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1 INTRODUCTION

Here in this abstract, [ am going to point out two Computer system
simulation issues and propose one solution for both. Computer
system simulations are a vital part of numerous research on various
topics regarding new ideas in this field. Using simulation gives
us the opportunity to explore improvement ideas in this area and
have a mindset of implementing them in system design. Gem5
[1] for instance is a mature simulator that has been used for years.
However, running a simulation/emulation can be considerably time-
consuming and that will hinder the research process especially if
a huge number of simulations are required relative to the topic.
Another issue that scholars in computer architecture design are
facing is how can they find an optimized system configuration as
the existing design space exploration methods are not satisfying.
The second problem is even harder since we are not equipped with
a strong tool to tell us what system configuration is the most op-
timized one since existing works are not measured with current
intense workloads that affect the desired system configuration. A
system configuration is just a trial backed up with research and
even if the research behind it is strong, we may still be stuck in the
local minimum in design space.

To address the first issue, the fact is, not in all the research topics
do we need a full-fledged accurate report after running the simula-
tion. In many examinations, we change a small portion of the input
parameters in the simulation input such as cache size and run but
no matter what the change is, the time required to get the result will
be the same or worst. Also, we may just need to look into certain
output parameters like IPC but we do not get to specify that in
order to get a faster run unless we modify the simulation code each
time. Here in DeepSim, we train a transformer network [10] with
a possible combination of input parameters in the area of interest,
in order to learn the correlation between design configuration and
the result. Later on, we explain why we choose transformers and
why will that work.

The second obstacle we have to obtain optimal configuration
is the difficulty of the problem. In terms of simulation and emu-
lation of a computer system, we can agree that the complexity of
the system is above our general understanding since the effect of
changing the system parameters will not be linear. Take a last-level
cache size as an instance, if we only change this cache capacity, we
will have a considerable number of changes happening in IPC, miss
rate, C-AMAT [9], and many more. Another example is choosing
cache size considering the Miss Rate Ratio (MRC). We see that in-
creasing cache size cache does not necessarily reduce the miss rate
at that point rather the function is like a stair function. Knowing
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the behavior of MRC can also be helpful for cache partitioning [8]
and cache allocation in system design. The benefits of this trustwor-
thy network can be used in abundant areas. Here at DeepSim, we
offer a change in scenery that gives us power over the design space
exploration problem. In the next paragraph, we will explain our
reasoning for why transformers are a valuable tool for this task.

Even though transformers mainly are used as a language model,
they are widely popular for their accuracy and robustness in other
areas as well. When it comes to mimicking a simulator to predict its
result or exploring the design space, we are talking about multiple
chains of changes happening in parallel where a small change can
cause a domino effect in the outcome. The self-attention layer looks
for clues in each input and adds or changes the result considering
it. It, by nature, will do the same. Transformers pay equal attention
to each input and that adds a level of generality that is hard to gain
with CNN or ANN. At the same time, there are input parameters
that are more of a game changer like the number of cores in the
CPU. The attention mechanism will enhance these important parts
of the input, and as a result, transformers are appropriate tools for
this topic.

In past recent years, it was always an idea to use Machine Learn-
ing approaches to guess what system configuration is a better choice
as the design space has a gigantic number of possibilities, such as
memory hierarchy parameters. In [5] they used ANN as a model
which relatively generated acceptable results. However, after 17
years, due to the increasing trend of complex applications and
traces, in addition to the nowadays complexity of system designs
such as memory hierarchy and newer technology, we need a much
more sophisticated model to gain insight into today’s design space.
Many other works have tried to explore design space utilizing
analytical techniques or Machine Learning methods such as Deep
Reinforcement Learning[2-4, 6], however, every one of them has its
limitations. Having a transformer network to give us a fast reliable
result for the configuration in mind can have many applications
that can, now, be achieved. Transformers are the most robust net-
work so far when we have enough data to train them.

2 MODEL DESIGN

Our input features of the transformer are either the parameters
that we set when we execute the simulation or they are the result
of the simulation after running it with those parameters. Similarly,
the output prediction of the transformer can be the result of the
simulation or can be the input parameters— declared as simulation
prediction as is shown in figure 1. For instance, instead of predicting
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Table 1: Modifiable parameters in ChampSim

Parameter Name Info

Number of cores number of simulated cores

L1I Cache size, associativity, block size
L1D Cache size, associativity, block size
L2 Cache size, associativity, block size
Last Level Cache size, associativity, block size
Prefetcher prefetching methods
Branch predictor bimodal, gshare, tournament, TAGE

LRU, LFU, or RRIP
# of instructions to warm up
# of instructions to simulate
Input trace file for the simulation
2.41% 10"

Replacement policy
‘Warmup instructions
Simulation instructions
Trace file
Total points in design space ~

the simulation result, if we want to set a goal for a parameter such
as miss rate and want to explore the design space, we can flip the
input by output and train the network backward to gain power
over the certain desired result such as IPC and ask the network
for its prediction about the ideal system that can gain that IPC. by
following each color in figure 1, we can see the process. previous
studies like [5] had a similar idea of using an artificial neural net-
work (ANN) as a model, which is a lot simpler and relatively weaker
model, and gained promising results as they were able to predict
IPC with a 1-2% error.

2.1 Dataset

For this work, we consider ChampSim as a dataset generator source.
we run ChampSim with all the combinations possible at the input to
generate all the report output at once to generate data. ChampSim
simulator has certain execution configuration parameters as shown
in table1 that we can modify to generate a variety of output results
to make up the dataset. An example of the number of possible points
in the design space is shown as well. For instance, we can consider 4
different cache capacities for these 3 level caches. This alone gives us
12 different configurations. If we go through all these 11 parameters,
we make billions of configurations that give us a rich unbiased
dataset to feed the network. In addition to the aforementioned
parameters, many other parameters can be customized inside the
simulator code such as DRAM, memory controller, latency, etc. As
a result, we have access to a tremendous amount of training data.

3 ROAD MAP
Two outcomes of this research are:

e We introduced a model that is trained with simulation input
parameters as features that can accurately generate simu-
lation output as it is shown in figure 1 so we do not have
to run a whole simulation for every insignificant change,
instead, we do an inference from the network. This can save
a lot of time during research.

e Exploring the system design space is a complex problem that
DeepSim has solved due to the magnitude of the available
training data and the availability of state-of-the-art Trans-
formers networks. Since the relationship between different
outcome performance and input futures are not clear to us,
we can train the network with outputs that we have from our
simulator and train it. In the prediction part, we can ask for
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Figure 1: DeepSim block diagram

a miss rate and see how the network informs us about cache
configuration and etc to gain that miss ratio as it is shown
in figure 1. The same technique-CBOW and Skip-gram- is
used in NLP studies[7].

In the end, we argue that a learning model like a transformer can
be used for two purposes in the most optimized way. First, it can be
trained to be used instead of a simulator when there is no need for a
full-fledged result. Second, by exchanging the input for output, we
can efficiently explore the design space regardless of the starting
point problem. In this way, we need to generate the dataset using
our simulator and train the network.
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