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Abstract— Gene regulatory networks (GRNs) are large and
complex dynamical systems often monitored through RNA
sequencing or microarray technologies. Genomics studies often
focus on a small subset of genes and analyze only these genes
due to the huge cost and time-limit constraints. Therefore,
selecting a small subset of genes that carries the highest infor-
mation about the underlying process of these complex systems is
highly desired. The existing biomarker selection techniques rely
on unrealistic assumptions such as direct observability of genes’
states as well as the availability of perfect knowledge about the
modeling process. To address the aforementioned issues, this
paper models GRNs with uncertain regulatory models with the
signal model of partially-observed Boolean dynamical systems
(POBDS) and derives the optimal Bayesian biomarker selection
framework given the noisy available gene-expression data. The
proposed framework is built on the multiple-model adaptive
estimation (MMAE) framework and the optimal minimum
mean-square error (MMSE) state estimator for POBDS, called
Boolean Kalman smoother (BKS). The proposed framework is
an optimal solution relative to the uncertainty class, and its high
performance is demonstrated using the mammalian cell-cycle
Boolean network model and the p53-MDM2 negative feedback
loop observed through gene-expression data.

I. INTRODUCTION

Gene regulatory networks (GRNs) govern the functioning
of key cellular processes, such as cell cycle, stress response,
DNA repair, and more. Several mathematical models have
been proposed to accurately capture the dynamical behavior
of GRNs. These methods include Boolean networks [1]–[3],
ordinary differential equations (ODE) [4], S-systems [5], and
Bayesian networks [6].

The simplicity and interpretability of Boolean network
models have made them one of the most successful frame-
works for capturing the dynamical behavior of GRNs [7].
The evolution of Boolean network models has a long his-
tory, starting from the deterministic Boolean network model
introduced by Kauffman and collaborators in 1969 [1]. In re-
cent years, several sophisticated stochastic Boolean network
models have been introduced, including Boolean Networks
with perturbation (BNp), Probabilistic Boolean Networks
(PBN), and Boolean Control Networks (BCN). Despite some
fundamental differences between the aforementioned models,
all rely on the assumption that the transcriptional states
of genes are directly observable, meaning that 0 and 1
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representing the inactivation and activation of each gene are
perfectly distinguishable in the available data. However, this
is never the case in practice, as modern transcriptional studies
in genomics are based on technologies that produce noisy
indirect measurements of gene activities, such as cDNA
microarrays, RNA-seq, and cell imaging-based assays.

This paper employs the signal model of Partially-Observed
Boolean Dynamical Systems (POBDS) [3], [8], [9], which
unifies and generalizes most of the aforementioned Boolean
network models and allows for indirect and incomplete
observation of gene states, a realistic scenario encoun-
tered in practice. Several tools have been developed for
the POBDS model in recent years, including the optimal
filter and smoother based on the minimum mean square
error (MMSE) criterion, called the Boolean Kalman filter
(BKF) and Boolean Kalman smoother (BKS) [8], [10]–[12]
respectively, fault detection [13]–[15], learning [16]–[18] and
controllers [19]–[21].

Biomarker selection in GRNs has been the center of
attention in recent years, primarily due to advances made
in technology which have enabled acquiring much larger
and richer genomics data [22]. While the information of
a large number of genes is often embedded in genomics
data, it has been shown that only a small subset of genes
play the key role in the functionality and dynamics of these
complex systems [7], [23], [24]. The small gene subsets are
often used for various reasons such as analyzing healthy and
unhealthy systems, early diagnosis or prognosis of chronic
diseases, designing new/effective drugs/remedies that can
alter these subsets and impact the systems, and developing
targeted therapies to change the undesirable behavior of these
systems. Therefore, identifying this small subset of genes is
critical in enhancing the accuracy of analysis (e.g., cancer
diagnosis, identifying genetic disorders, etc.) and reducing
the huge cost associated with genomics studies.

Several mathematical techniques have been developed
for the biomarker selection of GRNs. These include tools
developed based on Bayesian networks, ordinary differential
equations (ODE), Boolean network models. However, they
often come short in practice due to reliance on full knowl-
edge about the regulatory model or assumption regarding
direct observability of genes’ states.

We employ the signal model of POBDS for modeling
GRNs with uncertain regulatory models and derive the
optimal Bayesian biomarker selection framework using the
combination of multiple model adaptive estimation (MMAE)
framework [25], [26] and the optimal minimum mean square
error (MMSE) [3]. The proposed framework offers several
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benefits, including:
● Optimality: The proposed framework meets Bayesian

optimality, which means the selected subset of genes
is the best with respect to the posterior distribution
of uncertain models obtained according to all available
information.

● Risk Consideration: The proposed framework provides
computation of the expected error of decisions, which
is critical for risk consideration in sensitive domains.

● Fast Computation: The multiple model-based structure
of the proposed framework allows parallelization of
the process for fast decision making, leading to the
applicability of the proposed framework to large GRNs.

In Section IV, the performance of the proposed framework
is investigated using the mammalian cell cycle and p53-
Mdm2 Boolean network models observed through noisy
gene-expression data.

II. POBDS MODEL OF GENE REGULATORY NETWORKS
OBSERVED THROUGH NOISY MEASUREMENTS

A POBDS models a set of genes like a graph where genes
are represented by nodes and interacting genes are connected
by edges. The nature of the interaction is encoded by +1,
−1, and 0, representing a positive, negative, and no inter-
action (more complex interactions can also be considered).
The actual interactions of genes cannot easily be measured
directly but must be inferred from noisy observations. In
a partially-observed Boolean network, the unobserved state
of the interactions is learned from the repeated measures
of noisy indirect measurements. Assume that the system
is described by a state process {Xk;k = 0,1, . . .}, where
Xk = [Xk(1), ...,Xk(d)]T is a vector of size d (i.e., the
number of genes). The ith state variable at any time k
takes a real value from the set {0,1}. The sequence of
states is observed indirectly through the measurement process
{Yk;k = 1,2, . . .}, where Yk is a vector of measurements.
The POBDS signal model can be represented by the follow-
ing two processes [3]:

Xk = f (Xk−1,nk) (state process)

Yk = h (Xk,vk) (measurement process)
(1)

for k = 1,2, . . .; where nk is the transition noise at time k, f
is the network function, whereas h is a general function map-
ping the current state and observation noise vk into the mea-
surement space. The noise processes {nk,vk;k = 1,2, . . .}
are assumed to be ”white” in the sense that the noises at
distinct time points are uncorrelated random variables. It
is also assumed that the noise processes are uncorrelated
with each other and with the initial state X0; however, their
distributions are arbitrary. The two components of this signal
model are presented in this section.

A. GRN State Model

The state process for GRNs can be represented as
f(Xk−1,nk) = f(Xk−1) ⊕ nk, where “⊕” indicates
component-wise modulo-2 addition. The noise process nk

can be modeled by independent Bernoulli (p), where the
parameter p > 0 models the noise “intensity” — the closer
p is to 0.5, the more chaotic the system will be, while a
value of p close to zero means that the state trajectories are
nearly deterministic, being governed tightly by the network
function

A well-known Boolean function which relies on pathway
diagrams [27] can describe the behavior of GRNs. The com-
ponents of Boolean function in this model are represented as
f = (f1, . . . , fd), where each component fi ∶ {0,1}d → {0,1}
is a Boolean function given by:

fi(x) =
⎧⎪⎪⎨⎪⎪⎩

1, ∑dj=1 aijx(j) + bi > 0 ,

0, ∑dj=1 aijx(j) + bi ≤ 0 ,
(2)

where aij and bi are system parameters. The parameter
aij can take three values: aij = +1 if there is a positive
regulation (activation) from gene j to gene i; aij = −1 if
there is a negative regulation (inhibition) from gene j to
gene i; and aij = 0 if gene j is not an input to gene i. The
parameter bi specifies regulation biases and can take two
values: bi = +1/2 if gene i is positively biased, in the sense
that an equal number of activation and inhibition inputs will
produce activation; the reverse being the case if bi = −1/2.
The proposed network function is depicted in Fig. 1, where
the threshold units are step functions that output 1 if the
input is non-negative, and 0 otherwise. It should be noted
that the model in (2) is nonlinear.

Fig. 1: Gene regulatory network model.

B. GRN Measurement Model

The genomics data are described by the observation pro-
cess {Yk;k = 1,2, . . .}, where Yk = (Yk(1), . . . ,Yk(d)) is
a vector containing the transcript abundance measurements
at time k. The observation vector is entirely arbitrary;
however, for simplicity, in this paper, we assume Gaussian
gene-expression measurements at each time point. This is
an appropriate model for many important gene-expression
measurements technologies, such as cDNA microarrays and
live cell imaging-based assays [28]–[30], in which gene ex-
pression measurements are continuous and unimodal (within
a single population of interest). Furthermore, we assume
conditional independence of the measurements given the
states as:
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P (Yk = y ∣Xk = x)=
d

∏
j=1

P (Yk(j) = y(j) ∣Xk(j) = x(j))

= 1

∏dj=1

√
2πσ2

j

exp
⎛
⎝
−

d

∑
j=1

(y(j)−µ0
j(1 − x(j))−µ1

jx(j))2

2σ2
j

⎞
⎠
,

(3)
where σj denotes the standard deviation of the abundance
of transcript j, and the parameters µ0

j and µ1
j specify the

means of the abundance of transcript j in the inactivated
and activated states, respectively.

III. OPTIMAL BAYESIAN BIOMARKER SELECTION FOR
PARTIALLY-OBSERVED GRNS

The complexity and scale of GRNs often pose significant
uncertainty in the modeling process. This uncertainty often
appears due to partial knowledge about the interactions
between genes. In the model described in (2), the unknown
interactions can be represented by unknown elements of
connectivity matrix or bias units, i.e., aij ∈ {−1, 0,+1} and
bj ∈ {−1/2,+1/2}. The process noise intensity p can also be
unknown, which we assume can be quantized into a finite
grid. Hence, the possible models for the dynamics of a GRN
can be represented by a finite set Θ, in which one of these
models is the correct model of the system. For instance, a
single unknown regulation, aij , yields three possible models
Θ = (θ1, θ2, θ3), in which each model differs in a single
regulation.

While the network structure of GRNs provides valuable
information about their dynamics, biologists are often inter-
ested in finding a small subset of genes that can properly
predict these complex biological processes. The biologists
benefit from these small gene subsets for various reasons
such as analyzing healthy and unhealthy systems, early
diagnosis or prognosis of chronic diseases, designing new/ef-
fective drugs/remedies that can alter these subsets and impact
the systems, and developing targeted therapies to change the
undesirable behavior of these systems.

Let Y1∶T be the sequence of observed measurements
available through gene-expression data. The measurement at
each time step is a vector containing the information of d
genes as Yk = (Yk(1), ...,Yk(d)). The goal of biomarker
selection is to pick a small subset of genes that carries
the highest information about the underlying process. Let
S denote the space of all possible subsets of genes. We use
Ys
k to refer to the sth subset of measurement vector Yk, for

s ∈ S.
The best subset in the set S is the subset that can perfectly

capture the dynamics of the underlying process. This can be
interpreted as the subset that leads to the minimum expected
error of estimation throughout the whole system. The optimal
minimum mean-square error (MMSE) state estimator for a
system parametrized by θ given observation from the sth
subset Ys

1∶T is given by:

X̂MS,θ
k∣T,s = argmin

X̂k∣T ∈Ψ
E [∣∣Xk − X̂k∣T ∣∣21 ∣Ys

1∶T , θ] , (4)

where ∣∣.∣∣ denotes the usual vector norm and Ψ is the
space of all Boolean estimators. The optimal solution to the

above minimization problem is given by a Boolean Kalman
smoother algorithm developed in [8] as:

X̂MS,θ
k∣T,s = E[Xk ∣Ys

1∶T , θ], (5)

for k = 1, ..., T ; where v maps the element of v smaller than
0.5 to 0 and others to 1. The sum of the expected error of
the optimal estimator in this interval is given by:

CMS,θ
s =

T

∑
k=1

∣∣min{E[Xk ∣Ys
1∶T , θ],1d−E[Xk ∣Ys

1∶T , θ]}∣∣1,
(6)

where “minimum” is applied component-wise. It can be
shown that 0 ≤ CMS,θ

s ≤ Td/2. The large values of CMS,θ
s

denote the high expected error of the optimal estimator for
the sth subset of genes for a system parameterized by θ,
whereas the small values denote low error (high confidence)
of the optimal state estimator.

Due to the uncertainty in the regulatory network model, in
this paper, we derive the optimal Bayesian (OB) biomarker
selection policy, which can be obtained by solving the
following minimization problem:

sOB = argmin
s∈S

Eθ∣Y1∶T
[CMS,θ

s ] = argmin
s∈S

∑
θ∈Θ

CMS,θ
s pT (θ),

(7)
where the expectation is taken with respect to the posterior
distribution of regulatory models given all available informa-
tion in the whole data, and pT (θ) = P (θ ∣Y1∶T ) denotes the
posterior distribution of the model parameterized by θ.

The computation of (7) requires the computation of the
posterior distribution as well as the sum of the expected error
of the optimal estimator associated with all subsets of genes
and all possible models. To achieve this, we define the state
conditional probability distribution vectors Πs,θ

r∣k , Πs,θ
r∣k and

∆s,θ
k∣T of length 2d via:

Πθ
r∣k(i) = P (Xr = xi ∣Y1∶k, θ) ,

Πs,θ
r∣k(i) = P (Xr = xi ∣Ys

1∶k, θ) ,

∆s,θ
k∣T (i) = p (Y

s
k+1∶T ∣Xk = xi, θ) ,

(8)

for i = 1, ..., 2d, 1 ≤ k ≤ T,1 ≤ r ≤ T , s ∈ S and θ ∈ Θ. Let
T (Ys

k) be the updated matrix corresponding to sth subset
of genes defined as:

(T (Ys
k))ii = p(Y

s
k ∣Xk = xi)

= ∏
j∈s

1√
2πσ2

j

exp
⎛
⎝
−
(Ys

k(j) − µ0
j(1 − x(j)) − µ1

jx(j))2

2σ2
j

⎞
⎠
,

(9)
for i = 1, ..., 2d. Let the prediction matrix Mk of size 2d×2d

be the transition matrix of the Markov chain corresponding
to the model parameterized by θ ∈ Θ. This matrix can be
defined as:

(Mθ
k )ij = P (Xk = xi ∣Xk−1 = xj , θ), for i, j = 1, ..., 2d.

(10)
Posterior Computation: In this part, we describe how the
posterior distribution of models can be computed. Let p0(θ)
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denote the prior probability of model θ, where ∑θ∈Θ p0(θ) =
1. In a case that there is no prior knowledge about the GRN
available, one can simply use the uniform prior over the
possible models: p(θ) = 1/∣Θ∣, for θ ∈ Θ.

The posterior probability of model θ can be computed
using all available information as:

pT (θ) =
pθ(Y1∶T )p0(θ)

∑θ′∈Θ pθ′(Y1∶T )p0(θ′)
, (11)

where

pθ(Y1∶T ) =
T

∏
k=1

∣∣T (Yk)Mθ
k Πθ

k−1∣k−1∣∣1, (12)

with Πθ
k∣k =

T (Yk)Mθ
kΠθ

k−1∣k−1

∣∣T (Yk)Mθ
k
Πθ
k−1∣k−1

∣∣1 , and Πθ
0∣0 as initial distri-

bution.

Computation of Expected Error of Optimal Estimator:
For the computation of the expected error associated with
each subset of genes and model, one needs to compute the
smoothed distribution of states, Πs,θ

k∣T , at any given time
k for all subsets of genes and regulatory models. Let A
be a matrix of size d × 2d containing all Boolean states
of the system as A = [x1⋯x2d]. It is easy to verify that
E [Xk ∣Ys

1∶T , θ] = AΠs,θ
k∣T , so it follows from (5) that:

X̂MS
k∣T,s = AΠs,θ

k∣T . (13)

with the sum of the expected MSE error in the interval as:

CMS,θ
s =

T

∑
k=1

∣∣min{AΠs,θ
k∣T ,1d −AΠs,θ

k∣T ]}∣∣1 . (14)

Proposed Algorithm: Upon describing the efficient ways
of computation of the posterior distribution and expected
error of the optimal estimator, the whole process of the
proposed framework is described here. As it can be seen in
the schematic diagram in Fig. 2, the proposed framework
consists of a bank of Boolean Kalman smoothers (BKS)
corresponding to different possible models for GRN, which
are fed by different subsets of genes. Overall, there is
∣Θ∣ × ∣S∣ BKSs running in parallel, whose outcomes specify
the expected errors of optimal estimators for all gene subsets
and GRN models. The posterior distribution can be computed
in parallel according to (11) using all available data. These
computed values can be used for optimal Bayesian biomarker
selection according to (7). The detailed procedure of the
proposed framework is provided in Algorithm 1.

Fig. 2: The schematic diagram of the proposed framework.

Algorithm 1 The proposed Optimal Bayesian Biomarker Selec-
tion for POBDS

1: Πθ
0∣0(i) = P (X0 = xi), for θ ∈ Θ, i = 1, . . . , 2d.

2: for θ ∈ Θ do
3: L(θ) = 0.
4: for k = 1, . . . , T do
5: βθk = Tk(Yk)M

θ
k Πθ

k−1∣k−1.

6: L(θ) = L(θ) + log ∣∣βθk ∣∣1.

7: Πθ
k∣k = β

θ
k/∣∣β

θ
k ∣∣1.

8: end for
9: end for

10: pT (θ) =
exp(L(θ))p0(θ)

∑θ′∈Θ exp(L(θ′))p0(θ′)

11: Πs,θ
0∣0
= Πθ

0∣0, for s ∈ S, θ ∈ Θ.

12: Cs = 0, s ∈ S.

13: for s ∈ S do
14: for θ ∈ Θ do
15: for k = 1, . . . , T do

16: Πs,θ
k∣k−1

= Mθ
k Πs,θ

k−1∣k−1
.

17: Πs,θ
k∣k
= Tk(Y

s,θ
k )Πk∣k−1/∣∣Tk(Y

s,θ
k )Π

s,θ
k∣k−1

∣∣1

18: end for
19: ∆T ∣T = 12d .

20: for k = T,T − 1, . . . , 1 do

21: ∆s,θ
k∣k−1

= Tk(Y
s
k)∆

s,θ
k∣k

.

22: ∆s,θ
k−1∣k−1

= (Mθ
k )
T ∆s,θ

k∣k−1
.

23: end for
24: for k = 1, . . . , T do
25: Πs,θ

k∣T
= (Πs,θ

k∣k−1
○ ∆s,θ

k∣k−1
)/∣∣Πs,θ

k∣k−1
○ ∆s,θ

k∣k−1
∣∣1 .

26: Cs = Cs + pT (θ)∣∣min{AΠs,θ
k∣T
,1d −AΠs,θ

k∣T
]}∣∣1.

27: end for
28: end for
29: end for
30: Optimal biomarker selection: s∗ = argmins∈SCs
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IV. NUMERICAL EXPERIMENTS

A. Mammalian Cell-Cycle Boolean Network Model

We investigate the performance of the proposed Bayesian
biomarker selection framework using the mammalian cell-
cycle [7]. The mammalian cell cycle involves a sequence
of events resulting in duplication and division of the cell.
It occurs in response to growth factors, and under normal
conditions, it is a tightly controlled process. A regulatory
model for the mammalian cell cycle proposed in [7] is shown
in Fig. 3. There are 10 genes involved in the process where
the states of genes at time step k are denoted by a vector
Xk = [CycD, Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1,
UbcH10]. These interactions can be expressed in terms of
interaction parameters as a21 = 1, a22 = 0, a23 = +1, a24 =
0, a25 = 1, a26 = −1, a27 = 0, a28 = 0, a29 = 0 and a2 10 = 1.
All bias units are zero.

Fig. 3: Pathway diagrams of the mammalian cell cycle regulatory
network models.

We consider three cases with 2, 4 and 6 unknown regu-
lations (M ). The unknown regultions are chosen randomly
among +1 or -1 interactions, and for the sake of simplicity,
we assume the unknown interactions take in {−1,+1}. These
unknown connections result in 2M different Boolean network
models for the system, differing in one or more of these un-
certain regulations. Let Θ = {θ1, ..., θ2M } be the uncertainty
class of these network models, the prior distribution over
Boolean network models has been generated from Dirichlet
distribution as:

p(θ) ∼ f(p(θ);φ) =
Γ (φ2M)
Γ(φ)2M

2M

∏
j=1

p(θj)φ−1, (15)

where Γ is the gamma function and φ > 0 is the pa-
rameter of the symmetric Dirichlet distribution. φ specifies
the variability of the initial distributions; the smaller φ is,
the more the initial distributions deviate from the uniform
distribution. φ = 1 and φ = 10 are considered in our numerical
experiments. The goal is to find the best 3 genes among 10,
which refers to the genes’ subset: S = (s1, ..., s120), where

(
10
3
) = 120. For a test time series of length T ′, the normalized

average mean squared error (MSE) per time step for a given
subset of genes is defined as:

Nor. Ave. MSE per Time = 1

T ′d

T ′

∑
k=1

∣∣X̂s
k∣T ′ −Xk ∣∣21, (16)

where X̂s
k∣T ′ = ∑θ∈Θ(AΠs,θ

k∣T ′)P (θ ∣Ys
1∶T ′).

Table I represents the normalized average mean square
errors per time-step for the proposed method in the following
cases: the best subset containing 3 genes among 10 genes are
sought by the proposed framework and random policy; no
selection is made, and all genes are used for the estimation
process, and the BKS is tuned to the “true” model. It should
be noted that the results of the BKS tuned to the true model is
the best result that can be achieved, as all genes are assumed
to be observed, and no uncertainty in the modeling process
is considered. It can be seen that the proposed framework
has significantly outperformed the random policy and its
normalized average MSE per time-step is close to the case
when all genes are used for the estimation process. This
clearly shows that the proposed framework is capable of
selecting the best 3 genes among 10 that can capture the
dynamical behavior of the mammalian cell-cycle network.
Meanwhile, the result of the proposed framework is closer
to the baseline solution (BKS tuned to the true model) for
more informative prior knowledge (φ = 10) over the unknown
regulations and a lower number of unknown regulations.
The reason is that the number of possible models for the
system increases exponentially with the number of unknown
regulations (M ), and the posterior probability becomes less
informative given a small available gene-expression data.
Finally, as expected, the estimation error is higher for larger
measurement noise, σ.

B. P53-Mdm2 Boolean Network Model

In this part of numerical experiments, we describe an
application of the proposed framework in a well-known p53-
MDM2 negative-feedback gene regulatory network [23]. The
pathway diagram for this network is presented in the left
plot of Fig. 4. The p53 gene codes for the tumor suppressor
protein p53 in humans, and its activation plays a critical role
in cellular responses to various stress signals that might cause
genome instability. The gene regulatory network consists of
four genes: ATM, p53, Wip1, and MDM2, and the input
“dna dsb” which indicates the presence of DNA double-
strand breaks. A single unknown connection is assumed to
be the activation from “p53” to “WIP1”, which poses three
possible models in Θ. Four subsets of genes are considered
as: S =(“ATM”,“p53”,“WIP1”,“MDM2”). We can see that 0000
is a singleton attractor state under no-stress, while the other
states are transient; on the other hand, under DNA damage,
there is a cyclic attractor, corresponding to an oscillation of
p53, along with the other proteins in its regulatory pathway.
This reproduces the known biological behavior described
previously.

The normalized average MSE per time-step obtained by
the proposed framework over 10 time steps for various
selected genes are presented in Table II. One can see that
the average errors are larger for larger process noise. This
can be justified because larger process noise pulls the system
out of attractors more often, making the estimation process
more challenging. One can see that the error is larger for
higher measurement noise. Furthermore, it can be seen that
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Fig. 4: Activation/repression pathway diagram and state transition diagrams corresponding to a constant input dna dsb = 0 (no-stress)
and dna dsb = 1 (DNA-damage) for the P53-MDM2 negative feedback loop Boolean network model with negative regulation biases.

TABLE I: Results of mammalian cell-cycle Boolean network.

σ φ M
Prop. Method All-Genes Random

BKS(θ∗)
T = 10 T = 50 T = 100 T = 10 T = 50 T = 100 T = 10 T = 50 T = 100

5

1

2 0.16 0.11 0.08 0.11 0.09 0.05 0.32 0.29 0.24

0.04

4 0.20 0.18 0.13 0.16 0.11 0.08 0.36 0.33 0.28

6 0.31 0.27 0.22 0.23 0.19 0.12 0.41 0.37 0.33

10

2 0.12 0.09 0.06 0.09 0.07 0.04 0.28 0.24 0.21

4 0.16 0.14 0.10 0.13 0.10 0.06 0.30 0.28 0.25

6 0.24 0.20 0.16 0.20 0.13 0.08 0.33 0.30 0.28

10

1

2 0.23 0.18 0.12 0.15 0.12 0.09 0.41 0.37 0.31

0.07

4 0.27 0.26 0.20 0.20 0.15 0.13 0.40 0.35 0.32

6 0.38 0.34 0.30 0.29 0.21 0.15 0.43 0.40 0.37

10

2 0.20 0.16 0.15 0.15 0.12 0.10 0.33 0.29 0.27

4 0.23 0.22 0.18 0.16 0.12 0.09 0.36 0.32 0.30

6 0.32 0.29 0.23 0.24 0.21 0.16 0.40 0.37 0.35

TABLE II: Results of p53-Mdm2 Boolean network.

No stress (dna dsb = 0) DNA damage (dna dsb = 1)

φ p Initial Distribution ATM p53 Wip1 Mdm2 ATM p53 Wip1 Mdm2

10

0.01
[

1
16
, ..., 1

16
]
T 0.0968 0.0940 0.0694 0.0547 0.3967 0.4020 0.3888 0.4613

[0, ..., 1]T 0.1220 0.1205 0.1121 0.0996 0.4175 0.4192 0.4205 0.4554

0.1

[
1
16
, ..., 1

16
]
T 0.2221 0.2143 0.1698 0.1427 0.3325 0.3709 0.3413 0.3980

[0, ..., 1]T 0.2394 0.2332 0.1916 0.1586 0.3433 0.3768 0.3490 0.3858

1

0.01
[

1
16
, ..., 1

16
]
T 0.0971 0.0947 0.0749 0.0637 0.4236 0.4147 0.4081 0.4698

[0, ..., 1]T 0.1223 0.1210 0.1159 0.1095 0.4486 0.4406 0.4427 0.4663

0.1
[

1
16
, ..., 1

16
]
T 0.2254 0.2191 0.1828 0.1630 0.3659 0.3831 0.3636 0.4100

[0, ..., 1]T 0.2428 0.2377 0.2078 0.1851 0.3750 0.3890 0.3738 0.4055

the average error is larger in the case of an active dna dsb
input in comparison to an inactive one. This can be explained
by the attractor structure of the p53-MDM2 Boolean network
in the presence and absence of external input, in which the

system has a singleton and cyclic attractor in the absence
and presence of DNA damage, respectively.

The optimal Bayesian genes selected by the proposed
framework are specified by bold numbers in Table II. One
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can see that in the case of an inactive dna dsb input, MDM2
is the best choice in all cases. With an active dna dsb
input, either ATM, p53, or Wip1 genes are the best choices,
depending on the system’s parameters. For example, the
choices of the optimal gene in the case of small process
and observation noise are different for two initial distribution
vectors. A similar trend can be seen in the case of large
measurement noise. From the results of Table II, one can
clearly understand the importance of the biomarker selection
process and its dependency on the initial distribution, the
values of noise, and input to the system.

V. CONCLUSION

This paper proposed an optimal Bayesian biomarker se-
lection framework for selecting a subset of genes that carries
the highest information about the underlying process of gene
regulatory networks. The partial observability of the states of
genes as well as the imperfect knowledge about the regula-
tory model is accounted for by the use of partially-observed
Boolean dynamical systems (POBDS) signal model. The
proposed framework consists of multiple Boolean Kalman
smoothers (BKSs) running in parallel, each tuned to a set of
possible models and a subset of genes. We derived the exact
Bayesian solution, which is the optimal solution with respect
to the posterior distribution of the possible models. The
high performance of the proposed framework is demonstrated
through the biomarker selection process of the mammalian
cell-cycle regulatory model and the p53-Mdm2 negative
feedback loop Boolean network model.
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