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High-accuracy numerical relativity simulations of binary neutron star mergers are a necessary
ingredient for constructing gravitational-waveform templates to analyze and interpret observations of
compact object mergers. Numerical convergence in the postmerger phase of such simulations is
challenging to achieve with many modern codes. In this paper, we study two ways of improving the
convergence properties of binary neutron star merger simulations within the Baumgarte-Shapiro-Shibata-
Nakamura formulation of Einstein’s equations. We show that discontinuities in a particular constraint
damping scheme in this formulation can destroy the postmerger convergence of the simulation.
A continuous prescription, in contrast, ensures convergence until late times. We additionally study the
impact of the equation of state parametrization on the premerger and postmerger convergence properties of
the simulations. In particular, we compare results for a piecewise polytropic parametrization, which is
commonly used in merger simulations but suffers unphysical discontinuities in the sound speed, with
results using a “generalized” piecewise polytropic parametrization, which was designed to ensure both
continuity and differentiability of the equation of state. We report on the differences in the gravitational
waves and any spurious premerger heating, depending on which equation of state parametrization is used.
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I. INTRODUCTION

With the advent of gravitational-wave astronomy, binary
neutron star mergers offer an exciting new laboratory for
studying a wide range of topics, from the dense matter
equation of state (EoS) to the production of heavy elements
via the r-process, and can even be used as a standard siren
for cosmological measurements. Although each of these
pursuits is sensitive to different information contained
within an observed merger, they all rely (at least in part)
on precise modeling of the gravitational waveform to
determine the source properties of the binary.

Constructing robust gravitational waveforms for infer-
ring source properties is a challenging problem. While
analytic and semianalytic waveform templates suffice
during the early inspiral of a neutron star coalescence
[1-4], nonlinear hydrodynamical effects become signifi-
cant in the final orbits. As a result, from the late inspiral
onwards, analytic waveforms must be calibrated with fully
nonlinear numerical relativity calculations, which solve the
Einstein equations coupled to the equations of (magneto)
hydrodynamics and neutrinos (e.g., [5-8]). For recent
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reviews on the status of numerical relativity simulations
of binary neutron star mergers, see e.g., [9-13].

During the inspiral, numerical relativity simulations
generally show rigorous self-convergence, typically with
errors converging to zero at second or third order with
resolution, depending on the details of the numerical
scheme (e.g., [14-19]). However, numerical convergence
is challenging to establish in the postmerger regime (but see
[19]). The challenge is in part due to the turbulent nature of
the postmerger evolution, but may also be related to aspects
of the spacetime evolution, as has been found for binary
black holes [20,21].

In this paper, we investigate two ways of improving
numerical convergence in the postmerger phase of a binary
neutron star merger, within the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation of Einstein’s equa-
tions. First, we study how the treatment of parabolic
damping of the Hamiltonian constraint can affect the global
numerical convergence of the Hamiltonian constraint and
of the gravitational-wave signals. One might expect that
because the Hamiltonian constraint must be zero in the
continuum limit, it might not matter how the damping of
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this constraint is implemented. However, the challenge of
treating parabolic damping arises specifically for codes
with adaptive-mesh-refinement grids, in which adjacent
refinement levels may have different degrees of numerical
dissipation due to differences in the grid spacing. As we
will describe in further detail below, the jumps in effective
damping at the refinement level boundaries introduce
discontinuities in the associated evolution equations, which
can reduce the convergence order of global quantities.

In a separate context, it was recently reported that
replacing the standard, discontinuous Kreiss-Oliger dissipa-
tion prescription with a continuous prescription was neces-
sary to achieve long-term stability in numerical simulations
of charged binary black holes [22]. In this paper, we will
demonstrate that discontinuities in a parabolic damping
of the Hamiltonian constraint across different refinement
levels can also spoil the convergence of binary neutron star
merger simulations in the postmerger phase, using the
dynamical spacetime and (magneto)hydrodynamics code
of Refs. [23-26], as it was most recently extended in [27].
We show that by adopting a continuous prescription for the
parabolic term that is used to damp Hamiltonian constraint
violations in this framework, we recover convergent behavior
in several quantities until late times postmerger.

We stress that the results found in this paper are specific
to the BSSN formulation, but we expect them to hold also
for more general types of parabolic constraint damping at
the analytic level of formulations of the Einstein equations
[28,29]. On the other hand, improved constraint damping
may also be achieved with different formulations which
implement lower-order constraint damping terms, such
as the conformal Z4 [30-32] or the generalized harmonic
[33-35] families of formulations.

As a second main goal of this paper, we investigate how
the smoothness of the dense-matter equation of state affects
the convergence order of these simulations. In particular,
we perform simulations using the same EoS model, para-
meterized with either piecewise polytropes (PWP) [36,37]
or with the recently proposed generalized piecewise poly-
trope parametrization [38]. Although piecewise polytropes
are commonly used in the merger literature, they are
discontinuous in the first derivative of the pressure and
hence in the sound speed. These discontinuities are purely
artifacts of the construction, and are of potential concern for
two reasons. First, as discussed in [24,39,40], when the
fluxes of hydrodynamic variables are nonsmooth, the
equations of hydrodynamics are nonconvex and this can
lead to unphysical solutions such as split waves and
composite structures. Additionally, in the context of spec-
tral methods, Ref. [41] recently showed that using a smooth
EoS can significantly improve the accuracy of the inspiral
waveform, compared to simulations that use a piecewise
polytropic EoS. In that work, the authors used a spectral
expansion of the EoS to ensure smoothness in the pressure.
The generalized PWP construction, which we explore in
this work, in a finite-difference/finite-volume numerical

approach, likewise ensures that the sound speed remains
continuous at all densities [38].

In this paper, we perform the first numerical simulations
of binary neutron star mergers with the generalized PWP
construction and we show robust self-convergence in the
inspiral gravitational waves using this parametrization, as
well as convergence of the Hamiltonian constraint until late
times postmerger. We find similar gravitational-wave phase
errors during the inspiral with both the standard and
smoothed PWP parametrizations. In contrast, we find a
difference of ~130 Hz in the postmerger gravitational-
wave spectra between these parametrizations, which cannot
easily be explained by differences in the radii or tidal
deformabilities of the neutron stars. This could point to a
subtle sensitivity of the postmerger gravitational waves on
the smoothness of the underlying EoS that we plan to
explore further in forthcoming work.

The outline of the paper is as follows. In Sec. II, we
describe our numerical methods, starting with a brief
overview of the evolution equations in the BSSN formu-
lation. In Sec. IT A, we describe three different prescriptions
for damping the Hamiltonian constraint, while in Sec. II B
we describe the two EoS parametrizations that we explore
in this work. We present our findings in Sec. III, starting in
Sec. III A with a comparison of global quantities for each of
the Hamiltonian constraint damping treatments and EoS
parametrizations. In Sec. III B, we discuss the convergence
of the Hamiltonian constraint for each study, and in Sec. III
C, we analyze the gravitational-wave signals from all of our
simulations. Appendix provides additional details about the
smoothed EoS parametrization.

Unless otherwise stated, we use geometrized units in
which G = ¢ = 1.

II. NUMERICAL METHODS

All simulations in this paper were performed with the
dynamical spacetime, general-relativistic (magneto)hydro-
dynamics code with adaptive mesh refinement of [23-26]
as it was most recently extended in [27]. The code is built
within the Cactus/Carpet framework [42-44]. Here, we
review only a few key aspects of the code, in order to
highlight the changes introduced in this paper.

In the code, the spacetime is evolved using the BSSN
formulation of the Einstein equations [45,46], in which the
evolution equations are given by

(0, = Ly)yi; = —20A,;, (1a)
1
(0, = Ly)¢p = ~ cak. (1b)

. 1 - o~
(a, —_ Eﬂ)K = _}/UDjDia + gaKz + (xAijAlj + 4ﬂa(ﬂ + S),
(Ic)
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(0, — Lp)A;; = e**[-D;D;a + a(R;; — 8xS;;)|""
+ a(KA;; —24,A}), (1d)

and
(0, - Cﬂ)fl = —()j(ZaAij + Eﬂ}?l])’ (le)

where 7;; is the conformally-related 3-metric, a is the lapse,
¢ is the conformal exponent, K is the trace of the extrinsic
curvature K;;, Z\,-j is the conformal traceless part of the
extrinsic curvature, R; j is the Ricci tensor associated with
the 3-metric of spacelike hypersurfaces y;;, and I are the
conformal connection functions. The matter source terms p,
S;, and §;; are the usual projections of the stress-energy
tensor. Finally, D; is the covariant derivative operator
associated with y;;, and Lj is the Lie derivative with
respect to the shift, 4. For calculation of the Lie derivative
terms and for further details, see [46].

In terms of these variables, the Hamiltonian and momen-
tum constraints are given by

iR R el -
0=H=77D;D;e? - §R
S oS0
+—A;;AT —— K> 4+ 27e%%p, (2)

and
0=M"=D;(e?A) - §e6¢D’K —8re%S. (3)

In the continuum limit, both A and M’ must be zero for
the solution to be physical. Thus, during the numerical
evolution of the BSSN equations, these quantities must
show convergence to zero, in order to remain consistent
with the Einstein equations. We monitor the L, norm of the
Hamiltonian constrain, |||, as defined e.g., in [47], to test
for convergence in our simulations. A fourth-order accurate
finite difference method for the BSSN equations is
employed as described in [47].

A. Treatment of constraint damping

In simulations involving strongly gravitating matter, the
growth of the Hamiltonian constraint can be minimized by
the addition of damping terms to the BSSN equations. For
example, it has been found that adding in such a damping
term to the evolution equation for ¢ can improve the
numerical stability and accuracy of the code [48,49]. As in
[48], we add a multiple of the Hamiltonian constraint to
Eq. (1b) to damp Hamiltonian constraint-violating degrees
of freedom, according to

(6, - Eﬂ)d’ = —é(XK + CHH, (4)

where ¢y governs the amplitude of the damping. We note
that Eq. (4) is very similar to one of the modified evolu-
tion equations proposed, at the analytic level, in [50] to
control constraint violations. This version of the evolution
equation for ¢ is the standard implementation within the
code of Refs. [23-26] for damping the Hamiltonian
constraint, and has been adopted in all binary neutron star
simulations with this code. The principal part of the new
term is cyH o cy77e?0,0,¢p. When ¢y > 0, it is a second-
order parabolic operator which parabolically diffuses the
Hamiltonian constraint. As such, it is subject to a Courant
stability condition of the form cyAt/(Ax)? < A (with A of
order 1/6 in 3 + 1 dimensional explicit time integrations in
flat spacetime), where At is the time step and Ax is the grid
spacing. Depending on the implementation of cy, the
damping on different levels of the grid can vary due to
different refinement levels having different grid spacing,
leading to potential complications as we discuss in more
detail below. Understanding how the prescription for this
parabolic constraint damping term affects the convergence
of the code is one of the main goals of this paper.

In [48], and more generally in the standard implemen-
tation of Eq. (4) in the code of Refs. [23-26], the damping
coefficient is set as

cy = cpiAt, (5)

where ¢y is a constant. We refer to this prescription as
“At-scaled damping”. The rationale behind this form is that
the stability condition from the parabolic operator now
becomes ¢y (At/Ax)? = ¢y CFL? < A, where CFL =
(At/Ax) is the Courant factor. Therefore, by choosing
cy1 one can satisfy the parabolic Courant stability con-
dition independently of the grid spacing, since in these
integrations the Courant-Friedricks-Lewey (CFL) factor is
often also fixed. However, when both cy; and the CFL
factor are fixed, the degree of damping (i.e., cy) will
decrease when moving to evolutions with higher spatial
resolution, since the time step on a given refinement level
gets smaller as the overall resolution of the simulation is
increased. As we will show, using a baseline set of
simulations with a constant cy; = 0.08, this leads to
undesirable behavior in the growth of the Hamiltonian
constraint, where the reduced damping leads to larger
constraint violations for evolutions at higher resolution.
The At-scaled damping prescription is what has been used
in all prior simulations with the code of Refs. [23-26].
In an attempt to reduce this behavior, we additionally
implement a modified version of this parabolic damping
treatment, in which ¢y is scaled by the global resolution.
In particular, we use the standard prescription of Eq. (5) for
our highest resolution evolution, while each lower-reso-
lution evolution, i, uses a scaled damping according to

cy = cpi (Axyr/Ax;)At. (6)
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We note that the index i above does not label refinement
levels, but rather simulations with the same grid hierarchy
and different spatial resolution. We scale the damping
coefficient with respect to the highest resolution performed,
so that the Courant stability condition is always satisfied.
For the three resolutions used in this work (which vary in
grid spacing by factors of 1.25; see Sec. I C), the scaled
coefficients are thus 0.0512, 0.064, and 0.08. In this
prescription, which we refer to as “modified At-scaled
damping”, the degree of damping still varies across the
refinement levels (due to the dependence of ¢y on At), but
the amount of damping on a given level is the same for
evolutions with different resolutions.

Both of these prescriptions suffer from discontinuities in
the damping between refinement levels with different
timesteps Af. Such discontinuities may become problem-
atic when integrating global quantities or as waves propa-
gate across the grid. For example, in a recent study,
Ref. [22] found that requiring the Kreiss-Oliger dissipation
to be continuous everywhere on the grid (i.e., eliminating
the discontinuities of the standard prescription) was essen-
tial to achieving long-term, stable evolutions of charged
binary black holes.

Motivated by this finding, we thus also implement a third
prescription, which ensures a continuous parabolic damp-
ing operator for the Hamiltonian constraint. We define this
case simply as

CH = CHI» (7)

where we use the finest-time level of our highest-resolution
grid (At = 0.05625 km) to set ¢y = 0.0045 km in the
simulations presented below. This choice ensures that the
Courant stability condition is satisfied on all refinement
levels for all resolutions explored in this work.
Additionally, because cy no longer scales with the local
time step, the damping is the same everywhere on the grid,
thereby ensuring that the same set of partial differential
equations will be solved across all refinement levels and
independently of the time step. In other words, this is the
only prescription for which the continuum formulation is
fixed independently of the grid. We refer to this final
prescription as “constant ¢y damping”.

B. Equation of state parametrization

While discontinuities in constraint damping can cause
numerical issues when integrating quantities across the grid
or as waves propagates across refinement levels, disconti-
nuities in the sound speed resulting from the equation of
state can introduce unphysical solutions in the hydro-
dynamics of the evolution. This, in turn, may also affect
the convergence properties of the simulation. For example,
in the context of spectral/finite-volume methods, it has been
shown that discontinuities in the sound speed can lead to
increased phase errors in the inspiral of a binary neutron

star merger simulation, compared to results found with a
smooth EoS [41]. This is of particular interest, given the
prevalence in the merger literature of the piecewise poly-
tropic method for modeling the EoS [36,37], in which the
EoS is nonsmooth. This leads us to the second main goal of
the present paper: to investigate how the smoothness of the
EoS affects the convergence of a binary neutron star merger
simulation in the context of finite-difference/volume meth-
ods. The finite-volume method adopted in this work uses
the Harten-Lax-Van Leer scheme in conjunction with the
piecewise parabolic reconstruction method as described
in [51,52].

To that end, we perform simulations with two different
EoS parametrizations: standard piecewise polytropes [36,37]
and the generalized piecewise polytrope (GPP) framework
introduced recently by [38]. The GPP parametrization was
designed to share the accuracy and flexibility of the PWP
approach, while also ensuring a smooth (i.e., continuous and
differentiable) pressure function. In this section, we briefly
summarize the two approaches.

For a PWP EoS, the pressure between two dividing
densities, p,_; and p;, is defined as

P(p) = Kipri’

where the polytropic constant, K;, is determined by
imposing continuity in the pressure between adjacent
polytropic segments, according to

Pi-1 <P P (8)

P;_ P;
K; = ril =T, (9)
Pist Pi
The polytropic index, I';, is then given by
dlnP log(P;/P,_
= o g( z/ i 1) (10)

- olnp  log (pi/piz1)

In this formulation, it is clear that the pressure is continuous
but not differentiable.
In the generalized PWP formulation of [38], the pressure
is instead defined as
P(p) = K;pt + A, Pi-1 <P =p; (11)
where I'; = dln P/d1n p is the new adiabatic index, which

now differs from the right-hand side of Eq. (10). Imposing
differentiability requires the polytropic constant to be

_ I £t
Ki =K, < Fl)ﬂgfll_ri (12)

L

Finally, the new parameter, A;, is introduced to impose
continuity in the pressure, such that

o\ &
A=A+ (1 - l;])Ki—lp,'rif- (13)

i
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TABLE I. Summary of tests run. The resolutions correspond to finest-level grid spacings of Ax;g = 195 m,

AxMR =156 m, AXHR =125 m.

Name Damping prescription Parametrization Resolutions

At-scaled cy = 0.08At GPP LR, MR, HR

Modified Atz-scaled cy = 0.08[Axyr/Ax;] At GPP LR, MR, HR

Constant cy cy = 0.0045 km GPP LR, MR, HR
PWP LR, MR, HR

With this construction, the pressure is continuous and
differentiable, ensuring that the sound speed will also be
continuous [38].

In this paper, we adopt the nuclear EoS ENG, which
predicts a radius of 12.06 km for a 1.4 M cold, non-
rotating neutron star, and a corresponding maximum mass
of 2.24 My [53,54]. These properties are both consistent
with latest astrophysical constraints [55-62]. For the PWP
case, we use the coefficients provided by [37] for the three-
polytrope approximation of ENG at high densities. We
additionally use the PWP coefficients from that paper for
the SLy EoS [63] to describe the low-density crust. For the
GPP formulation, the parameters cannot be calculated
directly, but rather must be fit numerically. To do so, we
use the fit coefficients for SLy provided by [38] to describe
the low-density crust. We then perform a Markov Chain
Monte Carlo simulation to find the best-fit parameters for a
three-polytrope approximation to ENG at higher densities.
We report the details of this fit and compare the results to
the PWP approximation in the Appendix.

C. Initial conditions and numerical setup

For all simulations, we construct binary initial data with
LORENE [64]. The initial configurations describe two
unmagnetized, irrotational, equal-mass neutron stars in a
quasicircular orbit, with an Arnowitt-Deser-Misner (ADM)
mass of ~2.76 My and an initial separation of 32.5 km.
The neutron stars start at zero temperature and are
described by either the PWP representation of the ENG
EoS [37,53,54], or the generalized PWP approximation of
ENG described further in the Appendix.

We extend the cold parametric EoSs to finite temper-
atures using the M* framework of [65], which is based on a
two-parameter approximation of the particle effective mass
and includes the leading-order effects of degeneracy in the
thermal prescription. The implementation and validation of
this framework into our code was recently described in
[27]. In this work, we use an intermediate set of M*
parameters to describe the matter in the degenerate regime,
corresponding to ny = 0.12 fm™ and a = 0.8. For addi-
tional details, see [27,65].

For each binary evolution, we use nine spatial refinement
levels, which are separated by a 2:1 refinement ratio. We
additionally use six temporal refinement levels, such that
the coarsest four levels are evolved with identical time

steps, while the remaining levels are separated by a 2:1
ratio. The CFL factor on the finest refinement level is 0.45.
The outer boundary of the computational domain is located
at 3200 km, and we impose equatorial symmetry to reduce
computational costs. We study three different resolutions,
with grid spacings on the finest level of Ax;g = 195 m,
Axyr = 156.25 m, and Axgr = 125 m, where the sub-
scripts indicate low, medium, and high resolution, respec-
tively. These grid spacings correspond to ~100, 125, and 156
points across the diameter of each initial neutron star in the
x-direction (i.e., along the line connecting the two stars).

D. Summary of simulations performed

All together, we perform a total of four new convergence
studies. This includes three convergence studies to study
the three parabolic constraint damping approaches
described in Sec. I A. For each of these studies, we use
the new GPP EoS parametrization, in order to validate its
implementation into our code. We additionally perform a
fourth study with the PWP EoS parametrization together
with the continuous parabolic constraint damping which, as
we will show, achieves the best convergence properties of
the various damping prescriptions studied. This fourth
study enables us to compare the impact of the EoS
parametrization on the convergence properties, starting
from a robust baseline. We summarize these tests in Table I.

III. RESULTS

We now turn to the results of the simulations for each of the
three parabolic damping treatments, as well as for the two
EoS parametrizations studied in this work. In all cases except
one, we evolve the mergers from approximately the final two
orbits, through the merger itself, and for ~10 ms — 20 ms
postmerger, with the longer range of evolutions possible for
the lower resolutions studied. The one exception is the PWP
evolution at the highest resolution studied, which we evolve
only in the inspiral phase, as this was sufficient for the
comparisons we will make below.

A. Comparison of global quantities

In order to confirm the stability of the evolutions, we
start by comparing their global spacetime properties,
including the L, norms of the Hamiltonian constraint,
|||, and momentum constraint, || M || (for definitions, see
Eqgs. 40-43 of [47]), as well as the ADM mass. We show
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Comparison of global properties for the four cases studied in this paper. From left to right: the L, norm of the Hamiltonian

constraint, the L, norm of the momentum constraint, and the fractional change to the ADM mass. For the latter quantity, we compute the
fractional change with respect to M spy at ¢ = 0, accounting for the losses from due to gravitational waves leaving the computational
domain. All quantities are plotted from the medium resolution evolutions. The vertical dashed line indicates the time of merger, which
corresponds to the time of maximum gravitational-wave strain. By reducing the damping parameter ¢y to its smallest value to make it
continuous across the grid (i.e., constant ¢y damping, shown in blue and orange, the Hamiltonian constraint violations grow to slightly
larger values over time. The momentum constraint violations and ADM mass conservation are comparable for all three damping

prescriptions and for both the PWP and GPP EoSs.

the evolution of these three quantities for all four of our
tests in Fig. 1. All results correspond to the evolutions at
our intermediate resolution. The Hamiltonian constraint
jumps at merger, as is commonly found in compact binary
mergers, and continues to slowly grow at late times. The
magnitude of this late-time growth is directly governed by
the degree of damping in Eq. (4). For example, for the case
of the Atr-scaled damping, the damping is enhanced on
refinement levels with larger time steps; thus, there is
overall more damping in this prescription, and the growth
of the Hamiltonian constraint is correspondingly reduced.
On the other hand, the constant cy prescription has the
smallest degree of damping (cy = 0.0045 km on every
refinement level), and thus the Hamiltonian constraint
exhibits slightly larger growth over time.

We additionally find some difference in ||H|| during the
inspiral between the PWP evolution (which uses the
constant ¢y prescription) and all of the GPP evolutions,
with the PWP result being ~50% larger. This difference
enters already at 1 = 0, suggesting that the difference in the
smoothness of the sound speed between these parametri-
zations affects the construction of the initial data.

The momentum constraint violations, ||M]||, shown in
the middle panel of Fig. 1, are comparable for all tests
considered here. Finally, the right panel of Fig. 1 shows the
ADM mass (M sppp), 1.€., the contribution to the ADM mass
integral in our computational domain, compared to the
t = 0 value for each test, with losses due to gravitational
waves added back in. Overall, we find small errors (<0.7%)
in the ADM mass conservation over the course of the
simulation. We find no significant differences in the con-
servation of M zpy between the different parabolic constraint
damping treatments. Finally, in comparing between the two
EoS parametrizations, we again find worse conservation of
M apy for the PWP parametrization during the inspiral.
However, at late times, the conservation is marginally better

for the PWP parametrization and, overall, we conclude that
the difference between the conservation of M py for the
PWP and GPP parametrizations is small.

All together, these results confirm that the three parabolic
damping treatments and two EoS parametrizations studied
in this paper can be used to stably evolve binary neutron
stars, with robust preservation of the global spacetime
properties reported here.

B. Convergence of the Hamiltonian constraint

Although we find similar conservation of the
Hamiltonian constraint for the various parabolic constraint
damping treatments and EoS parametrizations, we find
significant differences in the numerical convergence of
||| between these treatments.

We show the evolution of ||| at all three resolutions for
each of our studies in the top row of Fig. 2. The bottom row
shows the corresponding convergence order, assuming
||| approaches zero with increasing resolution. This
convergence order is defined as

_ IIH(Axl)H)/ (Ax1>
n=oe(ae)/ oe(an) 09
for two grid spacings, Ax,.

In general, we find similar qualitative behavior in the
growth of ||H|| at all resolutions to what was described for
the intermediate resolution in Sec. III A. The one notable
exception is the low-resolution evolution with At-scaled
damping (cy = 0.08A¢; red dashed line in Fig. 2), which
shows a reduction in ||H|| at late times. The reason for this
turnover is related to the fact that the low-resolution
evolution has the largest time steps, At (located on the
lowest-resolution refinement levels). Because cy scales
with At for this prescription, this leads to the highest degree
of damping and, hence, the late-time decrease in || H]|.
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FIG. 2. Top panel: L, norm of the Hamiltonian constraint for each of the three parabolic constraint damping treatments and two
parametrizations studied in this work. From left to right, we show the results for the Az-scaled damping, the modified Az-scaled
damping, and the constant ¢ damping prescription, respectively. Bottom panel: Convergence order, n, for the Hamiltonian constraints,
assuming ||H|| approaches zero for infinite resolution. The left three columns all use the GPP parametrization, while the rightmost
column corresponds to the PWP parametrization. Only with the constant ¢y treatment do we find positive convergence at late times

postmerger, across all resolutions studied.

The At-scaled damping prescription also exhibits a
troublesome trend, in which ||| in the highest resolution
evolution actually exceeds the value at lower resolutions,
starting shortly after merger. This is due to the fact that at
higher resolutions, At becomes smaller (for fixed CFL
number) and hence the damping also becomes smaller in
this prescription. This results in a negative convergence
order, as shown in the bottom, left panel of Fig. 2. These
findings are consistent with our previous results from [27],
in which we used the same cy = 0.08A¢ damping pre-
scription and similar initial conditions, but with the
standard PWP parametrization of ENG.

Our second parabolic constraint-damping prescription is
scaled by the resolution such that ¢ =0.08(Axygr /Ax;)At.
Although cy still scales with the local timestep, and thus
can vary depending on the refinement level, this prescrip-
tion ensures that the amount of damping on a given
refinement level is the same for each of the three resolutions
studied in this work. The results from evolutions with this
treatment, which start from identical initial data as the
previous case, are shown in the second column of Fig. 2.
With this modified Az-scaled damping, we find improved
convergence behavior, with positive (but decaying) con-
vergence order achieved for nearly 10 ms postmerger.
However, at later times (¢ — Imerger > 12 ms), the conver-
gence order again becomes negative between the two
highest resolutions studied, indicating loss of convergence.

Finally, the right two columns of Fig. 2 show the results
from the evolutions with the constant cy = 0.0045 km
damping, for both the GPP and PWP parametrizations. This
prescription ensures equal damping on different refinement
levels, so that the parabolic damping operator added to
the BSSN equations is continuous across the entire grid.

With this continuous damping prescription, we find a
positive and stable convergence order until the end of
our simulations (~15 ms postmerger), for either EoS
parametrization. In particular, the medium and high reso-
lution GPP evolutions indicate convergence-to-zero at
approximately first order. This is consistent with the order
of our hydrodynamical numerical scheme which becomes
first-order accurate when shocks arise, e.g., postmerger. We
note that the convergence order is lower when calculated
with the low-resolution data (n = 0.5-0.6), which suggests
that the lowest resolution in our study is not be in the
convergent regime for all times, despite covering the
diameter of each initial neutron star with ~100 grid points.
Nevertheless, the finding of nyr yr & 1 convergence only
with the constant cy prescription provides strong evidence
that using a constant parabolic damping parameter is
necessary to achieve the expected convergence order.

In other words, we find that discontinuities in the
parabolic damping term in Eq. (4) between adjacent
refinement levels lead to a decay in the convergence of
|H]|. The reasons for this decay are twofold. First, if there
are different degrees of damping on different refinement
levels, the set of partial differential equations that is being
solved will also change depending on the level. In addition,
the discontinuities at the refinement level boundaries may
propagate in ways that further spoil the numerical con-
vergence. These effects accumulate when integrating H
across the grid to compute the L,-norm and the conver-
gence order is correspondingly reduced.

We also compare between the PWP and GPP para-
metrizations of the EoS in the right two columns of Fig. 2.
For both parametrizations, we use the constant c;; damping,
to ensure optimal convergence in the comparison. We find
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similar convergence results between the two cases, with
small differences in the initial convergence order. In
particular, we achieve a slightly higher initial convergence
order, n~2.25 (2.50), with the GPP parametrization,
compared to n ~ 1.90 (1.96) for the standard PWP para-
metrization, for the convergence order calculated between
the high and medium (low) resolution evolutions. As
discussed in Sec. Il A, where we found larger ||| at
t = 0 for the PWP parametrization, the slight reduction in
the initial convergence order seems to originate at the initial
data level. For both parametrizations, the postmerger
convergence order asymptotes to n =~ 0.5-0.6, calculated
between the low and intermediate resolutions. Given the
similarity between the results at low and medium reso-
lutions for the GPP and PWP parametrizations, we did not
evolve the highest resolution past the merger for the PWP
case. Thus, in summary, the PWP and GPP parametriza-
tions lead to overall similar convergence of ||H]].

Finally, we note that it is possible that the Kreiss-Oliger
dissipation, which is added (at fifth order) to all evolved
BSSN and gauge variables at the refinement level bounda-
ries and which has a diffusive coefficient that is different on
different refinement levels, may also suffer the same issues
as the parabolic term in Eq. (4). Implementing a continuous
prescription for the Kreiss-Oliger dissipation may further
improve the numerical convergence of our results.

In summary, we find that a continuous parabolic con-
straint-damping prescription is necessary to recover con-
vergence of || H|| in the postmerger phase. We note that this
conclusion was exhibited in the context of parabolic
constraint damping in the BSSN formulation, but it should
be the case for more general types of parabolic constraint
damping at the analytic level of formulations of the Einstein
equations [28,29]. However, this is not a problem for
low-order constraint damping terms such as those of the
conformal Z4 [30-32] or the generalized harmonic [33-35]
families of formulations. It is not obvious how, or to
what extent, discontinuities across refinement levels in
Kreiss-Oliger dissipation operators might affect such for-
mulations. We leave the investigation of this question to
future work.

C. Comparison of gravitational-wave signals

Finally, we turn to the gravitational-wave signals
extracted from each of our simulations. We show the
¢ = m = 2 mode of the plus-polarized gravitational-wave
strain, h{ », for each of our simulations in Fig. 3. Theses
signals correspond to face-on mergers, located at a distance
of 40 Mpc. We find that the gravitational-wave signals
leading up to merger are nearly identical for all parabolic
constraint damping treatments and EoS parametrizations
considered in this work. However, small differences emerge
following the merger. We will spend the remainder of this
section discussing these differences in detail. For the
specifics of the analysis methods used to extract the
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FIG. 3. The £ =m =2 mode of the plus-polarized gravita-

tional-wave strain for a merger at a distance of 40 Mpc, for each
of the parabolic constraint damping treatments and EoS para-
metrizations considered in this work. The strain is plotted as a
function of the retarded time. All results are shown for the
medium resolution simulations. The inspirals in all cases are
nearly identical, but small differences emerge in the postmerger
phase.

gravitational-wave strains and to calculate the correspond-
ing spectra for our simulations, see Appendix C of [66].

Before discussing these signals in detail, we first briefly
comment on the convergence properties of the gravitational
wave-strain. We find approximately second-order self-
convergence in the phase of the gravitational wave strain,
¢, during the inspiral, for all four of our tests. Second-
order self-convergences requires that

drr — Pur _ (A)CLR/A)CHR)2 -1

= , 15
PR — Prr (AxMR/AxHR)z -1 (15)

where we have suppressed the (2,2) subscript on ¢ for
clarity. We can rearrange this expression to alternatively
obtain

(drr — Pur)[(Axyr/Axyr)? — 1]
= (pmr — Pur) [(Axir/Axyr)* — 1]. (16)

We plot these scaled, differential quantities in Fig. 4, where
kAg¢,, corresponds to the left- or right-hand side of
Eq. (16), depending on the color of the line. The alignment
of the scaled Ag,, curves during the inspiral indicates
that second-order self-convergence is indeed achieved.
However, after the merger, the self-convergence is lost in
all four cases, regardless of the damping treatment or EoS
parametrization. Although the curves in Fig. 4 look very
different during the postmerger evolution, in all four cases
the order of self-convergence becomes negative at late
times. As a result, the late-time differences in Fig. 4
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FIG. 4. Self-convergence of the phase of the £ = m = 2 mode of the gravitational-wave signal, for (from left to right) the GPP
parametrization with At-scaled damping, the GPP parametrization with the modified Ar-scaled damping, the GPP and PWP
parametrizations with constant ¢y damping, respectively. All results are scaled for second-order convergence, according to Eq. (16).

between damping treatments do not hold much signifi-
cance. We find similar results for the amplitude of the £, ,
and the instantaneous gravitational-wave frequency, as well
as for other quantities, such as the maximum rest-mass
density and the maximum conformal exponent ¢. That is,
for all of these quantities, we find approximate, second-
order self-convergence during the inspiral, but that the self-
convergence disappears at late times postmerger.

The lack of self-convergence at late times may be a
consequence of the lowest resolution evolution not being in
the convergent regime (see Sec. III B), or it may have
another origin. In either case, without this convergence, we
cannot draw strong conclusions about the differences in the
waveforms seen in Fig. 3. For example, Fig. 3 indicates a
possible difference in the damping rate of the postmerger
gravitational-wave amplitudes, depending on the parabolic
damping treatment that is adopted. However, whether this
behavior is physical or numerical in nature requires further
investigation.

Nevertheless, we can take advantage of the approximate
second-order self-convergence during the inspiral, to cal-
culate the Richardson extrapolation of the inspiral phase
using the low and high resolutions. We then estimate
the numerical errors during the inspiral as the difference
between this Richardson extrapolation and the phase
extracted from our highest resolution evolution. We show
the resulting error etimates, A¢, ,, in Fig. 5.

We find that the inspiral phase errors are slightly larger
for the evolutions with constant ¢y damping, but that, over
the course of the (relatively short) inspiral, the differences
between the various parabolic damping prescriptions are
generally small.

Interestingly, we do not find significant differences in the
phase errors between the GPP and PWP parametrizations.
This is in contrast to a previous study by [41], which
showed that a continuous sound speed significantly
reduced the inspiral phase errors, compared to a piecewise
polytropic approximation of the same EoS. The authors in
that study evolved the spacetime using spectral methods,
and used a spectral expansion of the EoS to ensure
smoothness (which has a different construction than the

GPP approximation used here), and they also used a
different nuclear EoS (SLy). Additionally, in that study,
the authors start their simulations at larger initial binary
separation than we do, thereby allowing more gravitational-
wave cycles for differences in phase to accumulate. Any of
these reasons could explain the smaller effect that we find
here. We leave further study of this point to future work.

As a further check on our results, we also compute the
approximate errors during the inspiral for the maximum
rest-mass density, pj, ., and the maximum conformal
exponent, ¢.... The calculation is identical to that
described above, and we find errors in these quantities
that are similar to what is shown in Fig. 5. In particular, we
find that the approximate (Richardson-extrapolated) errors
in pj, max and ¢y, are comparable for each of the different
parabolic-damping treatments as well as for the two EoS

——— At-scaled damping, GPP
B —— Modified At-damping, GPP
Constant €y damping, GPP
—— Constant Cy damping, PWP
107!
~
o
<
=
1072}y |
0.0 .
tret (ms)
FIG. 5. Difference in the gravitational-wave phase, ¢,,, be-

tween the phase extracted from the highest resolution evolution
and the Richardson extrapolation of the phase, assuming second-
order convergence during the inspiral. The standard and modified
At-scaled parabolic damping treatments lead to similar phase
errors during the inspiral, while we find slightly larger phase
errors for the constant cy prescription. The phase errors are
nearly identical for the PWP and GPP parametrizations.
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parametrizations. In other words, both the self-convergence
properties and the approximate inspiral errors for pj, . and
¢max are similar to what is reported here for the gravita-
tional waves.

In order to compare the gravitational waves in the
postmerger phase, we compute the characteristic strain
for each evolution, according to

he =2fh(f). (17)

where f is the frequency and &(f) represents the Fourier
transform of the strain. To compute /(f), we first window
each signal between ¢ = f,erer and 12 ms postmerger. This
window length corresponds to our shortest-duration evo-
lution, and ensures that all spectra have the same effective
resolution. Additionally, we include all # = 2, 3 modes in
these spectra and assume a face-on merger located at
40 Mpc. For additional details on our calculation of 4.,
see Appendix C of [66]. We show the resulting spectra
in Fig. 6.

In general, we find that the postmerger spectra roughly
agree with one another, for all four tests considered.
However, we find a few notable differences. First, we find
a small difference in the approximate errors in the peak
frequency, fpea, Of the spectra, for the different parabolic
damping treatments. We estimate the errors (o) in fpeax
simply as the difference between the low and medium
resolutions; this provides a rough estimate of the numerical
error. We find that the error is largest for the noncontinuous
parabolic damping treatments: ¢, ~ 80 Hz and 45 Hz for
the standard and modified Az-scaled damping treatments,
respectively. These differences correspond to fractional
errors of ~2% and 1%, calculated with respect to the
medium resolution. In contrast, the errors are significantly
reduced with the constant ¢y damping: we find 6, <5 Hz
(0.2%) and 10 Hz (0.4%) with this damping prescription
evolved with either the GPP or PWP parametrization,
respectively. This is consistent with the overall worse
convergence behavior found for ||H|| with the discontinu-
ous parabolic damping prescriptions (see Sec. III B). In
other words, we find that using a continuous damping helps
to reduce the approximate errors in the postmerger spectra,
at least as defined here.

We find that f,..x agrees to within this approximate error
for all three damping treatments with the GPP EoS para-
metrization. In particular, fpe 3200 Hz in all three
cases, suggesting that the details of the parabolic-damping
method do not significantly influence the peak frequency of
the postmerger gravitational waves.

In contrast, we find a systematic difference of ~130 Hz
(fractional difference of 4%) in f e, between the GPP and
PWP parametrizations with the continuous ¢y prescription
(bottom panel of Fig. 6), which is much larger than our
estimated error in f., for either parametrization. Many
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FIG. 6. Characteristic strain for each of the parabolic damping
treatments and EoS parametrizations considered in this work, for
a face-on merger at 40 Mpc. These spectra include all £ =2, 3
modes of the gravitational-wave strain. The top panel shows the
results for the standard At-scaled damping; the middle panel
shows the results for the modified Az-scaled damping, in which
the damping coefficient is scaled by the global resolution; and the
bottom panel shows the results for the evolutions with constant
cy damping, for both the GPP (blue) and PWP (orange) para-
metrizations of the EoS. In all cases, the low resolution results are
shown in the light dash-dot lines, while the medium resolution
results are shown as the darker, solid lines.

studies have shown that f., is a sensitive probe of
the neutron star structure, e.g.. of the radius or tidal
deformability of the initial stars [10,12,67-69]. However,
as we show in the Appendix, the mass-radius and tidal
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deformability curves for the GPP and PWP parametriza-
tions of the ENG EoS used in this paper are nearly
identical. Indeed, the differences in the radius and tidal
deformability for a 1.4 M, star between the two para-
metrizations are only AR;, = 0.01 km (0.1%) and
AA 4 = 4.6 (1%), respectively. Thus, the difference in
Speak cannot be easily explained away in terms of
differences in these macroscopic properties.

Instead, this difference may point to a dependence of 4.
on the smoothness of the underlying EoS; for example,
through the different sound speed gradients that must be
resolved for each parametrization. However, it remains
possible that this difference in f ., is simply a result of
nonconvergence in the postmerger gravitational waves (as
found in Fig. 4). Additionally, as we discussed in Sec. III B,
we find hints that our lowest-resolution evolution is not yet
in the convergent regime for all times. Thus, it is possible
that the observed difference in f..x between the GPP and
PWP models may go away with increased resolution;
however, such a study is beyond the feasibility of the
present work.

D. Spurious heating with the PWP
and GPP parametrizations

Finally, we briefly discuss the impact of the EoS para-
metrization on the spurious heating of the neutron star
surface during the inspiral. Spurious heating at the neutron
star surface is a common feature of merger simulations, and
is caused by spurious shocks that form across the steep
density gradient of the stellar surface. This heating can raise
the premerger stellar surface to significant temperatures,
but the heating is typically limited to low-density regions
and thus has little effect on the inspiral dynamics. In
addition, the shock heating that develops at first contact
during merger is much stronger than the spurious inspiral
heating. As a result, the inspiral heating is often simply
ignored, even though it can hide interesting physical
processes, such as the melting of the neutron star crust [70].

One might naturally wonder whether using a smooth
EoS can reduce this spurious heating during the inspiral,
compared to simulations that use a PWP EoS with large
jumps in the sound speed. We find that this is indeed
the case.

Figure 7 shows the 2D thermal profiles of the neutron
stars at two times during the inspiral and at one time near
the end of our simulations, for the GPP and PWP EoS
parametrizations. In both cases, the constant ¢y damping
prescription is used. Figure 7 shows the thermal pressure,
Py,, relative to the cold pressure, P4, for all matter with
densities above 0.01 ng,, where ng = 0.16 fm™ is the
nuclear saturation density. Matter at lower densities (where
P_o1q drops precipitously) is masked in black, so as not to
saturate the color scale. Finally, we note that the colorbar
varies for the three snapshots, in order to account for the
increased spurious heating throughout the evolution.

Constant ¢y, GPP

Constant ¢y, PWP 0
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FIG. 7. Equatorial snapshots showing the thermal pressure
relative to the cold pressure, at two times before merger and
at the end of the simulations. All times are labeled relative to the
time of merger, #,,... The left column shows the results from the
evolution with the generalized PWP EoS and the right column
shows the results with the standard piecewise polytropic version
of the EoS. In both cases, the constant ¢ damping prescription is
used. Only matter with densities above 0.01 x ng, (Where ng, =
0.16 fm™3 is the nuclear saturation density) are plotted; the black
background is included for visual clarity. The PWP parametriza-
tion leads to more significant spurious heating near the neutron
star surface during the inspiral.

In the two premerger snapshots, we indeed find
differences in the spurious heating of the neutron star
surface, with the piecewise polytropic parametrization
leading to higher values of Py,/P.q in the surface layers
of each neutron star. The spurious heating is reduced,
though still present, with the use of the generalized PWP
parametrization. In the postmerger snapshot, the thermal
profiles of the remnants are similar.

In order to explore these spatial profiles in more detail,
Fig. 8 shows the median thermal properties of the matter as
a function of density, where the median values are
calculated within density bins that are log-uniformly
sampled. The top row of Fig. 8 shows the median values
of Pgy/P.yq, While the bottom row shows the median
temperatures. We focus in particular on the surface region
in these plots, which we define as the range of densities
from n/ng ~0.01-0.5. This range corresponds to a
volume containing 0.99 to 0.9999 of the total mass for a
TOV star with the same EoS. During the inspiral, Py,/P.oiq
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FIG. 8. Median thermal properties, calculated within density bins that are log-uniformly spaced, at two times premerger and one time

postmerger. These times correspond to the same snapshots as shown in Fig. 7. The top panel shows the median value of P,/ P4 at each
density, while the bottom panel shows the corresponding, median temperature. The PWP parametrization (orange lines) leads to greater
heating of the neutron star surface during inspiral compared to the GPP parametrization (shown in blue), where the surface corresponds
to densities of n/ng, ~ 0.01-0.5 (defined as the volume containing 0.99-0.9999 of the total mass for a TOV star with this EoS). Both
parametrizations give similar thermal profiles for the late time remnant (far right column).

is approximately twice as large over the neutron star surface
when the piecewise polytropes are used, compared to the
GPP parametrization. During the inspiral, the surface
temperatures likewise vary by a factor of ~1.5, with the
PWP paramerization again leading to higher temperatures.
In contrast, at late times, the thermal profiles of the remnant
are very similar between the two parametrizations. In the
postmerger remnant, we only find differences at the very
highest densities, where the temperature varies by a
maximum factor of ~2. In this inner core region, the
thermal pressure is subdominant to the cold pressure (i.e.,
Py, < 0.01Pq), so the dynamical impact of this difference
is likely to be small. However, such differences in the high-
density temperature profiles could be important in deter-
mining when bulk-viscous effects become important [e.g.,
[71,72]], or in determining the long-term cooling of the
remnant and neutrino irradiation of the disk.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have investigated two ways of improv-
ing the convergence order in several quantities of a binary

neutron star merger simulation within the BSSN formu-
lation. First, we have studied how discontinuities in a
constraint damping approach between different refinement
levels can spoil the convergence in the postmerger phase.
In particular, we studied three different treatments for the
parabolic term added to the evolution equation for the
BSSN variable ¢, which is used to damp the growth of
the Hamiltonian constraint. One might expect that because
this term is supposed to be zero in the continuum limit, it
may not matter for the simulations how the constraint
damping parameter in this approach is chosen. We showed
that the standard “At-scaled” damping (cy = 0.08A¢%),
which always respects the strict Courant parabolic stability
condition as resolution increases, leads to nonconvergence
in || H||, starting shortly after merger. Scaling the damping
coefficient by the resolution (cy = 0.08[Axyr/Ax;|Af) to
ensure the same (refinement level-dependent) damping for
all three resolutions improves the convergence of |||
somewhat, but the convergence order still decays with time
with this prescription and is completely lost by the end of
our simulations. We find that using a constant prescription
for the damping (cy = 0.0045 km at all resolutions and at
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all points on the grid) enables us to achieve convergence
until late times postmerger. With this continuous damping
prescription, we recover the expected first-order conver-
gence of ||H|| with our numerical scheme for the post-
merger phase until the end of our simulations.

In other words, we find that continuity in the parabolic
term used to damp the Hamiltonian constraint in the BSSN
formulation is necessary to ensure convergence in the
postmerger phase of our simulations.

In addition to studying how discontinuities in the para-
bolic damping of the Hamiltonian constraint affect the
convergence of ||H||, we have also investigated the role of
discontinuities in the sound speed, using two different
parametrizations of the dense-matter EoS. We compared
simulation results for the standard piecewise polytopic
parametrization of the nuclear EoS ENG, as well as a
“generalized” piecewise polytropic approximation of the
same EoS [38], which ensures smoothness in the EoS.

In general, we find only small differences between the
evolutions with these two parametrizations. Interestingly,
we find negligible differences between the inspiral gravi-
tational waves for these two parametrizations, in contrast to
previous work [41]. As discussed further in Sec. III C, this
may be due to the different initial binary separation in our
simulations, the different nuclear EoS that is being approxi-
mated, the different smooth EoS parametrization that we
use, or the fact that [41] adopts a spectral method for the
spacetime evolution instead of the finite- difference method
used here. If the difference in parametrization turns out to
be the source of the different results, it would be interesting
to understand what feature of the EoS is causing the
reduction of the phase errors, as this would imply that
continuity in the sound speed alone is insufficient. Further
study will be needed to address these questions.

We find a small difference in the peak frequency of the
postmerger gravitational waves between the PWP and GPP
parametrizations of the EoS, which is larger than our
approximate estimate of the numerical errors for these
evolutions. This finding may point to a (small) dependence
of the postmerger gravitational-wave signal on the smooth-
ness of the microscopic sound speed, which may be important
to take into account when estimating the errors for numerical
simulations that use parametric EoSs. However, we cannot
rule out the possibility that this is simply an artifact of
nonconvergence in the postmerger gravitational-wave sig-
nals. We leave further exploration of this issue to future work.

Finally, we explored the impact of the EoS parametriza-
tion on the spurious heating of the neutron star surfaces
during the inspiral. Both the GPP and PWP parametriza-
tions have multiple transition densities at low densities (for
details, see the Appendix and Refs. [37,38]). We find that
by using an EoS that is smooth across these transitions—
i.e., an EoS with no artificial jumps in the sound speed—the
spurious heating during the inspiral can be reduced. In the
postmerger phase, we do not find significant differences in
the remnant thermal profiles, except at the very highest

densities, where the thermal pressure is subdominant to the
cold pressure.

As a final remark, we note that it is unclear how
discontinuities at the refinement level boundaries in
Kreiss-Oliger dissipation affect our results, especially with
regards to the gravitational-wave signals, since these are
extracted at large distances from the center of mass and hence
travel across multiple refinement levels to reach the extrac-
tion point. In [22], it was demonstrated that ensuring
continuity of the Kreiss-Oliger dissipation operator was
crucial for the stability of simulations of charged black hole
binaries. Such discontinuities could affect other formulations
of the Einstein equations as well, such as the families of Z4 or
generalized harmonic formulations. By making the Kreiss-
Oliger dissipation continuous, it may be possible to further
improve the postmerger convergence in our simulations. This
will be the subject of a future investigation of ours.
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APPENDIX: COMPARISON OF GPP AND PWP
EoS APPROXIMATIONS

In this Appendix, we describe our numerical procedure
for creating a generalized piecewise polytrope parametri-
zation of the ENG EoS.

For the low-density portion of the EoS, we use the GPP
representation of SLy, the coefficients for which are
provided in Table II of [38].1 SLy is used to describe

'For this work, we use coefficients from a higher-accuracy
version of Table II which was graciously provided by M. O’Boyle
(priv. comm.).

023015-13



CAROLYN A. RAITHEL and VASILEIOS PASCHALIDIS PHYS. REV. D 106, 023015 (2022)

TABLE II.  Generalized piecewise polytrope-fit parameters for the ENG EoS. R 4 and A, 4 indicate the radius and tidal deformability
of a 1.4 M neutron star, predicted by the GPP EoS. The columns %pwp report the percent differences between the predictions for each
of these values, computed by the GPP and the PWP approximations. The column %jg,; reports the percent differences between the
predictions of the GPP approximation and the full EoS.

EoS po (x10' g/cm?) logyy K r I, I3 R4 Jopwp  Porunl Ajg Jopwp  Porun
ENG 1.064 —-34.7162 3.277 2.863 3.272 11.95 0.09 1.5 362.5 1.2 11.3

the crust of the EoS, up to the density at which the crustand ~ dP/dp, and iterate from these values for a total of 50,000
high-density EoSs intersect. iterations. The resulting best-fit parameters are reported in
For the high-density EoS, we follow [38] in using three Table II, while the agreement between the tabulated ENG
piecewise polytropic segments, which are divided at fiducial ~ pressure, the standard PWP approximation, and our new
densities p; = 10"*%7 g/cm?® and p, = 10'*? g/cm?. This  GPP fit is shown in the top left panel of Fig. 9. We find only
leaves us with four free variables; {K,,["';,T»,I3}. From  very small differences in the pressures predicted by either
these quantities and the crust coefficients, all other K;, A; in ~ approximation of the EoS and the full model.
Eqgs. (11)—(13) are uniquely determined. The top right panel of Fig. 9 shows the adiabatic index for
We perform a Markov Chain Monte Carlo simulation  each of these representations of ENG. The adiabatic index of
to find the set of {K;,I'|,I’,,[3} that minimizes the  the complete model is smooth, as expected for this nuclear
differences between the GPP pressure and the pressure  EoS which does not undergo any physical phase transition at
predicted by the tabulated EoS. We bound the fit between  high densities. The PWP approximation, in contrast, shows
densities of 10'* g/cm? and the density corresponding to  large discontinuities at each of the fiducial densities dividing
the maximum mass. We calculate an initial guess for the  the polytropic segments. The adiabatic index with the GPP
parameters by performing a piecewise power-law fit to  approximation is again smooth, as intended.

4
LoE — GPP
PWP
rﬁg 10% Full model 3F
= 10 -
)
= 10% T
1032 ——
1 -
L1l L1l L1 L1l L1l L1
1053 10%4 101 1053 10%4 10!
p (glem?) p (gfem?)
2.0F 2.0F
EREE 15k
E 1.5 E 1.5
= <
1.0 / 1.0f-
0 | 1 1 0 L gl L1l [
10 0 12 13 14 107 102 10°
R (km) N

FIG. 9. Comparison of properties for the full ENG EoS model, the generalized PWP approximation (GPP), and the PWP
approximation. Clockwise from top left: pressure P as a function of density p; the polytropic index, defined asI" = dIn P/dIn p; the tidal
deformability as a function of mass; and the mass-radius relation. The GPP and PWP give nearly indistinguishable results for the global
properties of the neutron star, with small deviations from the full ENG model due to the different crust descriptions.
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Finally, we also calculate the mass-radius and mass-tidal
deformability curves for each representation of the EoS,
which we show in the bottom row of Fig. 9. The PWP and
GPP representations are nearly identical to one another, and
show only a small offset from the full model. This offset
stems from the differences in the crust EoS: both approx-
imations switch to the SLy EoS at low densities, whereas the
“full model” in Fig. 9 corresponds to ENG at all densities.

We also report the radius and tidal deformability of a
1.4 M neutron star predicted the GPP approximation with
our best-fit parameters in Table II. For the purposes of this

paper, the most relevant comparison is that between the
PWP and GPP approximations, but we also report the
differences between the GPP approximation and full EoS
for completeness. We find a fractional difference in R 4 of
only 0.09% between the two parametrizations, and a
fractional difference of 1.2% in A;4. Thus, the global
properties predicted by the GPP and PWP approximations
are nearly indistinguishable, which allows us to directly
study the impact of the sound speed treatment on our
numerical simulations, without the confounding variable of
changes to the macroscopic stellar structure.
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