⁶⁰Co γ-irradiation of AlGaN UVC Light-Emitting Diodes

Xinyi Xia¹, Sergei Stepanoff², Aman Haque³, Douglas E. Wolfe², Simon Barke⁴, Peter J. Wass⁴, Fan Ren¹, John W. Conklin⁴ and S.J. Pearton⁵

Abstract

270 nm AlGaN UV Light-Emitting Diodes (LEDs) were exposed to 1-5 MRad fluences of Co-60 γ -rays. The effect of the exposure to radiation was a ~40% reduction in optical output after the highest fluence. No significant midgap emission was induced in the electroluminescence spectra of the irradiated LEDs. We ascribe the decrease in optical output to creation of non-radiative states within the active regions. There were small (5-10%) increases in forward and reverse current as a result of irradiation with an effective carrier removal rate of < 1 cm⁻¹. The irradiation did not produce any increase in degradation rate of the LEDs output power under high drive current (95 mA) compared to unirradiated devices, which is consistent with the lack of midgap emission. The relatively small changes in electrical and optical properties, along with the resistance of the Al_xGa_{1-x}N/AlN to displacement damage effects indicate these devices may be well-suited to harsh terrestrial and space radiation applications.

¹ Department of Chemical Engineering, University of Florida, Gainesville, FL 32606 USA

² Department of Materials Science & Engineering, Penn State University, University Park, PA 16802

³ Department of Mechanical Engineering, Penn State University, University Park, PA 16802

⁴ Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA

⁵ Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32606 USA

Introduction

Deep-UV Light-Emitting Diodes (LEDs) are a promising technology with a wide range of potential applications, including sterilization, water purification, and medical diagnostics ⁽¹⁻⁵⁾. These LEDs emit light in the deep-UV wavelength range (230-300 nm), which is strongly absorbed by DNA and RNA, making them effective at inactivating a variety of microorganisms ⁽³⁻⁵⁾. The external quantum efficiency (EQE) of Al_xGa_{1-x}N-based deep-UV LEDs is typically <0.5 percent, but this can be improved by optimizing the device structure and fabrication process ⁽⁶⁾. Recent advances in deep-UV LED technology have enabled the development of devices with EQEs of up to 10 percent, which is sufficient for many applications ⁽⁶⁾.

These LEDs have several advantages over conventional UV sources, such as mercury lamps and excimer lasers ⁽¹⁻⁶⁾. They are more compact, have a longer lifetime, and can be modulated at much higher frequencies. These LEDs are also expected to have applications in the Laser Interferometer Space Antenna (LISA), the first gravitational wave detector in space, for discharge capability on free-flying test masses to minimize the effect of electrostatic forces caused by cosmic rays and solar particles ⁽⁷⁻¹¹⁾.

However, there is still much to understand in terms of the response of these materials to various radiation environments, including total ionizing dose conditions where ionization energy deposition dominates and single event upsets during heavy ion strikes ^(9, 12-19). Sun et al. ⁽⁹⁾ reported experiments in which UV LEDs were irradiated with ~63MeV protons to fluences of 2×1012 protons/cm², equivalent to ~100 years of radiation dose in the LISA orbit. The light output from the LEDs did not show significant changes. The strong atomic bonding and high defect recombination rates at room temperature are reasons why these materials also display strong resistance to radiation damage displacement effects and highlights their potential for

operation in harsh space or terrestrial environments ⁽¹⁹⁾. However, the response to other sources of radiation, including gamma rays, neutrons, and electrons must be established. Radiation damage in photonic devices can cause several problems, including a decrease in the emission intensity, increase in the leakage current and a decrease in the breakdown voltage and creation of defects in the device, such as vacancies and interstitials, which can trap carriers and lead to non-radiative recombination. Wang et al.⁽¹²⁾ reported that γ -ray irradiation accelerated degradation caused by electrical stress in AlGaN-based UVC LEDs. Typically, UV LED aging rate is inversely proportional to the third power of drive current density ⁽²¹⁻²⁷⁾, and part of the degradation in optical output is due to Auger-Meitner recombination, in which electrons and holes recombine across the semiconductor band gap ⁽²⁸⁾. This leads to a transfer of energy via the Coulomb interaction to another electron or hole, which is excited to a higher energy state.

The presence of fairly resistive layers within the UVC LED raises the question of the possible susceptibility of such devices to ionizing radiation, which can be conveniently studied using gamma rays $^{(29)}$. Total Ionizing Dose (TID) testing using Co-60 γ sources remains the standard test method for space craft instrumentation qualification $^{(30)}$.

The main energy loss mechanism at the energy of Co-60 γ -rays is Compton scattering. This can lead to secondary electrons able to displace lattice atoms ^(31,32). The primary displacement defects created in AlGaN by gamma-irradiation are Frenkel pairs, produced by these Compton electrons. The Non-Ionizing Energy Loss (NIEL) for gamma rays is much less than for ions, with only a few percent of the gamma photon flux creating secondary Compton electrons.

In this paper we report on the response of UVC LEDs to Co-60 gamma rays. Even to fluences of 5 MRad, no midgap emission is introduced and only modest decreases in band edge

emission are observed. This fluence does not increase the degradation rate of output power under high drive currents.

Experimental

The 270 nm packaged LEDs (Klaran LA Series) with peak emission between 260 nm to 270 nm, >80 W output power and mounted in 3.5 mm x 3.5 mm surface mount diode packages were purchased from Crystal IS. The basic structure consists of epi layers from by Metal Organic Chemical Vapor Deposition on a (0001) AlN single crystal substrate. The buffer layer is ~0.5 μm of Al_{0.8}Ga_{0.2}N, followed by a multi-quantum well structure consisting of pairs of Al_{0.7}Ga_{0.3}N/Al_{0.8}Ga_{0.2}N wells/barriers. There is an electron blocking layer prior to the p-GaN top contact layer. More details are described elsewhere (33,34). A photograph of one of the LEDs is shown at the top of Figure 1, while the center and bottom shows the difference in the same device under bias without room illumination to show the almost complete absence of visible emission from midgap states. The current-voltage (I-V) characteristics were recorded with an Agilent 4156C parameter analyzer was used for forward and reverse current and capacitance-voltage (C-V) measurements. The emission spectra were measured using an Avantes AvaSpec-ULS2048XL-EVO spectrometer, which was fiber-coupled the spectrometer to the UV LED with a 600 µm diameter fiber optic cable. Total output power measurements were made by coupling the LEDs to a Si photodetector in series with a 55 Ohm resistor, measuring the resistor voltage, and calculating the resultant power.

Irradiation of packaged devices using Co-60 gamma rays was carried out in a 1 MW TRIGA reactor core at the RSEC, Penn State, with a dose rate of 180 krad/hour ($\pm \sim 10\%$), resulting in total fluence of 1 or 5 Mrad (Si). The isodose region was used to ensure

isotropic gamma dose. The TID was calculated using the relation 1rad (Si) = 2.0×10^9 photons.cm⁻², which represents the energy lost to ionization over mass. No secondary irradiation was induced in the AlGaN/AlN by Co-60 gamma rays. The LEDs were unbiased during the approximately 30-hour exposure, and the generation rate in the AlGaN quantum wells was estimated to be $\sim 10^{15}$ e-h pairs/Gy.cm³ based on reported threshold energies for pair creation. The gamma rays pass through the entire packages structure, as evidenced from the mean-free path shown in Figure 2(top). This was obtained from the EpiXS code for photon attenuation (35). The linear attenuation coefficients are dominated by Compton scattering for the energies of Co-60 γ -rays, as shown at the bottom of Figure 2 (35).

Results and Discussion

It is important to establish the spread in the initial performance of the LEDs so that the change in performance after irradiation can be quantified. Figure 3 shows the I-V characteristics from 20 individual devices prior to irradiation. It will be seen that this spread is comparable to the radiation-induced changes, so we identified each individual LED and kept track of their characteristics before and after the radiation exposure. The I-Vs are typical of previously published reports, with turn-on voltages around 4V (20,21). Outlier devices can be excluded by selecting for figures of merit, such as the UV power at 1 mA or 20 mA, the ratio of optical power within the main spectral peak to total optical power at low drive currents, reverse leakage current at a drive voltage of -6 V, ideality factor before turn-on, and ideality factor after turn-on (20,21). The ideality factors are generally > 2 due to the presence of multiple current conduction mechanisms (36-38).

Figure 4 shows the electro-luminescence spectra from a typical LED before and after 1 or 5 MRad fluence. The panel at top shows the data in linear form, where it is clear the peak

intensities have decreased by ~10 and 35%, respectively, for 1 and 5 MRad exposures. Noteworthy is the data in the bottom panel, where the log scale plots reveal there is no increase in the midgap emission from 400-600 nm. These transitions are usually ascribed to the presence of deep trap states, which degrade the optical and electrical performance of the LEDs (39,40). This has important implications for the subsequent aging kinetics of the LEDs, as discussed later. The increase in non-radiative recombination centers in the quantum wells and barriers, and this behavior has been ascribed to Al or Ga vacancy complexes (23,24).

Figure 5 shows the integrated power from the LEDs as a function of drive current before and after the fluences of 1 MRad (top) or 5 MRad (bottom). These were measured by the Si photodetector. The changes in output power support the small changes seen in peak bandedge intensity observed in the spectra.

Figure 6 shows the I-V characteristics from LEDs before and after irradiation with either 1 MRad (top) or 5 MRad (bottom). Within experimental error, there is no change in the I-V characteristics for the low fluence condition. For the 5 MRad condition, we were able to find an LED with low initial reverse leakage and that showed an increase in both reverse and forward current after irradiation for voltages <4 V forward and <6V reverse bias. This is consistent with previous report for devices where their performance was degraded by forward bias stressing $^{(12)}$. This was ascribed to generation of point defects which form deep levels and act as non-radiative Shockley–Read–Hall recombination centers $^{(23)}$. From the reverse bias capacitance change after irradiation, we found the carrier removal rate was < 1 cm⁻¹. This is consistent with the small amount of displacement damage created by the γ -rays.

Figure 7 shows that the aging characteristics of the LEDs under a high forward current of 95 mA was unaffected by the irradiation fluence of 5MRad. This is consistent with the low

concentration of midgap states evident from the emission spectra after irradiation. Wang et al. $^{(12)}$ reported that γ -irradiation accelerated the degradation of UVC LEDs induced by electrical stress. They employed lower Co-60 fluence of 1.75 MRad (Si) but did use LEDs grown on sapphire substrates, which will have higher dislocation densities than the devices in this study and may have made the devices more prone to degradation during forward bias stressing. Our results show the benefit of advanced AlN templates for growth, which improve LED performance (external and internal quantum efficiency) as well as LED lifetime.

Summary and Conclusions

UVC LEDs grown on AlN templates show robustness against Co-60 γ -rays to fluences of 5 MRad (Si) and show their applicability to operation in radiation environments such as space or nuclear plants. The devices show a decrease of ~40% in peak emission intensity as a result of the irradiation, with relatively small changes in the electrical characteristics due to trap-assisted tunnelling. The absence of midgap emission in the unirradiated LEDs is an advantage, since it is clear that a threshold density of midgap states are needed to affect the subsequent aging characteristics and starting with a low number means the introduction of traps by irradiation doesn't reach this threshold.

Given the previously established radiation hardness of UV LEDs to proton irradiation, our results add to the notion that these devices will be well-suited to space-borne applications.

Acknowledgments

This work was supported by NASA Earth Science Technology Office (ESTO) contract 80NSSC22K0288. The work at UF was also performed as part of Interaction of Ionizing Radiation with Matter University Research Alliance (IIRM-URA), sponsored by the Department of the Defense, Defense Threat Reduction Agency under award HDTRA1-20-2-

0002. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. AH also acknowledges support from the US National Science Foundation (ECCS # 2015795). The work at UF was also supported by NSF DMR 1856662.

Data Availability

The data that supports the findings of this study are available within the article.

Declarations

The authors have no conflicts to disclose.

CRediT author statement

Xinyi Xia: Conceptualization, Methodology, Investigation: Sergei Stepanoff, Methodology Aman Haque, Methodology: Douglas E. Wolfe, Methodology: Fan Ren, Methodology, Writing- Reviewing and Editing: Peter J. Wass, Methodology, Writing- Reviewing and Editing: John W. Conklin, Methodology, Writing- Reviewing and Editing: S.J. Pearton, Methodology, Writing.

References

- 1. Hirayama, H., 2018, Recent progress in AlGaN deep-UV LEDs, in Light-Emitting Diodes, edited by J. Thirumalai (IntechOpen, Rijeka, 2018), Chap. 7.
- 2. Shur, M.S. and Gaska, R., 2010, Deep-ultraviolet light-emitting diodes," IEEE Trans. Electron Devices 57, 12–25.
- 3. Trivellin, N., Fiorimonte, D., Piva, F., Buffolo, M., De Santi, C., Meneghesso, G., Zanoni, E. and Meneghini, M., 2022, Reliability of commercial UVC LEDs: 2022 state-of-the-art," Electronics 11, 728-746.
- 4. Kowalski, W., 2009, Ultraviolet Germicidal Irradiation Handbook. Berlin, Heidelberg: Springer, Berlin Heidelberg, doi: 10.1007/978-3-642-01999-9.
- 5. Inagaki, H., Saito, A., Sugiyama, H., Okabayashi, T., and S. Fujimoto, S., 2020, Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation, Emerg Microbes Infect, 9, pp.1744–1747, doi: 10.1080/22221751.2020.1796529
- 6. Amano, H., Collazo, R., De Santi, C., Einfeldt, S., Funato, M., Glaab, J., Hagedorn, S., Hirano, A., Hirayama, H., Ishii, R., Kashima, Y., Kawakami, Y., Kirste, R., Kneissl, M., Martin, R., Mehnke, F., Meneghini, M., Ougazzaden, A., Parbrook, P.J., Rajan, S., Reddy, P., Römer, F., Ruschel, J., Sarkar, B., Scholz, F., Schowalter, L.J., Shields, P., Sitar, Z., Sulmoni, L., Wang, T., Wernick, T., Weyers, M., Witzigmann, B., Wu, Y.R., Wunderer, T., and Zhang, Y., 2020, The 2020 UV emitter roadmap, J. Phys. D: Appl. Phys. 53, 503001.
- 7. Hollington, D., Baird, J.T., Sumner, T.J. and Wass, P.J., Characterizing and testing deep UV LEDs for use in space applications, 2015, Classical Quantum Gravity 32, 235020.
- 8. Wass, P.J., Araújo, H.M., Shaul, D.N.A. and Sumner, T.J., 2005, Test-mass charging simulations for the LISA pathfinder mission, Classical Quantum Gravity 22, S311–S317.

- 9. Sun, K.X., Leindecker, N., Higuchi, S., Goebel, J., Buchman, S., and R. L. Byer, R.L., 2009, UV LED operation lifetime and radiation hardness qualification for space flights, Journal of Physics: Conference Series, 154, 012028-1-012028-6.
- 10. Saraf, S., Buchman, S., Balakrishnan, K., Lui, C.Y., Soulage, M., Faied, D., Hanson, J., Ling, K., Jaroux, B., Suwaidan, B.A., AlRashed, A. Al-Nassban, B. Alaqeel, F., Harbi, M.A., Salamah, B.B., Othman, M.B., Qasim, B.B., Alfauwaz, A., Al-Majed, M., and DeBra, D.,2016, Ground testing and flight demonstration of charge management of insulated test masses using UV LED electron photoemission, Classical Quantum Gravity 33, 245004.
- 11. Wass, P.J., and LISA Pathfinder Collaboration, 2018, Free-fall performance for the LISA gravitational wave observatory: New results from LISA pathfinder," in APS April Meeting 2018 (2018), Vol. 2018, p. C14.001. Available at http://meetings.aps.org/link/BAPS.2018.APR.C14.1 (accessed on 4/12/2023).
- 12. Wang, Y., Zheng, X., Zhu, J., Cao, Y., Wang, X., Zhu, T., Lv, L., Mao, W., Wang, C., Ma, X., Li, P., Hua, N., Chen, K., Wang, M., Zhang, Q., and Hao, Y., 2021, Gamma-Irradiation-Accelerated Degradation in AlGaN-Based UVC LEDs Under Electrical Stress, IEEE Trans Nucl. Sci, 68, 149-155.
- Moseley, M. W. Allerman, A.A., Crawford, M.H., Wierer, J.J., Smith, M.L., and A.
 M. Armstrong, A.M., 2015, Detection and modeling of leakage current in AlGaN-based
 deep ultraviolet light-emitting diodes, J. Appl. Phys., 117, 095301-1–095301-7, Mar. 2015.
- 14. Floriduz A., and Devine, J.D., 2018, Modelling of proton irradiated GaN-based high-power white light-emitting diodes, Jpn. J. Appl. Phys., 57, 080304-1–080304-5.
- 15. Lee, I.H., Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Lagov, P.B., Zinov'Ev, R.A., Yakimov, E.B., Shcherbachev, K.D., Pearton, S.J., 2017, Point defects

- controlling non-radiative recombination in GaN blue light emitting diodes: Insights from radiation damage experiments, J. Appl. Phys., 122, 115704-1–115704-6.
- 16. Lee, I.H., Polyakov, A.Y., Smirnov, Shchemerov, I.V., Shmidt, N.M., Tal'nishnih, N.A., Shabunina, E.I., Cho, H.S., Hwang, S.M., Zinovyev, R.A., Didenko, S.I., Lagov, P.B., Pearton, S.J., 2017, Electron irradiation of near-UV GaN/InGaN light emitting diodes, Phys. Status Solidi A, 214, 1700372-1–1700372-5.
- 17. Khanna, R., Han, S.Y., Pearton, S.J., Schoenfeld, D., Schoenfeld, W.V., and Ren, F., 2005, High dose Co-60 gamma irradiation of InGaN quantum well light-emitting diodes, Appl. Phys. Lett., 87, 212107-1–212107-3. DOI: 10.1063/1.2132085
- 18. Luo, B., Johnson, J.W., Ren, F., Allums, K.K., Abernathy, C.R., Pearton, S.J., A. M. Dabiran, A.M., Wowchack, A., Polley, C.J., Chow, P.P., Schoenfeld, D., Baca, A.G., 2002, "Influence of 60 Co γ -rays on dc performance of AlGaN/GaN high electron mobility transistors," Appl. Phys. Lett., 80, 604–606, https://doi.org/10.1063/1.1445809.
- 19. Pearton, S.J., Ren, F., Patrick, E., Law, M.E., and Polyakov, A.Y., 2015, Reviewionizing radiation damage effects on GaN devices, ECS J. Solid State Sci. Technol., 5, Q35–Q60-96. DOI 10.1149/2.0251602jss
- 20. Letson, B.C., Barke, S., Wass, P., Mueller, G., Ren, F., Pearton, S.J., and Conklin, J.W., 2023, Deep UV AlGaN LED reliability for long duration space missions, J. Vac. Sci. Technol. A 41, 013202. https://doi.org/10.1116/6.0002199
- 21. Letson, B.C., Barke, S., Kenyon, S.P., Olatunde, T., Mueller, G., Wass, P., Ren, F., Pearton, S.J., Conklin, J.W., 2022, High volume UV LED performance testing. Rev Sci Instrum, 93, 114503. https://doi.org/10.1063/5.0107372
- 22. Yoshikawa, A., Hasegawa, R., Morishita, T., Nagas, K., Yamada, S., Grandusky, J.,

- Mann, J., Amy Miller, A., and Schowalter, L.J., 2020, Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm," Appl. Phys. Express, 13, 022001, doi: 10.35848/1882-0786/ab65fb.
- 23. Buffolo, M., Caria, A., Piva, F., Roccato, N., Casu, C., De Santi, C., Trivellin, N., Meneghesso, G., Zanoni, E., Matteo Meneghini, 2022, Defects and Reliability of GaN-Based LEDs: Review and Perspectives, Physica Status Solidi (a), 219. 2100727, doi: 10.1002/pssa.202100727.
- 24. Trivellin, N., Fiorimonte, D., Piva, F., Buffolo, M., De Santi, C., Meneghesso, G., Zanoni, E., and Meneghini, M., 2022, Reliability of Commercial UVC LEDs: 2022 State-of-the-Art, Electronics (Basel), 11, 728-733, doi: 10.3390/electronics11050728.
- 25. Monti, D., Meneghini, M., De Santi, C., Meneghesso, G., Zanoni, E., Glaab, J., Rass, J., Einfeldt, S., Mehnke, F., Enslin, J., Wernicke, T., and Kneiss, M., 2017, Defect-related degradation of AlGaN-Based UV-B LEDs IEEE Trans. Electron. Dev.64, 200–5, doi: 10.1109/TED.2016.2631720.
- 26. Ma, Z., Cao, H., Lin, S., Li, X., and Zhao, L., 2019, Degradation and failure mechanism of AlGaNbased UVC-LEDs, Solid State Electron, 156, 92–96, doi: 10.1016/j.sse.2019.01.004.
- 27. Piva, F., C. De Santi, M. Deki, M., Kushimoto M., H. Amano, H., Tomozawa, H., Shibata, N., Meneghesso, G., Zanoni, E., and M. Meneghini, M., 2020, Modeling the degradation mechanisms of AlGaN-based UV-C LEDs: from injection efficiency to mid-gap state generation, Photonics Res, 8, 1786, doi: 10.1364/prj.401785
- 28. Matsakis, D., Coster, A., Laster, B., Sime, R., A renaming proposal, 2019, The Auger–Meitner effect, Physics Today, 1 September 2019; 72 (9): 10–11.

https://doi.org/10.1063/PT.3.4281

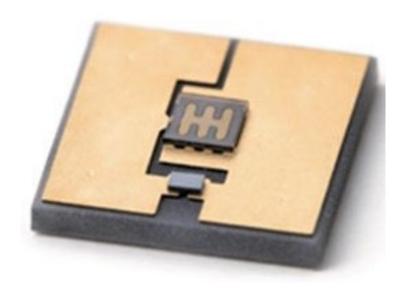
- **29.** Summers, G.P., Burke, E.A., Shapiro, P., Messenger, S.R., and Walters, R.J., 1993, Damage correlations in semiconductors exposed to gamma, electron and proton radiations, IEEE Trans. Nucl. Sci. 40, 1372. doi: 10.1109/23.273529.
- 30. See http://escies.org/escc-specs/published/22900.pdf for "Total Dose Steady-State Irradiation Test Method," European Space Components, Coordination Basic Specification No. 22900 (2016).
- 31. El Allam, E., Inguimbert, C., Meulenberg, A., Jorio, A., and Zorkani, I., 2018, J. Appl. Phys. 123, 095703.
- 32. Fleetwood, D.M., 2013, IEEE Trans. Nucl. Sci. 60, 1706-1712.
- 33. Kushimoto, M., Zhang, Z., Sugiyama, N., Honda, Y., Schowalter, L.J., Sasaoka, C., and Amano, H., 2021, Impact of heat treatment process on threshold current density in AlGaN-based deep-ultraviolet laser diodes on AlN substrate, 2021, Appl. Phys. Express 14, 051003
- 34. Kneissl, M., Seong, T. Y., Han, J. and Amano, H, 2019, The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 13, 233–244, https://doi.org/10.1038/s41566-019-0359-9
- 35. Hila, F.C., Asuncion-Astronomo, A., Dingle, C.A.M., Jecong, J.F.M., Javier-Hila, A.M.V., Gili, M. B. Z., Balderas, C.V., Lopez, G.E.P., Guillermo, N.R.D., Amorsolo, A.V., 2021, EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8), Radiation Physics and Chemistry, 182, 109331, https://doi.org/10.1016/j.radphyschem.2020.109331.
- 36. Masui, H., 2011, Diode ideality factor in modern light-emitting diodes, Semicond

- Sci. Tech. 26, 075011 (2011). https://doi.org/10.1088/0268-1242/26/7/075011
- 37. Shah, J.M., Li, Y.L., Gessmann, T., and Schubert, E.F., 2003, Experimental analysis and theoretical model for anomalously high ideality factors (n>2.0) in AlGaN/GaN p-n junction diodes, J. Appl. Phys. 94, 2627. https://doi.org/10.1063/1.1593218
- 38. Masui, H., Nakamura, S., and DenBaars, S.P., 2010, Technique to evaluate the diode ideality factor of light-emitting diodes, Appl. Phys. Lett. 96, 073509. https://doi.org/10.1063/1.3318285
- 39. Chichibu, S.F., Uedono, A., Kojima, K., Ikeda, H., Fujito, K., Takashima, S., Edo, M., Ueno, K., and Ishibashi, S., 2018, The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN, J Appl Phys, 123, 161413, doi: 10.1063/1.5012994.
- 40. Nykänen, H., Suihkonen, S., Kilanski L., Sopanen, M., and Tuomisto, F., 2012, Low energy electron beam induced vacancy activation in GaN, Appl Phys Lett, 100, 122105, doi: 10.1063/1.3696047.

Figure Captions.

Fig 1. (top) Optical microscope image of packaged UV LED (center) image of device at zero bias and (bottom) small amount of visible light observed under bias in the dark.

Figure 2.(top) Mean free path of γ -rays as a function of energy in AlN (bottom) linear attenuation coefficients as a function of photon energies. The specific case of specific case of Co-60 γ -ray energies are indicated by the vertical lines in both plots.


Figure 3. Collection of I-V characteristics from 10 different UV LEDs prior to irradiation.

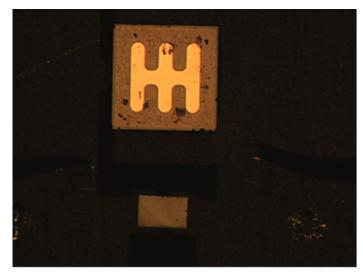
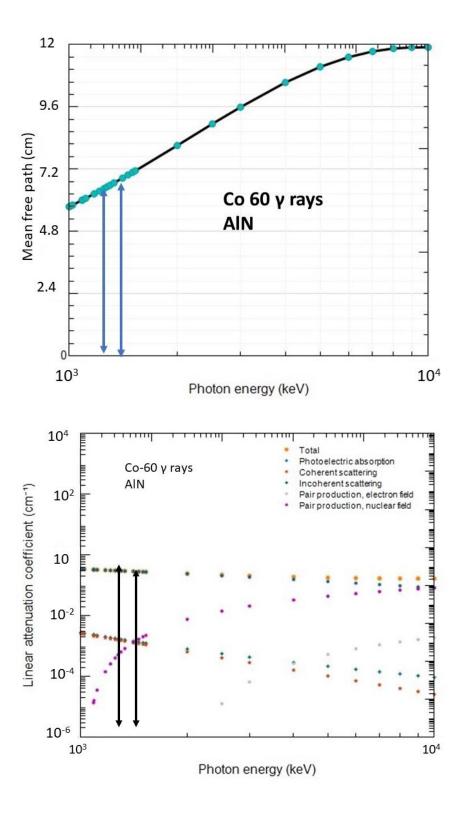
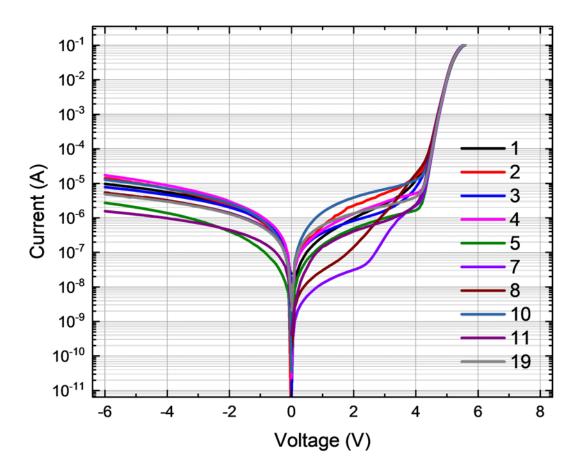

Figure 4. (top) Output spectra from UV LED before and after irradiation with 1 or 5MRad fluence (bottom same spectra, shown on log-scale. Note the absence of midgap emission, even after irradiation.

Figure 5. Output power as a function of drive current before and after (top) 1 MRad fluence or (bottom) 5MRad fluence.


Figure 6. I-V characteristics from UV LEDs before and after irradiation with (top) 1MRad or (bottom) 5 MRad.


Figure 7. Time dependent peak intensity under forward 95 mA bias for reference(unirradiated) and 5MRad fluence exposed LEDs.

