
Arbitrary Decisions are a Hidden Cost of
Di�erentially Private Training

Bogdan Kulynych
EPFL SPRING Lab

Lausanne, Switzerland

Hsiang Hsu
Harvard University
Cambridge, MA, USA

Carmela Troncoso
EPFL SPRING Lab

Lausanne, Switzerland

Flavio du Pin Calmon
Harvard University
Cambridge, MA, USA

ABSTRACT
Mechanisms used in privacy-preserving machine learning often
aim to guarantee di�erential privacy (DP) during model training.
Practical DP-ensuring training methods use randomization when
�tting model parameters to privacy-sensitive data (e.g., adding
Gaussian noise to clipped gradients). We demonstrate that such
randomization incurs predictive multiplicity: for a given input ex-
ample, the output predicted by equally-private models depends
on the randomness used in training. Thus, for a given input, the
predicted output can vary drastically if a model is re-trained, even
if the same training dataset is used. The predictive-multiplicity cost
of DP training has not been studied, and is currently neither audited
for nor communicated to model designers and stakeholders. We
derive a bound on the number of re-trainings required to estimate
predictive multiplicity reliably. We analyze—both theoretically and
through extensive experiments—the predictive-multiplicity cost
of three DP-ensuring algorithms: output perturbation, objective
perturbation, and DP-SGD. We demonstrate that the degree of pre-
dictive multiplicity rises as the level of privacy increases, and is
unevenly distributed across individuals and demographic groups in
the data. Because randomness used to ensure DP during training
explains predictions for some examples, our results highlight a fun-
damental challenge to the justi�ability of decisions supported by
di�erentially private models in high-stakes settings. We conclude
that practitioners should audit the predictive multiplicity of their
DP-ensuring algorithms before deploying them in applications of
individual-level consequence.
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1 INTRODUCTION
In many high-stakes prediction tasks (e.g., lending, healthcare),
training data used to �t parameters of machine-learning models are
privacy-sensitive. A standard technical approach to ensure privacy
is to use training procedures that satisfy di�erential privacy (DP) [14,
15]. DP is a formal condition that, intuitively, guarantees a degree
of plausible deniability on the inclusion of an individual sample
in the training data. In order to satisfy this condition, non-trivial
di�erentially-private training procedures use randomization (see,
e.g., Abadi et al. [1], Chaudhuri et al. [7]). The noisy nature of DP
mechanisms is key to guarantee plausible deniability of a record’s
inclusion in the training data. Unfortunately, randomization comes
at a cost: it often leads to decreased accuracy compared to non-
private training [22]. Reduced accuracy, however, is not the only
cost incurred by di�erentially-private training. DP mechanisms can
also increase predictive multiplicity, discussed next.

In a prediction task, there can exist multiple models that achieve
comparable levels of accuracy yet output drastically di�erent predic-
tions for the same input. This phenomenon is known as predictive
multiplicity [24], and has been documented in multiple realistic
machine-learning settings [21, 24, 36]. Predictive multiplicity can
appear due to under-speci�cation and randomness in the model’s
training procedure [4, 16].

Predictive multiplicity formalizes the arbitrariness of decisions
based on a model’s output. In practice, predictive multiplicity can
lead to questions such as “Why has a model issued a negative decision
on an individual’s loan application if other models with indistinguish-
able accuracy would have issued a positive decision?” or “Why has a
model suggested a high dose of a medicine for an individual if other
models with comparable average accuracy would have prescribed a
lower dose?” These examples highlight that acting on predictions of
a single model without regard for predictive multiplicity can result
in arbitrary decisions. Models produced by training algorithms that
exhibit high predictive multiplicity face fundamental challenges to
their credibility and justi�ability in high-stakes settings [5, 16].

In this paper, we demonstrate a fundamental connection between
privacy and predictive multiplicity: For a �xed training dataset and
model class, DP training results in models that ensure the same de-
gree of privacy and achieve comparable accuracy, yet assign con�ict-
ing outputs to individual inputs. DP training produces con�icting
models even when non-private training results in a single opti-
mal model. Thus, in addition to decreased accuracy, DP-ensuring
training methods also incur an arbitrariness cost by exacerbat-
ing predictive multiplicity. We show that the degree of predictive
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Figure 1: The region of examples which exhibit high variance of decisions (dark) across similar models grows as the privacy
level increases (lower Y). Each plot shows the level of decision disagreement across< = 5,000 logistic-regression models (darker
means higher disagreement) trained with varying levels of di�erential privacy (Y value, lower means more private) using
the objective-perturbation method [7]. All models attain at least 72% accuracy on the test dataset (50% is the baseline). The
disagreement value of 1.0 means that out of the< models, half output the positive decision, whereas the other half output the
negative one for a given example. The values of disagreement are shown for di�erent possible two-dimensional examples,
with x and y axes corresponding to the two dimensions. The markers show training data examples belonging to two classes
(denoted as ⇥ and +, respectively). Without DP, there is a single optimal classi�cation model. The dotted line - - shows the
decision boundary of this optimal non-private model. See Section 5 for details.

multiplicity varies signi�cantly across individuals and can dispro-
portionately impact certain population groups. Fig. 1 illustrates the
predictive-multiplicity cost of DP training in a simple synthetic
scenario (see Section 5 for examples on real-world datasets).

Our main contributions are:

(1) We provide the �rst analysis of the predictive-multiplicity
cost of di�erentially-private training.

(2) We analyze a method for estimating the predictive-multipli-
city properties of randomized machine-learning algorithms
using re-training. We derive the �rst bound on the sample
complexity of estimating predictive multiplicity with this
approach. Our bound enables practitioners to determine the
number of re-trainings required to estimate the predictive-
multiplicity cost of randomized training algorithms up to a
desired level of accuracy.

(3) We conduct a theoretical analysis of the predictive-multipli-
city cost of the output perturbation mechanism [7] used to
obtain a di�erentially-private logistic-regression model. We
characterize the exact dependence of predictive multiplicity
on the level of privacy for this method.

(4) We conduct an empirical study of predictive multiplicity of
two practical DP-ensuring learning algorithms: DP-SGD [1]
and objective perturbation [7]. We use one synthetic dataset
and �ve real-world datasets in the domains of �nance, health-
care, and image classi�cation. Our results con�rm that, for
these mechanisms, increasing the level of privacy invariably
increases the level of predictive multiplicity. Moreover, we
�nd that di�erent examples exhibit di�erent levels of predic-
tive multiplicity. In particular, di�erent demographic groups
can have di�erent average levels of predictive multiplicity.

In summary, the level of privacy in DP training signi�cantly im-
pacts the level of predictive multiplicity. This, in turn, means that
decisions supported by di�erentially-private models can have an
increased level of arbitrariness: a given decision would have been

di�erent had we used a di�erent random seed in training, even
when all other aspects of training are kept �xed and the optimal
non-private model is unique. Before deploying DP-ensuring models
in high-stakes situations, we suggest that practitioners quantify
predictive multiplicity of these models over salient populations
and—if possible to do so without violating privacy—measure pre-
dictive multiplicity of individual decisions during model operation.
Such audits can help practitioners evaluate whether the increase in
privacy threatens the justi�ability of decisions, choose whether to
enact a decision based on a model’s output, and determine whether
to deploy a model in the �rst place.

2 TECHNICAL BACKGROUND
2.1 Problem Setup and Notation
We consider a classi�cation task on a training dataset, denoted as
D , {(G8 ,~8 )}=8=1, and consisting of examples G8 2 X along with
their respective labels ~8 2 Y. In this work, we focus on the setting
of binary classi�cation, Y = {0, 1}. The goal of a classi�cation
task is to use the dataset to train a classi�er 5\ : X ! Y, which
accurately predicts labels for input examples in a given test dataset
Dtest 2 2X⇥Y , where 2X⇥Y denotes the power set over X ⇥ Y.
Each classi�er 5\ (G) is parameterized by a vector \ 2 ⇥ ✓ R3 . A
classi�er associates a con�dence score to each predicted input G ,
denoted as ⌘\ (G) 2 [0, 1]. If the con�dence score is higher than
some threshold@ 2 [0, 1], then the decision is positive. Otherwise, it
is negative. The classi�er’s prediction is thus obtained by applying
a threshold to the con�dence score:

5\ (G) , 1[⌘\ (G) > @] . (1)

In the rest of the paper, we use the standard threshold of @ = 0.5.
We study randomized training algorithms ) : (X ⇥Y)= ! ⇥,

which produce a parameter vector of a classi�er in a randomized
way. Thus, given a training dataset,) (D) is a random variable. We
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denote by %) (D) themodel distribution, the probability distribution
over ⇥ generated by the random variable ) (D).

In general, the source of randomness in the training procedure
could include, e.g., random initializations of \ prior to training.
However, we consider only those sources which are introduced
by the privacy-preserving techniques, as we explain in the next
section. Throughout this paper, the datasets, as well as any input
example G 2 X, are not random variables but �xed values. The
only randomness we consider in our notation is due to the internal
randomization of the training procedure ) (·). Finally, �3 denotes
the 3-by-3 identity matrix, and 1(·) denotes the indicator function.

2.2 Di�erentially Private Learning
Learning with di�erential privacy (DP) is one of the standard ap-
proaches to train models on privacy-sensitive data [14, 15]. A ran-
domized learning algorithm ) (·) is (Y, X)-di�erentially private (DP)
if for any two neighbouring datasets (i.e., datasets di�ering by at
most one example) D,D0 2 (X ⇥Y)= , for any subset of parameter
vectors � ✓ ⇥, it holds that

Pr[) (D) 2 �]  exp(Y) Pr[) (D0) 2 �] + X . (2)

In other words, the respective probability distributions of models
produced on any two neighbouring datasets should be similar to a
degree de�ned by parameters (Y, X). The parameters represent the
level of privacy: low Y and low X mean better privacy. DP mathe-
matically encodes a notion of plausible deniability of the inclusion
of an example in the dataset.

There are multiple ways to ensure DP in machine learning. We
describe next the output perturbation mechanism, which we theo-
retically analyze in Section 3.

Output perturbation mechanism [7, 29, 38]. Output perturbation
is a simple mechanism for achieving DP that takes an output param-
eter vector of a non-private training procedure, and privatizes it
by adding random noise, e.g., sampled from the isotropic Gaussian
distribution. Concretely, suppose that )np : (X ⇥ Y)= ! ⇥ is a
non-private learning algorithm. Denoting its output parameters as
\np = )np (D), we obtain the privatized parameters \priv 2 ⇥ as:

\priv = \np + b, where b ⇠ N(0,f2�3 ) (3)

The exact level of DP provided by this procedure depends on the
choice the non-private training algorithm )np (D). In particular,
to achieve (Y, X)-DP, it is su�cient to set the noise scale f = ⇠ ·p
2 log(1.25/X )/Y, where ⇠ , maxD⇠D0 k)np (D) � )np (D0)k2 is

the sensitivity of the non-private training algorithm, the maximum
discrepancy in terms of the ✓2 distance between parameter vectors
obtained by training on any two neighbouring datasets D,D0.

Denoting by ) (D) = )np (D) + b the output-perturbation pro-
cedure in Eq. (3), we treat ) (D) as a random variable over the
randomness of the injected noise b . Other methods to achieve DP
such as objective perturbation [7] also inject noise as part of train-
ing. In those cases, we similarly consider) (D) as a random variable
over such injected noise, and treat all other aspects of training such
as pre-training initialization as �xed.

2.3 Predictive Multiplicity
Predictive multiplicity occurs when multiple classi�cation models
achieve comparable average accuracy yet produce con�icting pre-
dictions on a given example [24]. To quantify predictive multiplicity
in randomized training, we need to measure dissimilarity of predic-
tions among the models sampled from the probability distribution
%) (D) induced by di�erentially-private training. For this, we use a
de�nition of disagreement which has appeared in di�erent forms
in [5, 16, 24]. For a given �xed input example G 2 X, we de�ne the
disagreement ` (G) as:

` (G) , 2 Pr
\ ,\ 0⇠%) (D)

[5\ (G) < 5\ 0 (G)] . (4)

In the above de�nition, \ , \ 0 ⇠ %) (D) denotes two models sampled
independently from %) (D) . We use a scaling factor of two in order
to ensure that ` (G) is in the [0, 1] range for the ease of interpretation.
A disagreement value ` (G) ⇡ 1 indicates that the prediction for
G is approximately equal to an unbiased coin �ip. Moreover, a
disagreement ` (G) ⇡ 0 implies that, with high probability, the
prediction for G does not signi�cantly change if two models are
independently sampled from %) (D) (i.e., by re-training a model
twice with di�erent random seeds).

In the literature, a commonly studied source of variance of out-
comes of training algorithms is from re-sampling of the dataset D,
usually under the assumption that it is an i.i.d. sample from some
data distribution. We do not study variance arising from dataset
re-sampling, and are only interested in the predictive-multiplicity
properties of the randomized training procedure ) (·) itself. Thus,
we �x both the dataset D used in training and the input example G
for which we compute the level of predictive multiplicity, and make
sure that the randomness is only due to internal randomization of
the training procedure ) (·).

When evaluating dissimilarity across models, many prior works
that study predictive multiplicity (e.g., [21, 24, 31, 36]) only con-
sider models that surpass a certain accuracy threshold. Although
conditioning on model accuracy is theoretically valid, it can bring
about confusion in the context of private learning, as in practice
such conditioning would demand special mechanisms in order to
satisfy DP (see, e.g., [27]). In particular, �rst applying a DP training
method that guarantees an (Y, X)-level of privacy, and then selecting
or discarding the resulting model based on accuracy, would result
in models that violate the initial (Y, X)-DP guarantees. We note,
however, that our results and experiments involving estimation
of predictive multiplicity in Sections 4 and 5 extend to the case in
which we add additional conditioning on top of model distribution
%) (D) to control for accuracy.

Before proceeding with our analyses of disagreement, we �rst
state a simple yet useful relation between disagreement and statisti-
cal variance. Observe that for a given input G , the output prediction
5\ (G) is a random variable over the randomness of the training pro-
cedure \ ⇠ %) (D) . As we assume that the decisions are binary, and
training runs are independent, we have that 5\ (G) ⇠ Bernoulli(?G )
for some input-speci�c parameter ?G . Having noted this fact, we
show that disagreement, de�ned in Eq. (4), can be expressed as a
continuous transformation of ?G :

P���������� 1. multvar For binary classi�ers, disagreement for a
given example G 2 X is proportional to variance of decisions over the
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distribution of models generated by the training algorithm:

` (G) = 4Var\⇠%) (D) (5\ (G)) = 4?G (1 � ?G ) . (5)

We provide the proof of this and all the following formal state-
ments in Appendix A. Additionally, in Appendix B, we provide an
analysis using an alternative measure of predictive multiplicity.

3 PREDICTIVE MULTIPLICITY OF OUTPUT
PERTURBATION

To demonstrate how DP training can lead to an increase in predic-
tivemultiplicity, we theoretically analyze themultiplicity properties
of the output-perturbation mechanism described in Section 2.2.

Following Chaudhuri et al. [7] and Wu et al. [38], we study the
case of logistic regression. In a logistic-regression model parame-
terized by vector \ 2 R3 , we compute the con�dence score for an
input G 2 X ✓ R3 as ⌘\ (G) = sigmoid(\|G), where

sigmoid(C) , 1
1 + exp(�C) . (6)

Recall that the classi�er’s prediction is obtained by applying a
threshold to the con�dence score by Eq. (1), in this case as 5\ (G) =
1[sigmoid(\|G) > 0.5]. Note that the quantity \|G is interchange-
able with con�dence, as one can be obtained from the other using an
invertible transformation. We show the exact relationship between
disagreement and the scale of noise f in this setting:

P���������� 2. Let \np = )np (D) be a non-private parameter
vector of a logistic-regression model. Suppose that the privatized \priv
is obtained using Gaussian noise of scale f as in Eq. (3). Then, the
disagreement of a private logistic-regression model parameterized by
\priv is:

` (G) = 4?G (1 � ?G ),where ?G = �

 
\|np G

kG k · f

!
. (7)

We visualize the relationship in Fig. 2, assuming the input space
is normalized so that kG k = 1. There are two main takeaways from
this result. First, disagreement is high when the level of privacy
is high. Second, the level of multiplicity is unevenly distributed
across input examples. This is because the exact relationship be-
tween multiplicity and privacy also depends on the con�dence of
the non-private model, \|np G , with lower-con�dence examples gen-
erally having higher multiplicity in this setting. We note that, in
this illustration, the simple relationship between con�dence and
predictive multiplicity is an artifact of normalized features, i.e.,
kG k = 1. In general, examples with high-con�dence predictions can
display high predictive multiplicity after DP-ensuring training, as
illustrated in Section 5.2.

Other methods for DP training, such as gradient perturbation [1],
are not as straightforward to analyze theoretically. In the next
sections, we study predictive multiplicity of these algorithms using
a Monte-Carlo method.

4 MEASURING PREDICTIVE MULTIPLICITY
OF RANDOMIZED ALGORITHMS

Theoretically characterizing predictive multiplicity of DP algo-
rithms beyond the output-perturbation mechanism and for more

complex model classes is a challenging problem (see, e.g. [21, Sec-
tion 4]). For instance, the accuracy and generalization behavior of
the DP-SGD algorithm [1] used for DP training of neural networks
is an active area of research (e.g., [34]). Even in simpler model
classes, where training amounts to solving a convex optimization
problem (e.g., support vector machines), DP mechanisms such as
objective perturbation [7] display a complex interplay between
privacy, accuracy, and distortion of model parameters.

For these theoretically intractable cases, we adopt a simple Monte-
Carlo strategy [4, 16]: Train multiple models on the same dataset
with di�erent randomization seeds, and compute statistics of the
outputs of these models. Note that this procedure does not preserve
di�erential privacy, which we discuss in more detail in Section 7.2.

In this section, we formalize this simple and intuitive approach,
and provide the �rst sample complexity bound for estimating pre-
dictive multiplicity. Our bound has a closed-form expression, so
a practitioner can use it to determine how many re-trainings are
required to estimate predictive multiplicity up to a given approxi-
mation error.

At �rst, re-training might appear as a blunt approach for analyz-
ing predictive multiplicity in DP. Our results indicate that this is not
the case. Surprisingly, we prove that, if one wants to estimate dis-
agreement in Eq. (4) for : input examples, the number of required
re-trainings increases logarithmically in : . This result demonstrates
that re-training can be an e�ective strategy to estimate predictive
multiplicity regardless of the intricacies of a speci�c DPmechanism,
and that a moderate number of re-trainings is su�cient to estimate
disagreement for a large number of examples.

Recall that, according to Proposition 1, disagreement of an ex-
ample G is proportional to the variance of outputs within the model
distribution %) (D) . We use this connection to provide an unbiased
estimator for disagreement.

P���������� 3. Suppose we have < models sampled from the
model distribution: \1, \2, . . . , \< ⇠ %) (D) . Then, the following ex-
pression is an unbiased estimator for disagreement ` (G) for a single
example G 2 X:

ˆ̀(G) , 4
<

< � 1
?̂G (1 � ?̂G ), (8)

where ?̂G = 1
<

Õ<
8=1 5\8 (G) is the sample mean of 5\ (G).

How many models \1, \2, . . . , \< do we need to sample in order
to estimate disagreement? To answer this, we provide an upper
bound on estimation accuracy given the number of samples from
the model distribution, as well as a bound on the number of samples
required for a given level of estimation accuracy.

P���������� 4. For<models sampled from themodel distribution,
\1, \2, . . . , \< ⇠ %) (D) , with probability at least 1� d , for d 2 (0, 1]
the additive estimation error U , | ˆ̀(G) � ` (G) | satis�es:

U  1
(< � 1) + 4

<

< � 1

r
log(2/d)

2<

 
1 +

r
log(2/d)

2<

!
. (9)

For example, this bound yields that 5,000 re-trainings result
in the estimation error of at most 0.08 with probability 95%. In
Appendix A.3, we provide a closed-form expression for computing
the number of samples< required to achieve a given error level U .
We also provide a visualization of the bound in Fig. 8a (Appendix).
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Figure 2: The noise scale in output perturbation mechanisms increases predictive multiplicity for examples which do not
attain high non-private prediction con�dence. On the left, the x axis shows the noise scale used for output perturbation (higher
values of f correspond to better privacy). The noise scale corresponds to di�erent levels of privacy depending on the sensitivity
of the non-private training algorithm and the X parameter (see Section 2.2). On the right, the x axis (logarithmic scale) shows a
possible level of privacy Y for X = 10�5, assuming that the non-private training algorithm has sensitivity of ⇠ = 0.2. The y axis
shows the hypothetical prediction con�dence for a given example. The color intensity shows the level of disagreement (darker
means higher disagreement).

In practice, one might need to estimate disagreement for multiple
examples, e.g., to compute average disagreement over a test dataset.
When doing so naïvely, the re-training costs could mount to infea-
sible levels if we assume that each estimation requires the same
number of models,<, for each input example. In contrast, we show
that in such cases sample complexity grows only logarithmically.

P���������� 5. Let G1, G2, . . . , G: 2 X. If \1, \2, . . . , \< ⇠ %) (D)
are i.i.d. samples from the model distribution, then with probability
at least 1 � d , for d 2 (0, 1] the maximum additive error satis�es:

max
921,...,:

|` (G 9 ) � ˆ̀(G 9 ) | 
1

(< � 1) +

+ 4<
< � 1

r
log(2:/d)

2<

 
1 +

r
log(2:/d)

2<

!
.

(10)

This positive result shows that auditing models for predictive
multiplicity for large populations and datasets is practical, as the
sample complexity grows slowly in the number of examples.

5 EMPIRICAL STUDIES
In this section, we empirically explore the predictive multiplicity
of DP algorithms. We use a low-dimensional synthetic dataset in
order to visualize the level of multiplicity across the input space.
To study predictive-multiplicity e�ects in realistic settings, we use
real-world tabular datasets representative of high-stakes domains,
namely lending and healthcare, and one image dataset. The code to
reproduce our experiments is available at:

github.com/spring-ep�/dp_multiplicity

5.1 Experimental Setup
Datasets and Tasks. We use the following datasets:
• A Synthetic dataset containing data belonging to two classes
with class-conditional distributions -0 ⇠ N(`0, ⌃0) and

-1 ⇠ N(`1, ⌃1), respectively. We set the distribution param-
eters to be:

`0 = [1, 1], ⌃0 =
✓
1 1/2
1/2 1

◆
,

`1 = [�1,�1], ⌃1 =
✓
1 1/10

1/10 1

◆
.

(11)

The classes in this synthetic dataset are well-separable by a
linear model (see Fig. 1)

• Credit Approval tabular dataset (Credit). The task is to pre-
dict whether a credit card application should be approved
or rejected based on several attributes which describe the
application and the applicant.

• Contraceptive Method Choice tabular dataset (Contracep-
tion) based on 1987 National Indonesia Contraceptive Preva-
lence Survey. The task is to predict the choice of a contra-
ception method based on demographic and socio-economic
characteristics of a married couple.

• Mammographic Mass tabular dataset (Mammography) col-
lected at the Institute of Radiology of the University Erlangen-
Nuremberg in 2003 – 2006. The task is to predict whether
a screened tumor is malignant or benign based on several
clinical attributes.

• Dermatology tabular dataset. The task is to predict a der-
matological disease based on a set of clinical and histopatho-
logical attributes.

• CIFAR-10 [23], an image dataset of pictures labeled as one
of ten classes. The task is to predict the class.

We take the realistic tabular datasets (Credit, Contraception, Mam-
mography, and Dermatology) from the University of California
Irvine Machine Learning (UCIML) dataset repository [12]. In Ap-
pendix B, we provide additional details about processing of the
datasets, and a summary of their characteristics (Table 1).

https://github.com/spring-epfl/dp_multiplicity
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For the synthetic dataset, we obtain the training dataset by sam-
pling 1,000 examples from each of the distributions. In order to have
precise estimates of population accuracy, we sample a larger test
dataset of 20,000 examples. For tabular datasets, we use a random
75% subset for training, and use the rest as a held-out test dataset
for model evaluations. For CIFAR-10, we use the default 50K/10K
train-test split.

Models and Training Algorithms. For the synthetic and tabular
datasets, we use logistic regression with objective perturbation [7].
For the image dataset, we train a convolutional neural network on
ScatterNet features [25] using DP-SGD [1], following the approach
by Tramer and Boneh [32]. We provide more details in Appendix B.

Metrics. The goal of our experiments is to quantify predictive
multiplicity and explain the factors which impact it. For all settings,
wemeasure disagreement to capture the dissimilarity of predictions,
and predictive performance of the models to quantify the e�ect of
performance on multiplicity. Concretely, we measure:

• Disagreement for examples on a test dataset, computed us-
ing the unbiased estimator in Section 4. As this disagreement
metric is tailored to binary classi�cation, we use a special
procedure for the ten-class task on CIFAR-10: we treat each
multi-class classi�er as ten binary classi�ers, and we report
average disagreement across those ten per-class classi�ers.
Additionally, in Appendix B, we also report predictive multi-
plicity in terms of con�dence scores instead of predictions
following the recent approach by Watson-Daniels et al. [36].

• Performance on a test dataset. For tabular datasets, we
report the standard area under the ROC Curve (AUC for
short). For CIFAR-10, we report accuracy.

Experiment Outline. For a given dataset and a value of the privacy
parameter Y, we train multiple models on exactly the same data
with di�erent randomization seeds.

For the synthetic and tabular datasets, we use several values of Y
between 0.5 (which provides a good guaranteed level of privacy [see,
e.g. 37, Section 4]) and 2.5, with X = 0. For each value of Y we train
< = 5,000 models. For CIFAR-10, we train< = 50 neural-network
models because of computational constraints. We use DP-SGD
parameters that provide privacy guarantees from Y ⇡ 2 to Y ⇡ 7 at
the standard choice of X = 10�5.

5.2 Predictive Multiplicity and Privacy
First, we empirically study how multiplicity evolves with increas-
ing privacy. In Fig. 1, we visualize the two-dimensional synthetic
examples and their disagreement for di�erent privacy levels. As
privacy increases, so do the areas for which model decisions exhibit
high disagreement (darker areas). Although the regions with higher
disagreement correlate with model con�dence and accuracy, the
level of privacy contributes signi�cantly. For instance, some points
which are relatively far from the decision boundary, which means
they are con�dently classi�ed as either class, can nevertheless have
high predictive multiplicity.

Fig. 3 shows the experimental results for our tabular datasets
and CIFAR-10. On the left side, we show the relationship between
the privacy level and performance. On the right, between the pri-
vacy level and disagreement. As with the theoretical analysis and

the results on synthetic data, we can clearly see that models with
higher level of privacy (low Y) invariably exhibit higher predictive
multiplicity. Notably, even for datasets such as Mammography
and CIFAR-10 for which average disagreement is relatively low,
there exist examples whose disagreement is 100%. See Table 2 in
the Appendix for detailed information on the distribution of the
disagreement values across the test data.
Implications. The increase in the privacy level results in making
more decisions which are partially or fully explained by randomness
in training. Let us give an example with a concrete data record
from the Mammography dataset representing a 56-year-old patient
labeled as having a malignant tumor. Classi�ers with low level of
privacy Y = 2.5 predict the correct malignant class for this individual
most of the time (approx. 55% disagreement). If we set the level of
privacy to the high Y = 0.5, this record is classi�ed close to 42% of
the time as benign, and 58% of the time as malignant (approx. 97%
disagreement). Thus, if one were to use a model with the high level
of privacy to inform treatment of this patient, the model’s decision
would have been close in its utility to a coin �ip.

5.3 What Causes the Increase in Predictive
Multiplicity?

In the previous section, we showed that the increase in privacy
causes an increase in predictive multiplicity. It is not clear, however,
what is the exact mechanism through which DP impacts predictive
multiplicity. Hypothetically, the contribution to multiplicity could
be through two pathways:

(1) Direct: The increase in predictive multiplicity is the result
of the variability in the learning process stemming from
randomization, regardless of the performance decrease.

(2) Indirect: The increase in predictive multiplicity is the result
of the decrease in performance.

These two options are not mutually exclusive, and it is possible
that both play a role. In both cases, the desire for a given level of
privacy—which determines the degree of randomization added dur-
ing training—is ultimately the cause of the increase in multiplicity.
Nevertheless, how randomization contributes to the increase has
practical implications: If our results are explained by pathway (2),
we should be able to reduce the impact of privacy on predictive
multiplicity by designing algorithms which achieve better accuracy
at the same privacy level.

For output perturbation, our analysis in Section 3 shows that
multiplicity is directly caused by randomization—pathway (1)—as
only the privacy level, con�dence, and the norm of a predicted ex-
ample impact disagreement. Therefore, performance does not have
a direct impact on predictive multiplicity in output perturbation.

In Fig. 4, to quantify the impact of performance on predictive
multiplicity for the case of objective perturbation, we show the
top 5% disagreement values for varying levels of accuracy on the
synthetic dataset. We use the synthetic dataset to ensure that test
accuracy estimates are reliable, as we have a large test dataset in
this case. We see that, for a given level of accuracy, di�erent privacy
parameters can result in di�erent disagreement. This suggests that
randomization caused by DP training can have a direct e�ect on
predictive multiplicity, so we observe pathway (1).
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(a) Tabular datasets

(b) Image dataset (CIFAR-10)

Figure 3: Increasing the level of privacy increases the level of predictive multiplicity in real-world datasets. For all plots, the x
axis shows the level of privacy (Y, lower value is more privacy). The plots on the left shows the performance level (AUC for
tabular datasets, and accuracy for CIFAR-10). The error bands/bars on the left side are 95% con�dence intervals (CI) over the
models in the model distribution. The plots on the right show the degree of disagreement across< = 5,000models in the case of
tabular datasets, and across< = 50 models in the case of CIFAR-10. The error bands/bars on the right side are 95% CI over the
examples in a test dataset. Although average disagreement might be relatively low for some datasets such as Mammography
and CIFAR-10, there exist examples for which disagreement is 100% (see Table 2 in the Appendix).

Implications. This observation indicates that there exist cases for
which improving accuracy of a DP-ensuring algorithm at a given
privacy level will not necessarily lower predictive multiplicity.

5.4 Disparities in Predictive Multiplicity
The visualizations in Fig. 1 show that di�erent examples can exhibit
highly varying levels of predictive multiplicity. This observation
holds for real-world datasets too. Fig. 5a shows the distributions
of the disagreement values across the population of examples in
the test data for tabular datasets. For example, for lower privacy
levels (high Y) on the Contraception dataset, there are groups of
individuals with di�erent values of predictive multiplicity. As the
level of privacy increases (low Y), the disagreement tends to con-
centrate around 1, with decisions for a majority of examples largely
explained by randomness in training.

Next, we verify if the di�erences in the level of disagreement
also exist across demographic groups. In Fig. 5b, we show aver-
age disagreement across points from three di�erent age groups

in the Contraception dataset. As before, for low levels of privacy
(high Y) we see more disparity in disagreement. The disparities even
out as we increase the privacy level (low Y), with groups having
average disagreement closer to 1. Thus, disagreement is not only
unevenly distributed across individuals, but across salient demo-
graphic groups.
Implications.As some groups and individuals can have higher pre-
dictive multiplicity than others, evaluations of training algorithms
in terms of their predictive multiplicity must account for such dis-
parities. For instance, our experiments on the Contraception dataset
(in Fig. 5b) show that, for di�erent privacy levels, decisions for
individuals in the 16–30 age bracket exhibit higher predictive multi-
plicity than of patients between 30 and 40 years old. Predictions
for individuals under 30, therefore, systematically exhibit more de-
pendence on randomness in training than on the relevant features
for prediction. This highlights the need to conduct disaggregated
evaluations as opposed to only evaluating average disagreement
on whole datasets.
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Figure 4: Models achieving a similar level of accuracy can
have di�erent levels of predictive multiplicity. The plot
shows the top 5% percentile of disagreement on the synthetic
test dataset for all models which attain at least certain level
of accuracy, for di�erent values of the privacy parameter
(Y, lower value is more privacy). The x axis shows the devia-
tion of accuracy from that of an optimal non-private model,
with 0 being equal to the accuracy of the optimal non-private
model. As even such a small decrease in accuracy as 0.01 can
see disagreement rise from 0 to 0.8 for some examples, this
result suggests that the change in the level of privacy on its
own can cause a big change in disagreement.

6 RELATEDWORK
Rashomon E�ect and Predictive Multiplicity. The Rashomon e�ect,

observed and termed by Breiman [6], describes the phenomenon
where a multitude of distinct models achieve similar average loss.
The Rashomon e�ect occurs even for simple models such as lin-
ear regression, decision trees, and shallow neural networks [2].
When no privacy constraints are present, predictive multiplicity
can be viewed as a facet of the Rashomon e�ect in classi�cation
tasks, where similarly-accurate models produce con�icting outputs.
One of the main challenges in studying predictive multiplicity is
measuring it. Semenova et al. [31] proposed the Rashomon ratio to
measure the Rashomon e�ect and used a Monte Carlo technique to
sample decision tree models for estimation. Marx et al. [24] quanti-
�ed predictive multiplicity using optimization formulations to �nd
the worst-case disagreement among all candidate models while
controlling for accuracy. Recently, Hsu and Calmon [21], Watson-
Daniels et al. [36] proposed other metrics for quantifying predictive
multiplicity: Rashomon capacity and viable prediction range. Black
et al. [5] proposed measures of predictive multiplicity which are
applicable to randomized learning. Our Proposition 5 complements
the prior work by providing a closed-form expression for sample
complexity of estimating predictive multiplicity which arises due
to randomness in training.

Side E�ects of Di�erential Privacy. To the best of our knowledge,
our work is the �rst one to study the properties of DP training in
terms of predictive multiplicity. Multiple works, however, have stud-
ied other unintended consequences of private learning. In particular,
a number of works [3, 18, 30] show that DP training comes at a cost

of decreased performance for groups which are under-represented
in the data. Relatedly, Cummings et al. [11] show that DP training
is incompatible with some notions of algorithmic fairness.

7 DISCUSSION
Our theoretical and empirical results show that training with DP
and, more broadly, applying randomization in training increases
predictive multiplicity. We demonstrated that higher privacy levels
result in higher multiplicity. If a training algorithm exhibits high
predictive multiplicity for a given input example, the decisions sup-
ported by a model’s output for this example lose their justi�ability:
these decisions depend on the randomness used in training rather
than on relevant properties or features of this example. The connec-
tion between privacy in learning and decision arbitrariness might
not be obvious to practitioners. This lack of awareness is poten-
tially damaging in high-stakes settings (e.g., medical diagnostics,
lending, education), where decisions of signi�cant—and potentially
life-changing—consequence could be signi�cantly in�uenced by
randomness used to ensure privacy.

In this concluding section, we discuss whether predictive multi-
plicity is indeed a valid concern for DP-ensuring algorithms, and
outline a path forward.

7.1 Can the Increase in Predictive Multiplicity
be Bene�cial?

Despite the harms of arbitrariness, onemight argue that multiplicity
can, in some cases, be bene�cial.

Opportunities for Satisfying Desirable Properties Beyond Accu-
racy? Black et al. [5] and Semenova et al. [31] argue that multi-
plicity presents a valuable opportunity. In non-private training,
the existence of many models that achieve comparable accuracy
creates an opportunity for selecting a model which satis�es both
an acceptable accuracy level and other useful properties beyond
performance, such as fairness [9], interpretability [17], or general-
izability [31]. In order to leverage this opportunity, one needs to
deliberately steer training towards the model which satis�es desir-
able properties beyond accuracy, or search the “Rashomon set” of
good models [17]. However, with randomization alone (e.g., adding
Gaussian noise to gradients in training), model designers cannot
steer training without compromising DP guarantees, and can only
arrive at a model which satis�es additional desirable properties by
chance. Thus, this positive side of the multiplicity phenomenon is
not necessarily present in DP-ensuring training.

It is an open problem to �nd whether specially-crafted noise
distributions or post-processing techniques could be designed to
provide the same level of privacy as the standard approaches, and
at the same time attain additional useful properties such as fairness.

PredictiveMultiplicity is Individually Fair? Individual fairness [13]
is a formalization of the “treat like alike” principle: an individu-
ally fair classi�er makes similar decisions for individuals who are
thought to be similar. A way to formally satisfy individual fairness
is, in fact, through randomization of decisions. This could lead to
an argument that predictive multiplicity is individually fair. For
instance, suppose that a predictive model used to assist with hir-
ing decisions is applied to several individuals who are all equally
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(a) Distribution of disagreement values across the population in the test set in four tabular datasets.

(b) Group-level disparities in disagreement values on the Contraception dataset. Error bars are 95% con�dence intervals over the disagreement
values in each subgroup.

Figure 5: The level of predictive multiplicity varies from one example to another, and across population groups. As the level of
privacy grows, more predictions exhibit similarly high disagreement.

quali�ed to get the job. Consider two possible decision rules for
selecting the candidate to hire with di�erent multiplicity levels.
The �rst rule has high multiplicity: produce a random decision.
The second rule has low multiplicity: select a candidate based on
lexicographic order. As the second decision rule results in a breach
of individual fairness and, possibly, a systemic exclusion of some
candidates, the �rst rule with high multiplicity seems preferable.

This argument, however, only holds if there is randomness at
the prediction stage. This is not the case for standard DP-ensuring
algorithms such as the ones we study. DP training produces one
deterministic classi�er that is used for all predictions. Thus, once
training is done, there is no randomization of decisions as in the
example above. Thus, the decisions due to such DP-ensuring models
are no di�erent than arbitrary rules such as selection based on
lexicographic ordering.

Overcoming the Algorithmic Leviathan? Creel and Hellman [10]
consider a setting where di�erent decision-making systems which
have high impact on an individual’s livelihood, e.g., credit scoring
systems from competing bureaus in the USA [8], are trained in
ways that lead to all of them outputting the same decisions. This
algorithmic monoculture would completely remove the possibility
of accessing resources for some individuals, as turning to a com-
peting decision-maker would not change the outcome. In this case,
Creel and Hellman argue that high predictive multiplicity could
be a desirable property as it enables to access resources across the
decision-makers.

In some high-stakes settings, such as healthcare, an algorithmic
monoculture might not pose a concern. Indeed, one would wish

that predictive models used as a part of a diagnostic procedure
for a disease output a consistent decision so that patients can be
treated (or not treated) as needed. In this scenario, in fact, predictive
multiplicity could potentially harm patients by either delaying a
patient’s treatment, or recommending a treatment when the pa-
tient is healthy. In such settings, the positive impact of predictive
multiplicity in avoiding an algorithmic Leviathan loses meaning.

Regardless of whether algorithmic monoculture is a legitimate
concern or not for a given application, it is helpful for model design-
ers and decision subjects to be informed of the level of predictive
multiplicity, whether to gauge the likelihood of recourse, or brace
for the arbitrariness of decisions.

7.2 Open Problems
Reporting Mutiplicity. Potential mitigations of the harms of pre-

dictive multiplicity could be to abstain from outputting a prediction
with high multiplicity, or to communicate the magnitude of multi-
plicity to the stakeholders. Doing so is challenging: any sort of
communication of disagreement values could partially reveal in-
formation about the privacy-sensitive training data and break DP
guarantees. Consider, as before, the setting of using a predictive
model to assist in a medical diagnosis. Whether a model abstains
from predictions or outputs them along with disagreement esti-
mates, there is a certain amount of information leakage about the
training data to doctors. If the disagreement estimates are com-
puted on privacy-sensitive data and are used without appropriate
privatization—whether published or used to decide on abstention—
they can reveal information about the data. To address this issue,
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one could use privacy-preserving technologies such as DP to ab-
stain from making a prediction based on a high disagreement value
or report the disagreement estimate in a privacy-preserving way.
Studying whether e�ective privatization of disagreement computa-
tions is possible is an open problem for future work.

General Characterization of the Predictive-Multiplicity Costs of
DP. We have theoretically characterized the predictive-multiplicity
behavior of the output-perturbation mechanism as applied to logis-
tic regression. Doing so for other mechanisms and model families
is a non-trivial undertaking. In this work, we resort to empirical
measurement with re-training. An open problem is �nding whether
we can characterize these behaviors for a wider range of model
families, mechanisms, or even for any general mechanism which
satis�es DP.

7.3 Recommendations Moving Forward
As discussed in the previous sections, existing techniques do not
enable model designers to eliminate, or even mitigate, the implica-
tions of predictive multiplicity when using DP-ensuring models. We
have pointed out which open problems would need to be solved in
order to reduce the impact of predictive multiplicity in high-stakes
privacy-sensitive scenarios. Until DP mechanisms that mitigate
multiplicity become available, the negative e�ects of multiplicity
can only be countered by auditing for multiplicity prior to deploy-
ment. Therefore, in order to understand the impact of privacy on
the justi�ability of model decisions, model designers should directly
measure predictive multiplicity when using DP training, e.g., using
the methods we introduce in Section 4. If at the desired level of
privacy the training algorithm exhibits high predictive multipli-
city (either in general or for certain populations), model designers
should carefully consider whether the use of suchmodels is justi�ed
in the �rst place.
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A OMITTED PROOFS AND DERIVATIONS
A.1 Section 2
First, we provide an explanation on the range of disagreement
without normalization:

P���������� 6 (R���� �� �������������� ������������).
The expression Pr[5\ (G) < 5\ 0 (G)] has range of [0, 0.5].

P����. As 5\ (G) 2 {0, 1}, we can assume Pr[5\ (G) = 1] = ? ,
and thus Pr[5\ (G) < 5\ 0 (G)] = Pr[5\ (G) = 0 and 5\ 0 (G) = 1] +
Pr[5\ (G) = 1 and 5\ 0 (G) = 0] = 2? (1 � ?) 2 [0, 0.5]. ⇤

Next, we provide a proof that disagreement is proportional to
variance in our setup:

P���� �� P���������� 1. As 5\ (G) 2 {0, 1}, we have that
` (G) = 2 Pr

\ ,\ 0⇠%) (D)
[5\ (G) < 5\ 0 (G)]

= 2E\ ,\ 0⇠%) (D) [1[5\ (G) < 5\ 0 (G)]]
= 2E\ ,\ 0⇠%) (D) [(5\ (G) � 5\ 0 (G))2]
= 2E\⇠%) (D) [5

2
\ (G)] � 4E\ ,\ 0⇠%) (D) [5\ (G) · 5\ 0 (G)]

+ 2E\ 0⇠%) (D) [5
2
\ 0 (G)]

= 4 (E\⇠%) (D) [5\ (G)]
2

� E\⇠%) (D) [5\ (G)] · E\ 0⇠%) (D) [5\ 0 (G)])
= 4Var\⇠%) (D) (5\ (G))
= 4?G (1 � ?G ),

(12)

where ?G (1 � ?G ) is the population variance of the r.v. 5\ (G) ⇠
Bernoulli(?G ). ⇤

A.2 Section 3
P���� �� P���������� 2. First, observe that the expression

?G = E\priv⇠%) (D) [5\priv (G)]

can be expressed as:

E[5\priv (G)] = E[1[sigmoid(\|privG) > 0.5]]
= E[1[\|privG > 0]]
= Pr(\|privG > 0) .

(13)

Denoting by b , N(0, 1) and b3 , N(0, �3 ), we can see that
the score \|priv G is equal to:

\|priv G = (\np + fb3 )|G

= \|np G + f
3’
8=1

G8b

= \|np G +

vut 3’
8=1

G28 · fb

= \|np G + kG kfb .

(14)

Plugging in the closed form in Eq. (14) into Eq. (13), we get:

?G = Pr(\|np G + kG kfb > 0) = Pr

 
b > �

\|np G

kG k · f

!
= �

 
\|np G

kG k · f

!
.

(15)
⇤

A.3 Section 4
P���� �� P���������� 3. The 1/<�1 term comes from Bessel’s

correction. Observe that

E
h <

< � 1
?̂G (1 � ?̂G )

i
=

<

< � 1
(E[?̂G ] � E[?̂2G ])

=
<

< � 1
(E[?̂G ] � Var(?̂G ) � E[?̂G ]2)

=
<

< � 1

✓
?G � ?G (1 � ?G )

<
� ?2G

◆

= ?G (1 � ?G )

(16)

Therefore, E[ ˆ̀(G)] = 4?G (1 � ?G ) = ` (G). ⇤

P���� �� P���������� 4. As ˆ̀(G) is a continuous transforma-
tion of ?̂G , we could bound the deviation | ˆ̀(G) � ` (G) | by |?̂G � ?G |.
Suppose ?̂G = ?G + a and a 2 [�[,[], we have��� <

< � 1
?̂G (1 � ?̂G ) � ?G (1 � ?G )

��� =
=

��� <

< � 1
(?G + a) (1 � ?G � a) � ?G (1 � ?G )

���
=

���⇣ <

< � 1
� 1

⌘
?G (1 � ?G ) +

<

< � 1
a (1 � 2?G � a)

���
 ?G (1 � ?G )

< � 1
+ <

< � 1
|a | |1 � 2?G + a |

 ?G (1 � ?G )
< � 1

+ <

< � 1
|a | (1 + |a |)

 ?G (1 � ?G )
< � 1

+ <

< � 1
[ (1 + [)

 1
4(< � 1) +

<

< � 1
[ (1 + [) .

(17)
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Table 1: Summary of datasets used in our experimental eval-
uations.

Dataset Size Number of features Train size Test size

Synthetic 1 2 2000 20,000
Credit 653 46 489 164
Contraception 1,473 9 1,104 369
Mammography 830 5 622 208
Dermatology 358 34 268 90
CIFAR-10 60,000 32 ⇥ 32 ⇥ 3 50,000 10,000

By Cherno�-Hoe�ding inequality, we have the following concen-
tration bounds on the sample mean ?̂G ,

Pr[|?̂G � ?G | � a]  2 exp
⇣
�2a2<

⌘
. (18)

Thus with probability at least 1 � d , we have:

|?̂G � ?G | 
p
log(2/d)/2<.

Combining Eq. (17) and Eq. (18), we have

| ˆ̀(G) � ` (G) | =
���� 4<
< � 1

?̂G (1 � ?̂G ) � 4?G (1 � ?G )
����

 1
(< � 1) +

4<
< � 1

[ (1 + [) .
(19)

Plugging [ =
p
log(2/d)/2< into Eq. (19) yields the desired re-

sult. Note that by solving 1
(<�1) + 4<

<�1[ (1 + [)  U with [ =p
log(2/d)/2< with conditions U > 0 and 0 < d < 1, we have:

< � 1 + U + 2C (2 + U) + 2
p
2
p
C (1 + U) (2C + U)

U2
, (20)

where C = log(2/d) . ⇤

P���� �� P���������� 5. Since the samples are i.i.d., we have
the following union bound for the concentration of sample mean,

Pr

"
:ÿ
8=1

{|?̂G8 � ?G8 | � a}
#


:÷
8=1

Pr[|?̂G8 � ?G8 | � a]

 2: exp
⇣
�2a2<

⌘
.

(21)

Therefore, with probability 1 � d , |?̂G8 � ?G8 | 
p
log(2:/d)/2<

for 8 = 1, . . . ,: , and the desired result follows the derivation in
Proposition 4.

⇤

B ADDITIONAL EXPERIMENTAL DETAILS
B.1 Details on the Experimental Setup

Datasets. For illustrative purposes, we use the following classes
as our target labels. For the Credit dataset, we use “Approved” as
the target label. For the Contraception dataset, we use “long-term
method”. For the dermatology dataset, we use “seboreic dermatitis”
diagnosis. For the Mammography dataset, we use “malignant”.

CIFAR-10. We use the convolutional neural network trained over
the ScatterNet features [25] following Tramer and Boneh [32, Table
9, Appendix]. We use DP-SGD with batch size of 2048, learning
rate of 4, Nesterov momentum of 0.9, and gradient clipping norm of
0.1. We vary the gradient noise multiplier f to achieve the privacy
levels of Y ⇡ 2.22, 2.73, 3.62.4.39, 5.59 as computed by the Moments
accountant [1].

Software. We use the following software:
• di�privlib [20] for the implementation of objective-perturbation
for logistic regression.

• PyTorch [28] for implementing neural networks.
• opacus [39] for training PyTorch neural networks with DP-
SGD.

• numpy [19], scipy [33], and pandas [26] for numeric analy-
ses.

• seaborn [35] for visualizations.

B.2 Multiplicity of Predictions vs. Scores
Recall that the models we consider are not only capable of out-
putting a binary prediction but also a con�dence score. The dis-
agreement metric in Eq. (4), however, only uses the predictions
after applying a threshold. To verify if the trends we observe per-
sist also at the level of con�dence scores, we additionally evaluate
viable prediction range, a metric for measuring multiplicity of the
con�dence scores proposed by Watson-Daniels et al. [36]:

`vp (G) , max
\⇠%) (D)

⌘\ (G) � min
\⇠%) (D)

⌘\ (G) (22)

Fig. 6 shows the viable prediction range for di�erent values in
the input space for logistic regression trained with objective per-
turbation on our synthetic dataset. The regions with high viable
prediction range overlap with the regions with high disagreement
(see Fig. 1). This is also consistent with the results on the tabular
datasets, for which Fig. 7 shows both disagreement and viable pre-
diction range increasing on average as the level of privacy increases.
Implications.Models trained with a high level of privacy exhibit
high multiplicity both of their con�dence scores (in terms of vi-
able prediction range) and of “hard” predictions after applying a
threshold (in terms of disagreement).

B.3 Additional Figures and Tables
The rest of the document contains additional �gures and tables.
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Figure 6: Viable prediction range of logistic regression trained with objective perturbation is high for examples for which
disagreement is also high. See Fig. 1 for the disagreement values and details of the plot setup.

Figure 7: Both the disagreement and viable prediction range of logistic regression trained with objective perturbation on tabular
datasets increases as the level of privacy increases. See Fig. 3 for the details of the plot setup.

(a) Theoretical error of estimating disagreement w.p. 95% (b) Empirical error of estimating disagreement for one arbitrarily
chosen example (solid orange line —) compared to the theoretical
maximum error w.p. 95% (dashed blue line � �). The error bars
are 95% con�dence intervals over 10 re-samplings of< models.
This suggests that the theoretical upper bound on error is pes-
simistic in practice. y axis is logarithmic.

Figure 8: Visualization of disagreement estimation error as a function of the number of models sampled from the training
distribution %) (D) .
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Table 2: Summary statistics of the performance and predictive-multiplicity measures on real-world datasets. For tabular
datasets, the performance metrics are the area under the ROC curve (AUC), and the harmonic mean of precision and recall (�1
score) on the test data. For CIFAR-10, the performance metric is the accuracy on the test data. For these, we report mean and
standard deviation over the< re-trained models. For disagreement, we report mean, standard deviation, minimum, median,
maximum, the 90-th percentile, and the 95-th percentile over the examples in each respective test dataset. Observe that for
every dataset there exist multiple examples with high level of predictive multiplicity even if the average level of predictive
multiplicity for the given dataset is low. E.g., compare the 95-th percentile of disagreement on the CIFAR-10 dataset at Y = 2.22
(0.81) to its mean value (0.11).

AUC �1 score Disagreement
Dataset Y Mean Std. Mean Std. Mean Std. Min Median Max 90 pctl. 95 pctl.

Contraception 0.50 57.51 6.72 48.72 7.86 0.90 0.10 0.48 0.93 1.00 0.99 1.00
0.75 60.26 6.20 50.29 7.54 0.82 0.17 0.24 0.88 1.00 0.99 1.00
1.00 62.50 5.47 51.56 7.09 0.73 0.23 0.11 0.79 1.00 0.98 1.00
1.25 64.27 4.71 52.62 6.62 0.65 0.27 0.05 0.70 1.00 0.97 0.99
1.50 65.62 4.00 53.53 6.14 0.57 0.30 0.02 0.60 1.00 0.96 0.99
1.75 66.65 3.38 54.31 5.67 0.51 0.32 0.00 0.50 1.00 0.95 0.99
2.00 67.43 2.86 54.98 5.21 0.45 0.33 0.00 0.42 1.00 0.94 0.98
2.50 68.49 2.10 55.97 4.39 0.37 0.33 0.00 0.27 1.00 0.92 0.97

Credit 0.50 52.22 15.95 46.48 16.38 1.00 0.00 0.99 1.00 1.00 1.00 1.00
0.75 53.72 15.70 47.84 15.70 0.99 0.01 0.98 0.99 1.00 1.00 1.00
1.00 55.16 15.41 49.15 15.05 0.99 0.01 0.96 0.99 1.00 1.00 1.00
1.25 56.56 15.06 50.39 14.46 0.98 0.02 0.94 0.98 1.00 1.00 1.00
1.50 57.86 14.69 51.59 13.89 0.97 0.03 0.91 0.98 1.00 1.00 1.00
1.75 59.10 14.31 52.72 13.35 0.96 0.03 0.89 0.97 1.00 1.00 1.00
2.00 60.26 13.91 53.77 12.85 0.95 0.04 0.86 0.96 1.00 1.00 1.00
2.50 62.41 13.12 55.70 12.05 0.93 0.06 0.80 0.95 1.00 1.00 1.00

Dermatology 0.50 62.19 19.76 48.81 17.88 0.96 0.03 0.89 0.96 1.00 1.00 1.00
0.75 66.75 17.65 52.67 16.44 0.93 0.05 0.79 0.93 1.00 0.99 0.99
1.00 70.44 15.83 55.88 15.21 0.89 0.08 0.69 0.90 1.00 0.98 0.99
1.25 73.46 14.28 58.57 14.20 0.85 0.10 0.60 0.86 1.00 0.98 0.98
1.50 75.94 12.97 60.93 13.30 0.82 0.12 0.52 0.83 1.00 0.97 0.98
1.75 78.04 11.89 62.98 12.60 0.79 0.13 0.46 0.80 1.00 0.95 0.97
2.00 79.80 10.96 64.78 12.00 0.75 0.15 0.39 0.77 0.99 0.94 0.96
2.50 82.66 9.45 67.80 10.95 0.70 0.17 0.32 0.72 0.99 0.92 0.94

Mammography 0.50 75.64 8.95 69.22 9.88 0.62 0.28 0.20 0.61 1.00 0.98 1.00
0.75 78.57 6.51 72.46 7.04 0.51 0.34 0.07 0.45 1.00 0.98 1.00
1.00 80.36 5.26 74.39 5.48 0.44 0.36 0.02 0.33 1.00 0.97 0.99
1.25 81.62 4.44 75.64 4.66 0.39 0.37 0.01 0.24 1.00 0.95 0.99
1.50 82.54 3.82 76.56 4.14 0.35 0.37 0.00 0.17 1.00 0.93 0.99
1.75 83.25 3.36 77.29 3.81 0.32 0.36 0.00 0.12 1.00 0.91 0.98
2.00 83.81 2.98 77.85 3.56 0.29 0.35 0.00 0.08 1.00 0.89 0.98
2.50 84.61 2.40 78.70 3.22 0.25 0.34 0.00 0.04 1.00 0.84 0.96

Accuracy Avg. Disagreement across Classes
Dataset Y Mean Std. Mean Std. Min Median Max 90 pctl. 95 pctl.

CIFAR-10 2.22 65.38 0.32 0.11 0.25 0.0 0.0 1.0 0.48 0.81
2.73 67.65 0.35 0.09 0.23 0.0 0.0 1.0 0.36 0.77
3.62 69.56 0.32 0.08 0.22 0.0 0.0 1.0 0.29 0.69
4.39 70.38 0.33 0.07 0.21 0.0 0.0 1.0 0.23 0.64
5.59 71.06 0.29 0.06 0.20 0.0 0.0 1.0 0.15 0.59
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