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Summary

Critical to meeting cellular phosphorus (P) demand,
soil bacteria deploy a number of strategies to over-
come limitation in inorganic P (Pi) in soils. As a sig-
nificant contributor to P recycling, soil bacteria
secrete extracellular enzymes to degrade organic P
(Po) in soils into the readily bioavailable Pi. In addi-
tion, several Po compounds can be transported
directly via specific transporters and subsequently
enter intracellular metabolic pathways. In this review,
we highlight the strategies that soil bacteria employ
to recycle Po from the soil environment. We discuss
the diversity of extracellular phosphatases in soils,
the selectivity of these enzymes towards various Po

biomolecules and the influence of the soil environ-
mental conditions on the enzyme’s activities. More-
over, we outline the intracellular metabolic pathways
for Po biosynthesis and transporter-assisted Po and
Pi uptake at different Pi availabilities. We further high-
light the regulatory mechanisms that govern the pro-
duction of phosphatases, the expression of Po

transporters and the key metabolic changes in P
metabolism in response to environmental Pi availabil-
ity. Due to the depletion of natural resources for Pi,

we propose future studies needed to leverage
bacteria-mediated P recycling from the large pools of
Po in soils or organic wastes to benefit agricultural
productivity.

Introduction

Phosphorus (P), an essential element for all living organ-
isms, is required for cell membranes, genetic materials,
energy carrier molecules, carbon metabolism and meta-
bolic signalling (Westheimer, 1987; Bünemann
et al., 2010). Due to limited bioavailable P in soils, soil
microorganisms often live under P starvation conditions
and thus rely on various strategies to access
bioavailable P, by improving P assimilation and optimiz-
ing intracellular and extracellular P metabolism (Miller
et al., 2010; Richardson and Simpson, 2011; Yang and
Post, 2011; Grafe et al., 2018). The concentration of bio-
available P as inorganic P (Pi) is typically low in soil solu-
tion (<0.01–1 mg L�1 in highly fertile soils). Of the total P
in surface soils, which generally ranges from 20 to
1000 mg P kg�1, organic P (Po) forms comprise 20%–

80% (Anderson, 1980; Bünemann et al., 2010; Yang and
Post, 2011). Low-molecular-weight phosphomonoesters,
such as phytic acid, sugar phosphates and ribonucleo-
tides, and phosphoester polymers, such as nucleic acids
and phospholipids, are the predominant forms of Po in
soils that originate from microbial cell death and plant
debris (Turner et al., 2003; Vestergren et al., 2012;
Zhang et al., 2012; Dodd and Sharpley, 2015; Hou
et al., 2015; Sirois and Buckley, 2019). Synthetic
phosphotriesters (also called organophosphates) in soils
are derived from anthropogenic sources such as herbi-
cides, insecticides, flame retardants and plasticizers
(Gao et al., 2016; Yadav et al., 2018; Wang et al., 2019).
Beyond natural and synthetic phosphoester compounds
with P-O bonds, phosphonates with P-C bonds found in
cell membrane lipids, exopolysaccharides and glycopro-
teins are also present in soils (Table 1) (Metcalf and Van
Der Donk, 2009). Besides their natural abundance (Clark
et al., 1999; Yu et al., 2013), these compounds have
been widely used in agriculture and medicine
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contemporarily (Galezowska and Gumienna-
Kontecka, 2012; Martinez et al., 2018). There is
increased recognition of the importance of soil microor-
ganisms in playing an integral role in recycling P from the
array of Po compounds found in soils (Oberson and
Joner, 2005; Bünemann et al., 2010; Zhou et al., 2018).
Here we present a review of the strategies employed by
soil bacteria to synthesize different Po compounds as
well as obtaining bioavailable P for their cellular metabo-
lism (Fig. 1): (i) biosynthesis of Po compounds,
(ii) diversity and selectivity of phosphatase enzymes,
(iii) acquisition of Po compounds, (iv) regulation of phos-
phatases, Po acquisition and Po metabolism and
(v) future research directions to be considered towards
harnessing these bacterial capabilities for sustainable P
management and engineered P recycling.

Biosynthesis of common Po compounds

Cellular Pi is required for phosphorylation reactions within
the central carbon metabolism and the eventual genera-
tion of precursors for the biosynthesis of Po biopolymers,
namely, nucleic acids and phospholipids, as illustrated in
Fig. 2. Here we follow the incorporation of Pi starting with
the initial catabolism of glucose, a common carbohydrate
in soils and the derivative of cellulose and starch, two
common biopolymers in plant matter. Glucose is phos-
phorylated to produce glucose-6-phosphate (G6P) by a
hexokinase or via the phosphoenolpyruvate (PEP)-
dependent phosphotransferase system (PTS). Hexoki-
nases transfer the phosphoryl group of adenosine tri-
phosphate (ATP) to glucose or other hexose sugars,
such as mannose, fructose, or galactose (Cohen, 2014;
Prakasham and Kumar, 2019). In the PTS system, PEP
is the phosphoryl donor for substrate phosphorylation
(Deutscher et al., 2014; Jeckelmann and Erni, 2020). Fol-
lowing the phosphorylation of the sugar, the phosphory-
lated metabolite, such as G6P, subsequently enters the
pentose phosphate pathway or proceeds to glycolysis.
Alternatively, glucose can also enter the gluconate path-
way through which glucose is oxidated to gluconate and
subsequently phosphorylated to 6-phosphogluconate.
6-phosphogluconate can then enter either the pentose
phosphate pathway directly or glycolysis through the
Entner–Doudoroff pathway (Conway, 1992; Nikel
et al., 2015).

Within the pentose phosphate pathway, following oxi-
dation and decarboxylation reactions, G6P generates
ribose-5-phosphate (R5P). After phosphorylation with
pyrophosphate derived from ATP, R5P becomes
5-phospho-D-ribosyl-α-1-diphosphate (PRPP), which is
an important precursor to the biosynthesis of purine and
pyrimidine nucleotides, the amino acids histidine and
tryptophan, and the cofactors nicotinamide adenine
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dinucleotide (NAD) and NAD phosphate (NADP)
(Cohen, 2014; Hove-Jensen et al., 2017). Both purine
and pyrimidine nucleotides are essential to biomass
growth as they serve as building blocks for RNA, DNA
and the energy carrier molecules (ATP, NAD and NADP).
Purine nucleotides, such as adenosine-50-monopho-

sphate (AMP) and guanosine-50-monophosphate, can be
synthesized either via de novo or salvage pathways. Ino-
sine monophosphate (IMP) is an intermediate of the de
novo purine nucleotide biosynthesis and is synthesized
by gradually assembling the purine ring on the C-1 of the
R5P moiety in PRPP (Kilstrup et al., 2005; Hove-Jensen
et al., 2017). In the salvage pathway, several enzymes
are involved in adding the phosphoribose R5P to
recycled nucleobases to produce monoribonucleotides
(e.g. synthesis of AMP by phosphoribosylating adenine)
(Hove-Jensen et al., 2017). Further phosphorylation
steps on the monoribonucleotide would then produce trip-
hosphorylated ribonucleotides such as ATP, which
serves as a phosphoryl or nucleotidyl donor within the
cell, or guanosine triphosphate, which also acts as a
phosphoryl donor (Walsh et al., 2018).
Pyrimidine nucleotides, such as uridine-50-triphosphate

(UTP) and cytidine-50-triphosphate (CTP), are also syn-
thesized via de novo and salvage pathways. De novo
synthesis of pyrimidine begins with carbamoyl phos-
phate, a metabolite generated by phosphorylating and
aminating dissolved CO2. Follow-up reactions involve

amino acid addition to and subsequent cyclization of car-
bamoyl phosphate to eventually generate the pyrimidine
ring dihydroorotate (Cohen, 2014). Orotate, which is gen-
erated from dihydroorotate, reacts with PRPP to produce
orotidine 50-monophosphate and, after decarboxylation,
uridine-50-monophosphate (UMP) (Cohen, 2014). After
two phosphorylation steps, UMP yields UTP, which is the
precursor to the synthesis of CTP and subsequent syn-
thesis of pyrimidine compounds (Kilstrup et al., 2005).
The pyrimidine salvage pathway, unlike the purine sal-
vage pathway, involves a single phosphoribosyltran-
sferase, uracil phosphoribosyltransferase, which utilizes
uracil from nucleic acid catabolism or supplied from the
environment (Hove-Jensen et al., 2017).

The biosynthesis of phospholipids relies on the combi-
nation of CTP, a pyrimidine ribonucleotide, with
glyceraldehyde-3-phosphate (GAP), a glycolytic metabo-
lite. The transfer of the acyl group from GAP to the sn-1
and sn-2 positions of glycerol-3-phosphate (G3P) by the
G3P acyltransferase yields 1,2-diacylglycerol-sn-G3P
(Sohlenkamp and Geiger, 2015). This latter metabolite
further reacts with CTP to form cytidine diphosphate-
diacylglycerol, which is a common precursor to various
phospholipids with an assortment of different headgroups
that compose the cell membrane (Parsons and
Rock, 2013; Sohlenkamp and Geiger, 2015). In the fol-
lowing section, we discuss the diversity and selectivity of
phosphatase enzymes employed by soil bacteria to

Fig 1. Schematic overview of Po recycling processes employed by soil bacteria. Decomposition of plant and microbial biomass results in an accu-
mulation of organic matter, including Po compounds, in soil. In this review, we explain the strategies of soil bacteria in recycling of P from Po com-
ing from soil organic assemblages. As shown in the schematic, these recycling strategies include the degradation of Po compounds by
intracellular and extracellular phosphatases, the upregulation of genes encoding transporters for the uptake of extracellular P and the incorpora-
tion of the scavenged P into the Po biosynthesis pathways.

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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Fig 2. Overview of the different metabolic pathways involved in Po biosynthesis in bacterial cells. The metabolic pathways for the biosynthesis of
precursors to essential Po biopolymers, nucleotides and phospholipids, starting from glucose are shown. Abbreviations: G6P, glucose-6-phos-
phate; R5P, ribose-5-phosphate; PRPP, 5-phospho-D-ribosyl-α-1-diphosphate; IMP/UMP, inosine/uridine monophosphate; CTP, cytidine triphos-
phate; GAP, glyceraldehyde-3-phosphate; G3P, glycerol-3-phosphate.

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology Reports, 14, 3–24
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hydrolyze different Po compounds to achieve Pi

acquisition.

Diversity and selectivity of phosphatases for Po

hydrolysis

During Pi deficiency, soil bacteria produce phosphatase
enzymes to recycle Pi from heterogenous Po mixtures for
their own usage and to help the plant growth (Fitriatin
et al., 2011; Kumar et al., 2016). Phosphatases catalyse
the hydrolytic cleavage of a bond between P and another
atom (Table 1). The majority of phosphatases are
involved in hydrolyzing the P-O bonds present in most Po

compounds found in soils. Phosphomonoesterases
(Enzyme Commission number, EC 3.1.3.-) represents the
most abundant class of extracellular phosphatases
released by soil bacteria to release Pi from pho-
sphomonoesters (Sharma et al., 2013; Margalef
et al., 2017). Alkaline phosphatases, i.e. ALP,
(EC 3.1.3.1), acid phosphatases, i.e. AP, (EC 3.1.3.2),
and phytases (EC 3.1.3.8 and 3.1.3.26) are the predomi-
nant forms of extracellular phosphatases in soils (Eivazi
and Tabatabai, 1977; Hui et al., 2013; Sharma
et al., 2013). ALPs, the most well-studied group, are
encoded by phoA, phoD and phoX genes (Neal
et al., 2018). The PhoD and PhoX ALPs were reported to
be more abundant than PhoA in marine and terrestrial
ecosystems (Luo et al., 2009; Sebastian and
Ammerman, 2011; Ragot et al., 2015), with PhoDs hav-
ing the highest abundance in soils (Luo et al., 2009; Tan
et al., 2013; Ragot et al., 2015). In addition to their phos-
phomonoesterase activities, most PhoDs exhibit phos-
phodiesterase activity, e.g. PhoDAP from Aphanothece
halophytica (Kageyama et al., 2011). Based on the signal
peptide attached to the protein sequences, it was con-
cluded that PhoD and PhoX ALPs are translocated to the
cell membranes (Pop et al., 2002; Monds et al., 2006),
whereas the PhoAs are secreted extracellularly or to the
periplasm (Kim and Wyckoff, 1991; Monds et al., 2006).
A metagenomics study (Luo et al., 2009) reported a 40%
higher abundance of cytoplasmic ALPs than extracellular
ones in marine bacterial communities. It remains to be
determined how the cellular localization of ALPs varies in
soil ecosystems.
A soil metagenome analysis for bacterial phosphatase

genes showed a higher abundance of ALPs compared to
APs in soil (including rhizosphere and bulk soil) (Lidbury
et al., 2017a), whereas when considering only the rhizo-
sphere region, the number of gene copies for APs was
found to be 10- to 100-fold higher than ALP genes
(Fraser et al., 2017). Bacterial APs, known as non-
specific acid phosphatases (NSAPs), are active towards
a broad range of substrates harbouring different struc-
tures (Rossolini et al., 1998). These APs are categorized

into three classes A, B and C; the abundance of classes
A and C APs was shown to be several times higher than
class B APs in different soil types (Neal et al., 2018).
While class A and B APs are mostly periplasmic
enzymes, class C APs are associated with the bacterial
outer membrane, providing higher accessibility to the Po

present in the soil and thus making class C APs more
advantageous for soil bacteria than the other classes
(Neal et al., 2018).

Phytases are phosphatases capable of degrading
phytic acid, the primary P storage in plants and grains
(Table 1) (Mullaney and Ullah, 2003; Lei et al., 2013);
phytases can also hydrolyze other Po compounds includ-
ing ribonucleotides and sugars phosphates (Solhtalab
et al., 2020, Sariyska et al., 2005, Casey and
Walsh, 2003, George et al., 2007, Greiner et al., 2009).
Based on their mechanism in the sequential hydrolysis of
phytic acid, phytases are grouped into 3-phytases
(EC 3.1.3.8) and 6-phytases (EC 3.1.3.26). Only a few
bacterial phytases are grouped as 6-phytases, including
the periplasmic phytase of Escherichia coli, one of the
most studied bacterial phytases (Lim et al., 2000;
Menezes-Blackburn et al., 2013). Most bacterial phytases
are classified as 3-phytases, a group of enzymes whose
gene abundance was shown to be 4.5-fold higher in Pi-
deficient soil relative to Pi-rich soil (Yao et al., 2018).
Considering their structural differences, bacterial
phytases can be classified into four subcategories,
namely, histidine acid phosphatases, β-propeller
phytases (BPPs), protein-tyrosine phosphatase-like
phytases (cysteine phosphatase) and purple acid phos-
phatases (PAP) (Lei et al., 2013). Among those, BPPs
are reported to be the predominant bacterial phytases
secreted in the soil near the rhizosphere (Lim
et al., 2007; Jorquera et al., 2013). To obtain an accurate
evaluation of the bacterial phytase diversity in soil eco-
systems, new metagenomic studies of the diversity of
phytases based on the updated genomic databases of
soil bacteria are still warranted (Lim et al., 2007).

In addition to the three main bacterial phosphomonoes-
terases mentioned above, PAP-like sequences were also
found in genomes of 43 bacteria and four cyanobacteria
species (Yeung et al., 2009; Bhadouria and Giri, 2021).
Based on homology models, bacterial PAPs are similar
structurally to mammalian PAPs in the vicinity of their
active sites (Schenk et al., 2000). However, the struc-
tures of bacterial PAPs have not been determined yet,
and only a few have been characterized for their physio-
logical roles and biochemical properties (Yeung
et al., 2009; Zhu et al., 2019; Forrellad et al., 2020). Inter-
estingly, bacterial PAPs from Burkholderia pyrrocinia
(PAP9), B. cenocepacia (BcPAP) and Mycobacterium
tuberculosis (Rv2577) have alkaline pH optima unlike
previously characterized PAPs from plants and

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology Reports, 14, 3–24
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mammals, which are optimally active at the pH range of
4–7 (Yeung et al., 2009; Zhu et al., 2019; Forrellad
et al., 2020).

The hydrolysis of phosphodiesters requires the activity
of a group of enzymes called phosphodiesterase
(EC 3.1.4.-), such as nuclease and phospholipases
(Table 1). Phosphomonoesters are the product of these
reactions and will subsequently be hydrolyzed to Pi by
phosphomonoesterase activities mentioned earlier
(Table 1) (Turner and Haygarth, 2005; Bünemann, 2008).
Similar to phosphomonoesterases, elevated gene abun-
dance of phosphodiesterases such as exoribonuclease
and sphingomyelin phosphodiesterase is found in Pi-
deficient soils (Yao et al., 2018). In response to the pres-
ence of the toxic phosphotriesters (such as in paraoxon,
a metabolite of the insecticide parathion), soil bacteria
have evolved enzymes, called phosphotriesterase or
organophosphate hydrolase (encoded by opd gene)
(Table 1) (Ali et al., 2012; Khalid et al., 2016), to detoxify
these compounds by breaking the P-O bond (Theriot and
Grunden, 2011). Other P-O hydrolases are intracellular
enzymes, which are responsible for catalysing the
dephosphorylation processes related to regulations, sig-
nalling pathways and motility (Zuo and Deutscher, 2001;
García-Caballero et al., 2017). The C-P lyases were his-
torically known as the only enzymes that could break
down the P-C bonds in phosphonates, but other hydro-
lase enzymes, such as phosphonopyruvate hydrolase
and phosphonoacetate hydrolase (Agarwal et al., 2011),
can also target the stable P-C bonds (Quinn et al., 2007;
Agarwal et al., 2011). The P-N bonds, which are mostly
found in histidine- or arginine-phosphorylated proteins,
can be lysed by intracellular phosphatases primarily
involved in protein dephosphorylation (Chou et al., 2005),
thus not likely relevant to the Pi acquisition of soil bacte-
ria from the extracellular region. The diverse categories
of extracellular, periplasmic and membrane-associated
phosphatases mentioned here are produced by various
soil bacterial species present to facilitate the Pi recycling
from Po-containing natural organic assemblages.

In relation to the presence of high microbial activity in
the rhizosphere, phosphatase activities are reported to
be higher in the rhizosphere than the bulk soil (Spohn
and Kuzyakov, 2013). There is a higher abundance of
AP genes in rhizosphere bacteria than in bulk soil
(Spohn and Kuzyakov, 2013; Fraser et al., 2017). Among
bacterial NSAPs, only class A and C are present in the
environment, whereas class B enzymes are from bacteria
associated with eukaryotic hosts (Neal et al., 2018;
Udaondo et al., 2020). While class A NSAPs are
mainly produced by Gram-negative bacteria (including
Pseudomonas, Caulobacter, Stenotrophomonas, Met-
hylobacterium, Sphingomonas and Xanthomonas spe-
cies (Neal et al., 2018), class C NSAPs are found in a

broad range of soil bacteria including Bacillus, Clostrid-
ium, Enterobacter, Erwinia, Lysobacter, Pedobacter,
Pseudomonas, Rhodobacter and Serratia species (Neal
et al., 2018). Unlike APs, ALP genes are mostly found in
bacterial communities in the bulk soil instead of the rhizo-
sphere (Spohn and Kuzyakov, 2013). Among the diverse
range of phyla producing ALPs (Sebastian and
Ammerman, 2009; Ragot et al., 2017), Proteobacteria
and Actinobacteria were the most abundant communities
harbouring both phoD and phoX genes, followed by
Firmicutes for phoD and Planctomycetes for phoX genes
(Ragot et al., 2017; Lidbury et al., 2021). Particularly,
phoD (the most relevant ALP genes in soil bacteria) was
found in the orders Actinomycetales, Bacillales,
Gloeobacterales, Rhizobiales and Pseudomonadales
(Tan et al., 2013; Ragot et al., 2015; Wan et al., 2020).
A diverse range of bacteria including α-proteobacteria,

δ-proteobacteria, γ-proteobacteria, Bacteroidetes, Cyano-
bacteria and Actinobacteria were found to possess the
phytase-like genes (Jorquera et al., 2008). As the most
abundant bacterial phytase, BPP genes were detected in
the strains of Pseudomonas and Bacillus from plant roots
(Jorquera et al., 2012), including phytases from Bacillus
amyloliquefaciens (Shim and Oh, 2012; Boukhris
et al., 2015), B. laevolacticus (Gulati et al., 2007), B.
subtilis (Lim et al., 2007) and Pseudomonas sp. FB15
(Jang et al., 2018). In addition to BPPs, the genes and
the phytase activity related to histidine acid phospha-
tases and PAPs were found in Acinetobacter and But-
tiauxella sp. of soil samples (Rix et al., 2020).
Although there is little information about phosphodiester-

ase enzymes related to soil bacteria, a community
proteogenomics study found that archaea and
γ-proteobacteria are the major producers of phosphodies-
terases particularly in response to Pi deficiency (Yao
et al., 2018). Moreover, it was shown that a considerable
number of soil bacteria mainly from Actinobacteria and
proteobacteria phyla harbour the genes for phospholipase
enzymes. For instance, P. fluorescens can catalyse all the
degradation steps of glycerophosphodiesters extracellularly
using their glycerolphosphodiesterases, GlpQII (Lidbury
et al., 2017b). Due to their relevance to biotechnological
applications, phosphotriesterases were characterized from
several soil bacteria, such as P. diminuta, OPH (Gorla
et al., 2009), P. putida (Mulbry and Karns, 1989; Khalid
et al., 2016), Agrobacterium, OpdA (Horne et al., 2002),
Flavobacterium, OPH (Mulbry and Karns, 1989; Horne
et al., 2002) and Burkholderia, OphB (Taesung et al.,
2007). With respect to phosphonatase enzymes for break-
ing the P-C bonds, Pseudomonas species such as P. flu-
orescens are the notable soil bacterial species shown to
produce phosphonatases, PhnA (Panas et al., 2006).

Soil physicochemical properties play an important role
in influencing both the bacterial communities producing

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology Reports, 14, 3–24
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phosphatases (Marschner et al., 2004; Margalef
et al., 2017; Ragot et al., 2017) and influencing the stabil-
ity and activity of phosphatases (Fig. 3) (Allison, 2006;
Schimel et al., 2017). For instance, expectedly, ALP
abundance was higher in grassland soils with alkaline
pH, than in forest soils with acidic pH (Ragot
et al., 2017). Based on a soil metagenome analysis

(Lidbury et al., 2017a), the number of bacterial AP genes
remained the same in both acidic and alkaline pH values,
but the number of ALP genes decreased significantly at
low pH. Similar to APs, the number of phytase and phos-
phodiesterase genes has been shown to remain constant
in response to high and low pH (Lidbury et al., 2017a). In
addition to pH, the type of crops is one of the main fac-
tors determining the type of phosphatases and their bac-
terial producers in agricultural soils. For example,
α-proteobacteria Sphingopyxis and Asticcacaulis and the
β-proteobacteria Ralstonia and Cupriavidus that harbour
phoD genes were more associated with sorghum rhizo-
sphere, whereas α-proteobacterium Bosea and
β-proteobacterium Achromobacter with NSAP genes
were found more in maize rhizosphere (Neal
et al., 2021). Moreover, it was shown that bioavailability
of enzyme cofactors can determine the abundance of
phosphatase genes in soil. For instance, presence of
Ca2+ can facilitate high abundance of ALP (phoD and
phoX) and BPP genes, whereas the absence of Ca2+ is
correlated with the abundance of NSAPs in soil (Neal
and Glendining, 2019). Interestingly, while the relative
abundance of Po compounds was negatively correlated
with the abundance of phoX-harbouring Actinobacteria, it
had no effect on proteobacteria (Ragot et al., 2017) and
was correlated positively with the abundance of all phoD-
harbouring communities (Ragot et al., 2017; Luo
et al., 2019). Furthermore, it was shown that introducing
high Po and organic matter via long-term manure supple-
mentation enhanced the gene abundance of ALPs,
phytases, exopolyphosphatases and pyrophosphatases
in soil more than inorganic fertilization (Ma et al., 2020).
Among ALP genes, phoX genes were found in fewer eco-
systems than phoD genes (Ragot et al., 2015). Moreover,
the bacterial communities producing PhoD are different in
different types of soil. For instance, in vertisol and
planosol (both rich in clay minerals), proteobacteria are
the dominant phoD-associated bacteria, whereas the
Deinococcus-Thermus and Firmicutes were predominant
in leptosol (extremely gravelly and/or stony soil) (Ragot
et al., 2017). Therefore, depending on the type of soil in
the rhizosphere of a specific crop, a combination of differ-
ent environmental factors such as land use, pH and nutri-
ent concentrations (Po, Pi, total carbon and nitrogen) can
determine the type of bacterial communities harbouring
phosphatase genes in the rhizosphere (Margalef
et al., 2017; Ragot et al., 2017; Sun et al., 2020).
Kinetic parameters of phosphatases vary depending on

the type of phosphatase (Hui et al., 2013), the origin of the
enzyme (Hui et al., 2013), soil type (Giaveno et al., 2010),
soil depth (Stone and Plante, 2014) and the extent of P
amendments (Zhang et al., 2018). While similar half-
saturation constants (Km) were found for ALPs and APs
across different types of soil, higher maximum initial rates

Fig 3. Overview of the diversity of bacterial phosphatases in soils
and the influence of soil characteristics on enzyme activity.A. Soil
bacteria can produce different categories of phosphatases shown by
different colours.B. Bacterial phosphatases can be transmembrane,
periplasmic, or extracellular.C. Different physiochemical properties of
the soil can affect the activity and stability of bacterial phosphatases,
including pH of the soil, concentration of present Pi and Po com-
pounds, type of the soil which is determined by presence of different
minerals and organic matter.

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology Reports, 14, 3–24
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(Vmax) were obtained for APs. Moreover, phosphatases
from soil bacteria had lower Vmax than plant phosphatases.
Compared to the purified enzymes from soil microorgan-
isms, a lower substrate affinity (higher Km) and lower cata-
lytic activity (lower Vmax) were observed for soil-associated
phosphatases (Hui et al., 2013). In deep soils compared
to surface soil, kinetic parameters of soil-associated phos-
phatases (Vmax and Km) decreased. However, while phos-
phatase catalytic efficiency was maintained in the first
meter of soil profiles, it decreased by 50% at 140 cm soil
depth (Stone and Plante, 2014).

The catalytic efficiency of soil-associated phosphatases
is dependent on their structural stability, which is
influenced by soil environmental factors such as pH, tem-
perature, adsorption to minerals and organic matter. The
optimal activity of APs was found at pH 5.2 and ALPs at
pH 9.2 (Hui et al., 2013). Among different minerals, mont-
morillonite was shown to be destructive to the catalytic
activity of ALPs (Zhu et al., 2016). Binding to goethite
(an iron-oxyhydroxide mineral) also led to a decrease in
the activity of ALP (Zhu et al., 2016), but the catalytic
activity of AP remained unaffected (Olsson et al., 2012).
Phytase was also adsorbed greatly to different minerals
surfaces (Giaveno et al., 2010). Among those minerals,
kaolinite and montmorillonite caused the greatest activity
loss upon adsorbing phytases. However, the clays with
heterogeneous surfaces, such as oxisol clays, could
enhance the phytase stability in soil (Giaveno et al., 2010).
Consistent with the positive effect of heterogeneous mix-
tures, it was shown that the addition of organic matter,
such as biochar amendments, also increased ALP activity
up to fourfold (Khadem and Raiesi, 2019). Furthermore,
ALP immobilization on montmorillonite and goethite was
shown to protect the enzyme against heavy metal inhibi-
tion (Wang et al., 2017; Tan et al., 2018).

In addition to gene expressions in the bacterial com-
munity, the abundance of different forms of P in the soil
can affect the catalytic activity of the phosphatases
(Zhang et al., 2018). The addition of Pi inputs to the Pi-
deficient forest soil led to a decrease in soil phosphatase
catalytic efficiency (i.e. Vmax/Km) due to inhibition of
enzymes by Pi. However, in Pi-rich soils where the initial
catalytic efficiency of phosphatases was higher, the extra
addition of Pi inputs to the soil further increased the phos-
phatase efficiency (Zhang et al., 2018). The strategies
evolved by bacteria for the uptake of the released Pi from
Po after extracellular phosphatase activity as well as the
strategies developed for the direct uptake of Po com-
pounds will be discussed in the following section.

Acquisition of Pi and Po compounds by soil bacteria

Upon hydrolysis of Po compounds by the activity of phos-
phatases discussed in the previous section, the resulting

Pi is assimilated by soil bacteria primarily via phosphate
inorganic transporters (Pit) and the phosphate-specific
transport (Pst) system (Wanner, 1996). Primarily studied
in E. coli, the low-affinity Pit transporters assimilate Pi

under Pi-replete conditions and the high-affinity Pst sys-
tem is induced under Pi-depleting conditions (Hoffer
et al., 2001a; Hsieh and Wanner, 2010; McCleary, 2017).
Similar trends of transitioning to the Pst system with
reduced Pi availability were observed in other soil bacte-
ria such as Bacillus species, Burkholderia cenocepacia,
Pseudomonas aeruginosa, Sinorhizobium meliloti, Strep-
tomyces coelicolor and Staphylococcus aureus
(Qi et al., 1997; Voegele et al., 1997; Hoshino, 1998;
Antelmann et al., 2000; Saier Jr et al., 2002; Hoi
et al., 2006; Voigt et al., 2006; Martín et al., 2011; Kelliher
et al., 2018; Barreiro and Martínez-Castro, 2019; Shrop-
shire et al., 2021). Though Pi is the most favourable form
of P to bacteria, soil bacteria are also capable of assimi-
lating Po compounds such as organophosphates and
phosphonates (Table 1).

The organophosphate:phosphate antiporters (OPA)
family allows the transport of various phosphorylated
metabolites, such as G3P, G6P, 2- or 3-phosphoglycerate,
or PEP (Elvin et al., 1985; Lemieux et al., 2004a;
Albermann et al., 2014). These Po metabolites represent
intermediates in the glycolytic pathway in cellular carbon
metabolism. The G3P transporter (GlpT) and hexose-
6-phosphate transporter:antiporter (UhpT), both of which
are members of the OPA family, are well-studied in E. coli
(Winkler, 1966; Ambudkar et al., 1990; Brzoska et al.,
1994; Fann and Maloney, 1998; Auer et al., 2001; Huang
et al., 2003; Lemieux et al., 2004a). Homologues to the
glpT gene have been identified in B. subtilis and
P. aeruginosa as well (Castañeda-García et al., 2009). In
Salmonella typhimurium, the phosphoglycerate transporter
protein (PgtP), another member of the OPA, catalyses the
transport of 2PGA, 3PGA and PEP (Varadhachary and
Maloney, 1991). In addition, E. coli has the Ugp (uptake of
glycerol phosphate) system, an alternative transport sys-
tem for glycerophosphoryl diesters, encoded by the
ugpBAECQ operon (Schweizer et al., 1982; Brzoska and
Boos, 1988). Corynebacterium glutamicum lacks genes
homologous to those encoding GlpT, UhpT and PgtP but
contains homologues of the genes encoding the Ugp sys-
tem (Ishige et al., 2003). Reports of C. glutamicum utilizing
G3P as a sole P source led to the conclusion that G3P is
taken up by the Ugp system encoded by its ugpAEBC
operon (Eggeling and Bott, 2005; Wendisch and
Bott, 2005; Lindner et al., 2012). In addition to the afore-
mentioned transporters in the OPA family, other novel bac-
terial transporters that may be involved in Po utilization
have been reported. For instance, a recent study that per-
formed a comparative genomics analysis on eight
Flavobacterium strains detected the expression of six

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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distinct phosphate utilization system transporter com-
plexes (PusCD) and proposed that these complexes may
target phosphodiesters in soil, most likely lipid headgroups
and nucleic acids (Lidbury et al., 2021).
Phosphonates (with C-P bonds), found in soil from both

biogenic and anthropogenic (e.g. herbicides) sources, can
be a potential P source to soil bacteria subjected to Pi defi-
ciency (Hilderbrand and Henderson, 1983; McGrath
et al., 2013; Hove-Jensen et al., 2014). The C-P lyase
pathway involving the phosphonate transporter (Phn) sys-
tem is considered a major phosphonate catabolism route in
bacteria and is well-studied in E. coli (McGrath et al., 2013;
Hove-Jensen et al., 2014). The 14-gene operon,
phnCDEFGHIJKLMNOP, in E. coli encodes the proteins
required for the uptake and assimilation of phosphonates
via the C-P lyase pathway with the first three genes
(phnCDE) encoding an ABC-type phosphonate transport
system (Metcalf and Wanner, 1993; White and
Metcalf, 2004; Stasi et al., 2019). Via the C-P lyase path-
way, alkylphosphonates are converted to the
corresponding alkanes and Pi (McGrath et al., 2013). A sur-
vey of bacterial genes revealed that the genes encoding
the phosphonate transport polypeptides are found as either
phnCDE or phnCDEE, in which there are two distinct trans-
membrane polypeptides (Hove-Jensen et al., 2014). The
survey revealed that E. coli, Burkholderia pseudomallei
and P. stutzeri have phnCDE for the Phn system, whereas
S. meliloti, Ochrobactrum anthropic, Agrobacterium radio-
bacter, Mesorhizobium loti and Bradyrhizobium japonicum
have phnCDEE (Hove-Jensen et al., 2014). Moreover, P.
stutzeri has an additional operon relevant to the C-P lyase
pathway, htxABCDEFGHIJKLMN, where htxBCD encodes
the ABC transport system for phosphonate (White and
Metcalf, 2004; Hove-Jensen et al., 2014). Orthologous
genes to phnCDE were identified in C. glutamicum and S.
aureus (Ishige et al., 2003). Unlike the Phn system acti-
vated under Pi limitation, it has been reported that Pi-
insensitive 2-aminoethylphosphonic acid (2EAP) degrada-
tion in P. putida NG2 and BIRD-1 (Ternan and
Quinn, 1998; Murphy et al., 2021). A recent study identified
the proteins relevant to 2EAP assimilation in P. putida
BIRD-1, whereby 2-aminoethylphosphonate XVW (Aep
XVW) was the primary Pi-sensitive 2AEP transporter with
AepSTU serving an auxiliary role and 2AEP permease
(AepP) was essential for Pi-insensitive growth on 2AEP
(Murphy et al., 2021).
A metagenomics study on the soil microbial community

grown with legume and grass found that microorganisms
involved in Po mineralization were more abundant in soil
grown with legume, whereas microorganisms involved in
Pi solubilization (from inorganic P minerals) were more
abundant in the soil grown with grass (Zhou et al., 2018).
This study identified the Al and P contents as well as Po

composition in the soil as the major factors of the

reported differences (Zhou et al., 2018). Therefore, in
addition to P availability, this study suggests that different
environmental factors may influence the activation of P
acquisition strategies in soil bacteria. In the following sec-
tion, we discuss the regulation involved in Po acquisition
and metabolism depending on the P availability. Though
the acquisition of Po compounds by soil bacteria has
been well studied, there is a lack of understanding on
how these compounds are secreted into the soil environ-
ment beyond cell leakage or cell lysis. The secretion of
GAP, dihydroxyacetone phosphate and PEP by E. coli
had been reported but could not be explained due to the
lack of relevant annotated transport reactions (Paczia
et al., 2012; Pinu et al., 2018).

Regulation of phosphatases, Po acquisition and Po

metabolism

As discussed above, bacteria can scavenge Pi from Po

compounds in their environment through enzymatic
action using phosphatases, including ALPs, APs,
phytases, phospholipases and nucleases. We also
highlighted that, in addition to Pi uptake, many bacteria
can directly transport Po compounds such as organo-
phosphates and phosphonates as alternative P sources.
When the environmental Pi level is limited, bacteria
increase the expression of Pi-scavenging enzymes and
several P transporter systems to increase Po acquisition
(Wanner, 1996; Santos-beneit, 2015). In addition, soil
bacteria can modify their metabolic network related to the
biosynthesis of Po compounds such as phospholipids,
nucleotides and nucleic acids. In this section, we discuss
the mechanisms employed by soil bacteria to regulate
the following processes: enzyme production for Pi-
scavenging from Po, expression of Po transporters and
metabolic changes in Po biosynthesis under Pi-limiting
conditions. The overview schematic of bacterial regula-
tion of these processes is illustrated in Fig. 4.

Many of the genes involved in the production of Pi-
scavenging enzymes and Po transporters are controlled
by a global regulatory mechanism called the phosphate
(pho) regulon (Santos-beneit, 2015; Martín and
Liras, 2021).

The pho regulon is inactive under replete Pi condition
but, during Pi scarcity, the pho regulon is activated to reg-
ulate a set of genes towards maintaining an adequate
supply of Pi (Wanner, 1990; Santos-beneit, 2015; Mor-
imoto et al., 2016; Martín and Liras, 2021). Mediated by
the pho regulon, Pi is transported primarily through the
Pst system upon depletion in Pi, whereas the Pit system
is the primary Pi transporter when Pi is replete
(Rosenberg et al., 1977; Willsky and Malamy, 1980; Qi
et al., 2016; Grafe et al., 2018). Specifically, the pho
regulon upregulates pstSCAB, the operon that encodes

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology Reports, 14, 3–24
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the proteins of the Pst transporter system (Wanner, 1990;
Vuppada et al., 2018). Importantly, the regulation of the
pho regulon is critical to the subsequent regulation of
enzymes involved in Pi acquisition from Po compounds.

In bacteria, the extracellular Pi level is the responsible
signal that regulates the pho regulon (Rao et al., 1993;
Vuppada et al., 2018) which is mediated by a two-
component regulatory system composed of an inner-
membrane sensor protein and a transcriptional response
regulator (Wanner, 1990; Santos-beneit, 2015). First
characterized in E. coli, this regulatory system of the pho
regulon consists of two proteins: PhoR for the sensor pro-
tein and PhoB for the response regulator protein
(Tommassen et al., 1982). These proteins are called by
different names in other bacteria, for instance, the

corresponding proteins in B. subtilis are PhoR and PhoP
(Hulett et al., 1994; Novak et al., 1999; Kočan
et al., 2006; Glover et al., 2007). When environmental Pi

is abundant, PhoR remains in its repressor form, which
functions as a phosphatase that keeps PhoB inactive
(Wanner, 1990; Carmany et al., 2003). Under Pi limita-
tion, PhoR undergoes autophosphorylation to be
converted to the activator form, which functions as a
kinase that activates PhoB via phosphorylation
(Wanner, 1990; Gao and Stock, 2013). The active PhoB
(i.e. phosphorylated PhoB) subsequently binds to promoter
regions of the genes controlled by the pho regulon to
upregulate or suppress targeted gene transcription by inter-
acting with the RNA polymerase sigma factor RpoD in the
promoter regions of those genes (Makino et al., 1993;

Fig 4. Overview of bacterial regulation of the production of phosphatases, the expression of Po transporters and the metabolic changes in Po bio-
synthesis in response to Pi deficiency. Under Pi deficiency, the sensor protein PhoR undergoes autophosphorylation and subsequently transfers
the phosphate group to phosphorylate and activate the response regulator PhoB, which regulates a set of genes in the pho regulon (relevant
genes are presented in the blue box). The pho regulon controls the expression of the phosphate-specific transport (Pst) system, the phosphonate
transporter (Phn) system and the uptake glycerol phosphates (Ugp) system which respectively mediate the uptake of Pi, phosphonates (Pn) and
glycerol phosphates including glycerolphosphodiesters (GPD) and glycerol-3-phosphate (G3P). The phosphate inorganic transporter (Pit) system
is the low-affinity transporter that primarily transport Pi under replete Pi conditions. Other Po transporters including the G3P transporter (GlpT),
the hexose-6-phosphate transporter (UhpT) and the phosphoglycerate transporter protein (PgtP) belong to the OPA family, transporting their
corresponding Po in exchange with internal Pi. The corresponding Po molecules are G3P for the GlpT system; glucose-6-phosphate (G6P),
fructose-6-phosphate (F6P), mannose-6-phosphate (M6P) for the UhpT system; phosphoenolpyruvate (PEP), 2-phosphoglycerate (2PGA), and
3-phosphoglycerate (3PGA) for the PgtP system. Each of these Po transporters is controlled by a distinct regulatory system, not regulated by the
pho regulon. The transcription of glpT and ptgP additionally require the complex of cyclic adenosine monophosphate (cAMP) and the cAMP
receptor protein (CRP). Other relevant non-pho regulated genes are listed in the green box. Besides the pho regulon, Pi deficiency also triggers
the stringent response, signalled by the accumulation of guanosine tetraphosphate and guanosine pentaphosphate [collectively as (p)ppGpp]
which inhibit many metabolic processes such as amino acid metabolism, carbohydrate metabolism, nucleotide synthesis, RNA synthesis, DNA
replication, transcription and translation.

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology Reports, 14, 3–24
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Blanco et al., 2002). The specific DNA sequences, which
are targeted by phosphorylated PhoB, are two 11-base pair
direct-repeat sequences known as Pho boxes (Blanco
et al., 2002). The consensus DNA sequences in the Pho
boxes differ in different bacteria (Blanco et al., 2002;
Yoshida et al., 2012; Sola-Landa et al., 2013). Beyond Pi

assimilation, the pho regulon may additionally control sev-
eral genes involved in nitrogen, carbon and iron metabo-
lism (Santos-beneit, 2015; Millan-oropeza et al., 2020).
Bioinformatic genome analysis together with transcriptional
studies on the response to Pi depletion has been used to
identify novel members of the pho regulon (Baek and
Lee, 2006; Lidbury et al., 2016; Ord�oñez-Robles
et al., 2017; Martínez-Castro et al., 2018). The heterogene-
ity in the occurrence of pho regulon members was
observed at the species-specific level within the same
genus. (Lidbury et al., 2016; Ord�oñez-Robles et al., 2017;
Lidbury et al., 2021).
In most cases, the following genes encoding

phosphatase-type enzymes (responsible for the hydro-
lytic release of Pi from P-O containing Po compounds)
are upregulated in a pho regulon-dependent manner dur-
ing Pi starvation: phoA, phoX and phoD for ALPs; phoN
for AP (in S. typhimurium); phoD for phospholipase;
appA and phyC for phytases; glpQ and upgQ for
glycerophosphodiester phosphodiesterases, and ushA
for 50-nucleotidase (Wanner, 1990; Kasahara et al., 1991;
Russell D. Monds et al., 2006; Santos-beneit, 2015;
Lidbury et al., 2016; Martín et al., 2017; Grafe
et al., 2018; Lidbury et al., 2017b). Exceptions include
Streptomyces tsukubaensis whose phoA and phoD
genes are not controlled by the pho regulon (Martínez-
Castro et al., 2018). The pho regulon also regulates the
phnCDEFGHIJKLMNOP operon, which encodes several
C-P lyase enzymes that catalyse the release of Pi by
breaking C-P bonds (Stasi et al., 2019). In addition to
phosphatase regulation by the pho regulon, a few non-
pho regulated phosphatases have been reported. For
instance, the phoC gene, which encodes a class A NSAP
in Morganella morganii (Thaller et al., 1994), and at least
three C-P lyases [phosphonoacetaldehyde (encoded by
phnX), phosphonoacetate hydrolase (encoded by phnA),
and phosphonopyruvate hydrolase (encoded by palA)]
are pho regulon-independent (Quinn et al., 2007). The
regulation of the phoC gene of M. morganii has not yet
been elucidated. The phnX, phnA and palA genes are
regulated by distinct transcriptional regulators encoded
by lysR, phnR and palR genes respectively (Quinn
et al., 2007).
Several Po transporter genes that are regulated posi-

tively by the pho regulon include the Phn system for pho-
sphonate uptake (phnCDE) and the Ugp system for the
uptake of glycerophosphodiesters and G3P (ugpBAECQ)

(Wanner, 1990; Santos-beneit, 2015). Unlike the Phn
system, the recently identified aminoethylphosphonate
transporter AepP is Pi-insensitive (Murphy et al., 2021)
and thus is not regulated by the pho regulon. Other Po

transporters such as GlpT, UhpT and PgtP systems, all
of which belong to the OPA family by transporting their
respective organophosphate via anion exchange with
internal Pi, are generally not regulated by the pho regulon
(Elvin et al., 1985; Wanner, 1996; Lemieux et al., 2004b).
Despite the similar transport mechanism of these OPA-
type transporters, each is regulated by a distinct regula-
tory system.

In E. coli, the GlpT system, which is a G3P transporter
encoded by the glpT gene is not controlled by the pho
regulon (Larson et al., 1982; Wanner, 1996; Law
et al., 2009). The glpT gene is a member of the glp
regulon, which regulates the catabolism of glycerol, G3P
and glycerophosphodiesters (Larson et al., 1992). The
transcription of glpT and other genes in the glp regulon
are regulated by the G3P regulon repressor (GlpR),
encoded by the glpEGR operon in E. coli (Yang and
Larson, 1998; Lemieux et al., 2004a; Escapa
et al., 2013). GlpR repressor decreases the expression of
the genes in the glp regulon by binding to the operators
which are close to or overlapping with their promotor
regions (Yang and Larson, 1998). The expression of
GlpT is induced by extracellular G3P, which binds to the
GlpR repressor to lower its binding affinity, alleviate the
GlpR repression of the glpT gene and consequently
increase the GlpT expression (Cozzarelli et al., 1968;
Law et al., 2009). The expression of GlpT requires the
presence of cyclic adenosine monophosphate (cAMP),
which forms a complex with the cAMP receptor protein
(CRP) and binds to the promoter region to activate the
transcription of the glpT gene (Castañeda-García
et al., 2013). The glpT gene as well as other genes in the
glp regulon are additionally governed by catabolite
repression through products of the glycerolipid biosyn-
thetic pathway (Lemieux et al., 2004a). Under Pi starva-
tion conditions, G3P is mainly transported by the pho
regulon-dependent Ugp system, leading to the increase
in internal Pi concentration (Xavier et al., 1995). A high
level of internal Pi will stimulate the uptake of G3P by the
GlpT system, which takes up G3P by exchanging out Pi,
thus balancing the intracellular Pi level (Xavier
et al., 1995). Unlike in E. coli, the GlpT system in B. sub-
tilis is encoded by the glpQT operon which is induced by
Pi depletion as well as glycerol (Antelmann et al., 2000;
Lidbury et al., 2017b).

The UhpT transporter, which is encoded by the uhpT
gene, mediates the uptake of hexose-6-phosphate
(Sonna et al., 1988; Cattoir et al., 2020). The synthesis of
UhpT transporter is tightly regulated by the products of

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology Reports, 14, 3–24
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the uhpABC regulatory genes: a response regulator
UhpA, a histidine kinase UhpB and a receptor/transporter
protein UhpC (Islandt and Kadner, 1993; Schwöppe
et al., 2002; Västermark and Saier, 2014; Cattoir
et al., 2020). The UhpB protein functions as an activator
of UhpA, which regulates uhpT transcription (Weston and
Kadner, 1988; Wright and Kadner, 2001). The UhpC pro-
tein has a high sequence similarity to the UhpT trans-
porter (Islandt and Kadner, 1993) and can serve as a
G6P-specific transporter with a relatively low transport
rate compared to UhpT (Västermark and Saier, 2014).
The UhpC protein functions as a high-affinity G6P recep-
tor that signals UhpB to undergo autophosphorylation
and activate the UhpA regulator in the presence of exter-
nal G6P (Wright and Kadner, 2001; Västermark and
Saier, 2014; Cattoir et al., 2020). Thus, the expression of
the UhpT transporter is induced by extracellular G6P
(Dietz and Heppel, 1971; Hoffer et al., 2001b;
Castañeda-García et al., 2013, Cattoir et al., 2020). Simi-
lar to the GlpT system, the expression of the UhpT trans-
porter requires the cAMP-CRP complex to bind to the
promoter site of the uhpT gene (Castañeda-García
et al., 2013; Cattoir et al., 2020). The UhpT transporter
has been suggested to mediate the uptake of G6P as a
carbon source, not a phosphate source (Hoffer et al.,
2001b). Under Pi limitation, the pho regulon upregulates
the production of phosphatases which can degrade G6P
in the periplasm. Consequently, much higher concentra-
tions of the extracellular G6P are required to induce the
expression of UhpT (Hoffer et al., 2001b).

In addition to transporting Po, both GlpT and UhpT
have also received considerable attention due to their
ability to transport fosfomycin, an antibiotic commonly
used to treat urinary tract and gastrointestinal infections
(Santoro et al., 2011; Kurabayashi et al., 2015;
Ballestero-Téllez et al., 2017; Hirakawa et al., 2018;
Aghamali et. al., 2019; Cattoir et al., 2020). Studies on
fosfomycin susceptibility in enterohaemorrhagic E. coli
found that the expression of glpT and uhpT genes are
positively controlled by both CRP-cAMP and a global
transcriptional regulator called FNR, which is activated
under anoxic conditions (Kurabayashi et al., 2015;
Kurabayashi et al., 2017).

In S. typhimurium, the PgtP protein, which is encoded
by the pgtP gene, is a specific transporter for PEP,
2PGA and 3PGA (Milton H Saier Jr et al., 1975; Var-
adhachary and Maloney, 1991; Albermann et al., 2014;
Jiang et al., 2021). The transcription of pgtP is regulated
by three regulatory proteins encoded by the pgtA, pgtB
and pgtC genes: a response regulator PgtA, a sensor
kinase PgtB that activates PgtA and a protein PgtC that
modulates the kinase activity of PgtB (Yu and
Hong, 1986; Jiang et al., 1988; Niu et al., 1995). The
expression of PgtP is induced by extracellular PEP,

2PGA and 3PGA (Saier et al., 1975). The two proteins
PgtB and PgtC are involved in the induction of the pgtP
transcription by modulating the activity of PgtA in
response to inducer binding (Jiang et al., 1988; Yang
et al., 1988). The PgtA regulator is thought to function as
a derepressor which becomes active under the inducing
condition and subsequently facilitates the transcription of
the pgtP gene (Jiang et al., 1988). Recently, Jiang
et al. (2021) reported a newly identified protein named
VrpA as a potential positive regulator of pgtP. In
response to low glucose availability, the cAMP-CRP
induces the transcription of vrpA and activates the
expression of PgtP to upregulate 3PGA uptake (Jiang
et al., 2021).

Besides regulation of Pi or Po acquisition, bacteria alter
several intracellular processes to manage P allocation in
response to different environmental P availability. Several
soil bacteria remodel their lipid membranes to reduce the
proportion of P-containing lipids by replacing phospho-
lipid with glycolipid (Geiger et al., 1999; Lidbury
et al., 2016). For instance, S. meliloti was reported to
replace phospholipids with phosphate-free lipids (Geiger
et al., 1999). Using proteomics analysis of soil Pseudo-
monas species, Lidbury et al. (2016) found that proteins
involved in lipid remodelling (PlcP, DagK, OlsA, OlsB,
Cfa and TauD) in the pho regulon had a higher expres-
sion when these species (P. putida, P. fluorescens and
P. stutzeri) were grown under Pi limitation (Lidbury
et al., 2016). In B. subtilis, Pi starvation initiates the syn-
thesis of teichuronic acid, which is a non-phosphate con-
taining anionic polymer that replaces teichoic acid, a
phosphate-rich anionic polymer in the cell wall (Allenby
et al., 2005; Botella et al., 2011; Fritz and Mascher, 2014;
Devine, 2018). Under this condition, the active PhoP
represses the genes involved in teichoic acid synthesis
such as tagAB and tagDEF but upregulates the genes
involved in teichuronic acid (tuaA-H operon)
(Devine, 2018). The biosynthesis of nucleotides and
nucleic acids is also affected by P availability. Phospho-
rus starvation leads to the accumulation of guanosine tet-
raphosphate (ppGpp) and guanosine pentaphosphate
(pppGpp), collectively called (p)ppGpp (Spira and
Yagil, 1998; Sivapragasam et al., 2017). The (p)ppGpp
molecules are the key signalling molecules modulating
general metabolism and mediating the stringent
response, the bacterial metabolic response to nutrient
starvation and other stress (Hauryliuk et al., 2015). When
Pi is depleted, the level of (p)ppGpp increases and trig-
gers the stringent response to inhibit primary bacterial
metabolism, including amino acid metabolism, carbohy-
drate metabolism, ion transport systems, and the synthe-
sis of ribosomal RNA, and DNA replication, transcription
and translation (Hauryliuk et al., 2015; Wu et al., 2020).
In B. subtilis, the (p)ppGpp molecules directly inhibit

© 2021 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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DNA replication by inhibiting primase, an essential
enzyme in the replication process (Wang et al., 2007).
While the stringent response generally downregulates
DNA and nucleotide synthesis (Traxler et al., 2008), it
has been shown to promote the purine salvage pathway,
which recycles purines, in S. coelicolor (Sivapragasam
and Grove, 2016) and Agrobacterium fabrum
(Sivapragasam et al., 2017). The functions of (p)ppGpp
and the molecular mechanisms of (p)ppGpp-mediated
regulation are complex and beyond the scope of this arti-
cle. These topics are presented in detail in the review
article by Hauryliuk et al. (2015).

Future research directions

In the previous sections, we have presented what is
known regarding Po cycling by soil-associated or relevant
bacteria, from the biosynthesis of Po compounds to the
acquisition of P from Po either via the activity of phospha-
tase enzymes in releasing Pi or by direct Po assimilation
with specific transporter systems, and the regulation
involved in these processes depending on the Pi avail-
ability (Fig. 1). Despite the important role of bacteria in
soil P cycling, there is limited understanding on species-
specific diversity of phosphatases, Po transporter sys-
tems and their regulation. For instance, bacterial orders
such as Solibacterales, Acidobacterales and
Actinomycetales, which showed significant roles in P
cycling, remain poorly characterized (Bergkemper
et al., 2016). Such lack of species-specific information on
soil bacteria stems from the well-established fact that less
than 1% of soil microorganisms are considered cultivable
by standard cultivation methods (Rappé and
Giovannoni, 2003; Vartoukian et al., 2010; Giagnoni
et al., 2018). Thus, to this date, research on soil bacteria
often relies on referencing model organisms such as E.
coli and B. subtilis. However, some metabolic processes
and regulatory mechanisms differ from species to spe-
cies. For instance, the details of how the pho regulon
senses Pi availability and regulates responses vary
among different organisms (Santos-beneit, 2015). The
PgtP transporters, which are found in S. typhimurium are
absent in the commonly studied E. coli K12 (Goldrick
et al., 1988; Albermann et al., 2014). The regulation of
phosphatase genes in S. tsukubaensis is considerably
different from the model organism S. coelicolor
(Martínez-Castro et al., 2018). Furthermore, few studies
have addressed diesterase enzymes (Yao et al., 2018),
despite the importance of these enzymes in the initial
degradation of P polymers such as nucleic acids. The
diversity of diesterases, the bacterial communities
involved in their secretion and the soil conditions that can
affect their production or reactivity remain to be eluci-
dated. To establish a detailed understanding of bacterial

processes in soil P cycling, more species-specific studies
beyond the model organisms are needed. Metagenomics
represents an important approach employed to gain infor-
mation on uncultivated bacteria (Vartoukian et al., 2010).
However, due to the small size of genomic libraries
related to the genomes of the soil bacteria, there is still
limited information regarding the species-dependent
diversity of APs and phytases in soil bacterial communi-
ties. Therefore, new metagenomics studies on the
updated genes in the database can be useful in acquiring
information about the P-scavenging capabilities of the
microbial communities present in soil environments,
albeit resolving any insights on regulatory mechanisms
would still be challenging with this approach. We identi-
fied the following research topics, which are imminent to
improve our understanding of the role of soil bacteria in
cycling Po and provide insights into the potential biotech-
nological applications of these bacteria in sustainable
agriculture:

• Study of Po metabolism and regulations of P metabo-
lism and P acquisition in representative pure cultures
of soil bacteria to obtain information beyond those pro-
vided by the studies with E. coli and B. subtilis.

• Genomic, proteomic and exoproteomic studies of sin-
gle and mixed cultures of soil bacteria under different P
availability and P sources.

• Metagenomics studies on soil bacteria and Po utiliza-
tion under different soil environments, i.e. different pH,
climate, land usage, P amendments, and so on.

• Studies on Po metabolism and regulation by soil bacte-
rial communities.

• Determination of stability and lifespan of different clas-
ses of phosphatases in response to different soil char-
acteristics, such as different minerals and organic
matter.

• Determination of kinetic parameters of soil-associated
phosphatases and the influencing factors (metal cat-
ions, mineral surface chemistry, pH).

• Establishing curated databases for kinetics and stabil-
ity parameters of soil phosphatases to establish accu-
rate predictive models.

• Molecular modelling and atomic-scale studies on the
interactions and reactivity of phosphatases with differ-
ent mineral surfaces and organic matter complexes.

• Studies on the possible mechanistic role of bacterial
chemotaxis towards Pi/Po resources in the soil.
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