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Muscle coordination 
and recruitment during squat 
assistance using a robotic 
ankle–foot exoskeleton
Hyeongkeun Jeong 1, Parian Haghighat 1, Prakyath Kantharaju 1, Michael Jacobson 1, 
Heejin Jeong 1,2 & Myunghee Kim 1*

Squatting is an intensive activity routinely performed in the workplace to lift and lower loads. The 
effort to perform a squat can decrease using an exoskeleton that considers individual worker’s 
differences and assists them with a customized solution, namely, personalized assistance. Designing 
such an exoskeleton could be improved by understanding how the user’s muscle activity changes 
when assistance is provided. This study investigated the change in the muscle recruitment and 
activation pattern when personalized assistance was provided. The personalized assistance was 
provided by an ankle–foot exoskeleton during squatting and we compared its effect with that of 
the no-device and unpowered exoskeleton conditions using previously collected data. We identified 
four main muscle recruitment strategies across ten participants. One of the strategies mainly used 
quadriceps muscles, and the activation level corresponding to the strategy was reduced under 
exoskeleton assistance compared to the no-device and unpowered conditions. These quadriceps 
dominant synergy and rectus femoris activations showed reasonable correlations (r = 0.65, 0.59) to 
the metabolic cost of squatting. These results indicate that the assistance helped reduce quadriceps 
activation, and thus, the metabolic cost of squatting. These outcomes suggest that the muscle 
recruitment and activation patterns could be used to design an exoskeleton and training methods.

Fatigue is one of the most prevalent symptoms experienced by workers on a daily basis, affecting 54% of 
individuals1 and resulting in reduced productivity and increased health care costs2,3. Muscular fatigue is a major 
risk factor, among risks such as mental, visual, and auditory fatigue4. For example, quadriceps muscle fatigue 
changes the posture during a squat and increases the load on the lower back, resulting in an increased risk of 
lumbar injury5,6. An intervention that reduces such fatigue would help improve productivity and reduce the 
risk of injury. This intervention can be provided by assistive technology, such as exoskeletons7, as these devices 
can augment workers’ performance, relieve the physical workload of standing8–10 and squatting11–15, and reduce 
fatigue5. Assistive technology has been found to be more effective when it is tuned for each user16,17. Similarly, 
our prior squat assistance study found that a robotic ankle–foot exoskeleton can help reduce physical effort, 
measured by metabolic cost, especially when tuned for each user18. Considering the correlation between fatigue 
and physical effort19, the personalized device can be helpful; however, the mechanism by which physical effort 
is reduced remains unclear.

The mechanism underlying the reduction in metabolic cost with squat assistance may be understood by 
investigating the role of muscle recruitment patterns. Physical effort, measured by metabolic cost, appears to 
be correlated with muscular activity20,21, and muscle recruitment and coordination patterns22. Researchers also 
found that dominant muscles could help to estimate the metabolic cost23. Muscle synergy analysis is a computa-
tional approach used to quantify coordination patterns during dynamic tasks24–26. This method is based on the 
theory that a simple movement involves numerous and redundant muscle groups acted on by the central nerv-
ous system (CNS). Yet, this theory remains unclear how the system overcomes this complexity and adopts an 
optimal recruitment strategy27. The muscle synergy approach posits that the CNS simplifies its decision-making 
and organizes movements by grouping functionally similar muscles into modules (called muscle synergies) and 
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coordinating them as a single unit. The modules rather than individual muscles27–29 perform the action, which 
results in dimensional reduction27,30.

Muscle synergy analysis calculates muscle recruitment and activation patterns from electromyography (EMG) 
data31,32 by decomposing EMG activation patterns into a reduced dimension of time-varying signals and a 
matrix of weights, or synergy vectors. The synergy signal and weight can be linearly combined to reconstruct 
the original EMG signals. Studies found that a small set of synergies can explain over 95% of the muscle activity 
across tasks such as walking, running, or high stepping24,33–35, and consistent muscle synergies exist between 
subjects36–38 across the experiment time39,40. Researchers investigated the effect of outside factors on common 
synergies, such as exoskeletons, inclination, or gait speed41,42. We hypothesize that a common muscle coordina-
tion pattern would exist across participants during a squat, and the activation levels of the coordination would 
be correlated with the metabolic rate. Also, prior findings on subject-specific muscle synergy could be used to 
help understand personalized assistance42.

This research aims to evaluate the change in muscle activity and recruitment patterns in 10 participants 
who performed squatting with an ankle–foot exoskeleton that provided personalized assistance (Fig. 1). We 
used muscle activity and respiratory rate data during the validation trials. The conditions tested were (1) no 
exoskeleton, (2) the personalized assistance condition (optimal condition), and (3) the unpowered exoskeleton 
condition (Fig. 1C). We tested the hypotheses by investigating each muscle activation, the number of synergies, 
synergy similarity after classification, the muscle synergy pattern coordination in a squat cycle, and the correla-
tion between the muscle analysis result and metabolic cost. The outcomes of this research could help inform 
future exoskeleton design processes.

Results
Muscle activation analysis.  On the assisted leg, the conditions influenced the rectus femoris (RF) and 
vastus medialis muscle activities (Friedman p = 0.032, Friedman p = 0.016). For the personalized assistance con-
dition, the RF activities were statistically significantly reduced by 25.5% for the optimal condition compared 
to the no-device condition (p = 0.032) (Fig. 2). The vastus medialis (VM) activity was statistically significantly 
reduced by 10.6% for the optimal condition compared to the unpowered condition (p = 0.012). The activation of 
tibialis anterior (TA), soleus (SOL), gastrocnemius medialis (GASM), vastus lateralis (VL), bicep femoris (BF), 
and semitendinosus (ST) were not statistically significantly affected by the conditions (ANOVA or Friedman, 
p > 0.054).

During the descent phase of the squat, the conditions affected the RF muscle activities (Friedman p = 0.018). 
The RF muscle activities were reduced by 24% for the optimal condition, compared to the no-device condition 
(p = 0.023). Other muscle activation levels were not statistically significantly influenced by conditions (ANOVA or 

Actuators

Exoskeleton

Respiratory sensors

EMG sensors wrapped
with muscle tape

Ankle angleAnkle angle

To
rq

ue

(A) Research setup

(C) Day2 research protocol

(D) Squat instruction

(B)

Human-in-the-loop
optimization (15 min)

Validation Study (random order)

Unpowered

1s 1 s 1 s 1 sRest (6 sec)

Rest (45 min) Rest (12 min) Rest (12 min)

Optimal No-device
(4 min) (4 min) (4 min)

Figure 1.   Experiment overview. (A) Experimental setup: subjects wore an ankle–foot exoskeleton end-effector 
and a respiratory sensor. EMG sensors were attached at eight positions. The power and control signals were 
transmitted from the actuators to the exoskeleton end-effector via Bowden cables. (B) Squat controller: the 
controller used different stiffness parameters depending on the squat phases. (C) Experimental protocol: 
personalized stiffness parameters were identified using the human-in-the-loop optimization and evaluated 
during a validation study. We investigated data from the validation study. (D) For each squat, subjects were 
instructed to perform a 2-s squat and 6-s rest.
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Friedman > 0.052). During the ascent phase of the squat, the assistance influenced RF muscle activities (ANOVA 
p = 0.004). RF reduced muscle activity levels by 25.4% and 19.3% for the optimal condition compared to the 
unpowered and no-device conditions (p = 0.037, p = 0.037). The assistance conditions also influenced the SOL 
muscle activity (ANOVA p = 0.031). However, its pairwise differences were not statistically significant (p = 0.016). 
Other muscles were not statistically significantly affected by conditions (ANOVA or Friedman p > 0.051).

Number of synergies.  3 to 5 synergies from the assisted leg were identified for all subjects, and 7 subjects 
showed 4 synergies (percentage of minimum variance accounted for (VAF) between validation study conditions 
(the no-device, unpowered, and personalized condition)).

Muscle synergy comparison.  We identified 4 synergy references (synergy1 – 4) and 2 subject-specific 
synergies (synergy5, 6, Fig. 3) from the assisted leg. Synergy1 is the quadriceps dominant synergy (inter-subject 
similarity of all conditions: 0.93± 0.04 , Table 1A). This synergy was active during the second half of the descent 
squat for downward deceleration and ascent squat for upward acceleration43. Synergy2 was the tibialis anterior 
(TA) dominant synergy (inter-subject similarity of all conditions: 0.92± 0.08 , Table 1A), active during the first 
half of the squat phase for accelerating downward movement with dorsiflexion43. Synergy3 was the dominant 
synergy of soleus (SOL) and gastrocnemius medialis (GASM). Synergy3 helped in plantarflexion and was acti-
vated to a greater extent in the second half of the squat phase ( 0.9± 0.06 , Table 1A)43. Synergy4 mainly consisted 
of bicep femoris (BF) and semitendinosus (ST), which reduced shear stress on the knee, and was usually co-
activated with synergy144. Synergy1, synergy2, and synergy3 were recruited from most subjects (Table 1B). Two 
participants presented subject-specific synergy5 for all conditions, and two participants showed subject-specific 
synergy 6 for the unpowered condition. Synergy5 was soleus (SOL) dominant synergy, and synergy6 was rectus 
femoris (RF) dominant synergy. 

Synergy activation analysis.  The assistance conditions affected the mean activation level of synergy1, the 
quadriceps dominant synergy (ANOVA p = 0.004) (Fig. 4A). It was statistically significantly lower by 22.3% and 
21.3% (Fig. 4C) for the personalized condition, compared to the no-device condition and unpowered condition, 
respectively (p = 0.046, p = 0.026). Other synergy activation levels were not statistically significantly influenced 
by conditions (ANOVA or Friedman p > 0.081).

During the descent phase of the squat, none of the synergy activation levels were statistically significantly 
affected by the conditions (ANOVA or Friedman p > 0.79). During the ascent phase of the squat, the conditions 
affected the synergy1 activation level (ANOVA p = 0.002). Synergy1 was reduced by 22.6% for the optimal con-
dition compared to the unpowered condition (p = 0.013). Other synergy activation levels were not statistically 
significantly influenced by the conditions (ANOVA or Friedman p > 0.217).
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Figure 2.   The graphs are the mean trajectories of muscle activations in each condition during squat cycles. 0% 
is the stance phase, 50% is the bottom point, and 100% is the stand-back point. The blue line is the activation of 
the optimal condition. The grey line is the no-device condition, and the green line is the unpowered condition 
trajectory. For statistical expression, * is p < 0.05.
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Relation between muscles activation and metabolic cost.  The Pearson correlation coefficient 
between the metabolic cost and RF muscle activity level was 0.59 (p = 0.001). The correlation between metabolic 
cost and synergy1 activation level was 0.65 (p < 0.001).

Discussion
This study investigated the effect of squat assistance using a unilateral ankle–foot exoskeleton on muscle activities 
and their coordination pattern. We hypothesized that the effect of assistance from the device would be reflected 
in muscle coordination, activation patterns, and muscle synergies. We also hypothesized that shared synergies 
would exist across subjects, which can be used as an indicator of change in physical effort. We found that the 
optimal assistance provided by the ankle–foot exoskeleton helped reduce the quadriceps dominant synergy 
(synergy1) activation compared to the unpowered and no-device conditions. The muscle activation level of the 
RF muscle was also reduced compared to the no-device condition. We also identified a moderately high and 
significant correlation45,46 between metabolic cost and quadriceps muscle activation level.

The optimal assistance by the ankle–foot exoskeleton reduced the load on quadriceps muscles, including RF, 
VM, and VL. During the second quarter of a squat cycle (25–50% of the squat cycle), the muscles were activated 
to decelerate downward squatting. For the third quarter of the cycle (50–75% of the squat cycle), they helped 
accelerate upward squatting (Fig. 2)43. Surprisingly, the ankle assistance reduced the muscle group activation 
levels compared to the unassisted conditions. The reduction could be explained by the following principles: 
closed-chain exercise and energy transmission. During closed chain exercise, a limb is fixed while other body 
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Figure 3.   Muscle synergies from the assisted leg. (A) Reference weights from the K-means algorithm applied 
to 10 subjects’ data in all conditions. (B) Synergy weights assignment without duplication by condition. (C) 
Synergy activations, mean trajectories of all subjects, of corresponding synergy weights in (B).

Table 1.   (A) Similarity scores with the same synergies, in each condition. (B) The number of synergies 
assigned in each synergy group for a specific condition. The maximum sample number is 9, 10, and 10 for the 
unpowered, no-device, and optimal condition.

(A) Similarity (mean ± std) (B) Assigned number of samples

Unpowered No-device Optimal Unpowered No-device Optimal

Synergy1 0.94± 0.04 0.92± 0.03 0.94± 0.04 8 10 9

Synergy2 0.93± 0.05 0.91± 0.10 0.94± 0.06 9 9 10

Synergy3 0.93± 0.07 0.90± 0.07 0.91± 0.07 9 10 9

Synergy4 0.92± 0.06 0.86± 0.10 0.94± 0.05 5 6 9
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parts freely move; hence any motion in one joint in a kinematic chain influences other joints in the chain47,48. In 
our experiment, the squat can be considered a closed-chain exercise where ankle joint assistance affected other 
joints in the chain, including quadriceps muscle43,49,50. Also, the fact that quadriceps muscles were benefited 
from assistance in the descent and ascent squat phases could be interpreted as the result of closed chain and 
energy transmission as examined in whole squat phase activation. Prior studies found that when ankle work 
was restricted, the quadriceps muscle activities increased for jumping activity51. This study optimally assisted 
the ankle, and it appears that the optimal assistance reduced quadriceps muscle activities, especially during the 
ascent phase of the squat. Since quadriceps muscles mainly experience fatigue during the squat, ankle–foot 
assistance may help reduce fatigue52,53.

The other muscle coordination and activation patterns appear to be maintained under ankle assistance. TA 
and its dominant synergy activations (synergy2, Figs. 3, 4) were activated during the first half of the squat cycle 
(0–50% of the squat cycle) for initiating dorsiflexion43. They increased during the first half of the squat cycle for 
the optimal condition. The downward movement also includes the contribution from the knee and hip flexion 
muscles, especially in the initial phase (0–25% of the squat cycle)54. The participants tended to increase the 
synergy2 activities, suggesting that the participants might not have fully learned how to coordinate their muscle 
activation patterns to be more efficient. Also, in the study55, the optimization was conducted for the entire squat 
cycle. Phase-specific optimization may help maintain or reduce the activation level of the synergy2. SOL and 
GASM and their dominant synergy activations (synergy3, Figs. 3, 4), working for plantar flexion, were expected 
to decrease using the optimal ankle assistance condition. However, the change was not significantly different 
(p > 0.08) (Figs. 2, 4). This outcome also might be due to an additional effort to stabilize the ankle joint using TA, 
SOL, and GASM54,56,57. Prior studies presented the importance of training to learn the method of using the wear-
able robot58. Additional training may reveal the change in the other muscle coordination and activation patterns.

Our study suggests that the quadriceps dominant synergy could be used to design assistance. Similar to other 
studies using muscle information to predict metabolic cost during walking23,59–61 (correlation of 0.55–0.6546,62), 
our study found a moderately high correlation between the metabolic cost of squatting and the quadriceps muscle 
synergy (r = 0.65) and also between the metabolic cost and RF activity (r = 0.59). In our study, all subjects did not 
show quadriceps dominant synergy (synergy1); however, all subjects showed a cosine similarity value higher 
than 0.86 for synergy1, which can be used to assign a synergy considering that the similarity criteria was 0.842. 
This result suggests that using RF or quadriceps dominant synergy activation could be an approximate measure 
of the metabolic cost of squatting.

Squatting posture could influence the magnitude of quadriceps activation63. For instance, a previous study 
showed that mediolateral knee malalignment during the squat could decrease quadriceps activation while 
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increasing hamstring and gastrocnemius activations63. In our study, however, we closely monitored our subjects 
and instructed them regarding their squat depth and posture if needed. We did not observe an increase in the 
hamstring and gastrocnemius activation. Also, the squat ankle angle calculated from the IMU showed a change 
of less than 2 degrees across conditions, and the variation was not statistically significant (p > 0.4)55. These results 
suggest that the quadriceps activation decreased due to ankle–foot assistance rather than improper squat posture. 
To obtain more precise results, future work could include squat posture feedback mechanisms using a real-time 
motion analysis system during the experiment58.

This study investigated the muscle activations and their coordination patterns for different squatting condi-
tions with an assistive exoskeleton. We observed common muscle activation and activation patterns across par-
ticipants during the squat, and the exoskeleton assistance was found to reduce the quadriceps dominant synergy 
activation. This reduced activation could help delay fatigue53. We also found that the activation level showed 
a reasonable correlation45,64 with the metabolic cost. Further research is needed to optimize the exoskeleton 
parameters for personalized squat assistance using muscle activation as an objective function (as an alternative 
to metabolic cost). For future work, we aim to develop practical and comfortable methods by utilizing both 
quadriceps dominant and TA dominant synergies for human-in-the-loop optimization of the exoskeleton for 
personalized squat assistance.

Methods
Research protocol.  Ten unimpaired male subjects (age: 24.6± 4 years, weight: 78.86 ± 11.30 kg, height: 
176.65 ± 8.24  cm (Mean ± std)) participated in the research study. Subjects wore an ankle–foot exoskeleton 
(developed in our lab)65, powered by two off-board actuators (Humotech, Pittsburgh, Pennsylvania, USA), on 
their dominant leg. The power and signals were transmitted through a tether (Fig. 1A). The subjects participated 
in a 2-day experimental protocol, where Day 1 was for acclimation day and Day 2 was for human-in-the-loop 
(HIL) optimization and validation study (Fig. 1C). The detailed procedure is explained in Kantharaju et al.55.

The exoskeleton was controlled with two stiffness parameters to tune its assistive torque during the descent 
and ascent phases of the squat (Fig. 1B). In this paper, we have analyzed the data from the validation study. The 
muscle activation patterns during the squat with exoskeleton assistance in three different conditions, the no-
device, unpowered, and optimal stiffness conditions, were investigated. This research protocol was approved 
by the University of Illinois at Chicago Institutional Review Board based on the Declaration of Helsinki. All 
participants (above 17 years) provided written informed consent before the study.

Acclimation day.  This day was provided for participants to experience squat assistance66–68. Subjects went 
through 6 squat conditions for 4 min each: four random assistance conditions with combinations of descending 
and ascending squat stiffness parameters based on their weights, unpowered exoskeleton, and no-device condi-
tions. The order of conditions was randomly determined55 and the rest times of 12 min were provided in between 
each condition.

Human‑in‑the‑loop optimization (HIL optimization).  This protocol was provided to search the user’s 
optimal stiffness parameters of the exoskeleton for the descent and ascent phases of the squat using metabolic 
cost measured  in real-time. We used the HIL Bayesian optimization method, which involves calculating the 
posterior distribution using measured metabolic cost given a parameter set and then selecting the next query 
parameters (ascending and descending squat stiffnesses (Fig. 1B)). We used the Gaussian process and Expected 
improvement for each process69,70. The selected ascending and descending stiffness parameters were used to pro-
vide assistance during the next iteration of squatting. This procedure was repeated until the stiffness parameters 
converged three times in a row, which took 15.8 ± 0.1 min. After the HIL optimization step, we let subjects rest 
for 45–54 min. The details can be found in Kantharaju et al.55.

Validation study.  The optimal stiffness condition determined from the HIL optimization procedure was 
compared with the no-device and unpowered conditions in the validation study. For each validation trial, sub-
jects performed alternate squatting and standing movements for 4 min (Fig. 1C). Each squat cycle lasted 2 s 
(descending motion for 1 s, ascending motion for 1 s), and 6 s of rest in standing position. The validation study 
procedure is described in Kantharaju et al.55. The last 3 min of the collected data were considered for the analysis. 
Between each condition, the subjects rested for 12 min on a chair.

Metabolic cost measurement.  All participants wore the respiratory measurement device (K5, Cosmed, 
Rome, Italy). The Phase-plane based model-free estimation method71 was used to estimate the metabolic cost 
from the measured respiratory data. The details of metabolic cost measurement were described in Kantharaju 
et al.55.

Torque assistance.  In the ankle–foot exoskeleton, the torque assistance profile was divided into descending 
and ascending squat phases (Fig. 1B). Each torque profile was determined by multiplying each descending and 
ascending stiffness parameter by the ankle joint angle. The stiffness parameters were optimized for each partici-
pant or personalized using the HIL optimization. The torque profile using the personalized stiffness parameters 
presented high inter-subject variability shown by the high standard deviation (torque: 30.92 ± 8.68 Nm, torque 
by weight: 0.393 ± 0.094 Nm/kg (mean ± std)). The detailed control strategy is explained in Kantharaju et al.55.
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Muscle activation measurement.  For each squatting condition, the muscle activation patterns were 
measured by EMG sensors (Trigno, Delsys Inc.). Eight EMG sensors were attached to the following muscles on 
the leg with the exoskeleton: soleus (SOL), gastrocnemius medialis (GASM), rectus femoris (RF), tibialis anterior 
(TA), vastus medialis and lateralis (VM, VL), bicep femoris (BF), and semitendinosus (ST)43,44,72. The electrodes 
were attached at the beginning of the study by following the instructions on “www.​Seniam.​org”73. The attached 
electrodes were wrapped with muscle tape to prevent them from getting detached. EMG data were collected at a 
sampling rate of 1259 Hz along with IMU data. The EMG signals were processed using a bandpass filter over the 
frequency range of 10–225 Hz (2nd order Butterworth), rectification, and lowpass filter at 10 Hz (2nd order But-
terworth). The angular velocity was obtained from the IMU on the EMG sensor and was processed with a 5 Hz 
low pass filter. The squat phase (period of the onset, lowest position, and end of squat) was detected using the 
angular velocity in the mediolateral axis: At the onset of the squat, the angular velocity increases. At the lowest 
point of the squat, angular velocity returns to zero after the onset of the squat. At the onset of ascending squat, 
the angular velocity decrease. At the end of the squat, the angular velocity becomes zero. The identified squat 
phase was then used to extract the muscle activation signal from the EMG data. The extracted EMG data were 
normalized by the mean value of the unpowered condition from each subject66,74.

Muscle synergy.  For the fast computation of synergies, the processed EMG signals from the assisted leg 
were downsampled to 20 ms time bins41. EMG data were taken from the validation study, between 1 and 4 min. 
For the extraction of muscle synergies, the non-negative factorization (NNMF)75,76 method was adopted (MAT-
LAB, settings: 1000 replicates), using (Eq. 1)

where EMG data is represented by the n× t matrix (n: number of EMG channels, t: length of sampled EMG 
data), and EMG data is decomposed into muscle synergy weight Wn×m , muscle synergy activation Hm×t , and 
residual error matrices en×t

24.
For determining the proper number of synergies, the metric VAF (variance accounted for) was adopted76 

using (Eq. 2).

where EMG and EMG are the EMG signals and their mean values, i and j represent the i-th subject and j-th 
condition, and Wadj and Hadj are the length normalized synergy weights and activation. This method compares 
the sum of squared errors to the total squared sum of the EMG data. VAF values were extracted from each condi-
tion of each subject. While increasing the number of synergies from 1 to 7, if the minimum value among VAFs 
from the same subject was over 90%76, then the corresponding number of synergies was chosen for the subject.

Synergy adjustment by data length.  We used the NNMF algorithm (MATLAB), which automatically 
adjusts the RMS value of synergy activation to 1 regardless of signal data length. Hence, we normalized synergy 
activation and synergy weight matrix using (Eq. 3),

where W ,H are the muscle synergy weight and activation matrices, n is the data length of the muscle synergy 
activation we investigated, Wadj , and Hadj are the adjusted muscle synergy weight and activation.

Synergy activation normalization.  To compare synergy activations between conditions, we normalized 
synergy activation using (Eq. 4)41.

where Hadj ,Wadj are the adjusted muscle synergy weight and activation matrices. Hnorm is the normalized muscle 
synergy activation.

Synergy similarity.  A similarity index was used to classify synergy and to identify common strategies. For 
the similarity index, we have used cosine similarity42 (Eq. 5)

where A and B are vectors with m data. SI has a range from − 1 to 1. The value 1 indicates that the directions of 
the vector A and B are similar, whereas the value − 1 indicates that the vectors are in the opposite directions. 
The value 0 indicates perpendicularity of vectors (no similarity). The threshold value of 0.8 is used to define 
the similarity between vector A and B42.

(1)EMGn×t = Wn×mHm×t + en×t ,

(2)VAF = 1−
∑n

i=1

∑t
j=1(EMG − EMGest)

2
i,j

∑n
i=1

∑t
j=1

(

EMG − EMG
)2

i,j

= 1−

∑n
i=1

∑t
j=1

(

EMG −WadjHadj

)2

i,j
∑n

i=1

∑t
j=1

(

EMG − EMG
)2

i,j

,

(3)Wadj =
W
√
n
,Hadj = H

√
n,

(4)Hnorm =
Hadj

RMS
(

Wadj

) ,

(5)SI =
AT · B
|A| · |B|

,
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Synergy classification.  K-Means algorithm with cosine similarity was used to identify main synergy ref-
erences and classify synergies. The K-means is an iterative algorithm that partitions the dataset39,77. First, the 
K-means extracted four synergy references, as most participants had four synergies (Table 1A). Then, the pro-
cedure compared subjects’ synergies with the synergy references. Specifically, a synergy with the highest cosine 
similarity with the reference group was assigned to its corresponding group42 with a no-duplication rule. In this 
classification, if the cosine similarity was below 0.642, the synergy was assigned to the subject-specific synergy 
group.

Statistical analysis.  Statistical analyses were performed using R. We first checked the normality using 
the Shapiro–Wilk normality test78. We first investigated whether different conditions affected each outcome 
using repeated measures ANOVA with significance level α = 0.05. If significant effects were found, we compared 
all pairwise comparisons with a paired t-test using a Bonferroni-holm post hoc correction for multiple com-
parisons. If the normality test was not passed (Shapiro–Wilk test), we ran the Friedman test, and if significant, 
Wilcoxon signed rank test as a post hoc analysis with the Bonferroni-holm post hoc correction79,80. We excluded 
subject6’s data because the unpowered condition data was missing81.

Correlation between muscle analysis and metabolic cost.  We performed Pearson’s correlation 
analysis45,64,82 between the metabolic cost and the activation level of muscle synergy and RF muscle. Before 
conducting the correlation analysis, we normalized the metabolic cost and the muscle activation-related data 
from 0 to 1.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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