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Abstract

This paper investigates a symmetric dual-wind discontinuous Galerkin (DG) method for solving parabolic
variational inequalities. By employing a symmetric dual-wind DG discretization in space and a back-
ward Euler discretization in time, we propose a fully discrete scheme to solve a time-dependent obstacle
problem. Under reasonable regularity assumptions on the exact solution, we prove the convergence of
numerical solutions with rates in the L°°(L?) and L?(H!)-like energy errors by introducing a new inter-
polation operator which is a combination of the standard interpolation operator and a positive-preserving
interpolation operator. Numerical experiments are provided to validate the effectiveness of the proposed
method.
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1. Introduction

Let © be a bounded convex polygonal domain in R?, Tx > 0, and set J = [0,Tr]. For a given
feC(J;L>(Q)) and ¢ € HY(Q) with ¢ < 0 a.e. on 99, we consider the parabolic variational inequality:
For all t € (0, Tr], find u(t) € K C H}(Q) such that

(Oru,v —u) + a(u,v —u) > (f(t),v —u) Vv e K, (1.1a)
u(0) = uo, (1.1b)

where ug € K is the given initial condition, K is the constrained set
K:={ve H}Q) :v>1ae inQ}, (1.2)

and the bilinear forms (-,-) and a(-,-) are defined by

(v,w) = / vwdz, a(v,w) = / Vo - Vwdz Yo,we HY(Q). (1.3)
Q Q
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Throughout the paper we follow the standard functional space and function notation in [13, 1, 6]. In
particular, W*P(Q) for nonnegative integer k and 1 < p < co denotes the Sobolev space, H*(€2) denotes
the space when p = 2, C'(J; X) denotes the space of continuous functions from J to the normed space X,
and LP(J; X) is the space equipped with the norm

Tk
lvllLes;x) = (/o o) dt) 1<p<oq,

[0 L (5,x) = esssup [[o(2) ] x -
teJ

=

The problem (1.1) is a generalization of an elliptic obstacle obstacle problem with the obstacle function
1. Tt is also a special case of variational inequalities (VIs) that arise from a wide range of applications
including mechanics, physics, engineering, economics, finance, mathematical programming, optimal con-
trol, and optimization, etc [29, 36, 20]. Due to the presence of the the obstacle function, the variational
inequality becomes a nonlinear problem which leads to challenges in both the theoretical and numerical
analysis.
The existence and uniqueness of the solution to the problem (1.1) follows from the standard theory
for VIs [9, 10, 29, 36, 20]. Under the assumptions on the data
. TO0 af 2 . TOo0
feC(J; L>=(9)), e € L°(J; L>(Q)), (1.4)
Y e WHX(Q), wug € W2®(Q)NK, (1.5)

the exact solution u satisfies [10]

u € L°(J; W?P(Q)) 1<p< oo, (1.6)
% € L*(J; H} (Q)) N L>=(J; L>=(Q)). (1.7)

Moreover, denoting 7 u/dt to be the right-hand derivative of u with respect to ¢, the solution to (1.1)
satisfies

+
% =Au+f a.e. on QT (1), (1.8)
otu 0
el max{f + Ay, 0} a.e. on Q°(t), (1.9)

where the contact set Q°(t) and the non-contact set Q(¢) are given by
Q(t) :={x € Q:u(x,t) = (z)}, (1.10)
QF(t) == {z € Q:u(x,t) > ()} (1.11)

for all t € J. The boundary between Q°(t) and Q7 (t) is called the free boundary which is the main source
of singularities for the exact solution. We denote

otu
o(t) = (1) = Au(t) + £(). (1.12)

For any t € J, the following complementarity form of (1.1) follows from (1.8)—(1.9)

o(t) >0 a.e. inQ, (1.13)



(o(t),u(t) =) =0 ae. in Q. (1.14)

The study of VIs is an active area and we refer the reader to [14, 29, 20, 25] for an extensive survey
on the numerical analysis of VIs. In the case of elliptic VIs, various finite element methods including
conforming, nonconforming, virtual elements, and a family of DG methods have been studied in [16, 11,
40, 8, 7, 5, 4, 38, 39, 24, 31] and the references therein. Optimal a priori error estimates were obtained
using the established regularity results for the exact solution; the key ingredient in the analysis is the
use of the complementarity condition which is valid since the exact solution has the full regularity (i.e.,
u € H?(Q)). For the parabolic VI (1.1), there is an another difficulty arising in the low regularity of the
time derivative of the exact solution (see (1.7)). In [27], a fully discrete scheme with a standard linear
conforming finite element method and backward Euler time-stepping was considered, where the error
estimate of the form O(h + 71 (log(7~1))3) was obtained. The sub-optimal rate of 7 is due to the low
regularity of Ju/0t. However, the analysis in [27] was carried out under the assumption of the zero obstacle
function. Recently in [21, 22, 23, 33, 34|, the analysis has been extended to general obstacle functions
for conforming, nonconforming, and a family of DG methods with the help of the positive-preserving
interpolation operator [12] with nonhomogeneous Dirichlet boundary conditions. Similar results were
achieved in these works by converting the original parabolic VI (1.1) into the problem with a zero
obstacle and fixed nonhomogeneous boundary conditions.

In this work, we are interested in applying and analyzing symmetric dual-wind DG methods [30] to
approximate solutions of (1.1). Such methods have been applied to elliptic VIs in [31], where sharp error
estimates were derived for both linear and quadratic elements. The methods followed the framework
of the DG differential calculus [17], where discrete partial derivatives are used to approximate classical
partial derivatives. In particular, the dual-wind DG methods utilize both the up-wind discrete gradient
operator and the down-wind discrete gradient operator and are stable without explicitly penalizing jump
discontinuities as is standard for classical DG methods [2]. The goal of this paper is to extend the
work in [31] to the case of parabolic VIs and propose a more simple a priori convergence analysis. We
will combine the dual-wind DG discretization in space and the backward Euler discretization in time
to obtain a fully discrete scheme. Due to the use of the discrete gradient operators, such an analysis
is more subtle. To this aim, we assume the data satisfies (1.4)—(1.5) such that the regularity results in
(1.6)—(1.7) hold. A new interpolation operator will be introduced to deal with general obstacle functions,
and thus we achieve a simplified convergence analysis and prove O(h + 71 (log(7~1))#) convergence for
the proposed method.Furthermore, we demonstrate O(h + (log(7))2) convergence is achievable under
stronger assumptions. In addition, the flexibility of a penalty-free method makes this approximation
desirable for more complicated problems.

The rest of the paper is organized as follows. In Section 2 we introduce a fully discrete symmetric
dual-wind DG method and derive several preliminary results including the interpolation operator that
will be useful for the convergence analysis. In Section 3 we present error estimates for the convergence
of the proposed method. We report numerical experiments in Section 4. Finally, we include a summary
in Section 5.

2. The Fully Discrete Method

The fully discrete dual-wind DG method is formulated in this section. We will first introduce the DG
differential operators that are used to define the dual-wind DG method. Next the fully discrete problem
is presented and finally some useful lemmas for the discrete differential operators and interpolation error
estimates are derived.



2.1. DG Differential Operators
Standard functional space and function notation in [1, 6] will be adopted in this paper. For conve-
nience, we introduce the following notations:

e T,: a shape-regular simplicial triangulation of Q C R? [13, 6],

e hp: the diameter of the simplex T' € Ty,

o h := maxre7, hr: mesh size of the triangulation,

e &: the set of interior edges in Ty,

o £P: the set of boundary edges in 7y,

o & = S}IL U 5,?: the set of edges in Ty,

e Vp: the set of vertices of the simplex T € Ty,

e V}: the set of all vertices of Tp,

o WEP(Q) := [W*P(Q)]?: vector-valued Sobolev spaces with each component in W*»(Q),
o H*(Q) :=[H*(2))?: vector-valued Sobolev spaces with each component in H*(2),
o WhP(T) = [rer, W¥P(T): piecewise Sobolev spaces,

o WHEP(T,) := [rer, WEP(T): vector-valued piecewise Sobolev spaces,

(v, w)7, = Y per, Jpvwde: piecewise L? inner product over Ty,

<v, w>8h = Zeesh fe vw ds: piecewise L? inner product over a subset S, C &g,

||UH%2(Th) := (v,v)7,: square of the L? norm over 7j,.

We also define V), := WH1(T,) N C%(T,) and Vy, := [V,]?. Let Vi, be the space of piecewise linear
polynomials with respect to the triangulation T, i.e., Vi, = {v € L*(Q) : v|r € P1(T) VT € Ty}, where
P1(T) denotes the space of linear polynomials over T. The corresponding vector-valued DG space is then
given by Vj, := [V}]?. Throughout the paper, we will use bold-face notation to indicate vector-valued
spaces.

In the following, we will define the jump and average operator across the edge e € &,. For simplicity,
we assume the global labeling number of Tt is larger than that of T—. For e = 9T+ N JT~ with
T+, T~ € T, we define

[l =v"—v, ()= 5 +u7)  Voew,
where v* := v|p+. For e = 9T N 9N for a boundary simplex T+ € 7y, define
[v]]e := v, {v}e =0t Vv € V.
Set n, = (ngl),n((f))t :=nrp+|e = —np-| to be the unit normal on e € &. For i = 1,2 and v € Vy,

we define the following two trace operators on e € E}{ in the direction x;:

(4) (2)

vlp+, ifne’ >0, v|p-, ifne’ >0,
Qf (v) == w|p—, if nt < 0, and Q; (v): =< v|p+, if nt < 0,
{v}, if nt =0 {v}, if n{ = 0.



Note that the operators QF(v) can be equivalently defined by QF(v) := {v} + sgn(ne )[v]l, which
can be understood as the “forward” and “backward” limit of v in the T; dlrectlon on e € EI For
e =0Tt NI € EF, we simply take n, = ny+ and QF (v) = vt.

Next, using the “forward” and “backward” trace operators, we are able to define the discrete partial
derivative operators @fzﬂ@ifi V=V (i=1,2) as

(Onsivson) = (QF (@)D [onl)e, = (0,00,00) 7 Vion € Vi, (2.1)
(Bt vson) 7, = (QF @ Tonl)er + (9n® on)gn — (v.0000) 7, Von €V, (22)
where g € L*(09). With these notations, we can define the discrete gradient operators for v € V, as
+ + + +, =+,
vh v = (a}zzl:£1v ah , T2 ) vh,gv = (ah aéglv ah xgg )

Furthermore, we define Vv, ﬁh,gm gh,miv, and gi’wiv to be the average of “forward” and “backward”

discrete operators, i.e.,
1 +,9 g
(8 wv+ 0, T v),

3 o + — 79
ahﬂ?iv T (ah,ziv + 8h,miv)7 ah,wi

N =

ﬁhv =

—~

Viv+V,v), Vhgv = i(v;gv + Vi 4V)-

N | =

In particular, whenever g = 0, the discrete gradient operators Vf_ov and V, gv are defined using a,jff,v
—0 ’ o
and 0y, ,.v.
Combining (2.1), (2.2), and integration by parts, the discrete gradient operators also satisfy the
following conditions:

(Virvsen)7, = (Vo on)r, — ([v], {en} ) (2.3)
:I:;z_; [v] |n(l Qoh)]]> Vv eV, YVor € Vi,

(Vi gt en) 7 = (Yo, 0n)7 — (W], {eon} 'n>gh (2.4)
+(g:pn m)ep = Z<M|n | L3 D) Yo €V, Veor € Vi,

where g € L'(0€). Finally, the following properties can be derived immediately by the definition of the
discrete gradient operators and integration by parts [17]:

(V,ﬂl:gv (.ph) (Vh oVUs goh 7, + <g Ph - n>5B Vv € Vy, Vo € Vp, (2.5)

(Op-2, 00, 00) T = —(vn, O, on) s + (vn, onn i)>51§ VUn, ¢n € Vp. (2.6)

2.2. The Fully Discrete Dual-Wind DG Method

In this subsection we combine the dual-wind DG method [30, 31] with a backward Euler discretization
in time to obtain a fully discrete scheme for (1.1).

Let t,, = nT (n = 0,1,...,N) be a uniform partition of J with 7 = TWF and Vj be the discontinuous
piecewise linear space associated with 7; that is introduced in Section 2.1. We define the approximation
of the constrained set K to be

Ky :={v, € Vs :op(p) > ¢¥(p) VpeVp, VT € Tp}. (2.7)



The fully discrete scheme for approximating of (1.1) seeks uj € Kj, (n=1,..., N) such that

(8%7% - U’Z) + ah(uzvvh - UJZ) > (f(tn)avh - UZ) Vo € Ky, (2'8)

where

n n—1
U U
oupl = ___h 2.9
Up, - (2.9)
and
1 _ _ Ye

an(vn, wp) = 5 ((V;o”m V;Owh)n + (Vh,ovhv Vh,Owh)Th) + <Eﬂvhﬂ’ [[wh]]>gh' (2.10)

Here v, is a “penalty” parameter on e € &, that will be determined later. We choose u% to be I 1uo,
where I, 1 is the standard nodal interpolation operator that satisfies the following property [13, 6]:

||'U_Ih,1UHL2(T) +hT|'U_Ih,1U‘H1(T) < Ch%+1|v\H.<+1(T) VT €T, (2.11)

for all v € H**1(Q) with s > 1. Utilizing Lemma 2.3 and (2.11), the global estimate in terms of the
energy norm was shown in [31] for s > 1:

[ = Inaollp < Ch**|vlfriaqy Vv e HSTHQ). (2.12)

Note that the method (2.8) is unconditionally stable with respect to 7 similar to the implicit scheme for
the heat equation.
To measure the error, we introduce the notation

1 _
Il = 5 (IVF gvlide@ + IVrgvlie@) Vo€ Va, (2.13)
Ye 2
ol = ol s+ 2 2l Yo € Vi (2.14)
h (e)
ec&y ¢

It was shown in [30] that when the triangulation 7}, is quasi-uniform and each simplex in the triangulation
has at most one boundary edge, then there exists a constant C, > 0 independent of A such that

Co > b M Ionll3ag) < lonls Yon € Vi (2.15)
eegh
Let Ymin ‘= mineegh Ye. In the case of Ymin > 0, we have
— 2
Tmin Z he 1H[[Uh]]||L2(e) < lvnllz Vop € Vp. (2.16)
€€l

In the case of —C, < Ymin < 0, we assume 7}, is quasi-uniform and each simplex in the triangulation has
at most one boundary edge such that (2.15) holds and we have [31]

- 2
(Co+Ymin) Y he [[[onlll e < lonlls  Von € Vi (2.17)
ec&y
From (2.16) and (2.17), it is clear that || - || is non-negative and defines a mesh-dependent norm. The
bilinear form ay (-, -) is naturally coercive with respect to || - || for each case. Furthermore, we have the
following boundedness results for ay(-,-) with respect to || - ||5:
Ymin 20 ap(v,w) < ollpflwlln Vo, w e Vi + H*(Q), (2.18)



—C* < Ymin < 0: ah(v;“wh) < ||vh||h\|wh\|h V’Uh, wp € Vh. (219)

Let I, 1 : H?(2) — VAN HY(Q) be the standard nodal interpolation operator. It is clear Ij, ; preserves
the constraints, i.e., I 19 € Kj. Since K} is nonempty and convex, we can apply the coercivity and
boundedness of the bilinear form to conclude that the fully discrete problem (2.8) is well-posed (see
[20, 36, 29]).

2.3. Preliminary Results

In this subsection, we establish several technical lemmas that will be crucial in the error analysis in
Section 3.

First, we immediately obtain from (2.14), (2.16), and (2.17) that there exists a positive constant C
independent of h such that

||vh |1,h, < C”UhHh Yo, € V. (220)

The following lemma establishes the relation between the classical gradient and the discrete gradient
operator whose proof can be found in [31].

Lemma 2.1. If vmin > 0, there holds

1
HVUhH%P(Th) <C (1 + Yo > ||UhH}?L Yop, € Vi, (2.21)
If —Cy < Ymin < 0, there holds
1+ min

It is well-known that the discrete Poincaré inequality holds [3, 19]:

1
[vlZ2) <€ (IIWII%z(Th) + hel[[v]]lliz(e)> Vo e H'(Th). (2.23)

e€ly

However the piecewise H'-seminorm is evaluated using the classical gradient operator. With the help of
Lemma 2.1, we are able to derive a similar discrete Poincaré inequality in the DG space using the energy
norm ||« ||p-

Lemma 2.2. There exists a positive constant C' independent of h such that

Proof. We first assume Ymin > 0. Then the estimate (2.24) immediately follows from (2.23), (2.21), and
(2.16). In the case —C\ < ymin < 0, we can apply (2.22) and (2.17) instead of (2.21) and (2.16) to obtain
the estimate (2.24). ]

One important property of the discrete derivatives of a function v is that they reduce to the L?
projection of the derivative of v provided v € H(Q). Indeed, the following lemma can be proved using
(2.3)-(2.4) (see [17]).



Lemma 2.3. For any v € H*(Q), both aixiv and Oy, ., v are the L? projections of O,,v onto Vi, i.e.,
(8imiv,wh)7h = (5h7wiv7wh)Th = (Oz,v,wp) T3, Ywp, € Vp,. (2.25)

Moreover, if v € HY(Q) satisfies v = g on 9§ for some g € L*(952), then both 8?;’51_11 and 5'2’%1) are the
L? projection of O,,v onto V.

From Lemma 2.3, we obtain a useful formula connecting the Laplacian operator and the discrete
bilinear form.

Lemma 2.4. Let v € H*(Q) N HL(Q) and vy, € Vi,. There holds
an(v,vp) = (—=Av,v) 75, — ({Vhov — Vo} - n, [vp])e, (2.26)

Proof. Since vy, € Vp, and v = 0 on 0f2, we have

1 _ _
ap(v,vp) = 5( Ov v hoUR)Ts + (Vh’ov,vh’ovh)n) (2.27)
1 _ _
= 5( r ot Vor) 7 + (Vi 00, Vou)7,) = ({Vaov} - m, [on])e,
1 _
= 5 ((Vo, Von)7i + (Vo, Von) 7)) = {Vaov)} - m, [on])e,
= (Vv VUh)Th {Vhov} n, [vn])e,
= (=Av,vn)7;, = ({Vhov = Vo) -, [on])e,, (2.28)
where in the second equality we applied (2.4), in the third equality we used the L? projection properties
of Vio in Lemma 2.3, and in the last equality we applied integration by parts. O
In the analysis, we need to consider the interpolation of the time derivative %. Due to its low

regularity, the standard nodal interpolation I 1% “ is not well-defined. Therefore, a new operator is

needed to deal with the low regularity and the obstacle constraints simultaneously. In [12, 21], a positive-
preserving operator I o from H!(2) N C(99) to Vi, N H'(2) was constructed by

Inav(z) =Y apdy(x), (2.29)
PEVHL
where ¢, is the nodal basis function associated with the vertex p € V; and

. {B|fB z)de VpeV,NQ,
p

(2.30)
v(p) Vp eV, Nnoa.

Here B, denotes the largest inscribed disk for the local patch wy, :== | J{T € T}, : p € V¢ }. The following
approximation properties can be found in [21]:

HU — Ih,2UHL2(T) < ChTHUHHl(ST) Vo e H&(Q), (2.31)
HU — Ih,2'UHL2(T) < Ch%’”’U”HQ(ST) Vv e H2(Q), (232)
||V(’U — Ih7211)|\L2(T) S OhT||U||H2(ST) Yo € HZ(Q), (233)

where St := Upevy,wp. The definition of Ij, o implies it is a positive-preserving operator, i.e., v > 0 in {2
implies that Ip ov > 0 in Q.



Based on I, ; and I} 2, we construct a new operator II, : H&(Q) — V}, as
IIv = Ih,lw + Ih’g(’U - ’(/J) (234)

Since 1 € H?(Q), the operator is well-defined. Note that if v € K, we have II,v € Kj. Indeed, for
p €V, NQ, since v > ¢ in 2, we have

Hpv(p) = In1t(p) + Ina2(v —¥)(p) > ¥ (p) + 0 = ¥(p).

For p € V;, N 092, we have

no(p) = Ina¥(p) + In2(v — ) (p) = ¢(p) — ¥(p) = 0 = ¢(p)
due to the fact that v =0 on 92, ¥ < 0 on 01, and the property of Ij, .
Lemma 2.5. For any v € H?(2), there exists a positive constant C independent of h such that
[v = Tpol| 22y + hlv = ol ) + hllv = olln < CR2(|[v]l a2 (@) + 191 2(0)- (2.35)
Proof. By the definition (2.34), we have
o= =9+ v —1) = In1¥ — In2(v — 1)
= = Ina¥) + (v =) = In2(v — ).
Using the local approximation properties for Ij o in (2.32)—(2.33), we have
(v =) = In2(v = )| 2@) + hl(v = ¥) = Ina(v =) m1) < CR*(|[olla2(0) + [Vl 20).  (2.36)
Furthermore, we use (2.33) and Lemma 2.3 to obtain
[(v =) = In2(v = )n < Ch([v] a2(0) + 1] H2(0)- (2.37)

Indeed, this can be established in the same way as those in ||1) — I, 19| 5 (see [31]). Now combining (2.36)
with the approximation properties for I ; in (2.11), we have

lv = TpvllL2() + hlv = TTpv| Q) < 1Y — Tnavllz) + (v =) = Ina2(v —¥)l L2 (2.38)
+ 1Y = Ina¥la ) + [(v =) = In2(v — )| 1)
< CR*(|vllm2(e) + 1Y) H2(0))-

Similarly, using (2.12) and (2.37), we obtain the estimate
[0 = Tpolln < Ch(|[v]l2() + [Pl a2(0)- (2.39)
The final estimate (2.35) follows from (2.38) and (2.39). O

3. An a Priori Error Analysis

In this section we establish an error estimate for the fully discrete method proposed in Section 2. We
denote " = u(t,) —uj to be error between the exact solution and the discrete solution at the time point
tn =n1 (R =0,1,2,..., N). The goal is to estimate the error in the L>°(L?) and L*(H")-like norms, i.e.,

1

N
n np2\ 2
maxfle” o+ (3 rlle})

n=1



To this aim, we decompose the error as e” = n" + £, where

" =wu(ty) — Hpu(ty),
& =Mpu(ty) — up,

and II}, is the interpolation operator that was introduced in Section 2.3. By Lemma 2.5, we have

N 1
n n 2
 max 0" llzae) + (Z:ITU ||;21> < Ch(||ull Lo (rim2(@)) + 19l m2(0))- (3.1)
N 1
. . . . . . " n||2 2
Applying the triangle inequality, it suffices to estimate the term  fpax, { 1€" 12 (0) + (Z 7)€ ||h) }

n=1
We begin with an abstract lemma concerning a single step estimate.

Lemma 3.1. Let u and u} (n=1,2,...,N) be the solution to (1.1) and (2.8), respectively. There holds

1 n n 1 n—
L 1720 + TIIE™IF < L HIZ2) + Sin + S2n + Szn + San, (3.2)
where

Sl,n = _(77n - nn_17§n)7’h7
SQ,n = 7Tah(nn,§n)7

tn tu
Sun= [ |G ), + anlu(tn) €)= (7(0). 7| .

ot
o Ou otu n
Sim = /t (550 = S (k). )Th dt.

Proof. Using the definition of the bilinear form ay(-, -) (see (2.10) and (2.14)) and the discrete formulation
(2.8), we have

(06", ") + 1€ 17 = (06", €") 7, + an(€", €") (3.3)
[(Opu(tn), £")7, + an(pu(tn), )]

= [(Ouy, €") 7, + an(ujy, €")]
< [(Opu(tn), €))7, + an(Mpu(tn), §")] = (f(tn). "),
[(Outn), §" )7, + an(u(tn),€")] = (f(tn), "),

= [(On",€") 7, + an(n™,&")].

We then multiply 7 on both sides of (3.3) to get

(96", €") 7, +TlIE | < T[(Ou(tn), €))7 + an(ultn), €M) = T(f(tn), €") 7 (3.4)
= 7l(@n",&") 7, + an(n™, &)

Note that
(0", €M), = (€" = "1 M), (3.5)

= 5”5 1720 — §||§ HIZ2 o) + 5“5 — " 720,

10



and
rout) e = [ (Grner), d 3.9)

which is a direct consequence of (2.9). Finally, the estimate (3.2) is obtained by dropping 1[[¢™ — ¢~ ||%2(Q)
and rearranging the terms. O

In the following lemma, we estimate the remaining terms S ,,, S2.5,, S35, and Sy ,, on the right-hand
side of (3.2). In particular, in order to estimate Sy ,,, we set J,, = (tp—1,t,] (n = 1,2, ..., N) and introduce

D= | (@F () UQT(t) \ QF (1) N QT (tn), (3.7)
ted,

which measures the change of the non-contact regions in J,, [27].

Lemma 3.2. Let u and u} (n = 1,2,...,N) be the solutions to (1.1a)~(1.1b) and (2.8), respectively.
There exists € > 0 and a positive constant C independent of h and T such that

1 1, .. C 5,0u,2 ,
e By + TIEIE < I oy + B2 2 iy + CelE (33)
2 € ot n
C
+ ?hQT(Hu(tn)H?{zm) + [ ¥ Fr2(0))

C
+ ?T(hQHU(tn)H%%Q) + R ultn) 320y + R2 1915 (0))

C

+ ?(TZHEHLZ(J (o) T hQTHuHLOO(J";HZ(Q))

+ c 2” HL2 JniL2(Q)) +CQn(p),
where
Qu(p) = 7I1f + Al (g2 @) IE" | Lo(ymeas(Dy) 7, (3.9)
with % + % =1 (p > 1), and meas(D,,) denotes the Lebesque measure of D,,.

Proof. First, we estimate S, on the right-hand side of (3.2). By Young’s inequality, we have

N HIEa ) + eTll€" 720 (3.10)

for some € > 0. Since v is independent of ¢, 2 %+ = 0 on 09, and the interpolation estimate I}, o in (2.31),

we have
I = o = | [ 51

6(u—Hhu 2
< ( [ 1\\*& s )

n—

([ 15 = 00+ D= ) )

(3.11)

L?(Q)
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o Ou ou )
:([mﬁgt—hﬂaﬂmﬂmﬁ)
tn Ay ou. 2 1 tn , , 9

< nir Hatup iy

where we also used the fact that I; » and % are interchangeable. Combining (3.10) and (3.11), we obtain

C 5,0u,2 n
|Sl,n| S ?h’zHaHlﬂ(J";Hl(Q)) + 67_”5 ”%2(9) (312)

To estimate Ss,, we will consider two cases. Whenever vpin > 0, we apply (2.18) and Young’s
inequality to obtain

Sal < Tl I l1€" (3.13)
C . n
< Sl + erli€nl.

Whenever —C < ymin < 0, we have by (2.10), (2.19), the Cauchy-Schwarz inequality, Young’s inequality,
and the trace theorem with scaling that

1S2.n] < CTUIVE 01" 2202y + IVi 01" 222 (V5 06" I 2(0) + 1V7.0€" 122(0) (3.14)
hle' n n
+7 Z H[[n M2y 1I€" L2 (e)
eely
< ;T(Hn”lli + Z hr? ™72y + Z ||V77n||2L2(T)> +er|€" 3.
TETh TETh

By Lemma 2.5, (3.13), and (3.14), we have

¢ n
8ol < ZR2r(lutn) gy + ¥1a(ey) + erll€n - (3.15)
Next, we estimate S3,. By Lemma 2.4, we have
Sz = 1(0(tn), &)1 — T{Vh0u(tn) — Vu(tn)} - n, [€"])e,, (3.16)

where o(t,,) := %(tn) —Au(t,) — f(tn). The first term on the right-hand side of (3.16) can be estimated
by
T(0(tn), &) = T(o(tn), Mpultn) — ultn)) 7, + 7(0(tn), ultn) — ¥)7, (3.17)
T(0(tn), ¥ = Ina¥) 7, + 7(0(tn), Ina ¥ — up)7,
(0 (tn), Mpu(tn) — u(tn)) 7 +7(0(tn), ¢ = In1¥) 7.,
< 7llo(tn)llLe @ (Mpu(tn) — w(tn)llL2@) + 1Y — In19¥ L2 (@)
< CR27|o(tn)ll 20 (lutn) | 20y + 191 H2(0))
< CR27(|lo(tn) 72y + () 172 ) + €11 H2(0);

12



where we used the complementarity form (1.13)—(1.14) at t = ¢, (2.11), and Lemma 2.5. In the case of
Ymin > 0, we have

({Vnoulta) = Vu(ta)} -, [, (3.18)
he \— o . 3
<7( 2 S NFnouttn) = Vultn) o) (30 321" )
e€y e€lp
C = _
< = ( X I1Vnoultn) = Vultn)l[3a(r) + WV (Vnou(tn) = Vult) iz ) +erli€ 1
TETh

¢ n
< PP rlultn) iz () + erli€" R

by Lemma 2.3 and Young’s inequality. A similar result can be obtained whenever —C\ < ~vpin < 0. We
combine (3.16)—(3.18) to conclude that

¢ n
1S3.n] < zh%(lla(tn)\\%z(m +llu(t) 2 ) + 19 1F2) + eTlI€" |17 (3.19)

For the last term Sy ,,, we rewrite it as

54n_/ /) g”dxdt+/ /Q t) € du dt (3.20)
//+(t)8t ) &M dx dt — / /O(t)at o) &M dz dt,

based on the decomposition Q = QT (¢) UQY(¢) for any ¢ € J. By (1.8)—(1.9), we can further rewrite Sy,

as
/ / P)E™ dxdt + / / ) + AY)E™ dadt (3.21)
tp—1 JQT(t Qt(t)
/ ' / max{ f(t) + A, 0}€" dwdt — / / t) — )€™ dudt
Q0(t)
17 tn
/ / )+ A)E" dadt — / / max{ f(t,) + A, 0}£" dadt
tn—1 JQF (tn ) Qo(t)
= Sin + S + Sf’z,
where

/tn 1/Q+(t) Y)E" dadt — / ’ / o, Atn) )€ dedt
(2) /tn 1~/Q\Dn — f(,ta))&" dadt,
(3) / / tn))E" dadt,

and f(, -) is given by

- f(z,t) + Ay(z), = Q-‘,—(t)’
{max(f (5,) + A (2),0), € 2(0). (3.22)

13



In the following, we will estimate 541) Sﬁ)w and S(

$)E" dadt — / /A

S(l)

S{) = / /A
A

[ V) e, v+ [ @

tn—1

where we applied integration by parts.

Lemma 2.2, we have

- / " (Vult) — ultn)), VE )7 di

n—

Next, we estimate

/t " (nul)

n—1

1—1

t

" separately. Since u(t) = on Q°(t), we rewrite

¥)E" dadt (3.23)

tn))E™ dadt

- 8nu(tn), ﬂf"ﬂ>£h dt

tn—l

By the Cauchy-Schwarz inequality, Young’s inequality, and

Using the trace theorem with scaling, we have

17E 0 (u(t) — u(t))

Moreover, we have

> IV(u

TETh

tn tn au
= V—(2)dz, V&™) dt (3.24)
/tnl (/t ot )Th
tn t 8
< ver dt
<[ S G PR
o ptn ou n
<[ I G Ol T sy
tn ou 1
< /tn1 ||EHL2(J,1;H1(Q))TQ IVE™ | L2 (7, dt
<SS + 7| V€| 12
= ¢ Ot 1L2(Jn; HL () L2(Tn)
c 2
< =757 e,y + Cerll€ s
- 8ﬂu(tn)a [[gn]bfh dt (325)
1 n
—u(tn)) |72,y +€ Z h*H[[f 1172 dt.
e€éy €
Niize,) <C D 1V(u () 227 (3.26)
TeTh
+C Y (e + luta) )
TETh
2
) = ulta))ier < Y / / |do) da (3.27)

TETh

14



<TZ/ /’V )’2dxda

TeTh
Ou |2
< T/ > {6t 1) @
tn—1 TeT,

= THEHLZ(Jn;Hl(Q))'

From (3.26)—(3.27), we have

1
1h& On (ult) — u(tn))ll72(e,) < C( H 5 HLz(J gy T Ul (2 0)- (3.28)
Then it follows from (3.25) and (3.28) that

b " c Ou 2
/ (Oult) — Ouus(tn), 16" De, dt < < (72| S 2oy + W0l smmcy (3.29)

tn—1
+er Y *ll[[é [1172c)-
ecéy

Finally, we combine (3.23), (3.24), (3.29), and (2.16)—(2.17) to get
y _C
i< (v 2 2 iy + BTl e smcay ) + Cerll€” - (3.30)

Now we focus on the estimation of S 221)1 For any « € Q\ D,, it follows from the definition of D,, that
either x € QT (¢,) N QT (¢) or z € QO(t,,) NQO(¢) for t € J,,. Whenever z € QF(t,) N Q¥ (t), we have

|f($,t) - f(xvtn” = ‘f(xat) + Aw(x) - f(xatn) - Alﬁ(fﬂ” (331)
= |f(z,t) = f(a,tn)]-

Whenever z € Q°0(t,,) N Q°(¢), we have

|[f(@,t) = f(z,t)| = [max{f(z,t) + A¢(z), 0} — max{f(z,t,) + A(z)$,0}| (3.32)
<|f(x,t) = fla,tn)]-

Combining these two estimates, we conclude that

|f(@.t) = f(a,ta)| < |f(2,t) = f(a,ta)] V@ €Q\ Dy, tEJy, (3.33)

and thus

52 < / / F ) — flat)] €7 dudt (3.34)
tn_1 Q\D

S /tn—1 TH ot HLZ(J ;L2(92)) + 6||£n||L2 (Q) dt

c 2” 8t HL2(J (L2()) +er" ||L2

C

€

=% 5 L mcay + O
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where in the second inequality we applied the similar technique as used in (3.27) and in the last equality
we used Lemma 2.2.

To estimate S f’}l, we apply the definitions of D,, and f (+,-) and the Holder inequality with % + % =1

for p € [1,00) to obtain
tn 3 .
Sim :/ / (f(z,t) = f(z,t,))E" dadt (3.35)
tn—1J Dy

< O7|[f + Al (s, (@) / €7 de
D,

< OTf + Al oo (g, (@) 1€" | £ (@ymeas(Dy) V.
From (3.21), (3.30), (3.34), and (3.35), we then have

C 0
|San| < :(7'2H8*?H;(JH;H1(Q)) + hQTHu”LOO(Jn;HQ(Q)) + Cerll€™|I7 (3.36)
C 5,0f 2
+ ?TQHEHH(J";I}(Q)) +Qn(p),

where @, (p) is given in (3.9).
The final estimate (3.8) follows from Lemma 3.1, (3.12), (3.15), (3.19), and (3.36). O

From Lemma 3.2, it is key to estimate @, (p). To this aim, we assume there exists a positive constant
C independent of N such that

N
> meas(D,) < C, (3.37)
n=1

which indicates the contact and non-contact sets do not change too frequently [27]. By rearranging the
terms we could assume meas(D,,) < % (n=1,2,...,N) based on (3.37). In particular, such a condition
holds whenever

meas(D,,) < % VYn=1,2,..N. (3.38)
Theorem 3.3. Let e” = u(t,) —uy (n=0,1,2,...,N), where u (resp., uj}) denotes the solution to (1.1)
(resp., (2.8)). Under the assumption (3.37), there exists a positive constant C independent of h and T
such that

N 1
n n 2\ 2 3 —1,1
max [|e ||L2(Q)+(§1:T|e ||h) < C[h+7i(logr1)3]. (3.39)
n=

In addition, under the assumption (3.38), there exists a positive constant C independent of h and T such
that

N 1
n ny2) 2 —1\%
 max el + ( E_ITHe Hh) < Clh+7(logr™h)=]. (3.40)

Proof. Summing over n =1,2,..., N in (3.8), we have
N N

max [I€"][72(q) + D 7lIE" IR < ClIE 12 () + Ce D TlEmIR (3.41)
n=1

1<n<N
n=1
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ou 2
+ CEhQ(HaHLz(J;Hl(m)  llull e rimze) + 1l + ”fHL“(J;Hl(Q))

Ou 2
+ 0 (5 1 earams oy + 155 Woezacan)

N
+ CZ Qn(pn)7

n=1

where C, := €. Choosing € > 0 sufficiently small, the second term Ce 25:1 €127 on the right-hand
side of (3.41) can be absorbed to the left-hand side. Note that in Lemma 3.2, the choice of p in (3.8) can
vary for different n. Therefore we used the notation p,, in (3.41).

Next, we will focus on the estimation of Z _1 Qn(pn). We first assume (3.37) holds. By the Sobolev
Imbedding Theorem [28]

1
%Ilvllm(m < C(IVollary + vllz@) Yo e WH(Th), (3.42)

Lemma 2.1 and Lemma 2.2, we have
1€ I zr ) < CVDIE I VP =1 (3.43)

Let N7 and N5 be a disjoint partition of {1,2,..., N}. We choose p, = 2 for n € N} and p,, = p with
p € [1,00) for n € N3, and we apply (3.43), the Cauchy-Schwarz inequality, and Young’s inequality to
obtain

N

neNy neNs
1
< ONf + A= ineion (7 D0 1€ aoymeas(Da)d +7 57 €7 pooymeas(Dy) )
neN; neN,
< ONf + A~ inion (7 D 1€ oymeas(Da)E +7 37 /Bl nmeas(D,) )
neN; neN,

<C||f+A’(/}HLoo(JLoo () (Elglag(NHgn”Lz )+C€T ;[ meas 5
neN

m\w
\_/

+€7‘Z €712 4 Cepr Z meas(D

nENz

where ¢ satisfies 1/p +1/¢ = 1.
By Lemma 3 in [27], there exist a positive constant C independent of 7 and the choices of N, Na, p
such that

N2
72( Z meas(Dn)f) +pr Z meas(Dn)% <Cr %(logT 1)%. (3.45)
neN neN,
With sufficiently small € > 0, we then obtain the error estimate

N
n||2 n||2 012
 Dax 1€ ||L2(Q)+Z:ITH§ 15 < ClE 1220 (3.46)
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ou

2
+ Ceh2(||7||L2(J;H1(Q)) + ”uHL‘”(J;HQ(Q) + ||¢||§12(Q) + ||fHL°°(J§H1(Q))

ou 2 of 2
+ 0 (5 1 earams oy + 155 Woezacan)
+ O (log ) F (e iz o) + 1 llwae(e)):

The final estimate (3.39) follows from (3.46), Lemma 2.5, (2.11), and (3.1).

Now we assume (3.38) holds. In (3.44), we choose N1 = {1,2,..., M} and Ny = {M +1,..., N}, where
M equals to the integer part of (N log N)2, and p = log N. Note that € = O(r). A direct calculation
shows that

ZQn(pn) = Z QH(Q) + Z Qn(p) (3'47)

neN; neN2

N
N ny2 n|2 2 -1
SCHf+AT/)||L°°(J;L°C(Q))(€ITTL§{<||5 ||L2(Q)+€Z:1TH£ [ +7°logT ))

We then obtain the estimate (3.40) under the assumption (3.38). O

Remark 3.4. The rate of convergence in Theorem 3.3 is sharp with respect to the spatial mesh-size h.
However due to the low regularity of %, the optimal rate with respect to the temporal mesh-size 7 is not
directly available. Under the assumption (3.37), we showed a convergence rate close to %, which agrees

with the results in [27, 34]. Indeed, under the assumption

N

N
> (meas(Dy))? < C, (3.48)

we can derive the optimal convergence O(h + 7) by slightly revising (3.44) in the proof of Theorem 3.3.
However, such an assumption may not hold in practice. Under a more reasonable assumption (3.38), we
recover a convergence rate close to 1 in 7.

4. Numerical Experiments

In this section, we report several numerical tests to illustrate the performance of the fully discrete
methods (2.8) with . := « for all e € &, where v € {—1,0,1}. At each time step, we solve the discrete
problem by the primal-dual active set strategy [26]. To verify the rates in Theorem 3.3 for Example 1
and Example 2, we measure the relative total error (RTE)

1
N 2
max _u(tn) — ull| 2(q) + (Z llu(ty,) — uzni)

1<n<N
n=1

RTE = T (4.1)

N 2
2
maxfu(tn) 22 + (er||w(tn)llm<m>

where N is the number of time steps on the interval J = [0, Tp].
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4.1. Example 1

In this example, we consider a benchmark where the contact set is the oscillating moving circle [35, 34].
Let Q = [-1,1]%, J = [0,0.25], and ¢ = 0. With r; = § and w = 4, define

ro(t) = % + 0.3 sin(4wmt),
c(t) = r1(cos(wmt), sin(wmt)),
and the sets
Q(t) = {llz = c(t)ll2 < ro(1)},
Q1) = {llz — c(®)ll2 > ro(t)}-
Define the load function as

Flat) = 4[r3(t) = 2llz — c(®)|3 = 3(|x — c@®)]13 = r3) (z — (1) (t) +ro(O)rh(t))], x € QF(2),
’ —4rg (1= [l = e(t)lI3 +75(2)) , z e QO(t).

The exact solution is

e —e)13 - r31), z € QH(t),
u@J)_{Q 0 v e Q) (4.2)

Note that this example has nonhomogeneous boundary data g(t) determined by (4.2). As such, the fully
discrete scheme (2.8) is modified as

(Quy,vp, —up) + ap(upy, v, —uy) > Fit (v, — uy) Vo, € Ky, (4.3)
where

Fit(v) := (f(tn),v)7 + <%g(tn)7v>83 — <g(tn)7vh’0v . n>55 Vv € V.

In Table 4.1, we display the relative errors (RTE) and rates of convergence. To determine a rate for h, we
fix 7 =5 x 1075 and vary h = {1/2,1/4,...,1/32}. From Table 4.1, we observe the O(h) convergence for
all three penalty values as predicted in Theorem 3.3. To determine a rate for 7, we reduce the mesh-size
h by a factor of % and we doubled the number of time steps. Furthermore, the denominator in (4.1)
is calculated on the finest temporal mesh. Numerical results indicate order 1 convergence with respect
to 7. Indeed, from the definition of the exact solution (4.2), we can verify that the set D,, satisfies the
assumption (3.38). Therefore our numerical results agree with the error estimate in (3.40) of Theorem 3.3.

4.2. Example 2
In this numerical experiment we consider a homogeneous problem with a non-zero obstacle, which is

a slight modification from [37]. Let Q = [0,1]%, J = [0,1], a(t) = 3 + 1 sin(2nt), and define the obstacle

function to be ¥(z) = x1(1 — z1)z2(1 — z2). We define the exact solution for the problem (1.1a)—(1.1b)

w(w, ) = 100z (21 — Oz(t))QxQ(l — o) + 221 (1 — 1) + 22(1 —x2), x1 < aft),
201 (1 — @) 4 22(1 — x2), x1 > at)
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Table 4.1: Errors and convergence rates with respect to h and 7 for Example 1

h rate T rate
h RTE Rate N RTE Rate
1 2.6157e-01 — 5 1.4707e+00 —

1/2 1.2528e-01 1.0621 | 10  7.3719e-01  0.9964
N 1/4  6.1189e-02 1.0338 | 20  3.7174e-01  0.9877
v= 1/8  3.0775e-02 0.9915 | 40  1.9030e-01  0.9660
1/16 1.5542e-02 0.9855 | 80  9.6538e-02  0.9791
1/32  7.8714e-03 0.9815 | 160 4.8663e-02  0.9883
1 2.6754e-01 — 5 1.4781e+00 —
1/2 1.2948e-01 1.0471 | 10  7.4718e-01  0.9842
1/4  6.3395e-02 1.0303 | 20  3.7762e-01  0.9845
1/8 3.1755e-02 0.9974 | 40  1.9307e-01  0.9678
1/16 1.5981e-02 0.9907 | 80  9.7812e-02 0.9811
1/32  8.0731e-03 0.9851 | 160 4.9259¢-02  0.9896
1 2.7322e-01 — 5 1.4842e+4-00 —
1/2  1.3281e-01 1.0407 | 10  7.5462e-01  0.9759
1 1/4  6.5049e-02 1.0298 | 20  3.8189¢-01  0.9826
T= 1/8  3.2479e-02 1.0020 | 40  1.9511e-01  0.9689
1/16  1.6304e-02 0.9942 | 80  9.8756e-02  0.9823
1/32  8.2231e-03 0.9875 | 160 4.9705e-02  0.9905

such that the load function is given by

) O — A, x1 < aft),
flat) = {0, x2 > aft).

In Table 4.2, we display the relative errors (RTE) and rates of convergence. We fix 7 = 5 x 107° and vary
h={1/2,1/4,...,1/64} to calculate the rate in h. We observe the O(h) convergence for all three penalty
values, which agrees with Theorem 3.3. A direct calculation demonstrated the assumption (3.38) holds.
The error estimate in (3.40) of Theorem 3.3 predicted the order 1 convergence with respect to 7, which
is also confirmed from Table 4.2.

4.3. Example 3

In this experiment, we consider a problem without a known exact solution. Let = [0,1]2, J = [0,1],
Y(x) = cos(3mxy) + cos(3masy), and f = —5. We also take u(x,t) = ¢(z) for t € J on 9. To estimate
the rate of convergence with respect to h, we fix 7 = 5 x 10™* and vary h = {1/2,1/4,...,1/64}. Since
the exact solution is unknown, we replace u(t,) with uy , in (4.1) to estimate the relative total error:

N 2
1£%XN [uh /o — upllL2(o) + (Z 7llug o — “Z}%ﬂ)

n=1

RTE =

n=1

N 2
n n 2
max ol 2 o) + <ZTWh/2||L2<m>
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Table 4.2: Errors and convergence rates with respect to h and 7 for Example 2

h rate T rate
h RTE Rate N RTE Rate
1/2  3.1968e-01 — 5 3.3185e-01 —

1/4  2.0704e-01 0.6267 | 10  2.2153e-01  0.5830
I 1/8 1.0875e-01 0.9289 | 20 1.1520e-01 0.9434
v= 1/16  5.4894e-02 0.9862 | 40 5.9319e-02 0.9576
1/32  2.7533e-02 0.9955 | 80  2.9988e-02 0.9841
1/64 1.3777e-02 0.9989 | 160 1.5077e-02 0.9920
1/2  3.5288e-01 — 5  3.6516e-01 —

1/4  2.2616e-01 0.6418 | 10  2.4108e-01 0.5990
1/8 1.1824e-01 0.9356 | 20 1.2481e-01 0.9498
1/16  5.9684e-02 0.9864 | 40  6.4082¢-02 0.9618
1/32  2.9937e-02 0.9954 | 80 3.2362¢-02 0.9856
1/64 1.4981e-02 0.9988 | 160 1.6262¢-02 0.9928
1/2  3.7934e-01 — 5  3.9179e-01 —

1/4  2.4017e-01 0.6594 | 10  2.5542e-01 0.6172
—1 1/8 1.2508e-01 0.9412 | 20 1.3173e-01 0.9553
v= 1/16  6.3104e-02 0.9871 | 40  6.7485¢-02  0.9649
1/32  3.1646e-02 0.9957 | 80  3.4054e-02 0.9867
1/64 1.5837e-02 0.9987 | 160 1.7106e-02 0.9933

In order to estimate the rate of convergence with respect to 7, we reduce the mesh-size h by a factor of %
and doubled the number of time steps. For convenience, we denote v ;, by the numerical solution at time
point ¢,, with the time step size 7 and the spatial mesh size h. Then we use u, /2,h/2(tn) to approximate
u(t,) and calculate the relative total error in the following:

N 2
 max, l[wr/2,n/2(tn) — uZ pll2 (@) + (Z Ttz j2,ny2(tn) — UZH%L/z)

n=1

RTE =

N 2
 max fluryznz(tn)llzz@) + (ZlTWr/z-,h/z(tnN@?m))

The corresponding simulated errors and rates are displayed in Table 4.3, which agrees with the results in
Theorem 3.3.

5. Summary

In this paper, we have formulated a fully discrete dual-wind DG method for a parabolic variational
inequality. Under the reasonable assumptions on the contact sets, error estimates are obtained in the
energy norm. Several numerical examples are presented which demonstrate the theoretical rates of
convergence established in Theorem 3.3. It is possible to extend the analysis to the time-dependent
obstacle if the time derivative of the obstacle is sufficiently smooth. It is also of great interest to extend
the analysis to quadratic dual-wind DG methods and investigate the rate of convergence. However such an
analysis requires the construction of a positive-preserving interpolation error estimator that also satisfies
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Table 4.3: Errors and convergence rates with respect to h and 7 for Example 3

h rate T rate
h RTE Rate N RTE Rate
1/2  8.7405e-02 — 5 1.0172e-01 —

1/4  4.9549e-02 0.8189 | 10  5.3537e-02  0.9260
- 1/8  2.3074e-02 1.1026 | 20 2.4176e-02  1.1469
v= 1/16 1.1057e-02 1.0612 | 40  1.1640e-02  1.0545
1/32  5.4271e-03 1.0268 | 80  5.7795e-03 1.0101
1/64 2.6971e-03 1.0088 | 160 2.9071e-03  0.9913
1/2  8.8387e-02 — 5 1.0306e-01 —

1/4  4.9660e-02 0.8318 | 10 5.3774e-02 0.9384
-0 1/8  2.2845e-02 1.1202 | 20 2.3977e-02 1.1652
v= 1/16  1.0786e-02 1.0827 | 40  1.1376e-02 1.0757
1/32  5.2329e-03 1.0435 | 80  5.5879e-03  1.0256
1/64 2.5841e-03 1.0180 | 160 2.7955e-03  0.9992
1/2  8.9865e-02 — 5 1.0306e-01 —

1/4  5.0125e-02 0.8422 | 10 5.3774e-02 0.9385
1 1/8  2.2841e-02 1.1339 | 20 2.3977e-02 1.1652
v= 1/16  1.0655e-02 1.1001 | 40 1.1376e-02 1.0757
1/32  5.1215e-03 1.0570 | 80  5.5879e-03  1.0256
1/64 2.5146e-03 1.0262 | 160 2.7955e-03  0.9992

the constraints on the midpoint of the triangulation. This together with the a posteriori error analysis
for the adaptive algorithm of the proposed method will be investigated in the future.
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