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ABSTRACT: Asymptotically nonlocal field theories interpolate between Lee-Wick theories with
multiple propagator poles, and ghost-free nonlocal theories. Previous work on asymptotically
nonlocal scalar, Abelian, and non-Abelian gauge theories has demonstrated the existence of
an emergent regulator scale that is hierarchically smaller than the lightest Lee-Wick partner,
in a limit where the Lee-Wick spectrum becomes dense and decoupled. We generalize this
construction to linearized gravity, and demonstrate the emergent regulator scale in three
examples: by studying the resolution of the singularity (i) at the origin in the classical
solution for the metric of a point particle, and (ii) in the nonrelativistic gravitational potential
computed via a one-graviton exchange amplitude; (iii) we also show how this derived scale
regulates the one-loop graviton contribution to the self energy of a real scalar field. We
comment briefly on the generalization of our approach to the full, nonlinear theory of gravity.
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1 Introduction

Higher-derivative quantum field theories have been of considerable interest as possible solu-
tions to the hierarchy problem in the Standard Model and as a strategy for constructing per-
turbatively renormalizable quantum theories of gravity. In this paper, we focus on Lee-Wick
theories [1-3]; explicit constructions addressing the hierarchy problem appear in Refs. [4, 5]
and phenomenological issues have been studied in Ref. [6]. Higher-derivative quadratic terms
lead to propagators that fall off more quickly with momentum, so that loop amplitudes typi-
cally become more convergent. As a result, it has been shown in Lee-Wick extensions of the
Standard Model that the otherwise quadratic divergence of the Higgs boson squared mass
become logarithmic, eliminating the fine-tuning needed to keep the Higgs boson light [4, 5].

The higher-derivative quadratic terms of Lee-Wick theories necessarily imply the exis-
tence of additional propagator poles, corresponding to heavy partner particles. In the minimal
Lee-Wick Standard Model [4], these additional poles have wrong-sign residues, corresponding
to states with negative norms. Nonetheless, approaches to quantizing these theories consis-
tently while preserving unitarity exist; for the original proposals and their application, see
Refs. [1-3, 7], and for more modern treatments that address their ambiguities see Refs. [8-11].
Like other models that have partner particles that are of interest in addressing the hierarchy
problem (for example, the Minimal Supersymmetric Standard Model), fine-tuning is reintro-
duced if the partners are taken to be heavy. The non-observation of partner particles at the
Large Hadron Collider, which now probes scales much heavier than the Higgs boson mass,



motivates us to consider whether one can construct theories where the Lee-Wick partners
can be sufficiently decoupled from the low-energy effective theory without reintroducing a
fine-tuning problem in a light scalar mass.

Asymptotically nonlocal theories, which are the focus of the present work, are Lee-Wick
theories that have this desired property [12-14]. These theories interpolate between higher-
derivative theories of finite order and nonlocal theories that are ghost-free [15-24] via a
sequence of theories with N — 1 massive partner particles, as N becomes large. (Following
our past conventions, N refers to the total number of propagator poles [12-14].) In the limiting
case where N — oo with the ratio m2/N held fixed, where m; is the mass of the lightest
Lee-Wick particle, one arrives at a nonlocal theory whose quadratic terms involve the form
factor exp(¢200). In such a theory, the scale /=1 serves as a regulator. At large but finite NV,
a derived regulator scale 2 ~ O(N/m?), which does not appear as a fundamental parameter
in the Lagrangian, emerges in physical quantities and as the regulator of loop amplitudes.
Since this dervied scale can be hierarchically separated from the mass scale of the lightest
Lee-Wick particle, even at finite IV, the hierarchy problem can be addressed in realistic Lee-
Wick theories when partner particles are much heavier than the scalar mass that one would
like to protect [13, 14]. Asymptotically nonlocal theories have been studied in the context
of ¢*-theory [12], scalar quantum electrodynamics [13], and non-Abelian gauge theories [14].
If this approach has relevance to addressing the hierarchy problem of the Standard Model,
it is natural to ask whether the gravitational sector could have a similar structure. In the
present work, we show how the approach of Refs. [12-14] may be extended to gravity, working
perturbatively at lowest order in an expansion of the metric about a flat background. Lee-
Wick generalizations of Einstein gravity are interesting in their own right and have been
discussed before in the literature as potential quantum theories of gravity [25-28].

Our paper is organized as follows. We first review the concept of asymptotic nonlocality
in a simple scalar toy model in Sec. 2, and present a field theory for asymptotically nonlocal
gravity at the linearized level in Sec. 3. In Sec. 4, we demonstrate the emergence of the
nonlocal regulator scale in our gravitational theory via three examples: (i) the resolution of
the singularity in the classical solution for the metric of a point particle, (ii) the same for the
nonrelativistic potential extracted from a t-channel graviton exchange scattering amplitude,
and (iii) the ultraviolet behavior of the gravitational contributions to the self-energy of a real
scalar field at one loop. In Sec. 5, we summarize our results and comment on how to extend
these studies beyond the linearized approximation by drawing analogies to the construction
of asymptotically nonlocal Yang-Mills theory [14].

2 Framework

In this section, we review the construction of an asymptotically nonlocal theory of a real
scalar field. The goal is to find a sequence of higher-derivative quantum field theories, each



with a finite number of derivatives, that approach the nonlocal theory defined by
1
£=—560"6-V(9) (2.1)

as a limit point. The existence of such a limit is desirable so that a derived regulator scale
similar to /=1 emerges in the theories with large but finite N that are of interest to us. One
begins by noting that
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approaches Eq. (2.1) in the limit that N — oco. However, the propagator following from
Eq. (2.2) includes an (N — 1) order pole, which has no simple particle interpretation. We
remedy this by altering the finite-N theory:
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One obtains the same limiting form of the Lagrangian, Eq. (2.1), when N — oo, provided
that the ¢; approach a common value, ¢, as the limit is taken. For finite-IV, the propagator

;N 622 -1
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which has N nondegenerate poles. Let us define mg = 0 and my, = 1/ay, where a2 = (3 /(N —1)

is now given by

for k > 1. Then, one may use a partial fraction decomposition to write Eq. (2.4) as

N—1 ;
Dr(p*) =) ¢ R (255)
j=0 p J
where
N—
co=1 and ¢; = H 5 for j > 0. (2.6)
k;J

It follows from Eq. (2.6) that the residue of each pole alternates in sign, indicating that the
spectrum of the theory consists of a tower of ordinary particles and ghosts. This is what one
expects to find [29] in a Lee-Wick theory with additional higher-derivative quadratic terms
beyond the minimal set [5].

While the theories defined by Eq. (2.3) at any finite N are of the Lee-Wick type, they
inherit a desirable feature of the limiting theory as N becomes large, namely the emergence
of a derived nonlocal scale that can serve as a regulator. The relationship between the
regulator scale and the mass of the lightest Lee-Wick resonance, an observable quantity, is of



fundamental interest in Lee-Wick theories [4]. We showed in Refs. [12-14] that the nonlocal
scale, My = 1/, can be hierarchically smaller than the lightest Lee-Wick partner my,

2
2 my
M3~ 0O <N > : (2.7)

A parametric suppression of the regulator scale has been found in other constructions dis-
cussed in the literature [30, 31]. As we will see, one encounters the same phenomenon in the
linearized gravitational theory that is the subject of the present work.

The existence of N first-order poles in Eq. (2.5) suggests that there is a way to rewrite
Eq. (2.3) as a theory that includes N propagating fields that do not have higher-derivative
quadratic terms. This approach is well known in Lee-Wick theories [4, 5], and was extended to
asymptotically nonlocal theories in Refs. [12, 13]. In the present case, consider the following
theory of N real scalar fields ¢;, and N — 1 real scalar fields x;:

N1
Ly = _% o100n = V(61) = D x5 [B65 — (6541 — 5)/a5] - (2.8)
i=1

The a; were defined previously, and we have rescaled the x; fields so that each term in the
sum has unit coefficient. The ; are auxiliary fields that serve to impose a set of constraints
on the theory. Since they appear linearly in the Lagrangian, one may functionally integrate
over the x; in the generating functional for the correlations functions of the theory. This
leads to functional delta functions, which impose constraints that are exact at the quantum
level:

O¢; — (¢j41 — ¢5)/a; =0, forj=1,...,N—1. (2.9)
These constraints allow the (j 4+ 1) field to be eliminated in terms of the ;" field; after
successive functional integrations, one finds

et m
on = |1 <1+ NJ_1> ¢1 - (2.10)

Jj=1

Substituting into Eq. (2.8), and relabelling ¢1 — ¢, one recovers Eq. (2.3), as desired.

Alternatively, Eq. (2.8) can be subject to field redefinitions which lead to a sector with
diagonal kinetic and mass terms, corresponding to the expected propagating degrees of free-
dom in a Lee-Wick theory, and a sector of non-dynamical fields that can be integrated out.
The spectrum of propagating fields is found to be identical to that of the higher-derivative
theory; we refer the reader to Ref. [12] for details. In applications where one is only interested
in computing Feynman diagrams with internal scalar lines, there is little practical advantage
to using a field-redefined version of Eq. (2.8) instead of the higher-derivative form in Eq. (2.3).
The same will be true in our generalization to linearized gravity; we will rely on the higher-
derivative form of the theory, analogous to Eq. (2.3), in the computations we present in Sec. 4
that illustrate the emergence of the nonlocal scale. Nevertheless, we will present an auxiliary
field formulation analogous to Eq. (2.8), which is helpful in understanding the spectrum of
massive Lee-Wick gravitons.



3 Asymptotically nonlocal gravity

Let us now construct an asymptotically nonlocal theory in the gravitational sector. We work
in Cartesian coordinates and consider a small perturbation from D-dimensional Minkowski
spacetime parametrized as

Guv = N + 2K by, (3.1)

where k = V87G, we set i = ¢ = 1, and we work in the particle physics metric signature
(+,—,...,—). We discuss the generalization to the full, nonlinear theory in Sec. 5. As
a warmup, recall that the leading-order Einstein-Hilbert Lagrangian can then be written
compactly as

1 1
Lot = V=R = =5 O + O 3

where we defined the symbols’

(9% = Ouyaﬁnpanaﬁ = (1551; - 77’“/77pa) g + n“yapaa + npoauay - Cﬁ; )
1 v v
5 (5géa + 5g(5p) ’ (3.3)

1 174 174 v v
5 (040" D5 + 85070, + 5,00, + 6,0";) |

%
15,

uv
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and O = n"9,0,. Observe that the operator O*P? satisfies
Ouypo' — Oyupa — O,ul/op — OPUIMJ’ (34)
D, OMP7 = 9,0H7P7 = §,0MP7 = §,OMP7 = (. (3.5)

Under a gauge transformation associated with the infinitesimal diffeomorphism 2x&H(x), the
metric perturbation transforms as hy,, — hu, + 0,8, + 0,€,. The gauge invariance of (3.2)
is then guaranteed by Eq. (3.5).

In order to construct an asymptotically nonlocal theory of linearized gravity, we proceed
in close analogy to Eq. (2.8): Consider a theory with N fields hfw (where j =1,...,N) and
N — 1 auxiliary fields X{w (with j =1,..., N —1). Under a gauge transformation we demand
hfw — hfw + 0,8, + 0., and Xfw — Xfw- The Lagrangian is

N-1

1 j j j

L£x = =5hwO" oy = 3 X5 [Ofg b, = mi Mg (" = 1) (3.6)
7=1

where the mass matrix M and its inverse W are

Mﬁg = 15; - bnw’npay
(3.7)

174 174 b 174
WgO’ = 1ga' - bD_ 1”” T]P0'7

such that MZEW%} = 15, with the parameter b to be determined and left free for now, and

’mJQ > 0 are arbitrary mass parameters.

'Here, and in what follows, all indices are raised and lowered with the Minkowski metric.



3.1 Integrating out auxiliary fields

The fields X{w appear linearly in the Lagrangian and are therefore auxiliary fields. Hence, one
may perform the functional integral over each one of these exactly, leading to the iterative

functional constraints

Or7h) , = miMET (WIEY — 1 ). (3.8)

uv'lpo

By acting with the inverse mass matrix W one finds

. 1 . . .
+1 _ o o o __ loayaYe
Wbt = (1;;,, + MOZ,,) h,, O =W000, (3.9)
J
where O is given by
Apy v b(l)'_’Q) v
Ope = Opo + 5 57 1" (Dpo = 0,05). (3.10)

After integrating out all constraints one is left with the Lagrangian

1. 1. 1 .
o1+ ——0](14—5—0 ...(1+2(9>
my_q my_s my

where we have suppressed the tensor indices in the intermediate operators. We find that

pvpo

h} (3.11)

1
Ly =—=h! p

2

the higher-derivative Lagrangian we seek is obtained for the choice b = 1/2. This leads to
significant simplifications, including the relations

OO =00k, OO0 =00k, (3.12)

which hold for any number of spacetime dimensions D. These may be used to show that
Eq. (3.11) simplifies to

1 Nt O
Ly = _ihiyf(m)ow"h}m, f(O) = H <1 + mQ> . (3.13)
j=1 J

Compared to the linearized Einstein-Hilbert Lagrangian (3.2), the above implements a higher-
derivative modification thereof in terms of the form factor f(OJ), where h}w is the graviton
field.

It is worth noting that the auxiliary field formulation in Eq. (3.6) would not lead to the
simple relations in Eq. (3.12), nor the desired end result in Eq. (3.13), for a more general
form of MY, . This makes the present construction nontrivial and quite different from that
of the scalar and gauge theory models considered in our prior work [12-14]. The choice b =1
in Eq. (3.7) corresponds to the tensor structure of a Pauli-Fierz mass term; in models of
massive gravity [32], this is usually the preferred choice since it renders the massive graviton
free of a ghost degree of freedom. In the present context, we retain a massless graviton,



and the additional massive states already include a proliferation of ghosts. The extra degree
of freedom in each massive mode from the choice b = 1/2 does nothing more than indicate
that the Lee-Wick spectrum includes both spin-two and spin-zero Lee-Wick particles, with
the latter quantized like any other Lee-Wick scalar [33]. All are ultimately decoupled as one
takes that asymptotically nonlocal limit.

3.2 Propagator

In order to find the graviton propagator we add a gauge-fixing term to the Lagrangian,’

1 14 14 o
Lo = % Ouhy” = 20"h1)?, by =1Phls, (3.14)
which, after integration by parts, we may rewrite as
1 1 2 v uv ow Qv 1 uv po
Lgs = _ihw NN — X000 + 1pe0M0") + 5690 Ry . (3.15)
Then, for A = %, the propagator takes the form
_k
UV ;fpaAAAAASN PO = D,uupo(k)
- ¢ HP VO | DO VP BV PO 1
kaf(_kz){n 00— " (3.16)
PRV KT + nPokVEP + nYPREET 4 O kR kP
[ 26(~k?) - ,
N-1 o2
f(=k?) = (1 — 2) . (3.17)
" m;
Jj=1 J

In a local theory, where f(—k?) = 1, the result obtained by setting £ = 1/2 in Eq. (3.16)
is usually said to be the graviton propagator in harmonic or de Donder gauge. Note that
i [k%f(—k?)]7! is identical to Eq. (2.4) and has the same partial fraction decomposition,

L G
k2 f(—k2) K2 —m2’

(3.18)

with the coefficients ¢; given in Eq. (2.6). For later convenience, it is useful to note that the
c; satisfy the sum rules

N—

[y

N-1
c;=0 and Zm?ncj:() form=1,...,N —2. (3.19)
7=0 7=0

2The required Faddeev-Popov ghosts do not appear in our subsequent computations.



4 Examples of emergent scale

In this section, we present a number of examples that illustrate the appearance of the derived
nonlocal scale in calculations involving the finite-N theory. We confirm that in the limit of
large N, we recover known results from the literature on nonlocal gravity [18-20, 31, 34—
37]. This is useful to verify that results obtained via the limiting procedure (i.e., via a
computation that assumes the theory (2.3) with N large but finite) and at the nonlocal limit
point, Eq. (2.1), do not exhibit any discontinuities.

4.1 Metric of a classical point particle

Taking the Lagrangian (3.13), we may substitute h,, = h}w for notational brevity and couple
this to matter in the usual way,

L=LN—Kh,T", (4.1)
such that the classical field equations take the form
O f(@hpe = =k Ty . (4.2)

Working in the harmonic gauge, 0*h,,, = %(’%h, the field equations take the form

Of(0) (h;w - ;hnuu) =—KkTpw, (4.3)

and energy-momentum conservation follows from the gauge choice directly. Let us find the
weak-field solution for a point particle of mass m at rest. Let X* = (¢,x), the symbol x
denote a (D — 1)-dimensional spatial vector in Cartesian coordinates, and r = |x|. The
conserved external energy-momentum tensor is

Ty = mdt,ot 6P~V () . (4.4)
Inserting the static and spherically symmetric ansatz
ds? = (uy + 26hy, )AXHAXY = +[1 — ¢(r)]dt? — [1 + ¢(r)]dz” (4.5)
into the field equations yields

FOVHV2 6+ (D — 1)¢] = —4x*m 6P~V (x),

(4.6)
FVHVA (D =3)p —¢] =0,
where V2 is the spatial part of the (J-operator. Equation (4.6) is equivalent to
D-3
F(VHV2 = —2 D3 k2m 0P~ (x) (4.7)

and 1 = ¢/(D — 3). One may verify that in the case where D = 4 and f = 1, the solution
of Eq. (4.7) is ¢ = 2G m/r, as expected. In the more general case, we fix D = 4 and use the



partial fraction decomposition Egs. (2.4)-(2.6) to evaluate the Fourier transform of Eq. (4.7).
Solving for ¢ in this way, one finds

2Gm N-1 N1 m2
o(r) = () = == |1+ Stemmr L epi=— ] s, (4.8)
j=1 221 my, — my;
J

which resembles results encountered in quadratic gravity [38—40]. Performing an expansion
near r = 0 (and recalling that ¢ = 1 and mgo = 0) one finds

1Nl -1 , N-l
~ 92 - - M - —
o(r) Gm . Z ¢j ' cjm; + 3 2
J=0 J=0 J=0

cjm? +0(r?). (4.9)

The sum rules (3.19) imply that for any N > 2 the 1/r-divergence cancels, so the potential
is manifestly finite at the origin. Moreover, for N > 3 the term linear in r also vanishes,
which implies the absence of a conical singularity at » = 0; for a detailed study of regularity
properties in higher-derivative gravity models see Ref. [41].

The emergence of the nonlocal regulator scale can be seen by evaluating Eq. (4.8) nu-
merically in the limit where N — oo with the mj2 /N approaching a common value 1/¢2. This
is shown in Fig. 1, which assumes the following mass parametrization [14]:

, N 1

T ey
2NP

i>1, (4.10)

where P > 1 is an arbitrary parameter. The results can be seen to approach the expectation
for a limiting nonlocal theory with an exp (£20J) form factor [42-48],

o(r)=1(r) = Qcimerf<§> , (4.11)

which is regular at = 0 and approaches the Newtonian expression for r > £.

4.2 Nonrelativistic gravitational potential

Using the propagator developed in Sec. 3, we next compute the gravitational potential by
considering the nonrelativistic limit of a two-into-two scattering amplitude. To make the
analogy with the well-known computation of the Coulomb potential in quantum electrody-
namics manifest, we take the matter fields to be two distinct Dirac fermions with mass m.
The single-graviton vertex comes from the part of the Lagrangian that is linear in h,,

LD —khyu, T, (4.12)

where
9 — & _ _
T = 25§ V= | 2 a1 — m (4.13)
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Figure 1. The gravitational potential ¢(r) for various choices of N, given a typical mass parametriza-
tion (4.10), versus the dimensionless distance r/¢, where ¢ is the emergent regulator scale. We choose
P = 2 and display the potentials for 2Gm/¢ = 1. The case N = 1 corresponds to the Newtonian
potential, whereas N > 2 corresponds to the Lee-Wick case; N = oo is the nonlocal case.

is the flat-space energy-momentum tensor. Here we follow the conventions that X, =

<
(X +X,p)/2and AO* B=Ad,B — (0,A)B. The vertex Feynman rule is given by

nv

1
=V )" = —in |5 (157 = mpen™) ¥ (p+ )7 +m n‘”’] , (4.14)

where 1;‘;’ is defined in Eq. (3.3). To extract the gravitational potential, it is sufficient for us

to study fermion-fermion scattering, whose scattering amplitude is given by

_ [E(S')(p’)V(p’,p)agU(S)(p)] Daﬁpa(q) [E(T’)(k,)v(kf’k)pg u(r)(k)] ,

(4.15)

_10_



where ¢ = p — p/ is the momentum flowing through the t-channel propagator, and r, 1/,
s, and &' label spin states. The portion of the propagator proportional to [1 — 2¢f(—¢?)]
gives a vanishing contribution to the amplitude, which can be verified using u(p’)gu(p) = 0
and w(k")gu(k) = 0. The remaining part of the amplitude simplifies dramatically in the
nonrelativistic limit. At zeroth order in the three-momentum, the spinor u(p) in the Weyl
basis may be written as [49]

)
W (p) = vim (5 ) , (4.16)

where £(7) (with r = 1,2) is a set of two-component spinors that describe the spin state of
the particle in the rest frame. For example, at lowest order,

a2 ()70 u) (p) = 7V () u'®) (p) = 2m T (4.17)

The scattering amplitude in Eq. (4.15) reduces in the same limit to

K2 m?

Z.r ! /
M=o (2m T (2mTe™) (4.18)
2f(Ip—p'?) P12 ( ) ( )

One may immediately identify the Fourier transformed potential energy [49],

2

~ m
V() =-471G =5 - (4.19)
1> f(1q1?)
We decompose [ |¢12f(|q]%?)]~! using partial fractions and then Fourier transform,
B¢ .1 = 1
) = —4 2 L - g 4.2
V(&) TGm /(%)Be |ﬂ2+;c] Frn?|’ (4.20)

where the ¢; are the same coefficients defined in Eq. (2.6). Regulating the first term in the
usual way, one obtains

Gm? N—-1
V(%) =— " 1+ Z cje” |, (4.21)
j=1

where r = |Z|. This potential energy function is proportional to the function ¢(r) discussed
in the previous section. Hence, the singularity at the origin is eliminated and the potential
energy is regulated by the same emergent scale in the asymptotically nonlocal limit.

4.3 Loop regulator

As a final example, let us now demonstrate that the emergent scale also regulates the otherwise
quadratically divergent self-energy of a real scalar field of mass m. The vertex Feynman rules

— 11 —



are given by

y /// \\\ Y - 42/‘6 1MV1ﬁ6n ( p +p/ﬁpa)
/// \\\ 1

(WP — ) (p o — m?)

(L™ + L™ ) 0| (4.23)

l\D\»—tl\')M—l

where 17777 is defined by Eq. (3.3), with all indices raised using the Minkowski metric n®%,
The total self-energy at one loop is®

i k
L VN
p m p
—iM?*(p*) = ZZ:} + T8 SOl =i [MA() + ME(?)] . (4.24)
T T p<—7k

The physical scalar mass p? = mf)hys is determined by the location of the propagator pole, i.e.
it is the solution to p? — m? — M?2(p?) = 0. This makes M?(m phys)

the order we work in perturbation theory, this is equivalent to M?(m?), which we now study.

a quantity of interest; at

For simplicity, we shall work in & = 0 gauge.* On-shell, the second, “rainbow” diagram gives

, m?k® — 4(k - p)?
—iME(p* =m?) =2 / .
iMp(p m @2m)* KA (K2 — 2p - k) f(—k2)

(4.25)

If one were to set f = 1, this expression looks logarithmically divergent based on naive power
counting, provided a factor of k% survives in the numerator of the integrand. However, this

3The self-energy includes only one-particle irreducible diagrams. Note that our expansion about flat space-
time assumes a vanishing cosmological constant and no gravitational tadpoles.

4The on-shell self-energy in Abelian and non-Abelian gauge theories is gauge invariant, with no dependence
on the parameter . In gravity, this is not the case, so that mass renormalization requires gauge-dependent
counterterms. Nevertheless, it can be shown that physical quantities, such as scattering amplitudes, remain
independent of gauge [50]. For an alternative approach using a background field formalism which leads to
gauge-invariant counterterms, see Ref. [51].

- 12 —



is not quite the case: After combining denominators and shifting the integration variable
k — k + shift, the leading term in the numerator may be replaced by (1 —4/D) k?*m?, with
vanishing coefficient in D = 4. Hence, this integral represents a finite correction, even before
faster convergence is provided by f(—k?). Therefore, we focus on the first diagram to see the
appearance of the nonlocal scale as a regulator. The first, “bubble” diagram is given by

d*k 1
2m)t k2 f(—k2)

This expression is quadratically divergent for f = 1, so let us now track the influence of the

—iM3(p? = m?) = —6 /<a2m2/ ( (4.26)

higher-derivative modification. Performing a partial fraction decomposition, we may write

—iM3(p® =m?) = 6ix’m Z O T

m2
1
= 6iK m2Zc] [— ]2 x-l—ﬁnlte] ,

where in the second line we have restored my = 0 and evaluated the integral using dimensional

(4.27)

regularization. The 1/e-divergences cancel due to the sum rules (3.19), such that

Gir2

6ik2 5 o 1
(am)? m Z cjm; logm ~ (47T)2m M5+ 0O (N) . (4.28)

—iM3(p* = m®) =

The last equality can be found in Eq. (4.28) of Ref. [13] and follows from the parametrization
in Eq. (4.10), and holds numerically for P > 1. Therefore, the emergent scale My, acts as the
physical regulator for the gravitational corrections to the scalar self energy as the Lee-Wick
spectrum is appropriately decoupled.

5 Conclusions

In Refs. [12-14], we introduced a class of theories that interpolate between a Lee-Wick theory,
with a finite number of higher-derivative quadratic terms, and a ghost-free nonlocal theory,
with infinite-derivative quadratic terms. We call this sequence of theories, with ever increas-
ing numbers of Lee-Wick particles, asymptotically nonlocal. As the number of Lee-Wick
particles is increased, their spectrum is taken to decouple in such a way that the Lagrangian
approaches that of the nonlocal theory. Since the nonlocal scale serves as a regulator in
this limiting theory, one can anticipate the emergence of a derived regulator scale in the
asymptotically nonlocal theories with large but finite IV; this scale does not correspond to
any fundamental parameter in the Lagrangian of the finite-N theory. The derived regula-
tor scale is hierarchically smaller that the lightest Lee-Wick partner, with the suppression
in the squared cut off scale proportional to the number of propagator poles. This provides
motivation for studying these theories: more conventional Lee-Wick theories lose the ability
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to address the hierarchy problem as the lightest Lee-Wick particle is decoupled from the
low-energy effective theory. Asymptotically nonlocal theories allow this decoupling while still
providing the desired cancellation of quadratic divergences. We know of no other Lee-Wick
theories discussed in the literature that have this property.

As asymptotic nonlocality has been previously considered in scalar field theories [12],
Abelian gauge theories [13], and non-Abelian gauge theories [14], respectively, it is natural
to ask how the same construction might be generalized to the gravitational sector, so that
all the fundamental interactions are treated in a similar way. The present work takes the
first step in this direction by developing an asymptotically nonlocal version of linearized
gravity. As in our earlier work [12-14], we present a higher-derivative and an auxiliary-field
formulation of the gravitational theory that preserve the diffeomorphism invariance of the
linearized Einstein-Hilbert action. We then consider a number of examples that confirm
the emergence of the nonlocal scale, namely, in resolving the singularity at the origin of
the nonrelativistic gravitational potential and in regulating the divergences of graviton loop
diagrams. As with the quantum field theories that we previously studied [12-14], we find that
the emergent regulator scale is also suppressed relative to lightest Lee-Wick particle according
to the relation M2 ~ O (mi/N).

Generalization of asymptotically nonlocal gravity to the fully nonlinear theory can be
formulated most easily working with a higher-derivative formulation, for example,

1
L=+/—g [%QR + RF(O)R + Ry Fa(OD)R™ + Ryype F3(O)RMP7| (5.1)
N—-1 2
2.0
F.(O) = 1— -2 0= g" Y 2
k(D) ]Hl< N1>, 9"V, (5:2)

where the V,, are covariant derivatives. Here, the Fj(J) can be chosen so that Eq. (5.1)
reduces to Eq. (3.13) in the linearized approximation [19, 20]; see also Ref. [52]. Finding a
compact expression for Eq. (5.1) in terms on auxiliary fields is a more difficult task, but is
not strictly necessary for studying any relevant physics of interest in the full theory.

The present work on asymptotically nonlocal gravity concludes a series of papers that
systematically develop the framework of asymptotic nonlocality. In each of these investiga-
tions, we found an unusual relationship between the particle mass spectrum and the regulator
scale, one that provides a new possibility for addressing the hierarchy problem. The natural
extension to gravity considered here led us to identify an interesting class of Lee-Wick grav-
itational theories and provides motivation as well as a solid theoretical foundation for their
further development and phenomenological study.
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