
actual output value (@): M; « M; + aly —g) x S, where
term ‘y — ¢’ indicates the error between the actual output
and predicted result and ‘e’ a hyperparameter that controls
the speed of model update during the training phase. Our
regression model continues iterative updates over training data
points until the quality of regression stabilizes during the last
few iterations.

III. HYDRAF OVERVIEW

The hyperdimensional regression model has sequential
computing process [4]. The encoding module, cluster-
ing/regression, and model update are happening one after each
other to perform a regression task. This sequential computing
is suitable for CPU-centric architecture as CPUs have access
to limited resources. CPU is more suitable for control logic
complex computation but less parallel computation. However,
accelerators often have a huge number of resources that could
use to parallelize the regression process. This makes it more
suitable to be realized on computing devices with a large
volume of computation units, such as FPGA and GPU. Unlike
neural network, HDC operates over low-precision values that
makes it optimal for acceleration on FPGA platform [12].
However, the long size of the hypervector makes it hard to
naively move HDC design into FPGA. For fully parallel HDC
computation and high throughput regression, it is necessary
to fully utilize on-chip resources. Previous work [4] only
proposed using HDC for regression task, but on the one hand
didn’t optimized its regression algorithm based on FPGA’s
available resources, on the other hand is a sequential learning
process. In this section, we conduct a hardware/software co-
design and introduce multiple optimization techniques to ac-
celerate HDC regression on a wide range of FPGA platforms.
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A. Matrix-Based HD regression

HDC regression is performed originally sequentially for
each training sample [4]. However, to utilize FPGA parallel
computing capability, we develop a solution to train regression
on a batch of data. The batch-based training maximizes
the FPGA resources utilization and also balance FPGA I/O
overhead. In FPGA, I/O utilization (i.e., AXI4 bandwidth)
significantly impacts the required time to load data from off-
chip memory (e.g., DRAM) to FPGA. Here, we propose a
matrix-based, parallel HDC regression model enabling highly
parallel batch training. Our solution significant speeds up the
training computation.

B. Model Update

Let us assume our regression model has K cluster hyper-
vectors (C) and accordingly k regression hypervector (M).
We suppose the size of each hypervector is D. The purpose
of using cluster hypervector is to select regression hypervector
according to each input hypervector. The cluster hypervector
matrix is initiated to random values, while the regression
hypervector matrix is initiated with all O elements. Let us
assume a batch of encoded data with size of N: H =
{H, Hy, ..., Hy}.

To update each features of our regression model, the first
step is to generate the confidence matrix A. The calculation
is conducting inner production of training batch matrix H
and cluster matrix C: A = H - CT, where C7 indicates a
transposed clustering matrix. The generated confidence matrix,
A, has a size of K x N. In this matrix, each row corresponds
to one training data in a batch, and the column represents the
number of clusters. For example, A, ; represents i'" train data
in a batch and its corresponding confidence to cluster j*. We
also apply softmax function to normalize A to get A’. The
final confidence matrix A’ is like a weight matrix in a neural
network which will be used later. Parallel with the clustering
process; we also predict the regression outcome using input
H and regression matrix M: P = H - M.

To compute the regression result, our solution weights every
regression model using the confidence matrix A’ obtained
from cluster model. We call the weighted prediction result,
Y = P ® A’. The reduction of this outer product on cluster
direction gives us ﬁn Here, Y., is the prediction of the ith
training data in the batch.

Model Update We use the prediction result to update
the cluster hypervector matrix C and regression hypervector
matrix M. We will calculate loss first for each training batch
and use the loss with the training batch to update the model.
The loss calculation is: £ = Y Yt, where Y} is the label of
the training batch. For regression hypervector matrix update,
each member of training batch will be multiplied with its
prediction loss and added to each clusters of regression matrix:

N
Mzncw = Mlold +a* Z Ej * Hj for
j=1

Cluster Update: For cluster hypervector matrix, the update
process is more complicate. Since each hypervector is able to
store limited information, we only need to update each training
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Fig. 2. Top FPGA Microarchitecture Design.

(Encoded data)

batch’s member for a cluster hypervector that has the highest
confidence. Otherwise, our regression results will be overfitted.
We use a select matrix, called S, which has N x K size. The
rows and columns of the select matrix represent the cluster and
batch indices, respectively. The value of matrix S is shown

below:
S. . — 1 max {A]} == A7’j
“I 710 otherwise

This indicates that for every element of select matrix S,
for example, S;; will be 1 only when the training batch’s
jth data’s highest confidence index is cluster i. Otherwise, the
value of S is 0. After having the select matrix, we can update
the cluster hypervector matrix:

Cnew = Cold +S- {LT : H} (1)
In other words, we first compute the dot product of LT and H,
so each encoding hypervector of the training batch is multi-
plied with its corresponding loss value. We call the production
result as H,,.,,. Then, we calculate the dot product of the select
matrix with this updated training batch hypervector matrix
H,.c.,. In this way, all training hypervector that should update
the same cluster hypervector will be accumulated.

C. Prediction

After training the regression model, we can use the model to
predict new data. There are two steps for new data prediction.
The first is to use the same encoding method as mentioned in
the training process to map the new data into high-dimension.
Here, we only need to encode one data point instead of a
batch of data. The second step is to compute the similarity
of encoded hypervector with the cluster matrix C to generate
confidence vector A,. Finally, we perform the prediction using
the following equation: Y = Zfil A,(M; -H).

IV. HYDRAF OPTIMIZATION

Our solution performs regression over a batch of encoded
data coming from off-chip DRAM via AXI Interconnect, based
on AMBA AXI4 bus protocols. In the first step, HyDRAF
computes the similarity of a query with cluster hypervec-
tors (@). Meanwhile, HyDRAF also predicts the regression
outcome between model matrix and query (@). With batch
query hypervector input, both two operations (@ and @)
are matrix-matrix multiplication (M2MM). The regression
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prediction is weighted by confidence matrix (@), which is
a two-matrix outer product operation. After calculating the
loss result, we update the regression model and cluster model
(@ and @). Updating cluster model is much harder since in
naive implementation, to avoid memory access conflict, there
is two M2MM operations during the updating process (@). In
this section, we analysis the main challenges of implementing
our HDC-based regression on FPGA. Then, we present our
optimization techniques for highly optimized and efficient
regression implementation on FPGA.

A. Hypervector Fragmentation

Unlike traditional neural networks, HDC regression oper-
ates over hypervectors using well-defined hyperdimensional
primitives. HDC works transparently based on information
theory. The capacity of each hypervector to memorize or
learn information can be mathematically defined. This capacity
depends on two factors: (1) dimensionality of a hypervector,
(2) precision of each hypervector element. In HDC, there is
a trade-off in selecting dimensionality and precision. Using
low precision hypervectors (e.g., single-bit), HDC needs to
rely on very long hypervectors for computation. On the other
hand, by increasing the precision of each element, HDC can
operate over shorted size vectors. This shorter size should still
be long enough to ensure nearly orthogonal representation.
For example, a binary hypervectors with D = 10k has a
similar theoretical capacity as an 8-bit precision hypervector
with D = 1k. The selection between high or low precision hy-
pervectors depends on the underlying hardware. For example,
FPGA has access to several low-cost lookup tables (LUTS).

We partition the long hypervector into several sizes of T'
chunks where each chunk consists of an equal number of
dimensions with a certain precision (e.g., 4-bits). This will
fragment a single hypervector into % chunks. These chunks
will be pre-fetched into on-chip memory (shown in Figure 3).
In our architecture, the complexity of operations relates to the
precision of hypervector elements, and the dimensionality of
matrix multiplication relates to chunk size (7).

B. On-chip Storage Partitioning

We partition all data stored on-chip, including cluster model
matrix, regression model matrix, and training data matrix.
This partitioning parallelizes the matrix multiplication and
pipelines the computation. During the FPGA design pro-
cess, we partition the original 2-dimensional matrix into 3-
dimensional. Figure 3 shows the cluster matrix stored in
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Fig. 4. M2MM accelerator microarchitecture design.

partitioned BRAM blocks. The first dimension is the index
of the chunks (Figure 3). The matrix operation size depends
on the chunk size (T); increasing a separate dimension here
will make the later accelerator’s pipeline design much more
manageable. In this way, later M2MM operation and on-chip
BRAM update will be chunk by chunk pipeline. The second
dimension is the number of clusters or the batch size (Fig-
ure 3). For each cluster, M2MM will be independent read and
write to speed up the execution. The third dimension represents
the size of each chunk. In our design, the first and second
dimensions of on-chip BRAM are fully partitioned to pipeline
the matrix multiplication through chunks and parallelize the
multiplication and addition inside chunks.

C. Systolic Array Acceleration

Prior HDC researches exploit vector-vector or vector-matrix
operations, which mainly use tree adders and single boolean
logic to finish the computation. On FPGA with massive
parallel operation supported, it is necessary to use M2MM
operation. In this work, we leverage systolic array to enable
parallel hypervector multiplication. As shown in Figure 4, we
take similarity check between query and cluster matrix as
example to illustrate the design. The height of the systolic
array is the batch size, N, and its width is cluster size,
K. There will be N x K processing elements (PE) in the
whole array. Each PE consists of a 8-bits to 8-bits (depending
on the data type of the accelerator, it could be 4-bits to 4-
bits) multiplier and a accumulator. As mentioned before, we
partition the on-chip cluster matrix, regression matrix, and
training batch data, which makes the foundation for pipeline
calculation of the matrix-matrix multiplication calculation.
Due to pipeline, the M2MM complexity is reduced from
O(K-N-T) to O(T +max{K, N}). Here the pipeline stage
is the chunk size 7', the initiation interval (II) is the single PE
execution time. In theory, the total execution time (7¢,..) for
one chunk of training batch (N x T inner product with cluster
matrix (K x T) will be: Topee = I X (T 4+ max{K,N}).

D. Updating-Matrix Sparsity

Compared to the sequential regression model, one of the
obstacles of HyDRAF is using the select matrix to update the
cluster hypervector matrix BRAM. Let’s revisit Equation (1).
Although we can create a select matrix S efficiently in the
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softmax layer, the way that the register or BRAM is used
to store the select matrix is not efficient. Since for each
data of training batch, it can only have one target cluster,
which means for a K x N S matrix, there are only K 1s
and the rest will be 0. The matrix S is a typical sparse
matrix. Another problem of Equation (1) is that there are
two M2MM operations involved, where one of them is sparse
matrix-matrix multiplication(SpM2MM). Although FPGA has
powerful parallel processing ability by deploying systolic array
accelerator, we use coordinate list (COO) to store select matrix
information and use only one matrix-matrix multiplication to
finish cluster matrix update. As shown in Figure 5, we will
have one cluster index array (S;) with size K. The index of
the index matrix, S;, will be the address of training data in the
batch, and the value of the array element will be the index of
the cluster. For example, suppose 1** member of the training
batch has a corresponding cluster index of 3. In this way,
S;[1] = 3. We also need S, to store the confidence value of
the select matrix. It is obvious to see that the storing overhead
or space complexity is reduced from O(KxN) to O(2xK).
Besides reducing space complexity, using COO representation
also reduces time complexity. We modify the Equation (1)
below:

Cnewi = Coldi + Hj . SL[J} : L[J} (2)

Here j is the index of data in training batch and its range
is [1, N]. The ¢ is the index of j’s corresponding highest
confidence, which is:

i =S;[j]

Based on (2) and (3), the new time complexity of updating
cluster matrix BRAM for each chunk is reduced from O(T x
N + (T 4+ max(N, K))) to O(T x N). After using COO
representation for sparse select matrix, both execution time and
hardware resources utilization efficiency have been improved
significantly.

for j € [1, N| 3)

V. EVALUATION
A. Experimental Setup

We synthesize and implement our accelerator design on
several different FPGA platforms with different available re-
sources, including Xilinx Virtex UltraScale+ FPGA VCUI118,
Xilinx Alveo U200, and Xilinx Alveo U250. Specifically, we
design and debug our accelerator on Xilinx Vitis HLS[16].
After generating the accelerator’s RTL code from Vitis, we
import it as an IP module into Vivado[17]. The system-
level block design on Vivado is shown in Figure 6. HyDRAF
access off-chip DRAM via AXI Interconnection IP. We use a
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Fig. 7. Comparison of the mean square error (MSE) of regression between
HDC-based regression model and DNN on different datasets when K = 8 and
D = 2K bytes.

memory management unit (MMU) between HyDRAF and AXI
IP to transfer memory address space from 64 bits to 32 bits.
Since our accelerator is targeting to be deployed on an edge
computing environment, the MicroBlaze CPU, a lightweight
Xilinx softcore CPU widely used in embedded system design,
is used to control the accelerator. We also compare the C++
version of our design on ARM Cortex A53 CPU and PyTorch
for optimized implementation of HDC regression on NVIDIA
1080 GPU. One of the common problems that restricted FPGA
accelerator development is the balance between resources
utilization and performance.

B. Parameters and Datasets

There are five knobs in our design: single data precision (P),
the number of chunks that we use to divide the hypervector,
%, each chunk’s size of T', the number of cluster K, and
the size of batch N. Each parameter affects HDC regression
accuracy and performance. We report the effectiveness of our
approach in terms of both algorithm accuracy and hardware
efficiency. The algorithm metric is validation loss, while the
hardware metrics include throughput and energy consumption.
We evaluate HyDRAF accuracy and efficiency on popular
regression datasets, including Boston housing (Boston) [18],
NASA airfoil self-noise (Airfoil) [19], wine quality prediction
(Wine) [20], Facebook performance metrics (Facebook) [21],
combined cycle power plant prediction (CCPP) [22], and forest
fire prediction (Forest) [23].

C. Quality of Regression

Figure 7 compares HyDRAF’s regression accuracy with the
deep neural network (DNN). Here the DNN model is trained
with Tensorflow[24]. Here we choose the mean square error
(MSE) as the measurement of the model’s regression error
metrics. Less MSE represents higher regression quality. Our
HDC-based regression model with configuration in Figure 7
shows relative regression accuracy compared with DNN.
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TABLE I
QUALITY OF HDC REGRESSION USING DIFFERENT PRECISIONS, NUMBER OF CLUSTERS, AND THE DIMENSIONALITIES.

| 8-bit Precision ‘

16-bit Precision | Float Precision

# clusters (K) \ Dimension (D) | D=0.5k D=Ik D=2k D=3k D=4k | D=0.5k D=Ik D=Ik D=3k D=4k | D=0.5k D=Ik D=2k D=3k D=4k
K=1 751 787 822 840 840 | 791 828 865 884 884 | 807 845 883 902 902
K=2 777 822 849 867 867 | 809 856 884 903 904 | 8.6 874 902 921 921
K=4 86.6 894 917 921 922 | 883 912 935 940 940 | 883 912 94l 941 941
K=8 8.5 875 903 912 941 | 883 912 935 940 941 | 912 931 950 950 950
K=16 912 922 943 943 950 | 921 931 950 950 950 | 926 934 950 950 950
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Fig. 8. Comparison of HyDRAF efficiency as compared to state-of-the-art DNN on GPU and FPGA.

The quality of HDC regression directly depends on the
parameters. Table I shows the average quality of regression
using different bit precision, dimensionality, and number of
clusters. For precision, we exploit 8-bits, 16-bit, and floating-
point. The number of clusters is also changing from K =1 to
K = 16. All results are reported using a batch size equal to
N = 8. Our evaluation shows that HDC regression can provide
maximum quality of using any precision. However, for low
precision models, HDC requires a higher number of clusters to
ensure maximum quality. For example, our regression ensures
maximum accuracy using K = 12 clusters using the floating-
point model. Using 8-bit precision, the same accuracy can be
provided using K = 16 clusters.

In addition, Table I shows the impact of hypervector dimen-
sionality on HDC regression accuracy. Similar to the num-
ber of clusters, HDC regression accuracy increases with the
hypervector dimensionality. However, this accuracy saturates
using a hypervector larger than D = 3k. For example, HDC
regression using D = 2k and D = 512 only provide 0.7%
and 3.8% lower quality as compared to regression with full
dimensionality of D = 4k (K = 16 and 8-bit precision
model).

Dimensionality is also in trade-off with the number of
clusters. To provide the same quality or regression, one can
select to use a high-dimensional model with a lower number
of clusters (D > and K <) or a higher number of clusters
with lower dimensionality.

D. Efficiency vs. State-of-the-art

Figure 8 shows the performance speedup and energy effi-
ciency of HyDRAF running on GPU and FPGA. The results
also compare HyDRAF efficiency with state-of-the-art HDC
implementation [4] and state-of-the-art DNN accelerators run-
ning on GPU and FPGA. We used DNNWeaver V2.0 [25] for
efficient implementation of the NN inference, and FPDeep [26]
for NN training on a single FPGA device. FPGA implemen-
tations are optimized to maximize performance by utilizing
FPGA resources. All results listed in Figure 8 are relative to
DNN performance and energy efficiency. Note that we com-

pare the baseline DNN and HDC regression since several ex-
isting optimizations, e.g., model binarization or pruning [27],
can be applied to both methods. During training, HyDRAF
achieves, on average, 12.6x faster and 14.1x more energy-
efficient computation than FPGA-based DNN implementation,
respectively. The high efficiency of HyDRAF in training comes
from: (i) HyDRAF capability in creating an initial model
that significantly lowers the number of required retraining
iterations. (ii) It eliminates the costly gradient descent for the
model update. This results in a higher HyDRAF efficiency,
even in terms of a single training iteration.

Figure 8 also compares HyDRAF efficiency using different
bit precision. In each bit precision, the hypervector dimension-
ality is set to ensure HyDRAF provides maximum accuracy.
For instance, HDC regression exploits hypervectors with D =
512, D = 1k, and D = 2k for models with floating point, 16-
bits, and 8-bits precision, respectively. Our evaluation shows
that our FPGA acceleration provides maximum throughput and
efficiency when using low-precision (and high-dimensional)
vectors. At the same time, GPU is more effective in dealing
with floating-point (and low-dimensional) vectors. Particularly,
using 8-bit precision, HyDRAF supports regression operation
using efficient LUTs, while FPGA needs to rely on limited
and costly Digital Signal Processor (DSP) blocks to support
floating-point operations. Our results indicate that HyDRAF
using 8-bits precision can provide 6.1x and 5.7x (1.5x and
1.4x) speedup and energy efficiency compared to floating-
point (16-bits) models, respectively.

We also provide an FPGA kernel power breakdown in
Figure 8c to make a comparison of the power efficiency
for different data precision. The power estimator tool that
we used is the Vivado power estimator, and the targeting
device is Xilinx Virtex Ultrascale+ XCU200 FPGA. It is pretty
obvious to see that, compared to fixed-point operation, the
floating-point operation uses more LUTs and more DSPs when
accessing on-chip storage and carrying multiplication-addition
operation. Therefore, floating-point based operations consume
more power compared to fixed-point operations. Therefore,
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Fig. 9. Impact of different optimization techniques on HyDRAF resource
utilization and latency (single batch).

it makes sense that the energy efficiency will decrease when
doing a higher precise mathematical process.

E. HyDRAF Optimizations and Comparison

Figure 9 shows the impact of different HyDRAF opti-
mizations on the performance speedup and energy efficiency
improvement of HyDRAF. All results are compared to DNN
running on GPU. For HDC, we use the state-of-the-art regres-
sion implementation in [4] as the baseline. HyDRAF results
are reported for three main optimizations: (1) using systolic
array, (2) coordinate list, (3) pipeline the systolic array.

To ensure high computation efficiency, our platform relies
on FPGA LUTs. However, the baseline FPGA implementation
can often occupy around 1% of the FPGA LUT resource.
Each of our optimizations aims to increase LUT utilization
and provide higher computational throughput. For example,
coordinate index optimization enhances the LUT utilization
from 1% to 14% by parallel the cluster model updating
process and avoid redundancy M2MM calculation. Similarity,
pipelining the systolic array improves LUT resource utilization
to 40% by using more LUTs to parallel on-chip storage access
and matrix-matrix multiplication, respectively. Our evaluation
shows that HyDRAF with all optimizations achieves 87%
resource utilization, improving the latency by 63x compared
to the baseline implementation.

E Resource Utilization & Performance Trade-off

The performance of our FPGA implementation has a direct
relation with on-chip resources. The following four types of
resources are important for FPGA acceleration: block random
access memory (BRAM), LUTs, Flip Flops (FF), and DSP.
Here, we first analyze the main performance bottleneck of
our acceleration and then illustrate how to choose the suitable
configurations based on the performance requirement.

Tune HyDRAF Parameters: For our regression model
with batch parallelism, the most resources utilizing processes
are: (1) Similarity check and (2) Inner product, as both
require large-scale matrix-matrix multiplication. To maximize
the parallelism, we partition the on-chip storage based on the
matrix’s size. When the hypervector size (D) is constant, the
four important knobs to determine the size of the accelerator
are: batch size (N), regression model and cluster size (K), the
chunk size (7'), and the data precision (P). Our framework
enables users to tune the parameters based on their desired
metrics. Increasing the value of N will bring faster training.
Larger K and P values improve the quality of regression.
However, we limited these two parameters to k = 8 and P = 8
to ensure maximize computation efficiency.

TABLE II
HYDRAF RESOURCES UTILIZATION AND PERFORMANCE WITH DEFAULT
PARAMETER OF OFF-CHIP ENCODING VERSION

Dimension (D) ‘ 0.5K 1k 2k 3k 4k
LUTs 578898 643046 778774 1100240 1678453
FF 247713 349441 542635 732119 1174445
DSP 76 76 76 78 78
FPGA Boards Alveo U200 Alveo U200  Alveo U200  Alveo U250  VCU118
Lgrain(cycle) 1503 2136 3422 5501 6034
Linfer(cycle) 53 81 113 144 177

Chunk Size: Figure 10a shows the latency and resource
utilization of FPGA when the chunk sizes varies from 7" = 16
to T' = 128. As we expect, using a larger chunk size increases
resource utilization and throughput. However, the latency
improvement does not linearly scale with resource utilization.
A large chunk size significant resources the overhead of
pipelining. We observe that using 64 chunk size provides max-
imum throughput improvement efficiency. However, further
increasing the chunk size significantly increases the resource
utilization while having a minor impact on HyDRAF latency.
Our evaluation shows that using 128 chunk size has 1.9x
lower latency improvement per resource utilization than with
64 chunks. Note that HyDRAF with chunk size larger than
T = 64 cannot fit inside our Alveo 200 accelerator card.

Resource Utilization: Table II reports the details of our
FPGA implementation: latency and resources utilization when
hypervector size varies from D = 512 to D = 4k. In all
experiments, the BRAM utilization is less than 5%. Our results
show that using a larger hypervector size increases the FPGA
resource utilization. Table II lists the FPGA board that can fit
our regression model without compromising the performance.
For all configurations, the clock cycle is 7.3 ns. Our evaluation
on an Alveo U200 Accelerator Card platform drawing less
than 4 Watt for kernel Xilinx Virtex Ultrascale+ XCU200
FPGA and 41.7 Watt for the whole board shows that HyDRAF
can process 1.2 million classifications per second during
inference. During training, the throughput is 0.32 million data
per second at each batch.

Our evaluation also shows that, unlike our expectation,
the FPGA latency increases linearly with hypervector dimen-
sionality. We observe that the increase in the latency comes
from loading a larger amount of encoded data from I/O. One
solution to resolve this is to load original data and perform on-
chip encoding, rather than storing and loading large encoded
hypervectors from off-chip DRAM. We will discuss more
details of encoding online in section V-G.

G. HyDRAF Encoding On-chip vs. Off-chip

Due to AXI I/O bandwidth limitation and on-chip parti-
tioning, storing and loading access time increase significantly
with hypervector dimensionality. We address this issue by
enabling on-chip encoding, storing and loading original data
from off-chip DRAM. Figure 10b compares HyDRAF latency
during off-chip and on-chip encoding when the hypervector
dimensions varies from D = 512 to D = 4k. Our evaluation
shows that using a low-dimensional hypervector, it is more
desirable to perform off-chip encoding as I/O cost is minimal.
However, as hypervector size is growing, the on-chip encoding
outperforms the off-chip method. Although on-chip encoding
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Fig. 10. On & Off-chip Encoding’s affect on training latency.

pays an extra cost for repeated data mapping, it eliminates the
cost of loading large hypervectors, thus eliminating the I/O
from being the computational bottleneck.

VI. RELATED WORK

Hyperdimensional computing (HDC) has been proved to
be successful in multiple cognition tasks [28], [29]. [4] is
the first work proposed to handle regression tasks based on
multi-model HDC. Due to HDC’s hardware-friendly opera-
tion, multiple hardware accelerators have been investigated,
including designing new ASIC [30], exiting FPGA [12], [14],
[31], and processing in memory (PIM) architectures [32],
[33]. However, all these accelerators are targeting classification
tasks. Although [4] proposed a new HDC based regression
framework, it is not efficient on FPGA since it didn’t fully
utilize FPGA hardware resources and didn’t consider regres-
sion hypervector matrix’s sparsity problem. Our approach:
HyDRAF, based on the previous HDC regression algorithm,
is optimized considering FPGA on-chip resources, memory
boundary, and matrix sparsity, and is proven to be successful
when handling regression tasks. Besides, compared to [4]
which relied on CPU to implement HD hypervector encoding
process, we successfully integrate it into our on-chip acceler-
ator design to break the memory boundary and realize online
learning.

VII. CONCLUSION

In this paper, we propose an FPGA acceleration of hyperdi-
mensional regression supporting online learning. To overcome
the computation overhead resulting from the long size of the
hypervector, we introduce multiple FPGA optimizations to
efficiently handle long vector access, such as on-chip storage
partitioning. Furthermore, we optimize the model update pro-
cess by using efficient sparse matrix representation. We also
integrate the encoding module into the accelerator to realize
online training by reducing off-chip DRAM access.
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