
The Journal of Symbolic Logic, Page 1 of 11

THE TURING DEGREES AND KEISLER’S ORDER

MARYANTHE MALLIARIS AND SAHARON SHELAH

Abstract. There is a Turing functional Φ taking A′ to a theory TA whose complexity is exactly that of
the jump of A, and which has the property that A ≤T B if and only if TA ! TB in Keisler’s order. In fact,
by more elaborate means and related theories, we may keep the complexity at the level of A without using
the jump.

Keisler’s order (Definition 1.1) is a pre-order on complete countable first-order
theories introduced by Keisler in 1967 [6], often thought of as a partial order on
the equivalence classes. Informally, this order puts T1 ! T2 if it is “harder” for
the regular ultrapowers of T2 to be saturated than those of T1. Sorting out the
structure of this order has long been an important test problem for model theory.
For orientation, we note the following. A minimum class and a maximum class exist
[6]. The union of the smallest two classes is precisely the stable theories [13]. The
maximum class includes clearly complicated theories like Peano arithmetic [6], but
also any theory with linear order (with the strict order property) [13], and indeed
with SOP2 [9]. In between, no classes have yet been characterized, but we know that
the random graph is in the minimum unstable class [8, 10].

A recent breakthrough in [11] has shown that Keisler’s order has the maximum
number of classes, continuum many, and that this is already witnessed by theories
which look like “filtered random graphs”—indeed, so-called simple unstable rank
1 theories. Recall that by [13], all NIP theories (informally, those without any ran-
domness) fall into three classes. The recent work shows that near the random graph,
things are very different, due in part to interactions of model theory and finite com-
binatorics (see [11, Section 3]). Indeed, [11, Section 12] shows that Keisler’s order
embeds P(!)/ fin, in this region. At this point it was natural to ask (as was recorded
in [11, 13.7], and noticed by readers of that paper, who encouraged us) whether
Keisler’s order embeds the “gold standard” for complexity, the Turing degrees.

The aim of this paper is to answer this question positively, hopefully as
groundwork for future theorems. First we give an embedding, with no information
about complexity, of an arbitrary partial order with the countable predecessor
property into Keisler’s order (Theorem 1.2). Then we show that in the case of
the Turing degrees the complexity can be meaningfully calibrated: Theorem 3.11
shows that there is a Turing machine Φ, which on input A′ produces a theory TA,
which is uniform in the jump and degree invariant, and which has the property that
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2 MARYANTHE MALLIARIS AND SAHARON SHELAH

A ≤T B if and only if TA ! TB in Keisler’s order. As will be discussed below, this
can be seen as a best possible effective version of Theorem 1.2 on the Turing degrees.
In the last section, we show (surprisingly) that for related theories we may stay at
the level of the complexity of A, avoiding the jump.

Are there substantive connections between the structure of Turing degrees and
classes of simple unstable theories? We do not assert this, but a priori, it may seem
no less likely than the connections to cardinal invariants of the continuum [9].

We are very grateful to D. Hirschfeldt, I. Scott, and the anonymous referee
for comments and questions which significantly improved the presentation, and
encouraging us to solve the problem of avoiding the jump.

§1. A baseline proof.

Definition 1.1 (Keisler’s order [6]). Let T1, T2 be complete countable first-order
theories. We say T1 ! T2 if for every infinite ", every regular ultrafilter D on ",
every modelM1 |= T1, and every modelM2 |= T2, if (M2)"/D is "+-saturated, then
(M1)"/D is "+-saturated.

Regular ultrafilters are easy to find (all nonprincipal ultrafilters on ! are regular;
consistently all ultrafilters are regular; see [3, Chapter 3]). Their significance here
is that they make Keisler’s order about theories, not models, since by a lemma of
Keisler, ifM ≡ N in a countable language and D is a regular ultrafilter on ", then
either bothM "/D andN "/D are "+-saturated, or neither is. See [6, 2.1a]. For more
on Keisler’s order, see, e.g., [6], [13, Chapter VI], [7, Chapter 1], [10, Section 1], or
[2, Sections 2 and 3].

For our first proof, we will need the following theorem of [11], which establishes
the surprising fact that Keisler’s order has continuum many classes. (For orientation,
note that up to renaming of symbols in the language, there are really only continuum
many complete countable theories, and of course each class must contain at least
one theory; so there could not be more than continuum many classes.)

Theorem A (see Theorem 11.3 of [11]). There exist continuum many complete
countable simple theories 〈Tα : α < 2ℵ0〉 such that for any countable u, v ⊆ 2ℵ0 , Tu !
Tv if and only ifu ⊆ v, whereTu denotes the disjoint union of the theories {Tα : α ∈ u},
and similarly for Tv .

From Theorem A we may now easily derive:

Theorem 1.2. Let (T ,≤) be a partial order which satisfies:
(1) |T | ≤ 2ℵ0 ,
(2) for every b ∈ T , the set {a ∈ T : a ≤ b} is at most countable.

Then (T ,≤) embeds in Keisler’s order. That is, there is a map f from T to the set of
complete countable first order theories such that for any two a, b ∈ T , a ≤ b in T if
and only if f(a) ! f(b).

Proof. Start with the family of theories from Theorem A above. Fix an injection
g from T to this family, notation a '→ Tα(a), possible by condition (1). Note that
any two elements in the range of g are !-incomparable. Now define Ta to be the
disjoint union of {Tα(b) : b ≤ a}. This remains a countable theory by condition (2).
By construction, b ≤ a if and only if Tb ! Ta. )
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THE TURING DEGREES AND KEISLER’S ORDER 3

Conclusion 1.3. There is an embedding of the partial order of Turing degrees into
Keisler’s order.

Proof. The Turing degrees as a partial order satisfy the hypotheses of
Theorem 1.2. )

Observe that Theorem 1.2 (or Conclusion 1.3) tells us nothing a priori about the
complexity of the embedding f. It is natural to hope that restricting the embedding
to the Turing degrees, which come equipped with natural notions of complexity, it
may be possible to determine the complexity of the map in a meaningful way.

§2. Discussion. One reason to hope for more than Conclusion 1.3 on the Turing
degrees is that the theories Tα in Theorem A are themselves parametrized by subsets
of !. Briefly, each theory involves two key ingredients: a fast-growing sequence of
sparse finite graphs Ē = 〈En : n < !〉, and a subset A ⊆ !. The set A represents
the “active levels” n ∈ ! where constraints coming from En apply; at “lazy levels”
n ∈ ! \ A, En is replaced by a complete graph on the same set of vertices, which
corresponds to no constraints. (In [11], instead of a set A we often write its
characteristic function $, and there we list separately the sequence m̄ of integers
giving the sizes of the vertex sets of the E’s.) The data of Ē and A (or $), and
implicitly m̄, are part of a “parameter,” denoted by m, which then determines a
theory Tm. In [11], we used a fixed sequence Ē and continuum many sets A which
were “suitably independent” (in the sense of Engelking–Kar[4]; see [11, 6.20–6.22])
to produce the many different theories. This is a compact way of simulating many
independent growth rates of graph sequences. So we can consider the parameters
(thus, the theories) as given by certain subsets of !.

Convention 2.4. For the rest of the paper, we fix a sequence of graphs Ē as in [11,
Section 6], so a parameter in the sense of [11] is specified by the additional data of the
set of active levels, and it makes sense to write “m[A]” and “Tm[A].”

However, consider the following theorem.1

Theorem B (Translation of [11, Conclusion 10.25]). Let " ≥ ℵ1. Let I be an ideal
on! and A a set which is almost disjoint from everyB ∈ I. Then there exists a regular
ultrafilter D on " which handles every Tm[B] for B ∈ I and does not handle Tm[A]. (In
the notation of Keisler’s order, Tm[A] ,! Tm[B] for every such Tm[B].)

Note that in the language of Theorem B, if I is countable and T is the theory
corresponding to the “disjoint union” of the theories Tm[B] forB ∈ I, then a regular
ultrafilter D handles every Tm[B] if and only if it handles T. Theorem B suggests that
in order for Keisler’s order to separate theories, their sets of active levels should be
quite different in the sense of the ideals they generate. Here is a theorem which says,
in a certain case, this is a characterization: condition (1) says, informally, “some
ultrafilter picks out precisely these theories from our family to saturate.”

1“Almost” means “mod finite,” and “handles” means “produces "+-saturated ultrapowers of” in the
sense of Keisler’s order.
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4 MARYANTHE MALLIARIS AND SAHARON SHELAH

Theorem C (Theorem 11.10 from [11]). There is a family of parameters {m[A] :
A ⊆ !} such that each Tm[A] is countable, complete, and simple2 and the following are
equivalent for any " ≥ 2ℵ0 and any set X ⊆ P(!):

(1) There exists a regular ultrafilter D on " such that X = {A ⊆ ! : D is
("+, Tm[A])-good }.

(2) X ⊇ [!]<ℵ0 is an ideal.

So, before connecting the Keisler complexity of (the theory arising from) a set of
active levels to the Turing complexity of a set of natural numbers, we should deal
with the fact that Turing degrees are rarely ideals. This motivates the opening move
of the next section.

§3. Second proof.

Observation 3.5. There is an injection h : P(!) → P(!) which is computable and
has computable inverse, so that writing H for the range of h we have:

(1) The elements of H are almost disjoint, i.e., ifA,B ⊆ ! are disjoint then h(A) ∩
h(B) is finite.

(2) For any two disjoint nonempty X,Y ⊆ H and for I,J the ideals of subsets of
N generated by X,Y respectively, and for everyA ∈ I, A is almost disjoint from
every element of J .

(3) If in (2) we replace disjoint by “X \ Y ,= ∅” then there exists A ∈ I such that A
is almost disjoint from every element of J .

Proof. Fix a computable bijection between N and the internal nodes of a binary
tree of countable height. Identify eachA ⊆ ! with its characteristic function, which
uniquely determines a branch, and let h send A to the set of integers assigned to
nodes on that branch. )

For the rest of the paper, fix h : P(!) → H as in Observation 3.5. Recall that
X ≤1 Y means there is a total computable 1 : 1 function such that x ∈ X iff
f(x) ∈ Y .

Remark 3.6. A and h(A) are clearly Turing-equivalent, even≡1. Thus any Turing
degree a ⊆ P(!) naturally corresponds computably to a countably infinite aH =
{h(A) : A ∈ a} ⊆ H.

Convention 3.7. For the rest of the paper, we fix an enumeration {%e : e < !}
of Turing machines, so that the program %e is computable from the index e and vice
versa, and as usual let %Ae denote %e with A on the input tape.

Notation 3.8. Let Xh,e,A = h( {n < ! : %Ae (n) halts and outputs 1} ), and let
HA = 〈Xh,e,A : e < !〉.

Observation 3.9. Suppose A,B ⊆ !.
(1) The complexity of HA is exactly that of A′, the jump of A.
(2) If A is not Turing-reducible to B, then HA \HB ,= ∅.

2Indeed with the only dividing coming from equality. “Simple” in the model theoretic sense means:
there is κ = κ(T ) so that every type does not fork over a set of size < κ. See, e.g., [5], [12].
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THE TURING DEGREES AND KEISLER’S ORDER 5

Proof. (1) On one hand, A′ = {n : ϕAn (n) halts} can be read off fromHA, since
there is a computable function f which takes an index n to an index f(n) such that
for any m, %f(n)(m) halts and outputs 1 if and only if %n(m) halts. On the other,
each Xh,e,A is c.e. in A so is ≤1 A′ by the Jump Theorem [14, 3.4.3].

(2) There is a set which is c.e. relative to A and not c.e. relative to B. (By the Jump
Theorem, X is c.e. in Y if and only ifX ≤1 Y ′, andX ≤T Y if and only ifX ′ ≤1 Y ′.
Now A′ is c.e. in A, but ¬(A ≤T B) thus ¬(A′ ≤1 B ′).) )

Corollary 3.10. If A,B ⊆ ! and A is not Turing-reducible to B then in the
notation of Observation 3.5, letting X = HA and Y = HB , and letting I,J be the
ideals of subsets of N generated by X, Y respectively, there is X ∈ I which is almost
disjoint from every element of J .

Theorem 3.11. There is a Turing functional Φ taking A′ to a theory TA which
satisfies:

(a) Each TA is a set of axioms for a complete, countable, simple unstable theory.
(b) Φ is uniform in the jump: the complexity of TA is exactly A′.
(c) If A, B are Turing-equivalent then TA and TB are model-theoretically the same

(i.e., up to renaming of symbols) and computable from each other.
(d) Thus Φ is degree-invariant.
(e) A ≤T B if and only if TA ! TB in Keisler’s order.

Discussion 3.12. Theorem 3.11 can be seen as a best possible effective version of
Theorem 1.2 on the Turing degrees, in the sense that we are getting degree invariance
with no more power beyond what already accrues from the downward closure in
Theorem 1.2.

Proof sketch. The work of Φ is described explicitly in Section 4, but we give the
punchline here. Fix in advance the computable signature given in Section 4, which
observe is the union of the partial signatures (%e for e < !. When Φ receives a set
A ⊆ !, it divides its computation among {%Ae }e and proceeds to list the axioms
as in Section 4, with Xh,e,A (Notation 3.8) determining the rules for predicates in
the partial signature (%e . There is no nontrivial interaction of predicates across the
partial signatures. For each %e , items (0), (1), (3), (4), and (5) from Section 4 are
computable and for (2), (6), and (7) it suffices to know Xh,e,A. Also from, e.g., (2),
one can read off the characteristic function of Xh,e,A from the axioms restricted to
(%e .

As for the claims of the Theorem:
(a) This is the work of the earlier paper (see [11, 2.20 and 2.21]).
(b) The uniformity follows from the description in Section 4. The set of axioms

TA has exactly the complexity of the jump of A, since to determine TA it is both
necessary and sufficient to know the characteristic functions of all sets computed by
all the %A’s.

(c) SupposeB ≤T A and we are given TA. In the notation of Section 4, in order to
generate TB " (%i it is sufficient to know what %i computes with B on its input tape.
Fixing a given means of computing B from A we can computably produce an index
e = e(i) so that %e simulates %Bi , and then we just copy the axioms of TA " (%e
replacing each predicate superscripted %e with the corresponding one superscripted
%i .
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6 MARYANTHE MALLIARIS AND SAHARON SHELAH

(d) Follows from (c).
(e) If A is Turing-reducible to B, then TA is interpretable in TB so TA ! TB . If

A is not Turing-reducible to B, apply Corollary 3.10 with X = {Xh,e,A : e < !} and
Y = {Xh,e,B : e < !}, followed by Theorem B. )

Discussion 3.13. We thank Hirschfeldt for pointing out that this proof also gives
an embedding of the enumeration degrees [1, Definition 1.1] (and thus, the Turing
degrees) into Keisler’s order, replacing the %e ’s by enumeration operators.

§4. The operation of Φ. To justify Theorem 3.11 we look more carefully at
the theories constructed in [11, Section 2], clarifying the computable content. (A
motivated model theoretic exposition of these theories is in [11, Section 3].) Here
is a high-level summary of what to look for below. The theories have three kinds
of ingredients: a fast-growing sequence of natural numbers, an associated sequence
of graphs, and at least one and no more than countably many subsets of !. The
signature involves unary and binary predicates. We will fix in advance the sequence
of natural numbers and the sequence of graphs. We then observe that everything
about these two sequences, and about the unary predicates, may be computably
axiomatized. The only remaining ingredient is to list the axioms relating to the
subsets of !, which control the binary predicates. Formally, our operator will take
in A ⊆ ! and produce the remaining axioms based on the countably many subsets
Xh,e,A. To determine TA it will be necessary and sufficient to know the characteristic
functions of each of these subsets.

4.1. Background step and fixing notation. We choose and fix (a) a rapidly growing
sequence 〈mn : n < !〉 of natural numbers,3 and (b) a sequence 〈En : n < !〉 of
graphs where En has mn vertices which we identify with [0, ... , mn – 1]. A technical
point: in En, each vertex is connected to itself.

(a) About m̄: the required lower bounds on its growth rate are given in [11,
Definition 6.1]. We can easily choose this sequence to be computable, for
instance by using the formula in [11, 6.1], with equality.

(b) About Ē: the requirements on Ē are given in [11, Definition 6.2], expressing
that in eachEn any small set of vertices has a common neighbor, and no large
set of vertices does. For our purposes here, [11, Lemma 6.7] (which proves
such sequences exist, via finite random graphs) should be understood as an
existence result. Knowing that for each n, some graphEn onmn vertices exists
which satisfies the requirements, we may generate the sequence computably,
for instance at stage n lexicographically ordering the graphs on mn vertices
and checking in order until we find the first one which works.

In sum, the data of m̄ and Ē can be chosen to be computable, even if perhaps not
very efficiently.

Notation: For each n, let T1,n = T2,n be the set of sequences ) of length n such that
)(i) < mi for i ≤ n. (There are two such: a “left tree” and a “right tree,” distinct
but symmetric.) Let T1,≤n, or T2,≤n mean all such sequences of length ≤ n. (So

3Caution to the reader: the idea is not that the mn ’s give a subset of N or otherwise relate to B. It just
records that our trees at level n ∈ N have branching mn .
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THE TURING DEGREES AND KEISLER’S ORDER 7

these are the nodes of a finite tree of height n with mi -branching at level i.) Let
T1 =

⋃
n T1,≤n = T2 =

⋃
n T2,≤n be the sets of all such finite sequences.

We now describe a set of axioms for a complete, countable theory TA, for any
A ⊆ !. The computable signature is

( = {Q%e ,P%e , Q%e) , P%e* : ) ∈ T1, * ∈ T2, e < !} ∪ {R%e : e < !},

where each R% is a binary predicate and the rest are unary. As a reminder, Xh,e,A
denotes the image under h of the set computed by % with A on the input tape.

The axioms we will need to enumerate are the following. Observe in these
conditions that writing (% for the restriction of ( to predicates superscripted by
a specific Turing machine %, the only nontrivial interactions between predicates are
among those in the same (%, and indeed one can think of the resulting theory as the
disjoint union of its restriction to each (%.

(0) For each %i ,%j a universal axiom stating that (Q%i ∪ P%i ) ∩ (Q%j ∪ P%j ) =
∅ whenever i ,= j.

(1) For every n < ! and each %, universal axioms stating that:4

• Q% and P% are disjoint. Identify Q% and Q%〈〉, P% and P%〈〉.

• 〈Q%) : ) ∈ T1,m〉 partitions Q% for each m ≤ n and this partition sat-
isfies )′ ! ) ∈ T1,≤k implies Q%)′ ⊇ Q

%
) . (Concentric predicates represent

advancing along a branch.)
• 〈P%* : * ∈ T2,m〉 partitions P% for each m ≤ n and this partition satisfies
* ′ ! * ∈ T2,≤k implies P%*′ ⊇ P

%
* . (The same on the other side.)

• R% ⊆ Q% × P%. (R% holds between elements of Q% and of P%.)
(2) If n ∈ Xh,e,A, add a universal axiom saying “n is an active level,” meaning:

• R%e (x, y) only if for some )1 ∈ T1,n and )2 ∈ T2,n, we have Q%e)1 (x) and
P%e)2 (y) and in the graph En there is an edge between )1(n – 1) and
)2(n – 1).5

Informally, at “active levels” we put new constraints on the behavior of
R%e , and at non-active (“lazy”) levels there are no new constraints.

The axioms so far enumerate a universal theory; we would like to axiomatize
its model completion. Corollary 2.20 and Conclusion 2.21 of [11] show this
model completion exists and is quite simple, for instance it eliminates quantifiers.
The remaining axioms give the necessary information.

(3) For each k, and each ) ∈ T1,≤k an axiom saying: whether there exists x in
Q%e) which is R%e -connected to y1, ... , yk and not to z1, ... , zk , all in P%e ,
depends on the quantifier-free type of y1, ... , yk, z1, ... , zk restricted to the
finite signature {Q%e) : ) ∈ T1,≤k} ∪ {P%e) : ) ∈ T2,≤k}. (This can be expressed

4Informally, the signature has finitely many unary predicates which hard-code the structure of two
finite height, finitely branching trees, and a binary predicate which may hold between elements of the
left tree and elements of the right tree. This translates [11, Definition 2.15].

5Recall )1, )2 have domain {0, ... , n – 1}, so )i (n – 1) ∈ [0, ... , mn – 1] for i = 1, 2. The condition
amounts to writing down a formula which does not refer to En or T1 or T2 directly but simply disjuncts
over the pairsQ%e)1 ,P%e)2 (of which there are finitely many) whose indices satisfy the condition. Informally,
the pattern of “allowed connections” between the successors of a given node in the left tree and a given
node in the right tree, both at level i, is given byEi at active levels, and by a complete graph at non-active
levels.
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8 MARYANTHE MALLIARIS AND SAHARON SHELAH

in terms of complete formulas in the variables yi , zj which specify the unary
predicates for each variable, along with equalities and inequalities.)

(4) Parallel to (3), swapping Q/P, T1,k/T2,k , and changing the direction of R.
(5) For each k, an axiom saying: there exists x in Q%e which is R%e -connected

to y1, ... , yk and not to z1, ... , zk , all in P%e , if and only if ({y1, ... , yk} ∩
{z1, ... , zk} = ∅ and there existsxR%e -connected to y1, ... , yk). (If the formula
is not inconsistent, it reduces to the positive part. SinceR%e is not symmetric,
we have two copies of any such axiom, swapping P%e (x) for Q%e (x).)

(6) For each choice of
• k,
• + ∈ T1,k and *1, ... , *k ∈ T2,k , such that for all t ≤ k,if t ∈ Xh,e,A then (+(t –

1), *i (t – 1)) ∈ Et ,
• complete quantifier-free formula ,(y1, ... , yk) in the free variablesy1, ... , yk

such that ,(y1, ... , yk) implies P%e*1 (y1) ∧ ··· ∧ P%e*k (yk),
an axiom saying:

(∃y1, ... , yn)(∃x)



,(y1, ... , yn) ∧Q%e+ (x) ∧
∧

1≤i≤k

R%e (x, yi)



 .

(The fact that these are the only cases where such x’s will exist follows from
the list in (2), and notice that it’s enough to say this works for some such
y1, ... , yn because of (3).)

(7) Parallel to (6), swapping Q%e ’s and P%e ’s, T1 and T2, and changing the
direction of R%e .

From the above axioms, it should be clear that for each A ⊆ ! and for each %e , the
theory TA restricted to the signature (%e is determined by the subset Xh,e,A, and in
turn determines it.

Remark 4.14. As it is now clear how the theories depend on subsets of!, we note
that the “m” notation of Section 2 records this also. That is, each theory TA " (%e
here is model-theoretically the same as Tm[Xh,e,A] there, under the interpretation
corresponding to erasing the superscript %e from each of the predicates. Moreover,
in model theoretic language, our theory TA and the theory which is the disjoint
union of the theories {Tm[Xh,e,A] : e < !} can each be interpreted in the other.

§5. On avoiding the jump. As noted above, Theorem 3.11 is very natural because
of its relation to Theorem 1.2. However, we thank the referee for encouraging us to
consider whether some other operator may be found which is uniform in A rather
thanA′. A priori, this may seem unlikely, and indeed, a priori, the above theories do
not seem adapted to answer this question; they can even be seen as orthogonal to it,
since they were built to interact with each other in some sense as freely as possible.
Already in [11] some kind of disjoint union was needed whenever a dependence was
called for. This is related to the fact that Keisler’s order quantifies over all regular
ultrafilters.

In this concluding section we prove, perhaps quite surprisingly, that the answer is
yes. The construction will build on what was done above, essentially by modifying the
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previous section in ways which are important for computability and unimportant for
model theory. It is best to read with an understanding of the proof of Theorem 3.11.

We fix as before an enumeration {%e : e < !} of Turing machines, and working
towards Theorem 5.16, we shall now describe the operation of Ψ which takes in
A ⊆ ! and outputs a set of axioms T ∗

A . Similarly to the earlier case, T ∗
A will be the

disjoint union of axioms T ∗
e,A for e < !. We shall fix A and e and describe T ∗

e,A.
Let Xh,e,A be as in Notation 3.8 and let -h,e,A denote the partial characteristic

function of the h-image of the set computed by%Ae , that is, for t ∈ {0, 1},-h,e,A(n) = t
if and only if %Ae halts on input h–1(n) and outputs t. Let -h,e,A(n, k) = t mean that
%Ae halts after exactly k steps on input h–1(n) and outputs t.

The computable signature for T ∗
e,A will be (note here e is fixed):

(e,A = {Q%e+ ,P%e+ } ∪ {Q%e),+, P%e*,+ : ) ∈ T1,n, * ∈ T2,n, + ∈ n+1!, n < !} ∪ {R%e},

where R%e is a binary predicate and the rest are unary.

Discussion 5.15 (Informal explanation/intention). We start at level 0 with
countably many copies of the predicate Q〈〉, indexed as Q〈〉,〈k〉 for k < !. We start
running %Ae on input h–1(0), where observe 0 = lg(〈〉). If after exactly k steps the
computation halts, specify that Q〈〉,〈k〉 is nonempty, else specify it is empty. Do the
same on the other side for the P〈〉,〈k〉’s. In this case + is a sequence of integers of
length one. So for all but at most one + on each side (and if one exists, it is the same
+), these predicates will be empty, and all these decisions are clearly computable. If
this computation does halt after exactly k0 steps, then: if the output is 1, add axioms
saying that 0 is an active level (i.e., for Q〈〉,〈k0〉 and P〈〉,〈k0〉), if not, just add an axiom
saying R ⊆ Q〈〉,〈k0〉 × P〈〉,〈k0〉. Now we deal with level 1. For each predicate of the
form Q〈a〉,+ where + = 〈i0, i1〉, we have an axiom saying that Q〈a〉,〈i0,i1〉 ⊆ Q〈〉,〈i0〉 so
most of these are immediately empty, unless k0 from level 0 exists and i0 = k0. In
this case, we run %Ae on input h–1(1) and if after exactly k steps the computation
halts, specify that Q〈a〉,〈k0,k〉 ,= ∅, else specify it is empty. Do the same on the other
side for the P〈a〉,〈k0,k〉’s. If the computation does halt after exactly k1 steps, then if
the output is 1, add axioms saying that 1 is an active level, if not, just specify that
R ⊆

⋃
a Q〈a〉,〈k0,k1〉 ×

⋃
b P〈b〉,〈k0,k1〉. And so forth. In some sense, we are choosing an

“isomorphic copy” of the theory from the previous section which exists as a choice of
a computable branch in a tree of computations.

The axioms are as follows. We will temporarily drop the superscript %e , and
writing “Q),+” assumes the two subscripts have appropriate and compatible lengths.

(1) Q〈〉,+ ∩ P〈〉,+ = ∅.
(2) Q)1,+1 ⊇ Q)2,+2 if )1 ! )2, +1 ! +2, and likewise for P.
(3) The predicates Q)"〈.〉,+ partition Q),+#lg())+1

, and likewise for P.
(4) Consider Q),+ where lg()) = n. If %Ae on input h–1(n) halts after exactly
+(n) steps, after having completed the previous computation, then add an
axiom sayingQ),+ is nonempty, otherwise add an axiom sayingQ),+ is empty.
Furthermore, if %Ae on input h–1(n) halts after exactly +(n) steps and outputs
1, add an axiom saying “n is an active level,” i.e., R(x, y) if and only if for
some )1 ∈ T1,n and )2 ∈ T2,n we have Q)1,+(x) and P)2,+(y) and in En there is
an edge between )1(n – 1) and )2(n – 1).
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(5) Add the analogues of the computable axioms (3)–(5) above, quantifying over
+ of the appropriate length.

(6) For each choice of
• m,
• ) ∈ T1,m and *1, ... , *m ∈ T2,m, such that for all . ≤ m, %Ae on input h–1(.)

halts after exactly +(.) steps, and if it halts and outputs 1 then ()(. –
1), *i (. – 1)) ∈ E. for 1 ≤ i ≤ m,

• complete quantifier-free formula,(y1, ... , ym) in the free variablesy1, ... , ym
such that ,(y1, ... , ym) implies P*1,+(y1) ∧ ··· ∧ P*m,+(ym),
an axiom saying:

(∃y1, ... , yn)(∃x)



,(y1, ... , yn) ∧Q),+(x) ∧
∧

1≤i≤m
R(x, yi)



 .

(7) Parallel to (6), swapping Q’s and P’s, T1 and T2, and changing the direction
of R.

Observe the following:
(a) The axioms are computable in A.
(b) There is at most one +∗ ∈ !! such that for all n, for some (in fact, all) ) ∈ T1,n

and * ∈ T2,n, we have that Q),+∗#n+1 is nonempty and P*,+∗#n+1 is nonempty.
(c) If %Ae is not a total function then all but finitely many of the predicates are

empty, and thus by the earlier paper [11], T ∗
A is Keisler-equivalent to the random

graph, which is the minimum simple unstable theory in Keisler’s order.
(d) Not only is T ∗

A computable from A, but also we can read off A from T ∗
A

(for instance, if we choose in advance one of the %’s which we know computes the
identity). So its complexity is exactly that of A.

(e) Using the notation of the previous section,T ∗
A is model-theoretically equivalent

to the disjoint union of theories whose active levels are those Xh,e,A for which %Ae
is a total function. Thus, the analysis of the previous section goes through and
T ∗
A ! T ∗

B in Keisler’s order if and only ifA ≤T B . However,T ∗
A is not computability-

theoretically more complicated than A, because we have distributed the information
of the jump across infinitely many copies of the predicates.

So we may conclude:

Theorem 5.16. There is a Turing machine Ψ sending sets A ⊆ ! to theories T ∗
A

which satisfies:

(a) Each T ∗
A is a set of axioms for a complete, countable, simple unstable theory.

(b) Ψ is uniform in A: the complexity of T ∗
A is exactly that of A.

(c) If A, B are Turing-equivalent then T ∗
A and T ∗

B are model-theoretically the same
(i.e., up to renaming of symbols).

(d) Thus Ψ is degree-invariant.
(e) A ≤T B if and only if T ∗

A ! T ∗
B in Keisler’s order.
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