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Introduction: Recent studies found that wearable exoskeletons can reduce
physical effort and fatigue during squatting. In particular, subject-specific
assistance helped to significantly reduce physical effort, shown by reduced
metabolic cost, using human-in-the-loop optimization of the exoskeleton
parameters. However, measuring metabolic cost using respiratory data has
limitations, such as long estimation times, presence of noise, and user
discomfort. A recent study suggests that foot contact forces can address those
challenges and be used as an alternative metric to the metabolic cost to
personalize wearable robot assistance during walking.

Methods: In this study, we propose that foot center of pressure (CoP) features
can be used to estimate the metabolic cost of squatting using a machine learning
method. Five subjects’ foot pressure and metabolic cost data were collected
as they performed squats with an ankle exoskeleton at different assistance
conditions in our prior study. In this study, we extracted statistical features from
the CoP squat trajectories and fed them as input to a random forest model, with
the metabolic cost as the output.

Results: The model predicted the metabolic cost with a mean error of 0.55 W/kg
on unseen test data, with a high correlation (r = 0.89, p < 0.01) between the
true and predicted cost. The features of the CoP trajectory in the medial-lateral
direction of the foot (xCoP), which relate to ankle eversion-inversion, were found
to be important and highly correlated with metabolic cost.

Conclusion: Our findings indicate that increased ankle eversion (outward roll
of the ankle), which reflects a suboptimal squatting strategy, results in higher
metabolic cost. Higher ankle eversion has been linked with the etiology of
chronic lower limb injuries. Hence, a CoP-based cost function in human-in-the-
loop optimization could offer several advantages, such as reduced estimation
time, injury risk mitigation, and better user comfort.
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1 Introduction
1.1 Background

Workers frequently perform movements such as squatting and
lifting during manual operations in industrial sites (Jeong et al.,
2020). Often, these squat lifting movements are repetitive
and lead to physical fatigue, increasing the risk of injuries
such as musculoskeletal disorders, low back pain and arthritis
(Andersen et al., 2007; Balasubramanian et al., 2009; McDonough
and Jette, 2010; Werneretal., 2010; Bergmannetal, 2017;
Breloffetal,, 2019). These are major issues that affect the
workers occupational health and reduce their quality of life
(Briggs et al., 2016). Recent studies have recommended the use
of wearable exoskeletons to reduce physical effort and fatigue
during repetitive squatting (Gams et al., 2013; Petri¢ et al., 2013;
Mohrietal, 2017; Ranaweeraetal., 2018; Sadoetal, 2019;
Jeong et al., 2020; Jeong et al., 2023; Wang et al., 2021; Yan etal,,
2021; Kantharaju etal., 2022). For instance, Sadoetal. (2019)
designed a lower-body exoskeleton to help with repetitive
load-lifting and manual-handling jobs (Sadoetal, 2019). A
semi-active exoskeleton developed by Wangetal. (2021) was
shown to reduce lower limb muscle fatigue when squatting
(Wang et al,, 2021). Yan etal. (2021) designed a lightweight and
passive lower-limb exoskeleton that serves as a chair for workers
and allows them to squat for prolonged durations (Yan etal.,
2021).

In clinical settings, squatting exercises are frequently utilized in
strength training and rehabilitation to help patients recover from
lower extremity injuries (McGinty et al., 2000; Yu et al., 2019). The
squat strengthens lower-body muscles after joint-related injuries,
patellofemoral dysfunctions, ligament lesions, or ankle instability
(Wallace et al., 2002; Schoenfeld, 2010; Pangan and Leineweber,
2021). Squatting is also a symmetric bilateral exercise, which
can be used to strengthen muscles on one or both sides of
the body, depending on the needs of the patients (Luo etal,
2021). Since individuals who perform squatting exercises for
rehabilitation in clinical settings have reduced physical strength,
the use of assistive exoskeletons that reduce physical effort is
highly motivated. Therefore, an assistive exoskeleton can be a
very beneficial device in both industrial as well as rehabilitation
settings.

The ankle joint’s strength and mobility are very important for
executing the squatting movement properly (Schoenfeld, 2010).
During a squat performance, the ankle complex contributes
significant support and aids in power generation (Hung and
Gross, 1999). The importance of the ankle during squatting is
supported by theoretical (McLaughlin et al., 1978; Dahlkvist et al.,
1982; Robertson etal., 2008) as well as computational studies
(Panero et al., 2017; Luetal, 2020). Hence, a wearable ankle
exoskeleton must effectively assist the squatting movement. An
ankle exoskeleton is a lower limb wearable device that provides an
assistive force to help people perform physical movements, such as
walking and squatting more efficiently (Figure 2A). The device oft-
loads the force generated by the calf muscles, therefore lowering the
metabolic energy consumed in muscle contractions (Wiggin et al.,
2011; Collins et al., 2015; Jackson and Collins, 2015; Jeong et al.,
2023).
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1.2 Need for human-in-the-loop (HIL)
optimization

However, the major challenge involved in exoskeleton-assisted
squatting is inter-subject variability. The biomechanical movements,
patterns of muscle activation, and range of motion are highly
subject-specific and therefore vary across individuals (Swinton et al.,
2012). To address this challenge, a personalized assistance technique
was developed using the human-in-the-loop (HIL) optimization
scheme (Feltetal., 2015; Zhangetal., 2017; Dingetal.,, 2018;
Kimetal., 2019). The HIL optimization method identifies a
personalized optimum parameter of the exoskeleton, which
minimizes the user’s energy expenditure or metabolic cost, thus
accounting for the performance variability between subjects. The
metabolic cost refers to the energy expended by the human body to
perform a given task (Givoni and Goldman, 1971). Metabolic energy
expenditure is measured using indirect calorimetry, where either
oxygen consumption or carbon dioxide production is measured
and converted into units of energy (Garby and Astrup, 1987;
Cunningham, 1990; Levine, 2005). Measuring the metabolic energy
expenditure of an individual during a physical activity helps us
investigate how the central nervous system optimizes its motor
strategies to conserve energy and achieve a more efficient movement
(Sousa et al., 2012). In experimental settings, it is measured using gas
exchange analyzers worn by the subjects. The personalized assistance
through HIL optimization method was shown to significantly reduce
the metabolic cost of walking (Zhang et al., 2017; Ding et al., 2018;
Kim et al., 2018; Li et al., 2020; Wen et al., 2020; Song and Collins,
2021; Gordon et al., 2022), running (Witte et al., 2020; Miller et al.,
2022), and squatting (Kantharaju et al., 2022).

In a similar way, measuring the metabolic cost of exoskeleton-
assisted squatting helps us identify the optimal device parameters
that minimize energy expenditure and improve the efficiency of the
squatting movement. In this case, the parameters are the stiffnesses,
Kgescending and K o> Which represent the assistive torque pattern
provided by the device. Among different torque patterns (which

ascendin

can also be viewed as different possible “shapes of the triangle” in
Figure 2B), the best torque pattern needs to be identified such the
user’s energy is minimized, which is termed “optimal assistance”
By measuring the metabolic cost using a gas exchange analyzer, the
torque pattern from an exoskeleton can be optimized for each user.
Kantharaju et al. (2022) showed that such a personalized assistance
method is a promising approach to reduce the energy expenditure
during squatting, as evidenced by a metabolic cost reduction of
nearly 20% for the optimal assistance condition compared to a
generic condition (Kantharaju et al., 2022).

1.3 Limitations of the standard HIL
optimization approach

The HIL optimization method aims to minimize the metabolic
cost as a cost function. Metabolic cost derived from calorimetry
has been the benchmark metric for evaluating the effectiveness
of exoskeleton assistance (Feltetal, 2015; Zhangetal., 2017;
Ding et al., 2018; Kim et al., 2019; Kantharaju et al., 2022), and it has
been used as a cost function in HIL optimization schemes. There are
several limitations in using the metabolic cost, measured through
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indirect calorimetry (gas exchange analysis), as a cost function.
The measurement of energy expenditure takes time due to slow
mitochondrial dynamics (Selinger and Donelan, 2014). It typically
takes at least 4-5min to obtain an estimate for each assistance
condition of the exoskeleton. The signal-to-noise ratio is low due to
the presence of noise in the respiratory measurements. Furthermore,
measurement through gas exchange analysis requires subjects to
wear an uncomfortable mask while performing the movements. In
our HIL experiments in the past, subjects have often expressed their
discomfort while wearing the mask. In addition, the mask makes it
hard to perform optimization outside of the lab. These disadvantages
limit the practical application of calorimetry-based estimation of
metabolic cost in the real world.

1.4 Motivation for a new HIL optimization
approach

Therefore, it is important to find an alternate metric that can
predict the benchmark metric, metabolic cost, in a time-efficient
way and that can be measured using a comfortable wearable sensor.
Jacobson et al. (2022) showed that gait symmetry derived from
foot contact forces could be used to estimate the metabolic cost
of walking as a rapid and comfortable measure (Jacobson et al.,
2022). Using a cost function based on the novel foot pressure
symmetry index within the HIL optimization scheme, eight subjects
significantly reduced their energy expenditure during walking by
15% compared to the standard condition. Table 1 summarizes past
research on exoskeletons designed to assist squatting movements,
showing measures of metabolic cost, fatigue and balance, the type
of sensors used, use of machine learning methods and the activities
studied. From Table 1, the work of Jacobson et al. (2022) is the
only one that shows how the alternate metric (gait symmetry) is
correlated with the benchmark metric, the metabolic cost.

In the context of physical exercises such as squatting,
information about postural control and balance is important to
prevent injuries from incorrect performance of the squat. Ideally,
the cost function should provide such information in addition to
estimating energy expenditure. Research has shown that metabolic
cost can be associated with balance-related effort (Kim and Collins,
2015; Kim and Collins, 2017) suggesting that balance-related metrics
can be an alternative solution. Identifying such a metric that
provides information regarding posture and balance, in addition
to metabolic cost, would be very valuable as it could be used for
preventing injuries (or mitigating the risks of developing them)
due to improper squat performance. For instance, poor postural
control is associated with a higher risk of sustaining an ankle sprain
(McKeon and Hertel, 2008). In this regard, the movement of the
foot center of pressure (CoP) has been identified as a measure of
neuromuscular control of postural balance (Han et al., 1999; Lugade
and Kaufman, 2014). The center of pressure (CoP) is defined as the
point on the plantar surface of the foot where the vertical ground
reaction force acts (Chesnin et al., 2000). The yCoP represents the
position of the center of pressure (with respect to the origin) in the
anterior-posterior (or toe-heel) direction on the sole of the foot,
while xCoP is the position of the center of pressure in the medial-
lateral direction (shown in Figure 1). Furthermore, the CoP, as an
indicator of balance, is an important evaluation metric in the clinical
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setting for patients and older adults (Karst et al., 2005; Ruhe et al.,
2011; Mettler et al., 2015; Li et al., 2016).

In our preliminary study (Ramadurai et al., 2022), we conducted
an initial analysis using previously collected data on personalized
squat assistance using HIL optimization of a unilateral ankle
exoskeleton (Kantharajuetal., 2022), and we found that CoP
variability tended to be lower (indicating higher postural stability)
for the optimal assistance condition compared to the unpowered
device condition (Figure 1). Larger variability in the CoP trajectory
has been associated with poorer ability to maintain balance
(Abrahamova and Hlavacka, 2008). The increase in the variability of
the CoP trajectories while squatting with the unpowered exoskeleton
could be due to a disturbance in the natural body balance caused
by wearing the exoskeleton. This may have entailed additional effort
from the subject to maintain the balance of the body (Jeong et al.,
2020). The reduced CoP variability in the optimal assistance
condition indicates that the exoskeleton might have helped reduce
the subjects efforts to maintain postural balance, which reflects
as minimized metabolic cost (Kim and Collins, 2015; Jeong et al.,
2020). Based on a similar principle, Jeong et al. (2020) developed
a squat assistance method for an exoskeleton by considering the
minimization of CoP variation for assisting body balance during the
squatting movement. (Jeong et al., 2020). However, the relationship
between the CoP variation and the metabolic energy expenditure
(the benchmark metric) was not investigated in their experiment.

1.5 Problem statement

1.5.1 Research gap

To the best of our knowledge, research on development and
validation of center of pressure-based metabolic cost estimation
functions for HIL optimization of exoskeleton assistance has not
been done.

1.5.2 Objective

In this study, we aim to investigate the correlation between
foot CoP features and metabolic cost and the potential for machine
learning models to predict the metabolic cost of squatting using CoP
features.

1.5.3 Rationale for choosing machine learning
Machine learning and Al techniques are increasingly being
utilized in the control of wearable exoskeletons (Baud et al., 2021;
Vélez-Guerrero et al., 2021). Machine learning relies on data-driven
approaches, which are robust in dealing with realistic human-
exoskeleton interaction forces (Luo et al., 2021). These methods are
capable of handling high dimensional data that are interrelated,
as observed in human gait and exercise (Khera and Kumar,
2020). In addition, control strategies based on machine learning
can address the variability between subjects (Khera and Kumar,
2020). Machine learning models also possess generalization ability,
even when the size of the training dataset is small (Khera and
Kumar, 2020). In experimental studies on human-in-the-loop
exoskeleton optimization, the sample size is typically small (7-10
subjects), and there is inter-subject variability in physiological
measurements. Hence, machine learning methods are well suited
for these studies. A traditional linear regression model has the
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TABLE 1 Past research on exoskeletons designed to assist squatting movements. A comparison of methods used to measure metabolic cost, fatigue and balance,
the type of sensors used, use of machine learning methods and the activities studied.

Reference  Physical Fatigue Balance Sensor (s) Activity
effort
(metabolic
cost)
Mohri et al. N/A EMG (rms) N/A Two EMG sensors N/A squat lifting
(2017)
Ranaweera etal. |N/A EMG (rms) N/A Two EMG sensors (Delsys, United States) | N/A squatting, squat lifting
(2018)
Sado et al. (2019) |N/A EMG (rms) N/A Two EMG sensors (Shimmer Sensing N/A squat lifting, carrying while walking
Technology, Ireland)
Wang et al. Indirect calorimetry |[EMG (rms) N/A Eight EMG sensors (Biometrics Limited, N/A squatting, ~ carrying,  standing,
(2021) United Kingdom), Wearable metabolics walking
(Cosmed, Italy)
Yan et al. (2021) |N/A EMG (rms) N/A Four EMG sensors (Biometrics Limited, N/A squatting
United Kingdom)
Jeong et al. (2020)| N/A EMG (rms) CoP variation Six EMG sensors (Delsys, United States), N/A squat lifting
Air pressure sensor tubes on shoe sole
Kantharaju et al. |Indirect calorimetry |\ EMG (rms) N/A Eight EMG sensors (Delsys, United States), N/A squatting
(2022) Wearable metabolics (Cosmed, Italy)
Jeong et al. (2023) Indirect calorimetry | EMG  (muscle N/A Eight EMG sensors (Delsys, United States), Linear regression squatting
synergy) Wearable metabolics (Cosmed, Italy)
Jacobson etal.  |Indirect calorimetry N/A Gait symmetry  Foot pressure sensor (Tekscan, United Linear regression walking
(2022) States), Wearable metabolics (Cosmed,
Italy)

advantage of interpretability; however, it only works well if the
underlying relationship between the input and output is truly linear.
Machine learning methods are more suitable to capture underlying
relationships that may be more complex and non-linear. Hence, we
chose a machine learning approach so that the predictive model can
be utilized for diverse kinds of underlying functions.

1.5.4 Hypotheses

We hypothesize that balance-related features extracted from the
foot CoP movement during squatting can be used to estimate the
metabolic cost using machine learning. We also hypothesize that
feature selection techniques can reveal important CoP features that
correlate with the metabolic cost.

To test our first hypothesis, we processed, analyzed, and
extracted the CoP trajectories corresponding to the squat phase
for all subjects from previously collected data (Kantharaju et al.,
2022). Rather than relying on a single CoP-based measure, multiple
measures derived from the CoP trajectory are generally used in
conjunction with each other for a more robust assessment of balance.
(Baltich et al., 2014; Quijoux et al., 2021). Hence, we are interested
in multiple statistical features derived from the CoP trajectories as
well as the CoP velocities in both anterior-posterior (y) and medial-
lateral (x) directions of the foot. The CoP velocities and statistical
features were extracted from the CoP squat trajectories and fed
as input to a machine learning model, where the metabolic cost
was the output (to be estimated). The model was validated using
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unseen test data as well as the leave-one-subject-out method. To
test the second hypothesis, feature selection was used to identify
the features that are important for predicting the metabolic cost.
Pearson’s correlation analysis was done to investigate the correlation
between the important features and the metabolic cost.

2 Methods
2.1 Experimental protocol

We performed a secondary data analysis of the previous
experiment 2022) on human-in-the-loop

optimization of the exoskeleton to minimize squat efforts (Figure 2).

(Kantharaju et al.,

Ten healthy male subjects (age = 24.6 + 4.0) were recruited for the
experimental study. The Institutional Review Board at the University
of Illinois at Chicago approved our study protocol (IRB#2020-
0563). The subjects wore a tethered ankle exoskeleton on their
dominant leg. Two off-board actuators (Humotech, PA, United
States) were used to power the exoskeleton through a Bowden cable
system. Magnetic encoders and ension load cells, which measured
ankle angle and torque, respectively, were embedded within the
exoskeleton. To tune the assistive torque of the exoskeleton during
the ascent and descent of the squat, we used an impedance controller
with two stiffness parameters, K ending 21d Kgegeending: The assistive
torque generated by the exoskeleton is proportional to the ankle

frontiersin.org
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FIGURE 1

The foot Center of Pressure trajectories (in the medial-lateral direction (xCoP) and anterior-posterior direction (yCoP) for a representative subject while
squatting with the device in (A) unpowered and (B) optimal assistance conditions. The CoP trajectories are shown with the variability (standard

deviation) after time synchronous averaging

angle (angle between the lower leg and the vertical axis in the sagittal

plane). The stiffness parameters Kyescenging and K represent

ascendin
the slopes of the torque-ankle angle curves for the descegnding and
ascending phases of the squat, respectively (Figure 2B).

Ankle dorsiflexion refers to the movement of flexing the foot
towards the shin and knee, while plantar flexion refers to the
opposite motion; i.e., the movement of the foot in a downward
direction away from the knee. The squatting movement consists of
the descending and the ascending phases. During the descending
phase, the person moves downward into the squat position through
flexion of their hips and knees and ankle dorsiflexion. During the
descending phase, the ankle angle increases and reaches a maximum
at the bottom position of the squat (Figure 2B). Then, during the
ascending phase, the person moves upward to stand through the
extension of their hips, knees, and ankle plantarflexion. During the
ascending phase, the ankle angle decreases and reaches zero in the
standing position (Figure 2B).

The experiments were conducted over 2 days. The experimental
protocol is shown in Figure3. On the Ist day, the subjects
underwent an acclimation period to become familiarized with the
exoskeleton emulator system. The squatting exercise was performed
in four different stiffness conditions of the exoskeleton as well as
the unpowered condition. For each condition of the exoskeleton,
the subjects were instructed to perform squatting and standing
alternately for 4 minin total. Each squat cycle lasted about 2,
followed by 6s of standing. The subject’s squat frequency was
regulated by a metronome. The total duration of the squatting study
on the 1st day was 80 min. During this time, participants performed
squatting movements for a total duration of 20 min, with intervals
of rest in between.
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On the 2nd day, the study involved human-in-the-loop
optimization of stiffness parameters for personalized assistance
(Figure 2C). This was followed by a validation study in which
participants performed the exercise in (i) no device, (ii) unpowered
device, and (iii) optimal assistance conditions. We used data from
the 1st and 2nd days for our analysis. The 2nd day’s data was used
for initial analysis, where we compared the CoP variability between
unpowered and optimal assistance conditions of the exoskeleton
(Ramadurai et al., 2022). The 1st day’s data was used for the machine
learning and foot pressure—metabolic cost correlation analysis,
which are the main outcomes of this paper. The detailed description
of the experimental study is provided by Kantharaju et al. (2022).

2.2 Metabolic cost estimation

The corresponding energy expenditure (metabolic cost) of the
subject was measured using the respiratory metabolic measurement
device (K5, Cosmed, Rome, Italy). The phase-plane based data-
driven method was utilized to estimate the metabolic cost from the
measured respiratory signals (Kantharaju and Kim, 2020).

2.3 Pressure measurement

The F-scan insole pressure sensor (Tekscan, MI, United States)
was used to acquire foot pressure data, which consists of 3 signals:
the foot pressure magnitude, the position of the center of pressure
in the anterior-posterior direction (yCoP) and the position of the
center of pressure in the medial-lateral direction (xCoP) of the foot.
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Experimental setup of exoskeleton personalization study for squatting using human-in-the-loop (HIL) optimization and its results (A). Experimental
setup image showing the human subject wearing the ankle exoskeleton, off-board actuators, foot pressure sensors (in green dashed box) and
metabolic cost measurement device (B). Ankle angle versus the desired torque trajectory for control of the exoskeleton during squatting. The K,scending
parameter is the proportional stiffness when the subject is performing the ascending motion from the bottom position of the squat and Kgescending iS the
proportional stiffness when the subject is descending into the bottom position of the squat (C). The optimal stiffness parameters were determined from
HIL optimization, for each subject.
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FIGURE 3

Experimental protocol for the exoskeleton personalization study for squatting. On Day 1, the subjects got acclimatized to the exoskeleton. Four
different stiffness parameters were used and the corresponding metabolic cost was measured. Day 2 involved HIL optimization and validation of the
optimal assistance condition. Each squatting condition lasted for 4 min in total, consisting of alternate squatting (2 s) and standing (6 s).

Day 2: HIL optimization
and validation

Each squatting condition

The pressure-sensing insoles were positioned above the insoles of the
subjects’ shoes. Prior to data collection, a standard step calibration
was performed to calibrate the pressure data for each individual.
The sampling rate was set to 50 Hz. Following the calibration, data
collection commenced.

2.4 Data analysis

For the preliminary analysis (Figure 1), six subjects’ foot
pressure data from the validation study on the 2nd day of the
experiment were selected based on data quality and analyzed
2022). The CoP variability at the optimal
assistance condition was compared with the unpowered device

(Ramadurai et al.,

condition. The CoP variability (standard deviation) was used as
it has been found to be a reliable and consistent measure of
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postural equilibrium (Geurts et al., 1993; Le Clair and Riach, 1996;
Palmieri et al., 2002; Quijoux et al., 2021). Lower values indicate
better postural control.

2.4.1 Data analysis steps

For the machine learning analysis, we used the data from the
Ist day of the experiment. Essentially, we instructed the subjects
to perform squatting movements periodically for a fixed duration
of 4 min while wearing a powered exoskeleton and collected the
foot CoP data (from a pressure sensing insole placed inside
the shoe) and the metabolic energy consumption (using indirect
calorimetry). Foot CoP and metabolic cost data were collected
for different assistive torque patterns of the exoskeleton. We then
extracted relevant features from the CoP data, such as the mean,
standard deviation, minimum and maximum of pressure, xCoP,
yCoP, xCoP velocity and yCoP velocity during the squat phase.
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Then, we tried to find the mapping between foot CoP features
(input) and the metabolic cost (output) using a machine learning
model, the random forest. We split the data set into training and
test sets using a 70%-30% split. After training the model, we tested
the model’s prediction performance using unseen test data (30%
of data held out from the original split). The model’s prediction
accuracy was determined based on the correlation between the true
metabolic cost measured through calorimetry and the metabolic
cost predicted by the random forest model. We also tested the
model’s performance on unseen subjects using leave-one-subject-
out (LOSO) validation. Using the feature importance values, we
identified the most important features with predictive power to
estimate the metabolic cost. Pearsons correlation analysis was
done to estimate the individual correlation coefficients between
the important features and the metabolic cost. These steps are
summarized in Figure 4 and explained in more detail below.

2.4.2 Foot CoP data processing

The subjects performed squatting under different stiffness
conditions of the exoskeleton and the corresponding metabolic cost
and foot pressure data were measured. The data of five subjects who
had clear foot pressure waveforms were chosen for analysis. The last
2 min of the signals were considered for the analysis, in order to
control for adaptation effects during the initial squats. The pressure,
yCoP, and xCoP signals were processed using a low pass filter at 2 Hz.
The signals were analyzed using MATLAB. The squat onsets and
squat phase were identified using the peaks and local extrema in the
pressure signal using a moving window technique. The squat phases
of the signals were averaged using time synchronous averaging. The
CoP trajectories after time synchronous averaging are shown in
Figure 1.

2.4.3 Feature extraction

The xCoP and yCoP velocities were obtained by calculating the
first derivative of the xCoP and yCoP trajectories, respectively. The
statistical features (minima, maxima, mean, and standard deviation)
of the pressure, yCoP, xCoP, yCoP velocity, and xCoP velocity signals
were extracted. The extracted features were used as predictors of
metabolic cost in the machine learning model.

244 Model selection

A decision tree is a machine learning method that partitions
the feature space into a number of non-overlapping regions with
similar output values using splitting rules. In this case, the feature
space is represented by the set of foot CoP features while the output
values are the metabolic cost magnitudes. The random forest is an
ensemble learning technique that combines the results of a large
number of uncorrelated decision trees, trained on random subsets
of features to make a prediction (Breiman, 2001). Minimizing the
correlation between individual trees reduces the prediction error. As
a data-driven model, the random forest has important advantages
such as robustness to noise and overfitting. It also gives useful
estimates of variable importance, which can be utilized for feature
selection (Kulkarni and Sinha, 2012; Fawagreh et al.,, 2014). We
chose the random forest for our dataset because it showed the
best performance among the other models tested such as k-nearest
neighbors, support vector classifier and linear discriminant analysis.
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FIGURE 4

Flowchart showing the steps involved in processing and analyzing foot
pressure data for exoskeleton-assisted squatting. Features extracted
from the processed foot pressure signals for each assistance condition
were used to train a machine learning model (random forest) to
predict the corresponding metabolic cost. Feature selection was done
to identify the CoP features that were most important in predicting the
metabolic cost.
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2.4.5 Model training

The features extracted from the foot pressure data for each
stiffness condition of the exoskeleton were fed as input to the random
forest regressor. The corresponding metabolic cost was the response.
The machine learning analysis was done using Python (scikit-learn,
RRID: SCR_002577). The dataset was divided into training and
testing sets using a 70%-30% split. The training set was used for
tuning the model’s hyperparameters, such as the number of trees,
maximum depth of each tree, and minimum number of samples
per leaf. A grid search method was used, and the hyperparameters
were selected based on five-fold cross-validation. In addition to the
different stiffness conditions, each subjects data for the no-device
and unpowered device conditions were also included for training the
model. This procedure was repeated for all five subjects. Adding the
data from the no-device and unpowered device conditions helped
the model learn the variability in measured values across different
subjects.

2.4.6 Model testing and validation

The testing set (30% of the data) was held out as new data
unseen by the model. The accuracy of the model’s predictions
was evaluated using Pearson’s correlation coefficient between the
true metabolic cost (from indirect calorimetry) and the metabolic
cost predicted by the random forest model. Correlation values
above 0.8 are considered to be very strong. (Taylor, 1990; Evans,
1996). The statistical signficance is reported at alpha = 0.05. The
model’s prediction accuracy on unseen subjects was also investigated
using leave-one-subject-out validation. Since five subjects’ data were
available, one subject was selected as the unseen test subject and the
model was trained using the data from the remaining four subjects.
In this manner, the model was tested on every subject.

2.4.7 Feature selection

Feature selection was performed using variables importances
returned by the random forest model. The top four important CoP
features were investigated for their correlation with the metabolic
cost using Pearson’s correlation analysis.

2.4.8 Physical interpretation

We then interpreted our results from a biomechanical
perspective, to delineate the mechanisms that could be contributing
to the observed results.

3 Results
3.1 Model performance

After training the random forest model, we tested its accuracy in
predicting the metabolic cost on unseen data from the test set. The
prediction error (mean absolute error; MAE) on the test set was
0.55 W/kg (percentage error: 11%) (Table 2). Pearson’s correlation
analysis showed a statistically significant and high correlation (r =
0.89; p < 0.01) between the true metabolic cost and the metabolic
cost predicted by the random forest model (Figure 5), as r > 0.8 is
considered to be very strong. (Taylor, 1990; Evans, 1996).

The results of the leave-one-subject-out validation are shown in
Table 2. The average error for the unseen subject was + 0.40 W/kg.
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TABLE 2 Metabolic cost prediction performance of the random forest
regressor on the hold-out test dataset and unseen test subjects, using the
LOSO (leave-one-subject-out) method.

Test data Mean absolute error in Mean absolute
predicted metabolic  percentage
cost (W/kg) error (%)
Hold-out test set
validation

70%-30% split of entire dataset  0.55 11.1
Leave-one-
subject-out
validation

Subject 1 0.45 13.1

Subject 2 0.75 38.2

Subject 3 0.42 9

Subject 4 0.07 2.7

Subject 5 0.32 6.8

Average 0.40 13.9

Median 0.42 9

Pearson's r = 0.89
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FIGURE 5
Correlation between the true metabolic cost and the cost predicted
by the random forest model using foot pressure features.

The average percentage error for the unseen subjects was 13.9%.
However, Table 2 shows that the percentage error for one subject
(Subject 2) is very high and is influencing the mean. Hence, the
median percentage error for the subjects was also calculated and
found to be 9%.

3.2 Feature selection and correlation
analysis

Feature selection was based on the feature importance returned
by the random forest algorithm. The top four most important
features were the minimum, maximum and mean values of the
xCoP squat trajectory and the mean velocity of the yCoP trajectory,
as shown in Figure 6A. The important features determined by the
random forest model were investigated further through correlation
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Correlation between the yCoP mean velocity and metabolic cost.

analysis, and the correlations were found to be statistically
significant. The Pearson’s correlation plots for the top four important
features, namely, xCoP minimum (r = 0.86, p < 0.001), xCoP
maximum (r = 0.79, p < 0.001), xCoP mean (r = 0.9, p < 0.001) and
yCoP mean velocity (r=—0.64, p <0.01), are shown in Figures 6B-E.
The mean, minimum and maximum values of the xCoP trajectory
showed an increasing trend with increasing metabolic cost. The
yCoP mean velocity showed a decreasing trend with metabolic cost.

Due to the strong linear correlations observed for the important
features, we have also expressed the relationship between the highly
correlated CoP features and metabolic cost in terms of the traditional
method, the multiple regression equation, which is simple and
interpretable.

Metabolic cost = —7.454 + 1.369 xCoP mean

+0.522 xCoP minimum + 0.129 xCoP maximum

(Units: Metabolic cost is in W/kg; xCoP mean; xCoP minimum;
xCoP maximum are in cm)

4 Discussion

In this paper, we analyzed the foot pressure data obtained
from the study (Kantharajuetal, 2022) on human-in-the-loop
optimization of an ankle exoskeleton to minimize the physical effort
(metabolic cost) of squatting using a machine learning method,
random forest regression analysis. Based on our preliminary results
(Ramadurai et al., 2022), we hypothesized that metabolic cost can
be estimated from CoP-derived metrics using machine learning
methods like the random forest for improved time-efficiency

Frontiers in Robotics and Al

and user comfort in HIL optimization. We also hypothesized
that the random forest can reveal important CoP features that
are correlated with the metabolic cost of squatting. We found
that foot pressure features obtained from insole-based pressure
mapping systems can be used to predict the metabolic cost using
machine learning techniques. The random forest regressor was
able to predict the metabolic cost with an error of 0.55 W/kg
on unseen foot pressure data. The model was also validated
using LOSO (leave-one-subject-out) and the average error was
0.4 W/kg (percentage error: 9%) on the unseen subject. The
statistically significant high correlation (r = 0.89) between the
true metabolic cost and predicted cost indicates that the random
forest model was able to capture the underlying relationship
between the metabolic cost and CoP features, supporting the first
hypothesis. The important features of the input data, such as the
mean, minimum and maximum of xCoP squat trajectory and the
yCoP mean velocity, were obtained through feature selection from
the random forest model. These features were also significantly
highly correlated with the metabolic cost, supporting the second
hypothesis.

A high positive correlation was found between the metabolic
cost and the statistical features of the xCoP squat trajectory: xCoP
mean (r = 0.9), xCoP minimum (r = 0.86), xCoP maximum (r =
0.79). In other words, the metabolic cost could be minimized when
the mean and extrema of the xCoP squat trajectory were lower. The
xCoP represents the position of the center of pressure in the medial-
lateral direction of the foot. From Figures 6B-D, a larger value of
xCoP indicates that the CoP moved further in the medial direction
of the foot while the subject was squatting. The interpretation of this
result is explained as follows. All subjects were instructed to squat
the same way. In the standing position, they stood with their feet
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apart (shoulder width apart). While squatting, their knees had to be
aligned with their toes during both the descent and ascent. Based on
our data analysis, we found for certain assistive torque patterns of the
exoskeleton, the subjects did not maintain their knee-toe alignment
while squatting. Their knees collapsed inwards, along with an
outward roll of the ankle, resulting in the xCoP shifting towards
the medial direction. The metabolic cost was found to be higher
with increasing medial shift of the xCoP. In biomechanics parlance,
the inward collapsing of the knee is termed valgus movement while
the outward roll of the ankle is called eversion. A higher ankle
eversion, reflected as increased xCoP medial shift, is known to be the
cause of chronic lower limb injuries (Lee et al., 2010; Whitting et al.,
2016; Pangan and Leineweber, 2021). Hence, the metabolic energy
expenditure might have increased with greater outward roll of the
ankle because it is a non-optimal squatting strategy associated with
the risk of injury. We posit that at suboptimal assistive torques,
the knees “wobbled” out of alignment with the toes and the
ankle rolled outwards, causing the subjects to exert more effort
to maintain their squat posture and balance, which manifested
as increased metabolic cost. At the optimal assistive torque, the
subjects were able to execute the squats smoothly, with reduced
ankle roll and better knee-toe alignment, expending less energy
(Figure 7).

The medial shift of the CoP indicates greater ankle eversion
and knee abduction, which is indicative of a suboptimal squatting
strategy (Chiuetal, 2013; Snarr and McGinn, 2015; Pangan
and Leineweber, 2021) and resulted in increased metabolic cost
(Houdijk et al., 2015). It is well-known that a high degree of ankle
mobility and strength is necessary to facilitate postural balance
and control during the descending and ascending motions of the
squat (Schoenfeld, 2010). Insufficient stability and strength in the

10.3389/frobt.2023.1166248

ankle joints could lead to the hips, knees, and feet negatively
compensating, leading to muscular imbalance or injury (Cook,
2003; Kendall et al., 2005; Snarr and McGinn, 2015). The squat
movements are facilitated by ankle dorsiflexion and plantarflexion,
which maintain postural stability and limit inversion and eversion
at the foot (Schoenfeld, 2010). A higher ankle eversion (indicated
by the movement of the CoP towards the medial direction) has been
associated with the etiology of chronic lower limb injuries (Lee et al.,
2010; Whitting et al., 2016; Pangan and Leineweber, 2021). Eversion
causes the ankle to collapse inward during the squat. This is typically
accompanied by an inward collapsing of the knee joints and hip
adduction, known as a valgus movement, which increases the risk
of injury due to muscular imbalances of the inner and outer thigh
(Snarr and McGinn, 2015). Valgus movement, with eversion at the
foot, is associated with reduced strength of the hip abductors (Snarr
and McGinn, 2015; Rinaldi et al., 2022). Claiborne etal. (2006)
found that individuals with greater strength in the knee extensors,
knee flexors and hip abductors were less likely to collapse inwards
at the knee joints while squatting (Claiborne et al., 2006). Excessive
hip adduction during knee valgus is known to be a common
risk factor for several acute lower extremity injuries, including
the ACL (anterior cruciate ligament) injury (Griffin et al., 2000;
Rinaldi et al., 2022). Therefore, it is possible that the metabolic cost
of squatting increases with greater eversion of the foot because
it is a non-optimal squatting strategy that increases the risk of
injury.

From the analysis results, we infer that the xCoP trajectory
during the squat can be utilized not only to estimate the metabolic
cost but also to detect sub-optimal squat performance that could
help prevent lower limb injuries. The features of the xCoP trajectory
can be easily obtained from a pressure-sensing insole worn inside
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the shoe. It is a comfortable and portable wearable sensor and allows
for both rapid estimation of metabolic cost and injury risk due
to ankle eversion. Hence, the possibility of using xCoP features
as an alternative cost function in human-in-the-loop exoskeleton
optimization seems promising. Furthermore, considering postural
balance metrics when designing a control method for exoskeletons
is important because the natural body balance could be perturbed
by the wearing of the exoskeleton and require additional effort from
the user to regain their balance (Jeong et al., 2020; Luo et al., 2021).

The correlation between the metabolic cost and yCoP mean
~0.64).
The yCoP velocity is a measure of the displacement of the CoP

velocity was found to be moderate and negative (r
in the anterior-posterior direction of the foot. Positive values
indicate movement of the CoP toward the toe (anterior direction),
while negative values indicate CoP movement toward the heel
(posterior direction). The absolute value reflects the magnitude of
the displacement. In this study it was found that displacements
of the CoP in the anterior direction during squatting, i.e.,
towards the toe, were correlated with lower metabolic costs, while
CoP displacements towards the heel were associated with higher
metabolic costs. Ishida et al. (2022b) found that the yCoP position
is a significant predictor of the knee extensor moment contribution
during a squat (Ishida et al., 2022b). Squatting with the CoP position
shifted in the anterior direction resulted in a significantly lower knee
extensor moment compared to a posterior CoP shift. (Ishida et al.,
2022a). Perhaps this could explain why lower metabolic costs were
correlated with CoP displacements in the anterior direction of the
foot.

Our approach shows how machine learning and feature selection
applied to balance-related measures based on foot center of
pressure can offer insights into how subtle changes in movement
patterns can affect performance. Previous works on human-
in-the-loop optimization assessed performance by measuring
metabolic cost using respiratory measures (indirect calorimetry)
(Felt et al., 2015; Zhangetal., 2017; Dingetal.,, 2018; Kim et al,,
2019; Kantharaju et al., 2022). From such past works, it is known that
certain assistive torque patterns of the exoskeleton are energetically
more economical, but the pathways through which the nervous
system adapts to the exoskeleton to effect such an efficient movement
is unknown. Our research shows how CoP can act as an external
“signature” of how the nervous system internally coordinates
movement patterns that result in smooth and efficient movements
that are metabolically economical. Data-driven methods such as
machine learning, together with feature engineering and feature
selection, can identify these signatures of efficient movement from
CoP data and predict the optimal condition before it manifests in
the respiratory signals. Hence, such a predictive model can estimate
the metabolic cost in a shorter span of time, leading to a much
faster optimization process, together with the advantage of user
comfort.

4.1 Managerial implications

In both industrial as well as clinical settings, the CoP-
based assistance optimization can potentially be used to reduce
energy expenditure and fatigue during repetitive squatting, with
practical advantages over the current HIL optimization method.
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(i) Optimization time: The results of our study show that foot
CoP features are useful in rapidly estimating the metabolic cost
of squatting for human-in-the-loop optimization of exoskeleton
assistance. Using the indirect calorimetry method, it takes at least
4 min to obtain a reasonable estimate of metabolic cost, whereas
using the CoP-based prediction method, the metabolic cost can
be estimated within 2 min. The optimization process using the
standard approach takes about 20 min in total, while it can be
done in 10 min using our proposed approach. Thus, the CoP-based
estimated method could potentially reduce optimization time by
about 50%. (ii) User comfort: Furthermore, the CoP data can be
obtained from a non-invasive, comfortable pressure sensor worn
inside the shoe; hence, it can be used outside of the lab, unlike the
respiratory measure. This fast cost estimation with a comfortable
foot pressure sensor may enable personalization outside of the
lab. (iii) Injury risk mitigation: In addition, being an index of
postural control and balance, the CoP can indicate improper squat
performance and help reduce the risk of injury. For example, if
excessive medial shift of the xCoP is observed, it indicates ankle
roll (eversion) during squatting and the individual can be guided to
correct their squat technique.

4.2 Limitations

The study was conducted with young and healthy male
participants. There might be differences in the CoP trajectories of
older adults and patients who have reduced physical strength. In
that case, we can conduct another data analysis as there might
be additional features of the CoP trajectories that are important.
Another limitation is that due to the signal noise in the sensor, we
were able to use only five subjects’ data. However, the relatively high
Pearson’s correlation coeflicient indicates that this study’s outcomes
can be useful for the optimization process.

4.3 Conclusion

In conclusion, the features of the CoP trajectory were found to
be useful in predicting the metabolic cost of exoskeleton-powered
squatting using machine learning methods, as indicated by a high
correlation between the true cost and predicted cost. In particular,
the xCoP trajectory features related to ankle inversion and eversion
were found to have a high positive correlation with metabolic cost.
Increased ankle eversion (outward ankle roll) was associated with
higher metabolic cost. Higher ankle eversion has been linked with an
increased risk of developing chronic lower limb injuries, Hence, the
xCoP trajectory features can be used to estimate both the metabolic
cost of squatting as well as the risk of developing injuries due to
improper squat performance. Our proposed method of using a
CoP-based cost function in human-in-the-loop optimization offers
multiple advantages, such as reduced estimation time, injury risk
mitigation, and enhanced user comfort, and importantly makes
it possible to use human-in-the-loop optimization outside of the
lab.

For our future work, we plan to conduct human subject
experiments to test our CoP-based metabolic cost prediction
model in real time human-in-the-loop optimization of the ankle
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exoskeleton assistance to minimize the user’s physical exertion
during squatting.
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