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Abstract
A longitudinal diffusion tensor imaging (DTI) study on a single brain can be remarkably
useful to probe white matter fiber connectivity that may or may not be stable over time. We
consider a novel testing problem where the null hypothesis states that the trajectories of a
coherently oriented fiber population remain the same over a fixed period of time. Compared
to other applications that use changes in DTI scalar metrics over time, our test is focused on
the partial derivative of the continuous ensemble of fiber trajectories with respect to time. The
test statistic is shown to have the limiting chi-square distribution under the null hypothesis.
The power of the test is demonstrated using Monte Carlo simulations based on both the
theoretical and empirical critical values. The proposed method is applied to a longitudinal
DTI study of a normal brain.

Keywords Functional central limit theorem · Nadaraya–Watson type kernel estimator ·
White matter fiber tractography

1 Introduction

Diffusion weighted imaging (DWI) is an established magnetic resonance imaging (MRI)
technique for early diagnosis and prognosis of brain disorders that have axonal damage,
such as Alzheimer’s disease (Zhu et al. 2013). It is not only supported by the advantages of
conventional MRI such as its radiation-free imaging ability, but also reflects the diffusion of
water molecules in the tissue of the brain when generating images. Diffusion tensor imaging
(DTI) is a modeling method to reconstruct white matter fiber tracts based on the DWI data
which includesmultiplemagneticfield gradient direction changes to be sensitive to directional
water diffusion. In the white matter of the brain, a coherently oriented fiber bundle hinders
the diffusion of water molecules in the directions perpendicular to the fiber population. Thus,
water molecules diffuse anisotropically and the movement results in a 3 × 3 symmetric and
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positive definite second-order tensor that is known as a diffusion tensor in DTI. The diffusion
tensor is fully determined by six distinct elements due to its symmetry property.

In DTI-based fiber tractography, the magnitudes and directions of the diffusion tensor
are of great importance to map neuronal structural connectivity. Each positive eigenvalue
quantifies the diffusivity of the diffusion tensor in the corresponding direction of the mutu-
ally orthogonal eigenvectors. In particular, the dominant eigenvector of the diffusion tensor
associated with the largest eigenvalue reveals the orientation of the coherent fiber population
in a region of interest (ROI). The fundamental physics of DTI and its application to fiber
tractography can be found in Johansen-Berg and Behrens (2014), Jones (2011), Mori and
Tournier (2013), and references therein. Over the last two decades, many longitudinal DTI
studies have employed existing statistical methods to examine longitudinal changes in DTI
measurements usingmetrics such as fractional anisotropy (the normalized standard deviation
of eigenvalues), mean diffusivity (the average of eigenvalues), axial diffusivity (the largest
eigenvalue), and radial diffusivity (the average of the two smaller eigenvalues) over time
(Dinkel et al. 2014; Kumar et al. 2012; Shaffer et al. 2017; Wu et al. 2010). In particular,
parametric methods such as generalized linear models are used on those metrics.

However, studying the time-dependent change in the continuous ensemble of fiber trajec-
tories requires a different approach that harnesses the whole brain information in the region
that surrounds the fiber. While current methods based on eigenvalues of the diffusion tensor
at different time points convey very partial information of the anatomy of the brain, our
approach fully takes advantage of the whole brain in a longitudinal manner. We primarily
focus on a hypothesis test for the problem of detecting the rate of change in the trajectories
of the coherently oriented fiber population over time in a certain ROI. The proposed test is
motivated by the need to detect the subtle but critical longitudinal changes in the orientation
of fiber trajectories that may be caused by normal aging and neurodegenerative diseases.
Previous similar works by Koltchinskii et al. (2007) and Carmichael and Sakhanenko (2016)
modeled and studied DTI-based fiber tractography in non-longitudinal setting.

The rest of the paper consists of the following sections. We describe the mathematical
framework of the testing problem in Sect. 2, followed by the estimation procedure in Sect. 3.
Two main theorems are given in Sect. 4. Numerical approximation is briefly illustrated
in Sect. 5. Monte Carlo simulations and real data analysis are presented in Sects. 6 and 7 ,
respectively. Future research directions arising from some limitations are addressed in Sect. 8.

2 Framework

Let x = [x1 x2 x3]� ∈ X , where X is a compact set in R
3. Let t ∈ [0, T ] with T > 0 in R.

Let u = (x, t) ∈ G, where G = X × [0, T ] is a compact set in R
4. Given u ∈ G, D denotes

the following 3 × 3 symmetric matrix-valued function

D(u) =
⎡
⎣
D11(u) D12(u) D13(u)

D12(u) D22(u) D23(u)

D13(u) D23(u) D33(u)

⎤
⎦ . (1)

We require the following assumption:

(D1) D is symmetric, positive definite, and twice continuously differentiablewith the support
in G, where it has a simple maximum eigenvalue.
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With a slight abuse of notation, D is equivalent to the following 6×1 vector-valued function
which consists of six distinct elements of D in (1):

D(u) = [D11(u) D12(u) D13(u) D22(u) D23(u) D33(u)]�

at u ∈ G. In this paper, we consider a 6 × 1 vector-valued function D as the longitudinal
diffusion tensor. The principal eigenvector of D associated with the largest eigenvalue at
u ∈ G represents its dominant direction and is denoted as v(D(·)). Note that condition
(D1) guarantees that ∂

∂D v(D(·)) is a 3 × 6 well-defined matrix which is differentiable in a
neighborhood of D, see Theorem 8.9 in Magnus and Neudecker (2019).

With a slight abuse of notation, we introduce a 3 × 1 vector-valued function x : [0, S] ×
[0, T ] → X , where s ∈ [0, S], S ∈ R+ is a spatial point (arc length along the curve) and
t ∈ [0, T ] is a temporal point that plays a role of a parameter. The longitudinal ensemble of
fiber trajectories can be established by solving the following ordinary differential equation
(ODE) with the parameter time t ∈ [0, T ]:

∂

∂s
x(s, t) = v(D(x(s, t), t)), s ∈ [0, S], x(0, t) = x0 ∈ X . (2)

We require the following assumption:

(D2) For some T > 0, {(x0, t), t ∈ [0, T ]} is inside the support of D.

By integration, (2) is equivalent to

x(s, t) = x0 +
∫ s

0
v(D(x(ξ, t), t))dξ. (3)

Under (D1) and (D2), x(s, t) exists, is unique, and stays insideX . The longitudinal ensemble
of fiber trajectories, x(s, t), is also referred to as an integral curve of the principal eigenvector
of the longitudinal diffusion tensor at the given time point. See Coddington and Levinson
(1955) for the uniqueness theorem on ODEs with the parameter.

The time rate of change of the longitudinal ensemble of fiber trajectories, ∂
∂t x(s, t), exists

and it can be carried out by Lebesgue’s dominated convergence theorem as follows:

∂

∂t
x(s, t) =

∫ s

0

∂

∂D
v(D(x(ξ, t), t))

∂

∂x
D(x(ξ, t), t)

∂

∂t
x(ξ, t)dξ

+
∫ s

0

∂

∂D
v(D(x(ξ, t), t))

∂

∂t
D(x(ξ, t), t)dξ, s ∈ [0, S], t ∈ [0, T ]. (4)

In this paper, we are interested in testing the null hypothesis H0 : ∂
∂t x(s, t) = 0, where 0

denotes a 3 × 1 vector of 0s, (i.e., the longitudinal ensemble of fiber trajectories is time-
invariant) against the alternative hypothesis HA : ∂

∂t x(s, t) �= 0 (i.e., the longitudinal
ensemble of fiber trajectories is time-varying).When H0 is true, it implies that the underlying
longitudinal diffusion tensor D also does not depend on time t .

D is not directly observed in DTI. One can infer D in (1) from the work of Stejskal and
Tanner (1965) whose equation defines

y(u; g) = −bg�D(u)g, u ∈ G,

where y(u; g) = log
( A(u;g)
A0(u)

)
, A is an observed echo amplitude (signal intensity) in the

presence of a magnetic field gradient g ∈ R
3 at u ∈ G, and A0 is a baseline amplitude

without any gradient at u ∈ G. The constant b is referred to as the b-value which includes
the gyromagnetic ratio, the gradient duration and separation, and other timing parameters of
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the gradient pulse. In DTI, y, b, and g are observed, and hence, one can solve the equation
for D.

However, these signal losses are corrupted by noise measurement errors that arise from
factors due to head motion and physiological noise during MRI scans. Thus, we consider the
following linear model with additive noise errors for the estimation of the diffusion tensor
given the set of N ≥ 6 magnetic field gradients gk ∈ R

3, k = 1, . . . , N :

Y (u) = BD(u) + Σ1/2(u)Ξ, u ∈ G, (5)

where Y (u) = [y(u; g1) · · · y(u; gN )]� is a N ×1 observed vector where the y-values being
vertically stacked and B is a N ×6 known tensor of the b-values obtained from {g1, . . . , gN }
during vectorization of D. B is further assumed to be of rank 6. D is a 6 × 1 unknown
vector which represents the longitudinal diffusion tensor at u ∈ G. Σ is a N × N unknown
symmetric and positive definite tensor. We further assume

(S) Σ is continuous in the support of D.

In the above Ξ is a N × 1 random vector with a zero mean vector and an identity variance.
A similar model in non-longitudinal design is suggested by Carmichael and Sakhanenko
(2016).

In the next section, we outline the estimation procedure for the longitudinal diffusion
tensor D, its principal eigenvector v(D(·)), the longitudinal ensemble of fiber trajectories
x(s, t), and its rate of change in time ∂

∂t x(s, t). Although they are not directly observable in
the longitudinal DTI study, they can be estimated and further used in testing our hypothesis.

3 Estimation

3.1 Observations

LongitudinalDWI scans can be viewed as a collection of data on a non-random4-dimensional
space-time grid. When n denotes the number of points in the 4D grid, we have n = nxnt ,
where nx is the number of spatial points in the 3D grid (typically voxels) and nt is the number
of time points for the brain scan. For example, nx = 128 × 128 × 48 = 786, 432 voxels or
256× 256× 96 = 6, 291, 456 voxels and nt = 7 when the brain is scanned over 7 different
time points. Since n is sufficiently large in the longitudinal DTI study, we rather introduce
i.i.d. uniformly distributed random variablesUi , i = 1, . . . , n, in G to represent the observed
points in the 4D grid. The use of random design simplifies the theoretical derivations since
we work with integrals and derivatives of stochastic processes in Sect. 4. One can work with
a fixed design, then one would have to consider numerical approximations to integrals and
finite differences in place of derivatives similar to those in Sakhanenko et al. (2021).

Based on (5), the observations in the 4D grid are represented by

(Ui , Y (Ui )) with Y (Ui ) = BD(Ui ) + Σ1/2(Ui )Ξi , i = 1, . . . , n,

where Ξi , i = 1, . . . , n, are i.i.d. N × 1 random vectors having a zero mean vector and an
identity variance.Ξi , i = 1, . . . , n, are independent ofUi , i = 1, . . . , n. These observations
enable us to estimate both the diffusion tensor D and the noise tensorΣ in 5. In the following
sections, we employ a multi-step estimation procedure to achieve the goal of testing the null
hypothesis H0 : ∂

∂t x(s, t) = 0.
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3.2 A longitudinal diffusion tensor

First, we compute the ordinary least squares (ols) estimate of D which is denoted by D̃ols .
It can be decomposed into D̃ols(u) = D(u) + Γ (u) at u ∈ G, where Γ is a 6 × 1 random
noise vector such that

Γ (u) = (B�B)−1B�Σ1/2(u)Ξ, u ∈ G.

We also define Γ0(u) = (B�B)−1B�Σ1/2(u), u ∈ G. Then we have

E

[
Γ (u)Γ �(u)

]
= Γ0(u)E[ΞΞ�]Γ �

0 (u) = Γ0(u)Γ �
0 (u), u ∈ G.

(B�B)−1 exists since N ≥ 6 and B has rank 6.
Second, we use the following Nadaraya–Watson type kernel regression estimator (NWE)

D̂n(u) = 1

nh4n

n∑
i=1

D̃ols(Ui )K
(u −Ui

hn

)
, u ∈ G, (6)

where K is a symmetric probability kernel of order 2 and hn is the bandwidth. One can
choose, for example, the standard Gaussian kernel such that

K (u) = (2π)−2e−0.5u�u, u ∈ R
4. (7)

3.3 A longitudinal ensemble of fiber trajectories and its rate of change over time

A 6 × 1 vector D̂n at u ∈ G in (6) can be written as a 3 × 3 symmetric matrix in a similar
manner to (1). Third, we take the principal eigenvector of D̂n associated with the leading
eigenvalue at u ∈ G. Condition (D1), (D2), and the convergence in probability of D̂n to D in
Lemma 1 in Sect. 4 guarantee that D̂n for large enough n has a simple maximal eigenvalue,
v(D̂n(·)) exists, and is unique. Fourth, x(s, t) in (3) can be estimated by the following plug-in
estimator:

X̂n(s, t) = x0 +
∫ s

0
v(D̂n(X̂n(ξ, t), t))dξ, s ∈ [0, S], t ∈ [0, T ], (8)

where x0 is the initial value in X and v(D̂n(X̂n(s, t), t)) denotes the principal eigenvector
associated with the largest eigenvalue of the NWE in (6) whose u = (x, t) is replaced by
(X̂n(s, t), t) for s ∈ [0, S], t ∈ [0, T ].

Lastly, the time rate of change ∂
∂t x(s, t) in (4) can also be estimated by the plug-in

estimator. For s ∈ [0, S], t ∈ [0, T ],
∂

∂t
X̂n(s, t) =

∫ s

0

∂

∂D
v(D̂n(X̂n(s, t), t))

∂

∂x
D̂n(X̂n(s, t), t)

∂

∂t
X̂n(s, t)dξ

+
∫ s

0

∂

∂D
v(D̂n(X̂n(s, t), t))

∂

∂t
D̂n(X̂n(s, t), t)dξ. (9)

Lemmas in Sect. 4 also show the convergence in probability of X̂n(s, t) to x(s, t) and the
convergence in probability of ∂

∂t X̂n(s, t) to ∂
∂t x(s, t) for large enough n. That is, the solution

of (8) exists, is unique, and stays in X .
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3.4 A longitudinal noise tensor

The estimation of Σ in (5) is done similarly to the estimation of a scale function in a non-
parametric heteroscedastic regression model as in chapter 4.3 in Efromovich (2014). First,
we take the following residual tensors for i = 1, . . . , n:

Σ̃i = [
Y (Ui ) − BD̂n(Ui )

][
Y (Ui ) − BD̂n(Ui )

]�
.

Second, we apply the NWE on Σ̃i ≈ Σ(Ui )+Σ(Ui )(ΞiΞ
�
i −I)where I denotes an identity

matrix. It is denoted as

Σ̂n(u) = 1

nh4n

n∑
i=1

Σ̃i K
(u −Ui

hn

)
, u ∈ G, (10)

where K is the same kernel as in (7). Under condition (S), Σ̂n is a consistent estimator of Σ

provided that hn → 0 and nh4n → ∞ as n → ∞. See Efromovich (2014) for reference.

4 Main theorems

Suppose that nh7n → β as n → ∞, where β > 0 is a known fixed number. Then the following
lemmas are satisfied.

Lemma 1 Under (D1) and (D2), we have

sup
u∈G

∣∣D̂n(u) − D(u)
∣∣ → 0

in probability as n → ∞.

Lemma 2 Under (D1), (D2), and (S), we have

sup
s∈[0,S],t∈[0,T ]

∣∣X̂n(s, t) − x(s, t)
∣∣ → 0

in probability as n → ∞.

Lemma 3 Under (D1) and (D2), we have

sup
u∈G

∣∣∣∣
∂

∂x
D̂n(u) − ∂

∂x
D(u)

∣∣∣∣ → 0 and sup
u∈G

∣∣∣∣
∂

∂t
D̂n(u) − ∂

∂t
D(u)

∣∣∣∣ → 0

in probability as n → ∞.

Lemma 4 Under (D1), (D2), and (S), we have

sup
s∈[0,S],t∈[0,T ]

∣∣∣∣
∂

∂t
X̂n(s, t) − ∂

∂t
x(s, t)

∣∣∣∣ → 0

in probability as n → ∞.

The proofs of Lemmas 1, 2, 3, and 4 are given in the supplementary material.
In this section, Theorem 1 is provided to construct the asymptotic confidence ellipsoids

for the longitudinal ensemble of fiber trajectories. Theorem 2 presents the test on whether
the longitudinal ensemble of fiber trajectories is time-invariant. Throughout the following
Theorems, we use a 3×3matrix-valuedGreen’s functionG with the initial valueG(ξ, ξ, t) =
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I, where I denotes an identity matrix. For ξ ∈ [0, s], s ∈ [0, S] at the parameter t ∈ [0, T ],
the Green’s function is defined as

G(s, ξ, t) = I +
∫ s

ξ

∂

∂D
v(D(x(τ, t), t))

∂

∂x
D(x(τ, t), t)G(τ, ξ, t)dτ,

where G is continuous in (s, ξ) satisfying a Lipschitz condition with respect to s ∈ [0, S].
See Coddington and Levinson (1955) for the existence and use of the Green’s function. Based
on the Green’s function, we use a 3 × 6 matrix-valued function

g(s, ξ, t) = I[0≤ξ≤s]G(s, ξ, t)
∂

∂D
v(D(x(ξ, t), t)),

where I denotes an indicator function (i.e., 1 if 0 ≤ ξ ≤ s and 0 otherwise) in the following
Theorems.

Theorems 1 and 2 are provided with the proofs of mean and covariance functions. The
rest of the proof of Theorems 1 and 2 is given in the supplementary material, which is based
on the functional central limit theorem in terms of the convergence of finite dimensional
distributions using Lyapunov’s condition and the stochastic equicontinuity. See Vaart and
Wellner (1996) and Billingsley (1999) for the functional central limit theorem details.

Theorem 1 Assume (D1), (D2), and (S) hold. Suppose that nh7n → β as n → ∞, where
β > 0 is a known fixed number. For s ∈ [0, S], t ∈ [0, T ], the sequence of stochastic
processes

√
nh3n

(
X̂n(s, t) − x(s, t)

)

converges weakly in the space of R3-valued continuous functions on [0, S] given t ∈ [0, T ]
to the Gaussian process GP(s, t), s ∈ [0, S], t ∈ [0, T ] with the mean function

μ(s, t) =
√

β

2

∫ S

0
g(s, ξ, t)

∫
R4

〈 ∂2

∂u2
D(x(ξ, t), t)ψ,ψ〉K (ψ)dψdξ,

and the covariance function for all pairs of points s, s∗ ∈ [0, S] at the fixed time t ∈ [0, T ]

C((s, t), (s∗, t)) = 1

8π
√

π

∫ S

0
g(s, ξ, t)

[
D(x(ξ, t), t)D�(x(ξ, t), t)

+ Γ0(x(ξ, t), t)Γ �
0 (x(ξ, t), t)

]
g� (

s∗, ξ, t
)
dξ.

Proof Let us begin with

y(s, t) = X̂n(s, t) − x(s, t)

=
∫ s

0

[
v(D̂n(X̂n(ξ, t), t)) − v(D(x(ξ, t), t))

]
dξ

=
∫ s

0

∂

∂D
v(D(x(ξ, t), t))

[
D̂n(x(ξ, t), t) − D(x(ξ, t), t)

]
dξ

+
∫ s

0

∂

∂D
v(D(x(ξ, t), t))

∂

∂x
D(x(ξ, t), t)y(ξ, t)dξ + r(s, t),
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where the remainder r(s, t) is

r(s, t) =
∫ s

0

[
v(D̂n(X̂n(ξ, t), t)) − v(D̂n(x(ξ, t), t))

]
dξ

−
∫ s

0

∂

∂D
v(D(x(ξ, t), t))

∂

∂x
D(x(ξ, t), t)y(ξ, t)dξ

+
∫ s

0

[
v(D̂n(x(ξ, t), t)) − v(D(x(ξ, t), t))

]
dξ

−
∫ s

0

∂

∂D
v(D(x(ξ, t), t))

[
D̂n(x(ξ, t), t) − D(x(ξ, t), t)

]
dξ.

Let z(s, t) and δ(s, t) be as follows:

z(s, t) =
∫ s

0

∂

∂D
v(D(x(ξ, t), t))

[
D̂n(x(ξ, t), t) − D(x(ξ, t), t)

]
dξ

+
∫ s

0

∂

∂D
v(D(x(ξ, t), t))

∂

∂x
D(x(ξ, t), t)z(ξ, t)dξ,

δ(s, t) =
∫ s

0

∂

∂D
v(D(x(ξ, t), t))

∂

∂x
D(x(ξ, t), t)δ(ξ, t)dξ + r(s, t).

Then y(s, t) = z(s, t) + δ(s, t). Using the Green’s function G, z(s, t) equals

z(s, t) =
∫ s

0
G(s, ξ, t)

∂

∂D
v(D(x(ξ, t), t))

[
D̂n(x(ξ, t), t) − D(x(ξ, t), t)

]
dξ

=
∫ S

0
g(s, ξ, t)

[
D̂n(x(ξ, t), t) − D(x(ξ, t), t)

]
dξ,

z(0, t) = 0,

where g(s, ξ, t) = I[0≤ξ≤s]G(s, ξ, t) ∂
∂D v(D(x(ξ, t), t)). Furthermore, g(s, ξ, t) ∈ L, s ∈

[0, S], is almost everywhere continuous and bounded on R, where L is a linear space of
functions with the support of g in [0, S].

By letting ψ = (x(ξ,t),t)−U
hn

, the mean function of z(s, t) is as follows:

E[z(s, t)] =
∫ S

0
g(s, ξ, t)

∫
R4

[
D(x(ξ, t), t) + D((x(ξ, t), t) − hnψ) − D(x(ξ, t), t)

]

× K (ψ)dψdξ −
∫ S

0
g(s, ξ, t)D(x(ξ, t), t)dξ.

Let u = (x, t) ∈ G. By Taylor’s theorem in a sufficiently small neighborhood of D, we get

= h2n
2

∫ S

0
g(s, ξ, t)

∫
R4

〈 ∂2

∂u2
D(x(ξ, t), t)ψ,ψ〉K (ψ)dψdξ(1 + op(1)).

The mean function of the limiting Gaussian process GP(s, t), s ∈ [0, S], t ∈ [0, T ] can be
obtained by μ(s, t) = limn→∞

√
nh3nE[z(s, t)], where nh7n → β as n → ∞.
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Similarly, the covariance function of z(s, t) is as follows:

Cov[z(s, t), z(s∗, t∗)] = 1

nh8n

∫ S

0

∫ S

0

∫
R4

g(s, ξ, t)D(U )K
( (x(ξ, t), t) −U

hn

)

× K
( (x(η, t∗), t∗) −U

hn

)
D�(U )g�(s∗, η, t∗)dUdηdξ

+ 1

nh8n

∫ S

0

∫ S

0

∫
R4

g(s, ξ, t)Γ0(U )K
( (x(ξ, t), t) −U

hn

)

× K
( (x(η, t∗), t∗) −U

hn

)
Γ �
0 (U )g�(s∗, η, t∗)dUdηdξ.

By letting η = ξ + τhn and ψ = (x(ξ,t).t)−U
hn

, we get

= 1

nh3n

∫ S

0

∫ (S−ξ)/hn

−ξ/hn

∫
R4

g(s, ξ, t)D((x(ξ, t), t) − hnψ)

× K (ψ)K
(
ψ + (x(ξ + τhn, t∗), t∗) − (x(ξ, t), t)

hn

)

× D�((x(ξ, t), t) − hnψ)g�(s∗, ξ + τhn, t
∗)dψdτdξ

+ 1

nh3n

∫ S

0

∫ (S−ξ)/hn

−ξ/hn

∫
R4

g(s, ξ, t)Γ0((x(ξ, t), t) − hnψ)

× K (ψ)K
(
ψ + (x(ξ + τhn, t∗), t∗) − (x(ξ, t), t)

hn

)

× Γ �
0 ((x(ξ, t), t) − hnψ)g�(s∗, ξ + τhn, t

∗)dψdτdξ.

If t �= t∗, it is close to infinity as n → ∞ under any density kernel function. For t = t∗, we
have

(x(ξ + τhn, t), t) − (x(ξ, t), t)

hn
→ (τv(D(ξ, t), t), 0) as n → ∞.

Hence, the covariance function of the limiting Gaussian process GP(s, t), s ∈ [0, S], t ∈
[0, T ] is

C((s, t), (s∗, t)) = lim
n→∞ nh3nCov[z(s, t), z(s∗, t)]

=
∫ S

0
Ψ (v(D(x(ξ, t), t)))g(s, ξ, t)

[
D(x(ξ, t), t)D�(x(ξ, t), t)

+ Γ0(x(ξ, t), t)Γ �
0 (x(ξ, t), t)

]
g�(s∗, ξ, t)dξ,

whereΨ (v(D(·))) = ∫
R

∫
R4 K (ψ)K (ψ +(τv(D(·)), 0))dψdτ . For the Gaussian kernel (7),

it is easy to show that Ψ (v(D(·))) = 1
8π

√
π
.

The rest of the proof can be shown by two parts:

(i)
√
nh3nz(s, t) ⇒ GP(s, t), s ∈ [0, S], t ∈ [0, T ]

via the functional central limit theorem.

(ii) sup
s∈[0,S],t∈[0,T ]

|δ(s, t)| = op

(
1√
nh3n

)
.

��
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According to Theorem 1, we construct the 100(1−α)% confidence ellipsoids for the lon-
gitudinal ensemble of fiber trajectories x(s, t), s ∈ [0, S], t ∈ [0, T ], so that the probability
of the ellipsoids containing x(s, t) is approximately 1 − α:

P
(∣∣C−1/2((s, t), (s, t))

[√
nh3n

(
X̂n(s, t) − x(s, t)

) − μ(s, t)
]∣∣ ≤ Rα

) ≈ 1 − α,

where P(|Z | ≤ Rα) = 1 − α for a standard normal vector Z in R
3. These confidence

ellipsoids represent a coherently oriented fiber population in a specific ROI given any fixed
time point at the 100(1 − α)% confidence level.

The main point of this paper is Theorem 2 which establishes the chi-square type test
of whether fiber pathways of the population in that ROI are time-invariant or time-varying
over the fixed time period. This chi-square type test is based on the Wald’s method using
the Moore–Penrose pseudoinverse of the covariance matrix of the multivariate normal dis-
tribution (Moore 1977). In what follows, {s1, s2, . . . , sm} denotes an ordered set of steps on
the longitudinal ensemble of fiber trajectories which belong to [0, S] while {t1, t2, . . . , tnt }
denotes an ordered set of fixed time points (occurring visits for DWI scans) which belong to
[0, T ].
Theorem 2 Assume (D1), (D2), and (S) hold. Suppose that nh7n → β as n → ∞, where
β > 0 is a known fixed number. Let a and b be positive constants. Consider the following
testing problem for 0 ≤ a < b ≤ T

H0 : ∂

∂t
x(s, t) = 0 versus HA : ∂

∂t
x(s, t) �= 0, s ∈ [0, S], t ∈ [a, b].

We propose a test statistic under H0 as

Ŵn(s) =
√
nh3n

∫ b

a
w�(t)

∂

∂t
X̂n(s, t)dt, s ∈ [0, S],

wherew(t) is a 3×1 vector-valued and time-dependent weight function. Then the stochastic
process Ŵn(s) converges weakly in the space of R-valued continuous functions on [0, S] to
the Gaussian process GP(s), s ∈ [0, S] with the mean function

μ(s) =
√

β

2
w�(b)

∫ S

0
g(s, ξ, b)

∫
R4

〈 ∂2

∂u2
D(x(ξ, b), b)ψ,ψ〉K (ψ)dψdξ

−
√

β

2
w�(a)

∫ S

0
g(s, ξ, a)

∫
R4

〈 ∂2

∂u2
D(x(ξ, a), a)ψ,ψ〉K (ψ)dψdξ

−
√

β

2

∫ b

a
(w�(t))′

∫ S

0
g(s, ξ, t)

∫
R4

〈 ∂2

∂u2
D(x(ξ, t), t)ψ,ψ〉K (ψ)dψdξdt,

and the covariance function for all pairs of points s, s∗ ∈ [0, S]

C(s, s∗) = 1

8π
√

π
w�(b)

∫ S

0
g(s, ξ, b)

[
D(x(ξ, b), b)D�(x(ξ, b), b)

+ Γ0(x(ξ, b), b)Γ �
0 (x(ξ, b), b)

]
g�(s∗, ξ, b)dξw(b)

+ 1

8π
√

π
w�(a)

∫ S

0
g(s, ξ, a)

[
D(x(ξ, a), a)D�(x(ξ, a), a)

+ Γ0(x(ξ, a), a)Γ �
0 (x(ξ, a), a)

]
g�(s∗, ξ, a)dξw(a).
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For finite points s1, s2, . . . , sm ∈ [0, S], let

Ŵ0 =

⎡
⎢⎢⎣

Ŵn(s1)
Ŵn(s2)

. . .

Ŵn(sm)

⎤
⎥⎥⎦ , μ0 =

⎡
⎢⎢⎢⎣

μ(s1)
μ(s2)

...

μ(sm)

⎤
⎥⎥⎥⎦ ,C0 =

⎡
⎢⎢⎢⎣

C(s1, s1) . . . C(s1, sm)

C(s2, s1) . . . C(s2, sm)
... . . .

...

C(sm, s1) . . . C(sm, sm)

⎤
⎥⎥⎥⎦ .

Then it is equivalent to Ŵ0 ⇒ MVN(μ0,C0) as n → ∞. Suppose the rank of the covariance
matrix C0 is m̃ ≤ m. The Wald test of level α rejects H0 if and only if

[
Ŵ0 − μ0

]�
C+
0

[
Ŵ0 − μ0

]
> χ2

α,d f =m̃,

where A+ denotes the Moore–Penrose pseudoinverse of A and χ2
α,d f =m̃ is the critical value

of the limiting chi-square distribution with m̃ degrees of freedom at the significance level α.

Proof Under H0 : ∂
∂t x(s, t) = 0, s ∈ [0, S], t ∈ [a, b], we have

∫ b

a
w�(t)

∂

∂t
X̂n(s, t)dt =

∫ b

a
w�(t)

[
∂

∂t
X̂n(s, t) − ∂

∂t
x(s, t)

]
dt,

using the method of integration by parts,

= w�(b)[X̂n(s, b) − x(s, b)] − w�(a)[X̂n(s, a) − x(s, a)]

−
∫ b

a
(w�(t))′ X̂n(s, t)dt +

∫ b

a
(w�(t))′x(s, t)dt

= z0(s) + δ0(s),

where

z0(s) = w�(b)z(s, b) − w�(a)z(s, a) −
∫ b

a
(w�(t))′z(s, t)dt,

δ0(s) = w�(b)δ(s, b) − w�(a)δ(s, a) −
∫ b

a
(w�(t))′δ(s, t)dt + r0(s),

r0(s) = w�(b)r(s, b) − w�(a)r(s, a) −
∫ b

a
(w�(t))′r(s, t)dt,

and z(s, t), δ(s, t), r(s, t) are defined as in the proof of Theorem 1.
The mean function of z0(s) is E[z0(s)] = w�(b)E[z(s, b)] − w�(a)E[z(s, a)] −

E[∫ b
a (w�(t))′z(s, t)dt]. In a similar manner to the proof of Theorem 1, the mean func-

tion of the limiting Gaussian process GP(s), s ∈ [0, S], can be easily derived by μ(s) =
limn→∞

√
nh3nE[z0(s)], where nh7n → β as n → ∞.
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For the covariance function of z0(s), we get

lim
n→∞ nh3nw

�(b)Cov[z(s, b), z(s∗, b)]w(b)

= 1

8π
√

π
w�(b)

∫ S

0
g(s, ξ, b)

[
D(x(ξ, b), b)D�(x(ξ, b), b)

+ Γ0(x(ξ, b), b)Γ �
0 (x(ξ, b), b)

]
g�(s∗, ξ, b)dξw(b),

lim
n→∞ nh3nw

�(a)Cov[z(s, a), z(s∗, a)]w(a)

= 1

8π
√

π
w�(a)

∫ S

0
g(s, ξ, a)

[
D(x(ξ, a), a)D�(x(ξ, a), a)

+ Γ0(x(ξ, a), a)Γ �
0 (x(ξ, a), a)]g�(s∗, ξ, a)dξw(a),

lim
n→∞ nh3n w�(b)Cov[z(s, b), z(s∗, a)]w(a) = 0,

lim
n→∞ nh3n w�(b)Cov[z(s, b),

∫ b

a
(w�(t))′z(s∗, t)dt] = 0,

lim
n→∞ nh3n w�(a)Cov[z(s, a),

∫ b

a
(w�(t))′z(s∗, t)dt] = 0.

Since Cov[∫ b
a (w�(t))′z(s, t)dt,

∫ b
a (w�(t))′z(s∗, t)dt] = O(1/nh2n), we have

lim
n→∞ nh3n Cov[

∫ b

a
(w�(t))′z(s, t)dt,

∫ b

a
(w�(t))′z(s∗, t)dt] = 0.

Thus, the covariance function of the limiting Gaussian process GP(s), s ∈ [0, S] is stated as
in Theorem 2.

Similarly to Theorem 1, the rest of the proof is complete by two parts:

(i)
√
nh3nz0(s) ⇒ GP(s), s ∈ [0, S]

via the functional central limit theorem.

(ii) sup
s∈[0,S]

∣∣δ0(s)
∣∣ = op

(
1√
nh3n

)
.

��
We remark that the rank of the covariance matrix C0 can be determined by the use of the

truncated singular value decomposition (TSVD). By the TSVD method, we can construct
C0,tsvd = Um̃Λm̃V�

m̃ , where Um̃ , Vm̃ denote m × m̃ unitary matrices, and Λm̃ denotes a
m̃ × m̃ diagonal matrix corresponding to the m̃ leading singular values (m̃ ≤ m). Then C0 is
replaced by C0,tsvd in Theorem 2 and the rank of C0,tsvd is m̃.

5 Numerical implementation

In Theorems 1 and 2 , all ODEs are approximated via Euler’s method with a step size of
Δ > 0 that satisfies sk = sk−1 + Δ, k = 1, . . . ,m, with boundary values s0 = 0 and
sm = S ∈ R+, where the number of steps is m. Δ is chosen to be sufficiently small so that
the local error is proportional to Δ2. We use i.i.d. uniformly distributed Ui , i = 1, . . . , n, in
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[0, 1]4. We set equally spaced time points in [0, 1], that is, t j = j/nt , j = 1, . . . , nt , where
nt is the number of time points.

Based on Theorem 8.9 in Magnus and Neudecker (2019), partial derivatives of the pth
component of the principal eigenvector associated with the largest eigenvalue with respect
to D evaluated at D̂n can be obtained by

∂

∂D
vp

(
D̂n

(
X̂n

(
sk, t j

)
, t j

))
= (

1 − 0.5I[r=w]
)

× [
Z+ (

D̂n

(
X̂n

(
sk, t j

)
, t j

))
pr

vw

(
D̂n

(
X̂n

(
sk, t j

)
, t j

))

+ Z+ (
D̂n

(
X̂n

(
sk, t j

)
, t j

))
pw

vr

(
D̂n

(
X̂n

(
sk, t j

)
, t j

)) ]
,

where Z(D̂n)pr = (λ(D̂n)I − D̂n)pr for p, r , w = 1, 2, 3 and k = 0, . . . ,m. Recall that I
is an indicator function, I is an identity matrix, and Z+ is the Moore–Penrose pseudoinverse
of Z .

5.1 Theorem 1

Given a fixed time point t j = j/nt , j = 1, . . . , nt , we set initial values X̂n(s0, t j ) = x0,
μ̂(s0, t j ) = 0, and Ĉ((s0, t j ), (s0, t j )) = O, where 0 and O denote a 3× 1 vector of 0s and
a 3 × 3 matrix of 0s, respectively. For j = 1, . . . , nt and k = 1, . . . ,m, we approximate

X̂n
(
sk, t j

) ≈ X̂n
(
sk−1, t j

) + Δv
(
D̂n

(
X̂n

(
sk−1, t j

)
, t j

))
,

and

μ̂(sk, t j ) ≈ μ̂(sk−1, t j ) + Δ
∂

∂D
v(D̂n(X̂n(sk−1, t j ), t j ))

× ∂

∂x
D̂n(X̂n(sk−1, t j ), t j )μ̂(sk−1, t j )

+ Δ
∂

∂D
v(D̂n(X̂n(sk−1, t j ), t j ))

×
[

3∑
i=1

∂2

∂x2i
D̂n(X̂n(sk−1, t j ), t j ) + ∂2

∂t2
D̂n(X̂n(sk−1, t j ), t j )

]
,

μ̂
(
sk, t j

) ←
√

β

2
μ̂(sk, t j ).

For j = 1, . . . , nt and k = 1, . . . ,m, we approximate

Γ̂0

(
X̂n(sk−1, t j ), t j

)
← (B�B)−1B�Σ̂

1/2
n

(
X̂n

(
sk−1, t j

)
, t j

)
.
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Then we can approximate the covariance function of Theorem 1 when s = s∗ as follows for
j = 1, . . . , nt and k = 1, . . . ,m:

Ĉ
((
sk, t j

)
,
(
sk, t j

)) ≈ Ĉ
((
sk−1, t j

)
,
(
sk−1, t j

)) + Δ
∂

∂D
v

(
D̂n

(
X̂n

(
sk−1, t j

)
, t j

))

× ∂

∂x
D̂n

(
X̂n

(
sk−1, t j

)
, t j

)
Ĉ

((
sk−1, t j

)
,
(
sk−1, t j

))

+ ΔĈ
((
sk−1, t j

)
,
(
sk−1, t j

))

×
[

∂

∂D
v

(
D̂n

(
X̂n

(
sl−1, t j

)
, t j

)) ∂

∂x
D̂n

(
X̂n

(
sl−1, t j

)
, t j

)]�

+ Δ
∂

∂D
v

(
D̂n

(
X̂n

(
sk−1, t j

)
, t j

))

×
[
D̂n

(
X̂n

(
sk−1, t j

)
, t j

)
D̂�
n

(
X̂n

(
sk−1, t j

)
, t j

)

+Γ̂0

(
X̂n

(
sk−1, t j

)
, t j

)
Γ̂ �
0

(
X̂n

(
sk−1, t j

)
, t j

)]

×
[

∂

∂D
v

(
D̂n

(
X̂n

(
sk−1, t j

)
, t j

))]�
,

Ĉ
((
sk, t j

)
,
(
sk, t j

)) ← 1

8π
√

π
Ĉ

((
sk, t j

)
,
(
sk, t j

))
.

Let Ĉ((s0, t j ), (sk, t j )) = Ĉ((sk, t j ), (s0, t j )) = O for k = 1, . . . ,m and j = 1, . . . , nt .
The covariance function of Theorem 1 when s �= s∗ can be approximated by

Ĉ
((
sk, t j

)
,
(
sl+1, t j

)) ≈ Ĉ
((
sk, t j

)
,
(
sl , t j

)) + ΔĈ
((
sk, t j

)
,
(
sl , t j

))

×
[

∂

∂D
v

(
D̂n

(
X̂n

(
sl , t j

)
, t j

)) ∂

∂x
D̂n

(
X̂n

(
sl , t j

)
, t j

)]�
,

Ĉ
((
sk, t j

)
,
(
sl+1, t j

)) ← 1

8π
√

π
Ĉ

((
sk, t j

)
,
(
sl+1, t j

))
,

Ĉ
((
sl+1, t j

)
,
(
sk, t j

)) ← Ĉ
((
sk, t j

)
,
(
sl+1, t j

))

for k = 1, . . . ,m, l = k, . . . ,m, and j = 1, . . . , nt .

5.2 Theorem 2

Let a = i/nt and b = j/nt where i, j = 1, . . . , nt and i < j . Theorem 2 uses the results of
Theorem 1. For k = 1, . . . ,m, we get

Ŵn(sk) =
√
nh3n

[
w�(b)X̂n(sk, b) − w�(a)X̂n(sk, a) −

∫ b

a
(w�(t))′ X̂n(sk, t)dt

]

μ̂(sk) = w�(b)μ̂(sk, b) − w�(a)μ̂(sk, a) −
∫ b

a
(w�(t))′μ̂(sk, t)dt,

whereas

Ĉ (sk, sl) = w�(b)Ĉ ((sk, b) , (sl , b))w(b) + w�(a)Ĉ ((sk, a) , (sl , a)) w(a),

123



Statistical Inference for Stochastic Processes

for k, l = 1, . . . ,m. All definite integrals are approximated via Simpson’s 1/3 rule. In the
next two sections, the simulated and real data analyses were performed using MATLAB
R2021a.

6 Monte Carlo simulations

In simulations, the sample size n = 1,216,000 (nx = 403 and nt = 19) was considered.
First, we performed 500 Monte Carlo simulations under the following null hypothesis H0 :
we set the thickness of the fiber bundle as ε = 0.05. x = [x1 x2 x3]� ∈ [0, 1]3 satisfied

|
√
x21 + x22 − 0.5| < ε and |x3 − 0.5| < ε. At a fixed time point t j = j/19, j = 1, . . . , 19,

the diffusion tensor was generated by D(x, t j ) = V (x)ΛV�(x), where

V (x) =

⎡
⎢⎢⎢⎣

x2√
x21+x22

x1√
x21+x22

0

− x1√
x21+x22

x2√
x21+x22

0

0 0 1

⎤
⎥⎥⎥⎦ , Λ =

⎡
⎣
10 0 0
0 2 0
0 0 1

⎤
⎦ .

Under H0, the true longitudinal ensemble of fiber trajectories, x(s, t j ), j = 1, . . . , 19,
remained semi-circular in the x1x2-plane.

Next,wegenerated500 simulations under eachof the following four alternative hypotheses
HA: at the former 9 time points, we retained H0 to generate x(s, t j ), j = 1, . . . , 9. At the
latter 10 time points, given ε = 0.05, we set x = [x1 x2 x3]� ∈ [0, 1]3 that satisfied

x21
(0.5 − ε)2

+ x22
(c − ε)2

> 1,
x21

(0.5 + ε)2
+ x22

(c + ε)2
< 1

for c ∈ [0.55, 0.525, 0.475, 0.45] and |x3 − 0.5| < ε. The diffusion tensor was generated by
D(x, t j ) = V (x, c)ΛV�(x, c), j = 10, . . . , 19, where

V (x, c) =

⎡
⎢⎢⎣

x2/c√
(x1/0.5)2+(x2/c)2

x1/0.5√
(x1/0.5)2+(x2/c)2

0

− x1/0.5√
(x1/0.5)2+(x2/c)2

x2/c√
(x1/0.5)2+(x2/c)2

0

0 0 1

⎤
⎥⎥⎦

for c ∈ [0.55, 0.525, 0.475, 0.45]. Then the corresponding integral curve x(s, t j ) was in the
form of a semi-circle for j = 1, . . . , 9 while x(s, t j ) was in the form of a semi-ellipse for
j = 10, . . . , 19 in the x1x2-plane under HA. Depending on the value of c under HA, the true
longitudinal ensemble of fiber trajectories x(s, t j )was either stretched or squeezed along the
x2 direction for j = 10, . . . , 19.

Both H0 and HA met the following conditions: we used 48 gradient directions. The
noise tensor Σ(x, t j ), j = 1, . . . , 19, was specified by a 48 × 48 constant matrix where
diagonal elements were 1 and all the off diagonal elements were 0.5. B in (5) was generated
corresponding to the uniform distribution of gradient directions on a unit sphere in each
gradient direction. The bandwidth in (6) and (10) was set as h = 0.0167 since the bandwidth
of the Gaussian kernel should be approximately within ε/3. All ODEs were approximated
with the step size Δ = 0.015 and the number of stepsm = 30. The estimated integral curves
X̂n(s, t1) and X̂n(s, t19) were shown in Fig. 1. X̂n(s, t1) corresponded to the semi-circle
under H0, whereas X̂n(s, t19) was seen to be the semi-ellipse whose its shape was varied by
the value of c.
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Fig. 1 X̂n(s, t1) in black is overlaid with X̂n(s, t19) in red depending on the value of c under HA . Each step
is marked as a dot. All 3D points are projected on the x1x2-plane. (Color figure online)
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(a) c = 0.55
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(b) c = 0.45

Fig. 2 The 95% estimated confidence ellipsoids for x(s, t1) in cyan and x(s, t19) in magenta are overlaid for
the cases of c = 0.55 and c = 0.45 under HA . Solid black lines surrounded by the confidence ellipsoids
represent X̂n(s, t1) and X̂n(s, t19), respectively. Each step is marked as a dot. (Color figure online)

To evaluate the empirical distribution of the test under H0 in Theorem 2, we considered
the following weight functions:

– Linear: w(t) = [t t t]�
– Exponential: w(t) = [et et et ]�
– Constant: w(t) = [1 1 1]�.

Over 500 simulations under H0, we used the TSVD of Ĉ0 by using the first two singular
values since they accounted for more than 98% of the sum of the singular values regardless of
the choice of the weight functions. Since the rank of Ĉ0,tsvd was 2, the empirical distribution
of the corresponding test statistics under H0 was compared to the chi-square distribution with
2 degrees of freedom. Figure 3 shows that the histogram of these test statistics under H0 was
closely matched with the chi-square distribution with 2 degrees of freedom.

The power of the test was assessed with the theoretical and empirical 5 critical values. The
theoretical 5% critical value was obtained from the limiting chi-square distribution with 2
degrees of freedom,whereas the empirical 5%critical valuewas set to the upper 5th percentile
of the 500 simulations under the null hypothesis to ensure a 5% of type I error. In Table 1,
we displayed the power based on linear, exponential, constant weight functions. Using the
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Fig. 3 Histograms of 500 test statistics under H0 are displayed with different weight functions when a = t1,
and b = t19. A solid red line is the density function of the chi-square distribution with 2 degrees of freedom.
(Color figure online)

Table 1 The power of the test is computed based on both the theoretical 5% critical value (χ2
0.05,2 = 5.9915)

and the empirical 5% critical value in parentheses

c a = t1, b = t19 a = t6, b = t14
Linear Exponential Constant Linear Exponential Constant

0.55 0.998 1.000 1.000 1.000 1.000 1.000

(0.998) (1.000) (1.000) (1.000) (1.000) (1.000)

0.525 0.832 0.926 0.992 0.936 0.954 0.984

(0.526) (0.676) (0.880) (0.768) (0.772) (0.816)

0.475 0.910 0.962 0.998 0.960 0.976 0.986

(0.688) (0.756) (0.924) (0.828) (0.846) (0.880)

0.45 1.000 1.000 1.000 1.000 1.000 1.000

(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

linear weight, we weighted less at the time point a andmore at the time point bwhile the time
points between were equally weighted since w′(t) = [1 1 1]�. For the exponential weight,
w(t) = w′(t), that is, we exponentially weighted over the time period from a through b.
For the constant weight, we weighted equally at both end time points a and b, however,
middle time points were not considered. The constant weight function yielded the highest
power suggesting that it would be the most appropriate when the prior information regarding
the weight over time is not available. In Table 1, we also considered two cases of the end
time points: a = t1, b = t19 and a = t6, b = t14. When c was either 0.525 or 0.475 (close
enough to 0.5 under H0), the linear weight substantially performed better for the case of
a = t6, b = t14 than the case of a = t1, b = t19. This can be explained by the fact that the
information at the time point a = t1 was overlooked due to the nature of the linear weight,
and hence, the performance of the test was improved when we valued the information at the
time point a = t6. The discrepancy between the power based on the empirical critical value
and the one based on the theoretical critical value was close to zero when we increased the
sample size. The resulting power for the sample size n = 9,728,000 (nx = 803 and nt = 19)
was omitted since it was all one given the aforementioned a, b, weight functions. Since the
number of spatial points in DTI, nx, is much larger than 803, our simulation results imply
that the proposed test would detect even a slight variation in the longitudinal ensemble of
fiber trajectories with fewer time points.
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7 Real data analysis

We analyzed a collection of 19 pre-processed DWI scans on a healthy middle-age male brain
from July 2014 to December 2018. During the study period, DWI was performed on a GE
3T Signa HDx MR scanner (GE Healthcare, Waukesha, WI) with an 8-channel head coil. A
spin-echo echo-planar imaging sequence (12 min 6 s) was used to acquire the DWI data with
the following parameters: 48 contiguous axial slices of 2.4 mm thickness in an interleaved
order, 22 × 22cm2 field of view, 2 number of excitations, 13.7 s repetition time, 76.3 ms
echo time, 128 × 128 matrix, 25 diffusion-weighted volumes (one per gradient direction)
with b = 1000 s/mm2, 1 volume with b = 0 and the parallel imaging acceleration factor of
2.

We investigated the posterior part of the corpus callosum (CC) since the CC is the largest
among the commissural fiber tracts of a human brain and the posterior of the CC is relatively
less affected by the head motion during the MRI scan. A damaged CC can lead to neuronal
inter-hemispheric communication issues, and thus severe cognitive dysfunction. For the esti-
mation procedure, we usedΔ = 0.003 andm = 20 to trace the ensemble of fiber trajectories
that curved to the left from x0 = [0.5078 0.4219 0.5417]� and to the right from x0. To
prevent over- or under-smoothing, we fixed the bandwidth hn = 0.01. The choice of the
bandwidth was done in an ad-hoc manner in the estimation step. The effect of the elapsed
time between calendar dates is easily handled through reparametrization in this study given
that we only observed discrete time points, albeit of a continuous time interval. Therefore,
we used the equally spaced time points in [0, 1]. Figure 4 shows the longitudinal paths of
the fiber population in the posterior region of the CC. We observed that the 95% confidence
ellipsoids became enlarged once fibers branched off due to the extremely large estimate of
the covariance function. It is the well-known limitation of DTI in complex fiber configu-
rations such as crossing/kissing or branching/merging (Johansen-Berg and Behrens 2014;
Jones 2011; Mori and Tournier 2013).

Next, we tested whether there was no time change in the posterior CC at the significance
level of 5%. We used a = t2 and b = t18 in the posterior CC since the boundary effects were
seen when estimating near the end time points such as a = t1 and b = t19. Then test statistics
were computed by both full and reduced rank approaches corresponding to the considered
weight function. The full rank approach used all twenty singular values of Ĉ0, whereas the
reduced rank approach used Ĉ0,tsvd which was re-constructed by the TSVD method with
the first four singular values of Ĉ0. These four singular values were accounted for more than
96% of the total of singular values of Ĉ0.

Table 2 Test statistics are shown in two directions of the posterior CC

Linear Exponential Constant

From x0 to the left Full rank 3.6395 2.3564 2.6046

Reduced rank 3.2090 2.0877 2.5191

From x0 to the right Full rank 8.3909 3.4841 1.0475

Reduced rank 7.6037 2.9032 0.7134

In the full rank approach, the critical value is χ2
0.05,20 = 31.4104. In the reduced rank approach, the rank of

Ĉ0,tsvd is 4. The corresponding critical value is χ2
0.05,4 = 9.4877
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(a) t7 (b) t14

(c) t2 (d) t18

Fig. 4 The 95% estimated confidence ellipsoids in green for the posterior CC is overlaid onto the fractional
anisotropy map at a given time point. A solid red line surrounded by the confidence ellipsoids represents the
estimated longitudinal ensemble of fiber trajectories at a fixed time point. (Color figure online)

Regardless of the choice of the weight functions and the use of the TSVDmethod, Table 2
shows no statistically significant evidence to detect the rate of change in the ensemble of fiber
trajectories in the posterior CC over the observed period of time. Compared to the simulations
in the previous section, we can fairly say that this non-significant result is not due to the lack
of power, but it convinces us of no changes in the posterior CC of the healthy brain over the
time period.

8 Discussion

In this paper, we are interested in the degree of the time-dependent change in the longitudinal
ensemble of fiber trajectories that might be caused by normal aging and neurodegenerative
diseases. Unlike the methods of comparing eigenvalues between different time points, the
proposed test is directly related to the partial derivative of the longitudinal ensemble of
fiber trajectories with respect to time. Furthermore, the proposed approach harnesses all of
the information about the time-dependent diffusion tensor in the whole region of the brain.
Computationally, it is fairly straightforward and ultimately, it is based on the asymptotic
normality of the estimating process.Wehavedemonstrated excellent power and level behavior
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of the test on simulated and real data. The proposed test contains tuning parameters such as
the constant β, each step size Δ, the number of steps m, and end time points a, b. The effect
of tuning parameters on the test should be explored rigorously, which could be a direction
for future research.

There are two practical limitations of this test. First, longitudinal DTI studies are often
observational studies consisting of very few time points (as low as 2) due to the cost of each
MRI scan. In such a case, we can set [a, b] as a short interval and w(t) = [1 1 1]�. Then our
test can be based on the finite differences X̂n(s, b) − X̂n(s, a), s ∈ [0, S]. One can directly
construct tests based on such finite differences, which would be a future direction of our
research. Second, the test may not perform well when the data only contains the later stages
of the disease. Ideally, one would like to have a baseline information to compare with and a
larger number of time points. However, we envision a future when DT-MRI scanning would
become a routine prophylactic medical procedure done annually after certain age. Since DTI
can potentially be a useful tool to monitor the disease progression over years for high-risk
populations of a neurodegenerative disease, such as Alzheimer’s disease, our approach can
potentially be used to detect the early signs of neuronal fiber damage.

Further investigation of the test should be made on multiple brain locations in many
subjects with both healthy and diseased brains. This can be done by the extension to the
model in Carmichael and Sakhanenko (2015) as an application of high angular resolution
diffusion imaging (HARDI). The fundamental testing problem will remain the same, but the
longitudinal HARDI fiber trajectory needs to be defined using the pseudo-eigenvector of a
high-order tensor, which would require the development of new mathematical tools. Since
the precision of the confidence ellipsoids is higher in HARDI than inDTI, the higher power of
the test is expected in HARDI. This would be our future direction of the theoretical research.
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