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Abstract

In extended Higgs models, a discrete symmetry is needed in the quark sector to avoid tree-level

flavor-changing neutral currents. However, this is not necessarily the case in the lepton sector. We

consider a model in which one Higgs couples to quarks and three others couple to the electron,

muon and tau, respectively. This four-doublet model is presented with the full scalar potential and

the gauge and Yukawa couplings. The constraints from boundedness, perturbativity and oblique

parameters are incorporated as well as constraints from meson-antimeson mixing, radiative B-

decays and the diphoton Higgs decay rate. We also consider bounds from searches for heavy neutral

and charged scalars at the LHC. Since the Standard Model Higgs couplings match predictions very

well, we focus on the alignment limit of the model. It is shown that for a wide range of parameters,

the lightest additional scalar, pseudoscalar and charged scalar can have substantial decays into

electrons and muons (in contrast to the usual leptonic decays into taus). An interesting signature

in the neutral sector would be the production, through vector boson fusion, of a pair of scalars,

each of which decays into an electron or muon pair.
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I. INTRODUCTION

The Higgs boson was initially discovered [1, 2] through its decay into gauge

bosons. Since then, the coupling of the Higgs to third generation fermions

has also been determined with increasing accuracy [3–7].

However, while there is evidence [8] of the Higgs decay into muons, there

remain large uncertainties and the discovery has not yet been made. This

leads one to ask if there are viable models in which the muon and tau couple

to different Higgs bosons. It is often claimed that models in which fermions

of a given charge couple to different Higgs bosons contain tree-level flavor

changing neutral currents (FCNC). However, the seminal papers of Glashow

and Weinberg [9] and of Paschos [10] explicitly referred to the quark sector.

As we will see, FCNC can be avoided in the lepton sector even if different

leptons couple to different Higgs bosons.

The first such model, called the muon-specific Two Higgs Doublet (2HDM)

model, was developed by Abe, Sato and Yagyu [11] (ASY). They use a Z4

symmetry, under which the muon and tau have different quantum numbers,

and break this softly. The model has no tree-level FCNC and the Yukawa

couplings for the muon and tau are no longer simply proportional to their

masses with the proportionality coefficient being the same for all flavors:

rather, the ASY model can substantially enhance or suppress the muon in-

teractions of scalars relative to those with tau leptons. The purpose of their

model was to attempt an explanation of the muon g-2 anomaly, and for the

parameters they considered, the dimuon coupling of the 125 GeV Higgs is

not suppressed. Their model can address the g-2 anomaly, but only for a
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very narrow region of parameter-space. A more detailed analysis was carried

out in Ref. [12] where the phenomenology of the model was studied.

The ASY muon specific 2HDM used a Z4 discrete symmetry in which the

left-handed muon doublet and right-handed singlet have charge i and Φ1 has

charge -1. All other fields have charge +1. This then has Φ1 coupling to

muons and Φ2 coupling to all other fermions. Ivanov and Nishi have pointed

out [13] that the actual symmetry group of the model is a softly broken Z2

in which Φ1 and µR are negative and with a U(1) corresponding to muon

number. This does not affect the ASY Lagrangian. In this model, the mass

matrix of the charged leptons breaks into a 2 × 2 submatrix, corresponding

to e − τ and a 1 × 1 corresponding to the muon. One might be concerned

about how the PMNS matrix is generated if the muon and muon neutrino

mass matrices decouple. However, even if the charged lepton and neutrino

mass matrices are diagonal, one will still obtain a PMNS matrix using the

see-saw (type 1) mechanism. The light neutrino mass matrix is then mij =

(MD)ik(MN)
−1
kl (MD)lj where MD is the diagonal Dirac neutrino mass matrix

and MN is the superheavy Majorana right-handed neutrino mass matrix.

The latter is arbitrary and so the light neutrino mass matrix is not diagonal,

leading to a non-trivial PMNS matrix. Note that this will not work in the

quark sector.

In this paper, we take the ASY model one step further and suppose that

each of the charged leptons couples to a different Higgs doublet, which we

will label as Φe,Φµ and Φτ . This can be achieved with a (Z4)e×(Z4)µ×(Z4)τ

symmetry in which Lℓ and ℓR have quantum number under (Z4)ℓ of i and

the Φℓ has quantum number −1. Equivalently, one can replace the Z4 with
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Z2 ×U(1) as discussed above - the Lagrangian in either case is identical. To

achieve a non-trivial PMNS matrix, the symmetry must be softly broken in

the superheavy Majorana neutrino mass matrix. The simplest implementa-

tion of this model would be a 4HDM in which the fourth Higgs Φq couples

to the quarks. This is similar to the lepton-specific model. Certainly one

could have one of Φℓ be the same as Φq, leading to a 3HDM. However, if the

Φq is Φτ , then the resulting model is very similar to the muon-specific model

- the only difference being the very small interaction of the Higgs with the

electron. For simplicity, we assume they are separate. One could also adopt

a type-II structure, with 5HDM, but that brings in additional complications

and the type-II parameter space is much narrower than the type-I. So, we

will focus on the 4HDM with Φq,Φe,Φµ and Φτ .

Although there are hundreds of papers that study models with three Higgs

doublets, very few look at models with four. A recent paper with 4HDM in

which each Higgs couples to sets of fermions with similar masses has been

proposed [14] and a special ansatz, “singular alignment”, is needed to sup-

press FCNC. A supersymmetric model [15] had one doublet each coupling

to up-quarks, down-quarks and leptons, with the fourth needed for anomaly

cancellation. A similar non-supersymmetric model was proposed [16](with

the fourth Higgs needed to relax some tight constraints). An early discus-

sion that mentions 4HDMs [17] studied Abelian symmetries in multidoublet

models. There are also many studies of symmetries and vacuum states of

N doublet models. An extremely extensive 2017 review of Ivanov [18], with

over 500 references, studied numerous extended scalar sectors (including two

doublet models, N doublet models, singlet and triplet extensions). Most rel-
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evant papers before that time are referred to in this review. A more recent

paper [19] looked at the interesting issue of non-decoupling in multiscalar

models. Related work [20] dealt with large discrete symmetry groups in N

doublet models. Additionally, the “Private Higgs” model of Porto and Zee

[21, 22] had one Higgs doublet for every fermion. In contrast to the model we

propose, their model had numerous discrete symmetries and included several

“darkon” scalars.

We see that there are many models with more than two Higgs doublets in

the literature. All of these treat the three charged leptons identically, except

for the “Private Higgs” model which treated quarks and leptons in the same

manner. Yet the lepton sector is one of the most mysterious, given the large

mixing angles and small masses in the neutrino sector. In this paper, we are

treating the lepton and quark sectors differently, but not treating the charged

leptons identically, coupling each lepton to a separate Higgs.

In section II, the model is presented, including the full scalar potential and

the gauge and Yukawa couplings. In section III, we discuss the constraints

on the potential from boundedness and constraints from oblique parameters.

In section IV, two benchmark models are presented. In the first model, the

potential is divided into two 2×2 subsections and in the second, the full 4×4

model is discussed in the experimentally indicated alignment limit. Section

V contains our results and conclusions.
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II. THE MODEL

A. Scalar sector

The potential can be written as a sum of quadratic and quartic terms:

V = V2 + V4. We allow for soft breaking of the discrete symmetry in the

quadratic terms:

V2 = m2
qqΦ

†
qΦq +m2

eeΦ
†
eΦe +m2

µµΦ
†
µΦµ +m2

ττΦ
†
τΦτ

+ [m2
qe(Φ

†
qΦe) +m2

qµ(Φ
†
qΦµ) +m2

qτ(Φ
†
qΦτ)

+ m2
eµ(Φ

†
eΦµ) +m2

eτ(Φ
†
eΦτ) +m2

µτ(Φ
†
µΦτ)] + h.c.

(1)

and

V4 = λq
1(Φ

†
qΦq)

2 + λe
1(Φ

†
eΦe)

2 + λµ
1(Φ

†
µΦµ)

2 + λτ
1(Φ

†
τΦτ)

2

+ λqe
3 (Φ

†
qΦq)(Φ

†
eΦe) + λqµ

3 (Φ†
qΦq)(Φ

†
µΦµ) + λqτ

3 (Φ†
qΦq)(Φ

†
τΦτ)

+λeµ
3 (Φ†

eΦe)(Φ
†
µΦµ) + λeτ

3 (Φ†
eΦe)(Φ

†
τΦτ) + λµτ

3 (Φ†
µΦµ)(Φ

†
τΦτ)

+ λqe
4 (Φ

†
qΦe)(Φ

†
eΦq) + λqµ

4 (Φ†
qΦµ)(Φ

†
µΦq) + λqτ

4 (Φ†
qΦτ)(Φ

†
τΦq)

+ λeµ
4 (Φ†

eΦµ)(Φ
†
µΦe) + λeτ

4 (Φ†
eΦτ)(Φ

†
τΦe) + λµτ

4 (Φ†
µΦτ)(Φ

†
τΦµ)

+
1

2

[

λqe
5 (Φ

†
qΦe)

2 + λqµ
5 (Φ†

qΦµ)
2 + λqτ

5 (Φ†
qΦτ)

2

+ λeµ
5 (Φ†

eΦµ)
2 + λeτ

5 (Φ†
eΦτ)

2 + λµτ
5 (Φ†

µΦτ)
2 + h.c.

]

(2)

Here, we have labeled the quartic couplings to be similar to the standard

2HDM potential.

If them2
ij and λij

5 have imaginary components, one would have CP violation

in the scalar sector. There are six CP violating parameters from the m2
ij

and another six from the λij
5 parameters. Two can be eliminated through

rescaling, but that would leave ten additional parameters. A detailed analysis

of CP violation in the 3HDM [23] considered the effects on the neutron
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and electron electric dipole moments as well as CP violating effects in B

decays. They also discuss mixing of scalars and pseudoscalars which would

complicate the analysis. In our model, one would expect very similar effects.

For simplicity, we will assume that these parameters are real and refer the

reader to Ref. [23] for details.

We can write the Higgs doublets as

Φi =





φ+
i

(vi + φi + iχi)/
√
2



 , (i = q, e, µ, τ) (3)

where the vi/
√
2 are the vacuum values of the neutral components. To discuss

diagonalizing mass matrices and the various angles involved, we follow the

procedure of Boto, Romão and Silva [24] closely.

Without loss of generality, we can define the angles that rotate the fields

into the Higgs basis in which only one scalar field gets a vev by

vq = v cos β2 cos β3 cos β4

ve = v sin β2 cos β3 cos β4

vµ = v sin β3 cos β4

vτ = v sin β4

(4)

giving
















h0

H1

H2

H3

















= Oβ

















φq

φe

φµ

φτ

















(5)
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where

Oβ =

















cβ2
cβ3

cβ4
sβ2

cβ3
cβ4

sβ3
cβ4

sβ4

−sβ2
cβ2

0 0

−cβ2
cβ3

−sβ2
sβ3

cβ3
0

−cβ2
cβ3

sβ4
−sβ2

cβ3
sβ4

−sβ3
sβ4

cβ4

















(6)

Here, h0 is the field that gets the entire vev, v, and cθ (sθ) are cos θ (sin θ).

From this basis, we can now diagonalize the mass matrices of the various

scalars. In the neutral scalar sector, the physical neutral Higgs masses are

given by
















h1

h2

h3

h4

















= Oα

















φq

φe

φµ

φτ

















(7)

where h1 is the 125 GeV Higgs particle. For Oα, we use

Oα = R34R24R23R14R13R12 (8)

Here, for example, R24 is given by

R24 =

















1 0 0 0

0 cα24
0 sα24

0 0 1 0

0 −sα24
0 cα24

















(9)

and the other R matrices follow. We see that there are six rotation angles.
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In the pseudoscalar sector, one has

















G0

A1

A2

A3

















= OγOβ

















χq

χe

χµ

χτ

















(10)

where Oγ = P34P24P23 and, as before, for example

P24 =

















1 0 0 0

0 cγ24 0 sγ24

0 0 1 0

0 −sγ24 0 cγ24

















(11)

Note that there are only three matrices here, since the Goldstone boson

direction is fixed.

Finally, in the charged sector

















G+

H+
1

H+
2

H+
3

















= OδOβ

















φ+
q

φ+
e

φ+
µ

φ+
τ

















(12)

where Oδ = Q34Q24Q23 and, as before, for example

Q24 =

















1 0 0 0

0 cδ24 0 sδ24

0 0 1 0

0 −sδ24 0 cδ24

















(13)
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B. Gauge and Yukawa couplings

1. Gauge couplings

The scalar kinetic Lagrangian, Lk, defined as

Lk =
4
∑

i=1

|DµΦi|2 (14)

with the usual expression for the covariant derivative Dµ, contains the terms

relevant to obtain the trilinear couplings of the scalars and gauge bosons.

The couplings ZZhi and W±W∓hi are written in the form
(

4
∑

i=1

Cihi

)

(

g

2cW
mZZµZ

µ + gmWW−
µ W

+µ
)

. (15)

The Ci factors are included in Appendix A. It is possible to check that, when

the set of conditions α1j = βj is verified (for j = 2, 3, 4), one gets C1 = 1

together with Ck = 0, for k 6= 1, which defines the alignment limit in this

model.

2. Yukawa couplings

Following the notation of Branco, et al. [25], the couplings of the scalar

and pseudoscalar Higgs are defined through

LS
Y =−

∑

f∈{q,e,µ,τ}

mf

v

(

ξfh1
f̄fh1 + ξfh2

f̄fh2 + ξfh3
f̄fh3 + ξfh4

f̄fh4

)

LP
Y =−

∑

f∈{q,e,µ,τ}

(

−i
mf

v

)(

ξfA1
f̄γ5fA1 + ξfA2

f̄γ5fA2 + ξfA3
f̄γ5fA3

)
(16)
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where ξfhj
and ξfAj

are given by

ξqhj
=

Oαj,1

v̂1
, ξehj

=
Oαj,2

v̂2
, ξµhj

=
Oαj,3

v̂3
, ξτhj

=
Oαj,4

v̂4

ξqAj
=

(OγOβ)j,1
v̂1

, ξeAj
=

(OγOβ)j,2
v̂2

, ξµAj
=

(OγOβ)j,3
v̂3

, ξτAj
=

(OγOβ)j,4
v̂4

(17)

using v̂i ≡ vi/v. Similarly, the couplings of the charged Higgs are defined

through

LC
Y = −

∑

j

[

∑

u,d

√
2Vud

v
ū
(

muξ
qL

H+

j
PL +mdξ

qR

H+

j
PR

)

dH+
j

+
∑

l

√
2ml

v
ξlLH+

j
ν̄LlRH

+
j

]

+ h.c.

(18)

where ξf
H+

j
are given by

ξqLR
H+

j
=

(OδOβ)j,1
v̂1

, ξeLH+

j
=

(OδOβ)j,2
v̂2

, ξµL
H+

j
=

(OδOβ)j,3
v̂3

, ξτLH+

j
=

(OδOβ)j,4
v̂4

(19)

A table of general Yukawa couplings are included in Appendix B.

III. THEORETICAL CONSTRAINTS ON THE SCALAR POTENTIAL

A. Bounded from below constraints

In extensions of the scalar sector, one needs to choose quartic parame-

ters such that the potential is bounded from below (BFB)1. While this is

straightforward in the 2HDM, it can be quite complicated in models with

1 We require that the potential be bounded at scales where the quartic terms dominate. The case in which

the potential turns over at very high scales due to renormalization group running will not be considered.

In fact, the Standard Model itself would not satisfy that latter condition
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more than two doublets. An added complication in models with doublets is

that there can be an instability in the charged scalar direction even if there

is stability in the neutral scalar direction (see Ref. [26] for an example). A

recent discussion of these conditions for a three-doublet model can be found

in the work of Boto, Romão and Silva [27]. They showed that while necessary

and sufficient conditions are known for the neutral direction, only sufficient

conditions are known for stability in the charged direction, and they discuss

a general strategy. We will first discuss the neutral directions.

Looking at the neutral direction, the 2HDM potential can be written as

V4 = a11H
4
1 + a22H

4
2 + a12H

2
1H

2
2 , where the matrix is symmetric. The con-

ditions for copositivity (where the potential is positive for all values of H2
1

and H2
2) are given by a11 ≥ 0, a22 ≥ 0, a12 +

√
a11a22 ≥ 0. As shown in

Refs. [28, 29], for the neutral sector of the 3HDM, the conditions are

a11 ≥ 0, a22 ≥ 0, a33 ≥ 0 (20)

a12 +
√
a11a22 ≥ 0 (21)

a13 +
√
a11a33 ≥ 0 (22)

a23 +
√
a22a33 ≥ 0 (23)

√
a11a22a33 + a12

√
a33 + a13

√
a22 + a23

√
a11 ≥ 0 (24)

detA ≥ 0 (25)

where A is the matrix with entries aij. Clearly, the first line is needed for

stability along the axes, the next three lines are needed for stability in the

three planes, and the last two lines ensure stability for all directions. For the

4HDM that we consider, the corresponding conditions must be satisfied for

every three dimensional subspace. The remaining conditions are extremely
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complicated, but are given in full in Ref. [28]. We have incorporated the

conditions in that paper to ensure stability in the neutral directions.

As shown by Boto, Romão and Silva [27], even in the 3HDM there are no

straightforward necessary and sufficient conditions for stability in the charged

directions. In the 2HDM, with a quartic potential

V4 = λ1(Φ
†
1Φ1)

2+λ2(Φ
†
2Φ2)

2+λ3(Φ
†
1Φ1)(Φ

†
2Φ2)+λ4|Φ†

1Φ2|2+
1

2
λ5[(Φ

†
1Φ2)

2+(Φ†
2Φ1)

2]

(26)

the condition for stability is [30, 31] λ3 + λ4 − |λ5| ≥ −2
√
λ1λ2. Rather than

attempt a detailed numerical study of stability in the 4HDM case, we will

require that this condition be satisfied for all 2× 2 subspaces of the 4HDM.

This requirement is, of course, necessary but may not be sufficient.

B. Oblique Parameters

To discuss the S, T, U oblique parameters, we follow the methods and

results in Grimus, et al [32]. To do this, we can write the matrices Ũ and

Ṽ from Grimus, et al [32] using our notation in the previous section. Ṽ is

defined through

















φ1 + iχ1

φ2 + iχ2

φ3 + iχ3

φ4 + iχ4

















= Ṽ
(

h1 h2 h3 h4 G0 A1 A2 A3

)T

(27)

where

Ṽ ≡





O−1
α

i (OγOβ)
−1



 (28)
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Notice in Eq. (27), our notation slightly differs from Grimus et al [32] by

keeping the Goldstone boson with the pseudoscalar mass eigenstates.

Ũ is defined as
















φ+
1

φ+
2

φ+
3

φ+
4

















= Ũ

















G+

H+
1

H+
2

H+
3

















(29)

where

Ũ ≡
(

OδOβ

)

(30)

We take the values of S, T from [33] with

S = −0.02± 0.10

T = 0.03± 0.12
(31)

We will not include the detailed calculation of the unitarity and perturba-

tivity bounds, due to the large number of scalar couplings. Rather, we will

simply require that all of the quartic scalar couplings be less than 4π.

IV. BENCHMARK MODELS

As is clear from examining the scalar potential and the Appendices, the

model contains a large number of free parameters. To focus on the most

important aspects of the model, we will consider two benchmark models. In

the first, we will assume that the (qτ) sector of the Higgs potential decouples

from the (µe) sector. In that case, the 4 × 4 scalar mass matrices decouple

into two 2 × 2 matrices which can be trivially diagonalized analytically. In

the second benchmark model, we will take the alignment limit. In the con-

ventional 2HDMs, this is equivalent to cos(α − β) = 0, with tan β ≡ v2/v1

14



and α diagonalizes the scalar mass matrix. This limit is often chosen since it

means that the couplings of the 125 GeV Higgs boson are identical to that

in the Standard Model (which seems to be preferred by LHC data). In this

case, it is easy to see from Appendices A and B that the alignment limit

corresponds to α1j = βj, as previously stated. Since the coupling of the 125

GeV Higgs is the same as the Standard Model, there is no need to study

Higgs production and tree-level decays in this case.

A. The Model without (qτ)-(µe) mixing

In this model, the absence of (qτ)-(µe) mixing means that the matrix that

diagonalizes the scalar mass matrix, Oα, is broken into two 2 × 2 matrices.

The upper 2× 2 matrix looks very similar to the lepton-specific 2HDM. The

only difference involves the coupling to the muon, which is not well-measured.

However, in this case, unlike the lepton-specific model, the value of v2q + v2τ is

not v2 = (246 GeV)2 but will be smaller. As a result, all Yukawa couplings

will be increased. This will affect the decays of the 125 GeV Higgs boson as

well as the production.

We define the parameter µX as

µX ≡ σ(pp → H)BR(H → X)

σ(pp → H)SMBR(H → X)SM
(32)

and look at X = gg, µµ, ττ, c̄c, b̄b, t̄t, γγ, γZ,WW,ZZ. The results are in

Figure 1, where we have plotted, in the usual way for 2HDMs, the allowed

region in the tan β − cos(β − α) plane. We require all µX to be consistent

with unity within 20% at 95% CL, which is a rough approximation to the
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FIG. 1: Allowed regions in the tan β − cos (β − α) plane, in the model without (qτ)-(µe)

mixing, for different values of r ≡
(

v2q + v2τ
)1/2

/v, namely r = 1 in orange, r = 0.95 in

purple, r = 0.90 in blue and r = 0.85 in cyan.

precision of current data. 2

We see that if the ratio of (v2q +v2τ )
1/2 to v is less than 0.85, that the entire

parameter space practically disappears. Thus much of the vev is saturated

by vq and vτ . Clearly the coupling here to the muon vanishes and thus in

the full model, the muonic decay of the Standard Model Higgs, if confirmed,

will be a strong constraint.

The shrinking of the parameter-space in the cos(β − α) < 0 allowed re-

gion occurs mainly due to the combination of g2HV V , measured from Higgs

production, and g2Hll, measured from Higgs decay. The shrinking of the

parameter-space in the cos(β − α) > 0 allowed region mainly occurs due to

2 We are looking in the context of the lepton-specific 2HDM - but now the combination of vacuum values,

(v2q + v2τ )
1/2 no longer is equal to the Standard Model vacuum value, v.
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g2HQQ, from Higgs production, now combined with both g2Hqq and g2Hll.

In itself, this benchmark model is phenomenologically unacceptable. Each

2 × 2 submatrix will have a zero eigenvalue in the pseudoscalar and in the

charged scalar sectors, leading to two zero eigenvalues in each sector. Only

one can be absorbed by the W and Z gauge bosons. The additional massless

scalars arise due to an additional accidental SU(2) symmetry. Thus, there

must be some off-diagonal terms. We can include these terms but assume

they are small and do a perturbative expansion.

For simplicity, let us add a single off-diagonal term, λqµ
5 . This will allow for

nonzero masses for the lightest charged and pseudoscalar Higgs3. This term

will modify the Yukawa couplings of the Standard Model 125 GeV Higgs.

For the couplings of the quarks, for example, the Yukawa coupling gY q̄qΦq

is
√
2mq/vq. Writing Φq = V11h1 + V12h2 + ..., where h1 is the 125 GeV

Higgs, one sees that the coupling is modified by a factor of v
vq
V11. One can

perturbatively calculate the eigenvalues and eigenvectors of the mass matrix

and we find that

V11 = 1− 1

2
ǫ21

[(

c34s12
m2

h1
−m2

h3

)2

+

(

c12s34
m2

h1
−m2

h4

)2 ]

, (33)

where ǫ1 = λqµ
5 vqvµ, cij = cosαij (sij = sinαij) and the masses are the masses

of the neutral scalars. The relevant point here is that V11 is reduced, which

counters the effect of the smaller vq. In order for the lightest charged Higgs

to have an acceptable mass, there is a minimum value of λqµ
5 , but the masses

of the neutral scalars can be large enough that the reduction (proportional

3 One can decouple the masses of the charged and pseudoscalar Higgs by adding a λqµ
4 term and can easily

satisfy any BFB concerns with a λqµ
3 term.
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to (vµ/mh3
)2) is quite small.

B. The Aligned Model

The full 4HDM has a large number of parameters in the scalar potential:

10 quadratic terms and 22 quartic terms. Not surprisingly, many of these

parameters will have little effect on phenomenology. As noted earlier, the

fact that the 125 GeV Higgs has decays consistent with the Standard Model

implies that multi-doublet models must be near the alignment limit in which

the Standard Model Higgs interactions are unaffected. From Appendix A,

we see that this will occur if α1j = βj. Parameters that might be of phe-

nomenological relevance are then the βj, α23,24,34, the three γ parameters, the

three δ parameters, the four scalar masses, the three charged masses and the

three pseudoscalar masses, in addition to the SM Higgs vev. Instead of the

potential’s couplings, we can choose to describe the model in terms of the

previously mentioned parameters and six additional parameters, namely the

remaining six m2
ij, giving a total of 29 parameters4. As we will see, many of

these parameters will not be relevant for particular processes.

One might wonder about relaxing the alignment limit assumption. Since

the Higgs properties match Standard Model expectations, one would expect

deviations from the alignment limit to be small (of the order of 10% or

less). Since we are not including other similar size effects, such as radiative

corrections to scalar masses, we don’t anticipate any substantial effects on

our plots.

4 With the addition of the three α parameters which are defined through the alignment limit, we get 32

parameters, just like the scalar potential.
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Choosing values for the rotation angles and the squared masses, it is pos-

sible to define the scalar, pseudoscalar, and charged squared-mass matrices

as M 2
s,p,c = R−1Ds,p,cR, considering the corresponding R matrix for each case

and D as the diagonal matrix with the squared masses in its entries. The

quartic parameters of the Lagrangian can be expressed in terms of elements

of such matrices, the vevs and the m2
ij parameters as the following:

λi
1 =

1

2v3i



viM
2
s,ii +

∑

j 6=i

vjm
2
ij



 ,

λij
3 =

1

vivj

(

M 2
s,ij − 2M 2

c,ij +m2
ij

)

,

λij
4 =

1

vivj

(

2M 2
c,ij −M 2

p,ij −m2
ij

)

,

λij
5 =

1

vivj

(

M 2
p,ij −m2

ij

)

,

(34)

in which i, j = q, e, µ, τ . In the 2HDM limit, these equations give rise to

the well-known expressions for the λ parameters in terms of masses, angles,

the electroweak vev v and the soft-breaking terms m2
ij [25, 34]. For every

possible set of parameters, we require the following:

• The bounded-from-below conditions are satisfied.

• The perturbativity condition that the absolute values of λ parameters

are less than 4π is maintained.

• The previous condition also applies to Yukawa couplings.

• The values of the S and T parameters are within the range given by

Eq. (31).

• Charged Higgs masses must exceed 80 GeV [35].
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• Contributions from the charged scalars to the loop-induced Higgs dipho-

ton decay h → γγ are compatible with experimental bounds. This

is achieved by checking the value of the diphoton signal strength

µγγ [36, 37] for each set of parameters.

• Bounds coming from new physics contributions to B meson oscillations,

∆MBd,s
, as well asK mesons, ∆MK , are within the experimental allowed

range for each case [33, 38]. Such nonstandard contributions come from

charged scalars through one-loop processes [39, 40].

• Contributions to b → sγ [40], again from charged Higgs particles, are

acceptable. In the Type II 2HDM, this gives the strongest constraint

on charged Higgs bosons.

• At the LHC, CMS [41] has searched for a heavy neutral Higgs decaying

into τ pairs. Although done in the context of the MSSM, the results are

very similar in this model (with adjusted Yukawa couplings, of course)

and the production cross-section times branching ratio varies from 10

pb to 10 fb over the range of masses from 150 GeV to 1000 GeV. More

recently, ATLAS [42] has done a similar analysis. Note that one usually

assumes that the decay into top quarks will dominate for masses above

350 GeV, but that might not be the case here due to the lepton-specific

nature of the model. We impose these experimental bounds on our

parameter-space, which, up to small differences due to form factors,

apply to neutral scalars and pseudoscalars.

• Finally, we can consider LHC direct searches for heavy charged Higgs

bosons. Searches fall into two categories - those in which the charged
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Higgs mass is greater than mt +mb and those in which it is less.

– If it is greater, then the predominant decay mode will be into tb̄, ex-

cept for the narrow window of parameter-space in which the charged

Higgs in question has essentially zero overlap with Φq. The produc-

tion cross-section for a charged Higgs mass of 200, 300, 600 GeV

is [43] within a factor of 2 (scaling the Yukawa coupling appropri-

ately to a lepton-specific or Type I model) of 0.4, 0.1, 0.01 picobarns.

ATLAS [44] has found bounds from Run II on the product of the

production rate and the H+ → tb̄ branching ratio. Their result is

below our production cross-section by a factor of a few, and thus the

model is not yet constrained by the non-observation at the LHC.

– If the charged Higgs is lighter, then a major decay mode is into τντ .

In this case the predominant production mode is through t → bH+.

Since top production is well understood, searches at ATLAS [45]

and CMS [46] place bounds on BR(t → bH+)BR(H+ → τντ). This

bound may not be too restrictive, since a charged Higgs that is

either quarkphobic or leptophobic will not contribute and thus it

will depend on mixing angles. Nonetheless, we have incorporated

the results of these searches in bounding our parameter-space.

We will primarily focus on the lightest neutral scalar (other than the 125

GeV Higgs), the lightest pseudoscalar and the lightest charged scalar. Re-

sults from these scalars will also apply to the heavier scalars by appropriate

choice of mixing angles (with the exception of heavy scalar decays into lighter

scalars, which we will not consider). The lepton-specific 2HDM has one scalar
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coupling to quarks and another to leptons. The primary difference between

our model and the lepton-specific model is that different scalars couple to the

muon and the electron (note that the muon-specific model [11, 12] has the

same scalar coupling to the quarks and the τ , which is more like an extension

of the type I 2HDM). As a result, we will focus on decays involving muons

and electrons.

We first consider the decay of the lightest neutral scalar (other than the

125 GeV Higgs, which has Standard Model couplings in the alignment limit)

into electrons, muons and taus. Since the heavier masses aren’t relevant

in the analysis, the parameter-space is substantially reduced. We consider

two mass regions, in which the scalar mass is below and above 350 GeV,

respectively. In the latter case, decays to top quarks can be substantial, even

if the mixing angles are small.

As noted above, given the masses, soft-breaking mass parameters and mix-

ing angles, the quartic couplings are determined. We scan the full parameter

space and check each of the conditions above. Typically, we find several mil-

lion parameter sets that are acceptable. The results are plotted in Figure 2.

Note that in the Standard Model the branching ratio of the dimuon decay of

the Higgs is 2× 10−4 and this level (and somewhat below) is certainly exper-

imentally accessible. One can see that for a scalar mass below 350 GeV, the

dielectron decay branching ratio can be much, much larger than the Standard

Model and the dimuon decay branching ratio can approach unity. Above 350

GeV, the opening of the top decay channel, even if the mixing angle is very

small, substantially reduces the leptonic branching ratios.

It is not surprising that this can occur. If one chose parameters such
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FIG. 2: These scatterplots show allowed points for h2 decays. Results are shown for h2

masses below 350 GeV and above that mass scale (at which point the t̄t channel opens

up). The upper figures plot ee and µµ decays and the lower figures plot µµ and ττ decays.

The decay branching ratio of the SM Higgs to µµ is approximately 2× 10−4.

that there was no mixing at all between Φee and the other scalars, then the

only decay of the Φee would be into electrons. This would require extreme

fine-tuning, since no symmetry will eliminate mixing in the quartic sector of

the potential and even very small values of the quartic mixing terms would

allow for other decays that could dominate. Nonetheless, we see many sets

of parameters for which the dielectron and dimuon decays of this lightest

neutral scalar (other than the Standard Model Higgs) can be substantial.

In Figure 2, we also show the branching ratios to muons and to taus.
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FIG. 3: These scatterplots show allowed points for H± decays. Results are shown for H±

masses below 180 GeV and above that mass scale (at which point the t̄b channel opens

up). The upper figures plot eν and µν decays and the lower figures plot µν and τν decays.

Again, one can see that the absolute branching ratio to dimuons can be

substantially more than that into two taus. Thus, we find that searches for

heavy neutral Higgs bosons decaying into leptons, which generally focus on

tauonic decays, should also study muonic and electronic decays.

Since we are in the alignment limit, there is no three-point coupling of

these scalars to two gauge bosons. They could be produced in a collider

through WW or ZZ fusion to two Φs. The signature would be two electron-

positron or muon pairs each coming from a Φ. The electron-positron pair

rate will be smaller, but more distinctive. While four lepton events have
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been searched for [47], we know of no analysis of this particular signature.

An approximate production cross-section can be obtained by comparison

with the inert doublet model [48] which has a similar production process.

Typical production cross-sections at the LHC are approximately 0.5 fb. With

an integrated luminosity of 3 ab−1, this means that branching fractions of

O(10−3) or less will be difficult to detect until the next generation colliders.

We have also studied the decays of the pseudoscalar into leptons and find

very similar results. For the charged Higgs decays, we show the branching

ratios to eν versus µν decays in Figure 3 as well as the branching ratios for

µν versus τν decays . Here, we consider mass ranges below and above 180

GeV, at which point the tb̄ opens up. Note that there are more points in

the region above 180 GeV since below that mass a much higher proportion

of points are experimentally excluded. There is a large number of points in

which the electronic decays are substantial and the muonic decay branching

ratios can approach unity.

In Appendix C we show several benchmark points. These points satisfy

all of the various constraints listed earlier in this section. For point S1, one

can see that the h2 → µµ branching ratio is almost 47% and the electronic

branching ratio is over 0.25%. Clearly, the signature would most likely be

two muon pairs, each coming from a neutral scalar, most of the other decays

being tau pairs or b̄b, with an occasional electron-positron pair. In benchmark

point S2, the dimuon decay of the scalar is smaller than that of the electron.

Here, one would see the ditau decays dominate, but the electron-positron

decays might be measurable.

We also consider some benchmark points for the lightest charged Higgs,
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looking at the region in which the mass is below 180 GeV so the top-bottom

channel is not available. For point C1, the decay into muons is slightly bigger

than the decay into taus, and the electronic decay is 0.2%. For C2, the muon

decay is the smallest of three branching ratios and the electron decay is as

high as 1.7%. Again, this shows that decays into muons and electrons might

be much, much higher than in traditional 2HDMs.

V. CONCLUSION

It is often believed that all fermions of a given charge must couple to

the same Higgs multiplet in order to avoid tree-level flavor-changing neutral

currents. However this is only true in the quark sector and need not be true

in the lepton sector. The quark mass matrix cannot be diagonal without

eliminating CKM mixing, however the lepton mass matrix can be diagonal,

since PMNS mixing can come from the superheavy Majorana neutrino sector.

We have studied a 4HDM in which one scalar doublet couples to quarks and

the other three couple to the electron, muon and tau families, respectively.

There are numerous constraints on such a model, including bounded from

below constraints, perturbativity, S and T parameters, the diphoton decay

of the Higgs, limits from meson-antimeson oscillations, radiative b decays

and various LHC constraints from heavy scalar searches. Scanning the pa-

rameter space, we find numerous acceptable points in which the dielectron

and dimuon decays of the lightest neutral scalar (other than the 125 GeV

Higgs) can be much, much larger than expected. The results for the lightest

pseudoscalar and charged scalar are also presented.

Generally, searches for heavier Higgs bosons focus (in the lepton sector)
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on decays into τs. However, this model shows that decays into electrons and

muons can be substantial (and certainly easier to detect). An interesting

signature at either a linear collider or a hadron collider arises from vector

boson fusion into two such Higgs bosons, each of which decays into an electron

or muon pair. We know of no bounds on such a process and hope to see

searches in the near future.
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Appendix A: Gauge Couplings

Trilinear Gauge Couplings ZZhi and W±W∓hi

C1 c12c13c14c2c3c4 + c13c14c3c4s12s2 + c14c4s13s3 + s14s4

C2

−c12c2c3c4(c24s13s23 + c13s14s24)− c23c24c3c4s12−2 − c24c3c4s12s13s23s2 −
c13c3c4s12s14s24s2 + c13c24c4s23s3 − c4s13s14s24s3 + c14s24s4

C3

−c12c3c4[c13c24c2s14s34 + s23(−c2s13s24s34 + c34s2) + c23(c34c2s13 +

s24s34s2)] + c34c4[c2c3s12s23 + c23(−c3s12s13s2 + c13s3)] +

s34[c23c2c3c4s12s24 + c3c4s12s13s23s24s2 − c24c4s13s14s3 −

c13c4(c24c3s12s14s2 + s23s24s3) + c14c24s4]

C4

−c2c3c4s12s23s34 − c13c24c34c3c4s12s14s2 + c34c3c4s12s13s23s24s2 +

c12c3c4[−c13c24c34c2s14 + c34s24(c2s13s23 − c23s2) + s34(c23c2s13 +

s23s2)]− c24c34c4s13s14s3 − c13c34c4s23s24s3 + c23c4[c34c2c3s12s24 +

s34(c3s12s13s2 − c13s3)] + c14c24c34s4

TABLE I: Ci-factors of the trilinear gauge couplings ZZhi and W±W∓hi as defined in

Eq. (15) in the main text. Here cij = cosαij (sij = sinαij) and ci = cos βi (si = sin βi). In

this notation, sij−k stands for sin(αij − βk).
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Appendix B: General Yukawa Couplings

General Yukawa Neutral Scalar

ξudh c12c13c14 / c2c3c4

ξeh s12c13c14 / s2c3c4

ξµh s13c14 / s3c4

ξτh s14 / s4

ξudh2
− (c23c24s12 + c12 (c24s13s23 + c13s14s24)) / c2c3c4

ξeh2
(c12c23c24 − s12 (c24s13s23 + c13s14s24)) / s2c3c4

ξµh2
(c13c24s23 − s13s14s24) / s3c4

ξτh2
c14s24 / s4

ξudh3
(s12 (c34s23 + c23s24s34)−c12 (c13c24s14s34 + s13 (c23c34−s23s24s34))) /c2c3c4

ξeh3
−(c12 (c34s23+c23s24s34)+s12 (c13c24s14s34+s13 (c23c34+s23s24s34)))/s2c3c4

ξµh3
(−c24s13s14s34 + c13 (c23c34 − s23s24s34)) / s3c4

ξτh3
c14c24s34 / s4

ξudh4
(s12 (c23c34s24 − s23s34)−c12 (c13c24c34s14−s13 (c34s23s24 + c23s34))) /c2c3c4

ξeh4
−(c12 (c23c34s24−s23s34)+s12 (c13c24c34s14−s13 (c34s23s24+c23s34)))/s2c3c4

ξµh4
− (c24c34s13s14 + c13 (c34s23s24 + c23s34)) / s3c4

ξτh4
c14c24c34 / s4

TABLE II: General Yukawa couplings of the scalar Higgs particles to quarks and charged

leptons, as defined in Eqs. (16) and (17) in the main text. Here cij = cosαij (sij = sinαij)

and ci = cos βi (si = sin βi).
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General Yukawa Pseudoscalar

ξqA1
− (c23c24s2 + c2 (c24s3s23 + c3s4s24)) / c2c3c4

ξeA1
(c2c23c24 − s2 (c24s3s23 + c3s4s24)) / s2c3c4

ξµA1
(c3c24s23 − s3s4s24) / s3c4

ξτA1
s24c4 / s4

ξqA2
(s2 (c34s23 + c23s24s34)− c2 (c3c24s4s34 + s3 (c23c34 − s23s24s34)))/c2c3c4

ξeA2
−(c2 (c34s23 + c23s24s34)+s2 (c3c24s4s34 + s3 (c23c34−s23s24s34)))/s2c3c4

ξµA2
(−c24s3s4s34 + c3 (c23c34 − s23s24s34)) / s3c4

ξτA2
c24s34c4 / s4

ξqA3
(s2 (c23c34s24 − s23s34)− c2 (c3c24c34s4 − s3 (c34s23s24 + c23s34)))/c2c3c4

ξeA3
−(c2 (c23c34s24 − s23s34)+s2 (c3c24c34s4−s3 (c34s23s24 + c23s34)))/s2c3c4

ξµA3
− (c24c34s3s4 + c3 (c34s23s24 + c23s34)) / s3c4

ξτA3
c24c34c4 / s4

TABLE III: General Yukawa couplings of the pseudoscalar Higgs particles to quarks and

charged leptons, as defined in Eqs. (16) and (17) in the main text. Here cij = cos γij

(sij = sin γij) and ci = cos βi (si = sin βi).

30



General Yukawa Charged

ξqLR
H+

1

− (c23c24s2 + c2 (c24s3s23 + c3s4s24)) / c2c3c4

ξeL
H+

1

(c2c23c24 − s2 (c24s3s23 + c3s4s24)) / s2c3c4

ξµL
H+

1

(c3c24s23 − s3s4s24) / s3c4

ξτL
H+

1

s24c4 / s4

ξqLR
H+

2

(s2 (c34s23 + c23s24s34)− c2 (c3c24s4s34 + s3 (c23c34 − s23s24s34)))/c2c3c4

ξeL
H+

2

−(c2(c34s23 + c23s24s34)+s2 (c3c24s4s34 + s3 (c23c34 − s23s24s34)))/s2c3c4

ξµL
H+

2

(−c24s3s4s34 + c3 (c23c34 − s23s24s34)) / s3c4

ξτL
H+

2

c24s34c4 / s4

ξqLR
H+

3

(s2 (c23c34s24 − s23s34)− c2 (c3c24c34s4 − s3 (c34s23s24 + c23s34)))/c2c3c4

ξeL
H+

3

(c2 (s23s34 − c23c34s24)− s2 (c3c24c34s4 − s3 (c34s23s24 + c23s34)))/s2c3c4

ξµL
H+

3

− (c24c34s3s4 + c3 (c34s23s24 + c23s34)) / s3c4

ξτL
H+

3

c24c34c4 / s4

TABLE IV: General Yukawa couplings of the charged Higgs particles to quarks and

leptons, as defined in Eqs. (18) and (19) in the main text. Here cij = cos δij (sij = sin δij)

and ci = cos βi (si = sin βi).
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Appendix C: Benchmark Points

Scalar benchmark points S1 S2

β2/π, β3/π, β4/π 0.05, 0.16, 0.18 0.04, 0.14, 0.21

α23/π, α24/π, α34/π −0.09, −1.00, −0.70 −0.02, −0.05, 0.10

γ23/π, γ24/π, γ34/π 0.50, 0.59, 0.80 0.16, 0.52, 0.39

δ23/π, δ24/π, δ34/π 0.08, −0.26, −0.96 0.62, −0.93, −0.95

mh2
, mh3

, mh4
(GeV) 269, 396, 483 175, 359, 360

mA1
, mA2

, mA3
(GeV) 439, 454, 484 265, 351, 369

mH±

1
, mH±

2
, mH±

3
(GeV) 438, 441, 443 289, 352, 370

m2
qe, m2

qµ, m2
qτ (GeV2) −17700, 71700, −340000 16000, −34600, −168000

m2
eµ, m2

eτ , m2
µτ (GeV2) −18600, 20700, −53600 14000, −31200, −57400

BR(h2 → ee) 2.72× 10−3 1.63× 10−4

BR(h2 → µµ) 4.68× 10−1 7.85× 10−6

BR(h2 → ττ) 1.22× 10−1 7.42× 10−1

TABLE V: Benchmark points for the leptonic decays of the lightest neutral scalar (other

than the Standard Model Higgs) from Figure 2, for a h2-mass range below 350 GeV.
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Charged benchmark

points

C1 C2

β2/π, β3/π, β4/π 0.05, 0.05, 0.09 0.10, 0.16, 0.11

α23/π, α24/π, α34/π 0.09, 0.54, 0.34 0.20, 0.88, 0.72

γ23/π, γ24/π, γ34/π −0.04, 0.66, 0.60 0.68, 0.50, −0.52

δ23/π, δ24/π, δ34/π −0.98, 0.00, −0.36 1.00, 0.00, 0.77

mh2
, mh3

, mh4
(GeV) 127, 187, 208 180, 237, 240

mA1
, mA2

, mA3
(GeV) 131, 179, 244 161, 172, 173

mH±

1
, mH±

2
, mH±

3
(GeV) 164, 172, 229 158, 181, 234

m2
qe, m2

qµ, m2
qτ (GeV2) −14800, −17400, 6210 57000, −127000, −15100

m2
eµ, m2

eτ , m2
µτ (GeV2) 5880, 22100, 9060 −75600, −9570, 81300

BR(H±
1 → e±νe) 2.24× 10−3 1.68× 10−2

BR(H±
1 → µ±νµ) 5.36× 10−1 6.91× 10−3

BR(H±
1 → τ±ντ) 4.55× 10−1 5.23× 10−1

TABLE VI: Benchmark points for the leptonic decays of the lightest charged scalar from

Figure 3, for a H±
1
-mass range below 180 GeV.
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