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Abstract

This paper investigates a symmetric dual-wind discontinuous Galerkin (DG) method for solving parabolic
variational inequalities. By employing a symmetric dual-wind DG discretization in space and a back-
ward Euler discretization in time, we propose a fully discrete scheme to solve a time-dependent obstacle
problem. Under reasonable regularity assumptions on the exact solution, we prove the convergence of
numerical solutions with rates in the L1(L2) and L2(H1)-like energy errors by introducing a new inter-
polation operator which is a combination of the standard interpolation operator and a positive-preserving
interpolation operator. Numerical experiments are provided to validate the e↵ectiveness of the proposed
method.
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1. Introduction

Let ⌦ be a bounded convex polygonal domain in R2, TF > 0, and set J = [0, TF ]. For a given
f 2 C(J ;L1(⌦)) and  2 H1(⌦) with   0 a.e. on @⌦, we consider the parabolic variational inequality:
For all t 2 (0, TF ], find u(t) 2 K ⇢ H1

0 (⌦) such that

(@tu, v � u) + a(u, v � u) � (f(t), v � u) 8 v 2 K, (1.1a)

u(0) = u0, (1.1b)

where u0 2 K is the given initial condition, K is the constrained set

K := {v 2 H1
0 (⌦) : v �  a.e. in ⌦}, (1.2)

and the bilinear forms (·, ·) and a(·, ·) are defined by

(v, w) =

Z

⌦
v w dx, a(v, w) =

Z

⌦
rv ·rw dx 8 v, w 2 H1(⌦). (1.3)
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Throughout the paper we follow the standard functional space and function notation in [13, 1, 6]. In
particular, W k,p(⌦) for nonnegative integer k and 1  p  1 denotes the Sobolev space, Hk(⌦) denotes
the space when p = 2, C(J ;X) denotes the space of continuous functions from J to the normed space X,
and Lp(J ;X) is the space equipped with the norm

kvkLp(J;X) =

 Z
TF

0
kv(t)kp

X
dt

! 1
p

1  p < 1,

kvkL1(J;X) = ess sup
t2J

kv(t)kX .

The problem (1.1) is a generalization of an elliptic obstacle obstacle problem with the obstacle function
 . It is also a special case of variational inequalities (VIs) that arise from a wide range of applications
including mechanics, physics, engineering, economics, finance, mathematical programming, optimal con-
trol, and optimization, etc [29, 36, 20]. Due to the presence of the the obstacle function, the variational
inequality becomes a nonlinear problem which leads to challenges in both the theoretical and numerical
analysis.

The existence and uniqueness of the solution to the problem (1.1) follows from the standard theory
for VIs [9, 10, 29, 36, 20]. Under the assumptions on the data

f 2 C(J ;L1(⌦)),
@f

@t
2 L2(J ;L1(⌦)), (1.4)

 2 W 2,1(⌦), u0 2 W 2,1(⌦) \K, (1.5)

the exact solution u satisfies [10]

u 2 L1(J ;W 2,p(⌦)) 1  p < 1, (1.6)

@u

@t
2 L2(J ;H1

0 (⌦)) \ L1(J ;L1(⌦)). (1.7)

Moreover, denoting @+u/@t to be the right-hand derivative of u with respect to t, the solution to (1.1)
satisfies

@+u

@t
= �u+ f a.e. on ⌦+(t), (1.8)

@+u

@t
= max{f +� , 0} a.e. on ⌦0(t), (1.9)

where the contact set ⌦0(t) and the non-contact set ⌦+(t) are given by

⌦0(t) := {x 2 ⌦ : u(x, t) =  (x)}, (1.10)

⌦+(t) := {x 2 ⌦ : u(x, t) >  (x)} (1.11)

for all t 2 J . The boundary between ⌦0(t) and ⌦+(t) is called the free boundary which is the main source
of singularities for the exact solution. We denote

�(t) =
@+u

@t
(t)��u(t) + f(t). (1.12)

For any t 2 J , the following complementarity form of (1.1) follows from (1.8)–(1.9)

�(t) � 0 a.e. in ⌦, (1.13)
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(�(t), u(t)�  ) = 0 a.e. in ⌦. (1.14)

The study of VIs is an active area and we refer the reader to [14, 29, 20, 25] for an extensive survey
on the numerical analysis of VIs. In the case of elliptic VIs, various finite element methods including
conforming, nonconforming, virtual elements, and a family of DG methods have been studied in [16, 11,
40, 8, 7, 5, 4, 38, 39, 24, 31] and the references therein. Optimal a priori error estimates were obtained
using the established regularity results for the exact solution; the key ingredient in the analysis is the
use of the complementarity condition which is valid since the exact solution has the full regularity (i.e.,
u 2 H2(⌦)). For the parabolic VI (1.1), there is an another di�culty arising in the low regularity of the
time derivative of the exact solution (see (1.7)). In [27], a fully discrete scheme with a standard linear
conforming finite element method and backward Euler time-stepping was considered, where the error
estimate of the form O(h + ⌧

3
4 (log(⌧�1))

1
4 ) was obtained. The sub-optimal rate of ⌧ is due to the low

regularity of @u/@t. However, the analysis in [27] was carried out under the assumption of the zero obstacle
function. Recently in [21, 22, 23, 33, 34], the analysis has been extended to general obstacle functions
for conforming, nonconforming, and a family of DG methods with the help of the positive-preserving
interpolation operator [12] with nonhomogeneous Dirichlet boundary conditions. Similar results were
achieved in these works by converting the original parabolic VI (1.1) into the problem with a zero
obstacle and fixed nonhomogeneous boundary conditions.

In this work, we are interested in applying and analyzing symmetric dual-wind DG methods [30] to
approximate solutions of (1.1). Such methods have been applied to elliptic VIs in [31], where sharp error
estimates were derived for both linear and quadratic elements. The methods followed the framework
of the DG di↵erential calculus [17], where discrete partial derivatives are used to approximate classical
partial derivatives. In particular, the dual-wind DG methods utilize both the up-wind discrete gradient
operator and the down-wind discrete gradient operator and are stable without explicitly penalizing jump
discontinuities as is standard for classical DG methods [2]. The goal of this paper is to extend the
work in [31] to the case of parabolic VIs and propose a more simple a priori convergence analysis. We
will combine the dual-wind DG discretization in space and the backward Euler discretization in time
to obtain a fully discrete scheme. Due to the use of the discrete gradient operators, such an analysis
is more subtle. To this aim, we assume the data satisfies (1.4)–(1.5) such that the regularity results in
(1.6)–(1.7) hold. A new interpolation operator will be introduced to deal with general obstacle functions,
and thus we achieve a simplified convergence analysis and prove O(h + ⌧

3
4 (log(⌧�1))

1
4 ) convergence for

the proposed method.Furthermore, we demonstrate O(h+ ⌧(log(⌧�1))
1
2 ) convergence is achievable under

stronger assumptions. In addition, the flexibility of a penalty-free method makes this approximation
desirable for more complicated problems.

The rest of the paper is organized as follows. In Section 2 we introduce a fully discrete symmetric
dual-wind DG method and derive several preliminary results including the interpolation operator that
will be useful for the convergence analysis. In Section 3 we present error estimates for the convergence
of the proposed method. We report numerical experiments in Section 4. Finally, we include a summary
in Section 5.

2. The Fully Discrete Method

The fully discrete dual-wind DG method is formulated in this section. We will first introduce the DG
di↵erential operators that are used to define the dual-wind DG method. Next the fully discrete problem
is presented and finally some useful lemmas for the discrete di↵erential operators and interpolation error
estimates are derived.
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2.1. DG Di↵erential Operators

Standard functional space and function notation in [1, 6] will be adopted in this paper. For conve-
nience, we introduce the following notations:

Th: a shape-regular simplicial triangulation of ⌦ ⇢ R2 [13, 6],

hT : the diameter of the simplex T 2 Th,

h := maxT2Th hT : mesh size of the triangulation,

EI

h
: the set of interior edges in Th,

EB

h
: the set of boundary edges in Th,

Eh := EI

h
[ EB

h
: the set of edges in Th,

VT : the set of vertices of the simplex T 2 Th,

Vh: the set of all vertices of Th,

W
k,p(⌦) := [W k,p(⌦)]2: vector-valued Sobolev spaces with each component in W k,p(⌦),

H
k(⌦) := [Hk(⌦)]2: vector-valued Sobolev spaces with each component in Hk(⌦),

W k,p(Th) :=
Q

T2Th
W k,p(T ): piecewise Sobolev spaces,

W
k,p(Th) :=

Q
T2Th

W
k,p(T ): vector-valued piecewise Sobolev spaces,

(v, w)Th :=
P

T2Th

R
T
vw dx: piecewise L2 inner product over Th,

⌦
v, w

↵
Sh

:=
P

e2Sh

R
e
vw ds: piecewise L2 inner product over a subset Sh ⇢ Eh,

kvk2
L2(Th)

:= (v, v)Th : square of the L2 norm over Th.

We also define Vh := W 1,1(Th) \ C0(Th) and Vh := [Vh]2. Let Vh be the space of piecewise linear
polynomials with respect to the triangulation Th, i.e., Vh = {v 2 L2(⌦) : v|T 2 P1(T ) 8T 2 Th}, where
P1(T ) denotes the space of linear polynomials over T . The corresponding vector-valued DG space is then
given by Vh := [Vh]2. Throughout the paper, we will use bold-face notation to indicate vector-valued
spaces.

In the following, we will define the jump and average operator across the edge e 2 Eh. For simplicity,
we assume the global labeling number of T+ is larger than that of T�. For e = @T+ \ @T� with
T+, T� 2 Th, we define

[[v]]|e := v+ � v�, {v}|e :=
1

2

�
v+ + v�

�
8 v 2 Vh,

where v± := v|T± . For e = @T+ \ @⌦ for a boundary simplex T+ 2 Th, define

[[v]]|e := v+, {v}|e := v+ 8 v 2 Vh.

Set ne = (n(1)
e , n(2)

e )t := nT+ |e = �nT� |e to be the unit normal on e 2 EI

h
. For i = 1, 2 and v 2 Vh,

we define the following two trace operators on e 2 EI

h
in the direction xi:

Q+
i
(v) :=

8
><

>:

v|T+ , if n(i)
e > 0,

v|T� , if n(i)
e < 0,

{v}, if n(i)
e = 0

and Q�
i
(v) :=

8
><

>:

v|T� , if n(i)
e > 0,

v|T+ , if n(i)
e < 0,

{v}, if n(i)
e = 0.
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Note that the operators Q±
i
(v) can be equivalently defined by Q±

i
(v) := {v} ± 1

2 sgn(n
(i)
e )[[v]], which

can be understood as the “forward” and “backward” limit of v in the xi direction on e 2 EI

h
. For

e = @T+ \ @⌦ 2 EB

h
, we simply take ne = nT+ and Q±

i
(v) = v+.

Next, using the “forward” and “backward” trace operators, we are able to define the discrete partial
derivative operators @±

h,xi
, @±,g

h,xi
: Vh ! Vh (i = 1, 2) as

�
@±
h,xi

v,'h

�
Th

:=
⌦
Q±

i
(v)n(i), [['h]]

↵
Eh

�
�
v, @xi'h

�
Th

8'h 2 Vh, (2.1)
�
@±,g

h,xi
v,'h

�
Th

:=
⌦
Q±

i
(v)n(i), [['h]]

↵
EI
h
+
⌦
gn(i),'h

↵
EB
h
�
�
v, @xi'h

�
Th

8'h 2 Vh, (2.2)

where g 2 L1(@⌦). With these notations, we can define the discrete gradient operators for v 2 Vh as

r±
h
v = (@±

h,x1
v, @±

h,x2
v), r±

h,g
v = (@±,g

h,x1
v, @±,g

h,x2
v).

Furthermore, we define rhv, rh,gv, @h,xiv, and @
g

h,xi
v to be the average of “forward” and “backward”

discrete operators, i.e.,

@h,xiv :=
1

2
(@+

h,xi
v + @�

h,xi
v), @

g

h,xi
v :=

1

2
(@+,g

h,xi
v + @�,g

h,xi
v),

rhv :=
1

2
(r+

h
v +r�

h
v), rh,gv :=

1

2
(r+

h,g
v +r�

h,g
v).

In particular, whenever g = 0, the discrete gradient operators r±
h,0v and rh,0v are defined using @±,0

h,xi
v

and @
0
h,xi

v.
Combining (2.1), (2.2), and integration by parts, the discrete gradient operators also satisfy the

following conditions:
�
r±

h
v,'h)Th = (rv,'h)Th �

⌦
[[v]], {'h} · n

↵
EI
h

(2.3)

± 1

2

2X

i=1

⌦
[[v]]|n(i)|, [['(i)

h
]]
↵
EI
h

8 v 2 Vh, 8'h 2 Vh,

�
r±

h,g
v,'h)Th = (rv,'h)Th �

⌦
[[v]], {'h} · n

↵
Eh

(2.4)

+
⌦
g,'h · n

↵
EB
h
± 1

2

2X

i=1

⌦
[[v]]|n(i)|, [['(i)

h
]]
↵
EI
h

8 v 2 Vh, 8'h 2 Vh,

where g 2 L1(@⌦). Finally, the following properties can be derived immediately by the definition of the
discrete gradient operators and integration by parts [17]:

�
r±

h,g
v,'h)Th =

�
r±

h,0v,'h)Th +
⌦
g,'h · n

↵
EB
h

8 v 2 Vh, 8'h 2 Vh, (2.5)

(@±
h,xi

vh,'h)Th = �(vh, @
⌥
h,xi

'h)Th +
⌦
vh,'hn

(i)
↵
EB
h

8 vh, 'h 2 Vh. (2.6)

2.2. The Fully Discrete Dual-Wind DG Method

In this subsection we combine the dual-wind DG method [30, 31] with a backward Euler discretization
in time to obtain a fully discrete scheme for (1.1).

Let tn = n⌧ (n = 0, 1, ..., N) be a uniform partition of J with ⌧ = TF
N

and Vh be the discontinuous
piecewise linear space associated with Th that is introduced in Section 2.1. We define the approximation
of the constrained set K to be

Kh : = {vh 2 Vh : vh(p) �  (p) 8 p 2 VT , 8T 2 Th}. (2.7)

5



The fully discrete scheme for approximating of (1.1) seeks un

h
2 Kh (n = 1, ..., N) such that

(@un

h
, vh � un

h
) + ah(u

n

h
, vh � un

h
) � (f(tn), vh � un

h
) 8 vh 2 Kh, (2.8)

where

@un

h
=

un

h
� un�1

h

⌧
(2.9)

and

ah(vh, wh) :=
1

2

⇣�
r+

h,0vh,r
+
h,0wh

�
Th

+
�
r�

h,0vh,r
�
h,0wh

�
Th

⌘
+
D�e
he

[[vh]], [[wh]]
E

Eh

. (2.10)

Here �e is a “penalty” parameter on e 2 Eh that will be determined later. We choose u0
h
to be Ih,1u0,

where Ih,1 is the standard nodal interpolation operator that satisfies the following property [13, 6]:

kv � Ih,1vkL2(T ) + hT |v � Ih,1v|H1(T )  Chs+1
T

|v|Hs+1(T ) 8T 2 Th, (2.11)

for all v 2 Hs+1(⌦) with s � 1. Utilizing Lemma 2.3 and (2.11), the global estimate in terms of the
energy norm was shown in [31] for s � 1:

kv � Ih,1vk2h  Ch2s|v|2
Hs+1(⌦) 8 v 2 Hs+1(⌦). (2.12)

Note that the method (2.8) is unconditionally stable with respect to ⌧ similar to the implicit scheme for
the heat equation.

To measure the error, we introduce the notation

kvk21,h :=
1

2

⇣
kr+

h,0vk
2
L2(⌦) + kr�

h,0vk
2
L2(⌦)

⌘
8 v 2 Vh, (2.13)

kvk2
h
:= kvk21,h +

X

e2Eh

�e
he

��[[v]]
��2
L2(e)

8 v 2 Vh. (2.14)

It was shown in [30] that when the triangulation Th is quasi-uniform and each simplex in the triangulation
has at most one boundary edge, then there exists a constant C⇤ > 0 independent of h such that

C⇤
X

e2Eh

h�1
e

k[[vh]]k2L2(e)  kvhk21,h 8 vh 2 Vh. (2.15)

Let �min := mine2Eh �e. In the case of �min > 0, we have

�min

X

e2Eh

h�1
e

��[[vh]]
��2
L2(e)

 kvhk2h 8 vh 2 Vh. (2.16)

In the case of �C⇤ < �min  0, we assume Th is quasi-uniform and each simplex in the triangulation has
at most one boundary edge such that (2.15) holds and we have [31]

�
C⇤ + �min

� X

e2Eh

h�1
e

��[[vh]]
��2
L2(e)

 kvhk2h 8 vh 2 Vh. (2.17)

From (2.16) and (2.17), it is clear that k · kh is non-negative and defines a mesh-dependent norm. The
bilinear form ah(·, ·) is naturally coercive with respect to k · kh for each case. Furthermore, we have the
following boundedness results for ah(·, ·) with respect to k · kh:

�min � 0 : ah(v, w)  kvkhkwkh 8 v, w 2 Vh +H2(⌦), (2.18)
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�C⇤ < �min < 0 : ah(vh, wh)  kvhkhkwhkh 8 vh, wh 2 Vh. (2.19)

Let Ih,1 : H2(⌦) �! Vh\H1(⌦) be the standard nodal interpolation operator. It is clear Ih,1 preserves
the constraints, i.e., Ih,1 2 Kh. Since Kh is nonempty and convex, we can apply the coercivity and
boundedness of the bilinear form to conclude that the fully discrete problem (2.8) is well-posed (see
[20, 36, 29]).

2.3. Preliminary Results

In this subsection, we establish several technical lemmas that will be crucial in the error analysis in
Section 3.

First, we immediately obtain from (2.14), (2.16), and (2.17) that there exists a positive constant C
independent of h such that

kvhk1,h  Ckvhkh 8 vh 2 Vh. (2.20)

The following lemma establishes the relation between the classical gradient and the discrete gradient
operator whose proof can be found in [31].

Lemma 2.1. If �min > 0, there holds

krvhk2L2(Th)
 C

✓
1 +

1

�min

◆
kvhk2h 8vh 2 Vh. (2.21)

If �C⇤  �min  0, there holds

krvhk2L2(Th)
 C

✓
1 +

1 + |�min|
C⇤ + �min

◆
kvhk2h 8vh 2 Vh. (2.22)

It is well-known that the discrete Poincaré inequality holds [3, 19]:

kvk2
L2(⌦)  C

 
krvk2

L2(Th)
+
X

e2Eh

1

he

k[[v]]k2
L2(e)

!
8 v 2 H1(Th). (2.23)

However the piecewise H1-seminorm is evaluated using the classical gradient operator. With the help of
Lemma 2.1, we are able to derive a similar discrete Poincaré inequality in the DG space using the energy
norm k · kh.

Lemma 2.2. There exists a positive constant C independent of h such that

kvk2
L2(⌦)  Ckvk2

h
8v 2 Vh. (2.24)

Proof. We first assume �min > 0. Then the estimate (2.24) immediately follows from (2.23), (2.21), and
(2.16). In the case �C⇤  �min  0, we can apply (2.22) and (2.17) instead of (2.21) and (2.16) to obtain
the estimate (2.24).

One important property of the discrete derivatives of a function v is that they reduce to the L2

projection of the derivative of v provided v 2 H1(⌦). Indeed, the following lemma can be proved using
(2.3)–(2.4) (see [17]).
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Lemma 2.3. For any v 2 H1(⌦), both @±
h,xi

v and @h,xiv are the L2
projections of @xiv onto Vh, i.e.,

(@±
h,xi

v, wh)Th = (@h,xiv, wh)Th = (@xiv, wh)Th 8wh 2 Vh. (2.25)

Moreover, if v 2 H1(⌦) satisfies v = g on @⌦ for some g 2 L1(@⌦), then both @±,g

h,xi
v and @

g

h,xi
v are the

L2
projection of @xiv onto Vh.

From Lemma 2.3, we obtain a useful formula connecting the Laplacian operator and the discrete
bilinear form.

Lemma 2.4. Let v 2 H2(⌦) \H1
0 (⌦) and vh 2 Vh. There holds

ah(v, vh) = (��v, vh)Th � h{rh,0v �rv} · n, [[vh]]iEh . (2.26)

Proof. Since vh 2 Vh and v = 0 on @⌦, we have

ah(v, vh) =
1

2

�
(r+

h,0v,r
+
h,0vh)Th + (r�

h,0v,r
�
h,0vh)Th

�
(2.27)

=
1

2

�
(r+

h,0v,rvh)Th + (r�
h,0v,rvh)Th

�
� h{rh,0v} · n, [[vh]]iEh

=
1

2

�
(rv,rvh)Th + (rv,rvh)Th

�
� h{rh,0v)} · n, [[vh]]iEh

= (rv,rvh)Th � h{rh,0v} · n, [[vh]]iEh

= (��v, vh)Th � h{rh,0v �rvh} · n, [[vh]]iEh , (2.28)

where in the second equality we applied (2.4), in the third equality we used the L2 projection properties
of r±

h,0 in Lemma 2.3, and in the last equality we applied integration by parts.

In the analysis, we need to consider the interpolation of the time derivative @u

@t
. Due to its low

regularity, the standard nodal interpolation Ih,1
@u

@t
is not well-defined. Therefore, a new operator is

needed to deal with the low regularity and the obstacle constraints simultaneously. In [12, 21], a positive-
preserving operator Ih,2 from H1(⌦) \ C(@⌦) to Vh \H1(⌦) was constructed by

Ih,2v(x) :=
X

p2Vh

↵p�p(x), (2.29)

where �p is the nodal basis function associated with the vertex p 2 Vh and

↵p =

(
1

|Bp|
R
Bp

v(x) dx 8 p 2 Vh \ ⌦,

v(p) 8 p 2 Vh \ @⌦.
(2.30)

Here Bp denotes the largest inscribed disk for the local patch !p :=
S
{T 2 Th : p 2 VT }. The following

approximation properties can be found in [21]:

kv � Ih,2vkL2(T )  ChT kvkH1(ST ) 8 v 2 H1
0 (⌦), (2.31)

kv � Ih,2vkL2(T )  Ch2
T
kvkH2(ST ) 8 v 2 H2(⌦), (2.32)

kr(v � Ih,2v)kL2(T )  ChT kvkH2(ST ) 8 v 2 H2(⌦), (2.33)

where ST := [p2VT !p. The definition of Ih,2 implies it is a positive-preserving operator, i.e., v � 0 in ⌦
implies that Ih,2v � 0 in ⌦.
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Based on Ih,1 and Ih,2, we construct a new operator ⇧h : H1
0 (⌦) �! Vh as

⇧hv = Ih,1 + Ih,2(v �  ). (2.34)

Since  2 H2(⌦), the operator is well-defined. Note that if v 2 K, we have ⇧hv 2 Kh. Indeed, for
p 2 Vh \ ⌦, since v �  in ⌦, we have

⇧hv(p) = Ih,1 (p) + Ih,2(v �  )(p) �  (p) + 0 =  (p).

For p 2 Vh \ @⌦, we have

⇧hv(p) = Ih,1 (p) + Ih,2(v �  )(p) =  (p)�  (p) = 0 �  (p)

due to the fact that v = 0 on @⌦,   0 on @⌦, and the property of Ih,2.

Lemma 2.5. For any v 2 H2(⌦), there exists a positive constant C independent of h such that

kv �⇧hvkL2(⌦) + h|v �⇧hv|H1(⌦) + hkv �⇧hvkh  Ch2(kvkH2(⌦) + k kH2(⌦)). (2.35)

Proof. By the definition (2.34), we have

v �⇧hv =  + (v �  )� Ih,1 � Ih,2(v �  )

= ( � Ih,1 ) + ((v �  )� Ih,2(v �  )).

Using the local approximation properties for Ih,2 in (2.32)–(2.33), we have

k(v �  )� Ih,2(v �  )kL2(⌦) + h|(v �  )� Ih,2(v �  )|H1(⌦)  Ch2(kvkH2(⌦) + k kH2(⌦)). (2.36)

Furthermore, we use (2.33) and Lemma 2.3 to obtain

k(v �  )� Ih,2(v �  )kh  Ch(kvkH2(⌦) + k kH2(⌦)). (2.37)

Indeed, this can be established in the same way as those in k �Ih,1 kh (see [31]). Now combining (2.36)
with the approximation properties for Ih,1 in (2.11), we have

kv �⇧hvkL2(⌦) + h|v �⇧hv|H1(⌦)  k � Ih,1 kL2(⌦) + k(v �  )� Ih,2(v �  )kL2(⌦) (2.38)

+ | � Ih,1 |H1(⌦) + |(v �  )� Ih,2(v �  )|H1(⌦)

 Ch2(kvkH2(⌦) + k kH2(⌦)).

Similarly, using (2.12) and (2.37), we obtain the estimate

kv �⇧hvkh  Ch(kvkH2(⌦) + k kH2(⌦)). (2.39)

The final estimate (2.35) follows from (2.38) and (2.39).

3. An a Priori Error Analysis

In this section we establish an error estimate for the fully discrete method proposed in Section 2. We
denote en = u(tn)�un

h
to be error between the exact solution and the discrete solution at the time point

tn = n⌧ (n = 0, 1, 2, ..., N). The goal is to estimate the error in the L1(L2) and L2(H1)-like norms, i.e.,

max
1nN

kenkL2(⌦) +
⇣ NX

n=1

⌧kenk2
h

⌘ 1
2
.
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To this aim, we decompose the error as en = ⌘n + ⇠n, where

⌘n = u(tn)�⇧hu(tn),

⇠n = ⇧hu(tn)� un

h
,

and ⇧h is the interpolation operator that was introduced in Section 2.3. By Lemma 2.5, we have

max
1nN

k⌘nkL2(⌦) +
⇣ NX

n=1

⌧k⌘nk2
h

⌘ 1
2  Ch(kukL1(J;H2(⌦)) + k kH2(⌦)). (3.1)

Applying the triangle inequality, it su�ces to estimate the term max
1nN

n
k⇠nkL2(⌦) +

⇣ NX

n=1

⌧k⇠nk2
h

⌘ 1
2
o
.

We begin with an abstract lemma concerning a single step estimate.

Lemma 3.1. Let u and un

h
(n = 1, 2, ..., N) be the solution to (1.1) and (2.8), respectively. There holds

1

2
k⇠nk2

L2(⌦) + ⌧k⇠nk2
h
 1

2
k⇠n�1k2

L2(⌦) + S1,n + S2,n + S3,n + S4,n, (3.2)

where

S1,n = �(⌘n � ⌘n�1, ⇠n)Th ,

S2,n = �⌧ah(⌘n, ⇠n),

S3,n =

Z
tn

tn�1

�@+u
@t

(tn), ⇠
n
�
Th

+ ah(u(tn), ⇠
n)� (f(tn), ⇠

n)Th

�
dt,

S4,n =

Z
tn

tn�1

⇣@u
@t

(t)� @+u

@t
(tn), ⇠

n

⌘

Th

dt.

Proof. Using the definition of the bilinear form ah(·, ·) (see (2.10) and (2.14)) and the discrete formulation
(2.8), we have

(@⇠n, ⇠n)Th + k⇠nk2
h
= (@⇠n, ⇠n)Th + ah(⇠

n, ⇠n) (3.3)

= [(@⇧hu(tn), ⇠
n)Th + ah(⇧hu(tn), ⇠

n)]

� [(@un

h
, ⇠n)Th + ah(u

n

h
, ⇠n)]

 [(@⇧hu(tn), ⇠
n)Th + ah(⇧hu(tn), ⇠

n)]� (f(tn), ⇠
n)Th

= [(@u(tn), ⇠
n)Th + ah(u(tn), ⇠

n)]� (f(tn), ⇠
n)Th

� [(@⌘n, ⇠n)Th + ah(⌘
n, ⇠n)].

We then multiply ⌧ on both sides of (3.3) to get

⌧(@⇠n, ⇠n)Th + ⌧k⇠nk2
h
 ⌧ [(@u(tn), ⇠

n)Th + ah(u(tn), ⇠
n)]� ⌧(f(tn), ⇠

n)Th (3.4)

� ⌧ [(@⌘n, ⇠n)Th + ah(⌘
n, ⇠n)].

Note that

⌧(@⇠n, ⇠n)Th = (⇠n � ⇠n�1, ⇠n)Th (3.5)

=
1

2
k⇠nk2

L2(⌦) �
1

2
k⇠n�1k2

L2(⌦) +
1

2
k⇠n � ⇠n�1k2

L2(⌦),
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and

⌧(@u(tn), ⇠
n)Th =

Z
tn

tn�1

⇣@u
@t

(t), ⇠n
⌘

Th

dt, (3.6)

which is a direct consequence of (2.9). Finally, the estimate (3.2) is obtained by dropping 1
2k⇠

n � ⇠n�1k2
L2(⌦)

and rearranging the terms.

In the following lemma, we estimate the remaining terms S1,n, S2,n, S3,n, and S4,n on the right-hand
side of (3.2). In particular, in order to estimate S4,n, we set Jn = (tn�1, tn] (n = 1, 2, ..., N) and introduce

Dn :=
[

t2Jn

(⌦+(t) [ ⌦+(tn)) \ ⌦+(t) \ ⌦+(tn), (3.7)

which measures the change of the non-contact regions in Jn [27].

Lemma 3.2. Let u and un

h
(n = 1, 2, ..., N) be the solutions to (1.1a)–(1.1b) and (2.8), respectively.

There exists ✏ > 0 and a positive constant C independent of h and ⌧ such that

1

2
k⇠nk2

L2(⌦) + ⌧k⇠nk2
h
 1

2
k⇠n�1k2

L2(⌦) +
C

✏
h2
��@u
@t

��2
L2(Jn;H1(⌦))

+ C✏⌧k⇠nk2
h

(3.8)

+
C

✏
h2⌧(ku(tn)k2H2(⌦) + k k2

H2(⌦))

+
C

✏
⌧(h2k�(tn)k2L2(⌦) + h2ku(tn)k2H2(⌦) + h2k k2

H2(⌦))

+
C

✏

⇣
⌧2
��@u
@t

��2
L2(Jn;H1(⌦))

+ h2⌧kukL1(Jn;H2(⌦)

⌘

+
C

✏
⌧2
��@f
@t

��2
L2(Jn;L2(⌦))

+ CQn(p),

where

Qn(p) = ⌧kf +� kL1(Jn;L1(⌦))k⇠nkLp(⌦)meas(Dn)
1
q , (3.9)

with
1
p
+ 1

q
= 1 (p � 1), and meas(Dn) denotes the Lebesgue measure of Dn.

Proof. First, we estimate S1,n on the right-hand side of (3.2). By Young’s inequality, we have

|S1,n| 
C

✏⌧
k⌘n � ⌘n�1k2

L2(⌦) + ✏⌧k⇠nk2
L2(⌦) (3.10)

for some ✏ > 0. Since  is independent of t, @u

@t
= 0 on @⌦, and the interpolation estimate Ih,2 in (2.31),

we have

k⌘n � ⌘n�1k2
L2(⌦) =

���
Z

tn

tn�1

@⌘

@t
dt
���
2

L2(⌦)
(3.11)


⇣Z tn

tn�1

��@(u�⇧hu)

@t

��
L2(⌦)

dt
⌘2

=
� Z tn

tn�1

��@u
@t

� @

@t
(Ih,1( ) + Ih,2(u�  ))

��
L2(⌦)

dt
�2
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=
� Z tn

tn�1

��@u
@t

� Ih,2(
@u

@t
)
��
L2(⌦)

dt
�2

=
⇣� Z tn

tn�1

��@u
@t

� Ih,2(
@u

@t
)
��2
L2(⌦)

dt
� 1

2
� Z tn

tn�1

12 dt
� 1

2

⌘2

 h2⌧
��@u
@t

��2
L2(Jn;H1(⌦))

,

where we also used the fact that Ih,2 and @

@t
are interchangeable. Combining (3.10) and (3.11), we obtain

|S1,n| 
C

✏
h2
��@u
@t

��2
L2(Jn;H1(⌦))

+ ✏⌧k⇠nk2
L2(⌦). (3.12)

To estimate S2,n, we will consider two cases. Whenever �min � 0, we apply (2.18) and Young’s
inequality to obtain

|S2,n|  ⌧k⌘nkhk⇠nkh (3.13)

 C

✏
⌧k⌘nk2

h
+ ✏⌧k⇠nk2

h
.

Whenever �C⇤  �min < 0, we have by (2.10), (2.19), the Cauchy-Schwarz inequality, Young’s inequality,
and the trace theorem with scaling that

|S2,n|  C⌧(kr+
h,0⌘

nkL2(⌦) + kr�
h,0⌘

nkL2(⌦))(kr+
h,0⇠

nkL2(⌦) + kr�
h,0⇠

nkL2(⌦)) (3.14)

+ ⌧
X

e2Eh

|�e|
he

k[[⌘n]]kL2(e)k[[⇠n]]kL2(e)

 C

✏
⌧
⇣
k⌘nk2

h
+
X

T2Th

h�2
T

k⌘nk2
L2(T ) +

X

T2Th

kr⌘nk2
L2(T )

⌘
+ ✏⌧k⇠nk2

h
.

By Lemma 2.5, (3.13), and (3.14), we have

|S2,n| 
C

✏
h2⌧(ku(tn)k2H2(⌦) + k k2

H2(⌦)) + ✏⌧k⇠nk2
h
. (3.15)

Next, we estimate S3,n. By Lemma 2.4, we have

S3,n = ⌧(�(tn), ⇠
n)Th � ⌧h{rh,0u(tn)�ru(tn)} · n, [[⇠n]]iEh , (3.16)

where �(tn) :=
@
+
u

@t
(tn)��u(tn)�f(tn). The first term on the right-hand side of (3.16) can be estimated

by

⌧(�(tn), ⇠
n)Th = ⌧(�(tn),⇧hu(tn)� u(tn))Th + ⌧(�(tn), u(tn)�  )Th (3.17)

+ ⌧(�(tn), � Ih,1 )Th + ⌧(�(tn), Ih,1 � un

h
)Th

 ⌧(�(tn),⇧hu(tn)� u(tn))Th + ⌧(�(tn), � Ih,1 )Th ,

 ⌧k�(tn)kL2(⌦)(k⇧hu(tn)� u(tn)kL2(⌦) + k � Ih,1 kL2(⌦))

 Ch2⌧k�(tn)kL2(⌦)(ku(tn)kH2(⌦) + k kH2(⌦))

 Ch2⌧(k�(tn)k2L2(⌦) + ku(tn)k2H2(⌦) + k k2
H2(⌦)),
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where we used the complementarity form (1.13)–(1.14) at t = tn, (2.11), and Lemma 2.5. In the case of
�min > 0, we have

⌧h{rh,0u(tn)�ru(tn)} · n, [[⇠n]]iEh (3.18)

 ⌧
⇣ X

e2Eh

he

�e
krh,0u(tn)�ru(tn)k2L2(e)

⌘ 1
2
⇣ X

e2Eh

�e
he

k[[⇠n]]k2
L2(e)

⌘ 1
2

 C

✏
⌧
⇣ X

T2Th

krh,0u(tn)�ru(tn)k2L2(T ) + h2
T
kr(rh,0u(tn)�ru(tn))k2L2(T )

⌘
+ ✏⌧k⇠nk2

h

 C

✏
h2⌧ |u(tn)|2H2(⌦) + ✏⌧k⇠nk2

h

by Lemma 2.3 and Young’s inequality. A similar result can be obtained whenever �C⇤  �min  0. We
combine (3.16)–(3.18) to conclude that

|S3,n| 
C

✏
h2⌧(k�(tn)k2L2(⌦) + ku(tn)k2H2(⌦) + k k2

H2(⌦)) + ✏⌧k⇠nk2
h
. (3.19)

For the last term S4,n, we rewrite it as

S4,n =

Z
tn

tn�1

Z

⌦+(t)

@+u

@t
(t) ⇠n dx dt+

Z
tn

tn�1

Z

⌦0(t)

@+u

@t
(t) ⇠n dx dt (3.20)

�
Z

tn

tn�1

Z

⌦+(tn)

@+u

@t
(tn) ⇠

n dx dt�
Z

tn

tn�1

Z

⌦0(tn)

@+u

@t
(tn) ⇠

n dx dt,

based on the decomposition ⌦ = ⌦+(t)[⌦0(t) for any t 2 J . By (1.8)–(1.9), we can further rewrite S4,n

as

S4,n =

Z
tn

tn�1

Z

⌦+(t)
�(u(t)�  )⇠n dxdt+

Z
tn

tn�1

Z

⌦+(t)
(f(t) +� )⇠n dxdt (3.21)

+

Z
tn

tn�1

Z

⌦0(t)
max{f(t) +� , 0}⇠n dxdt�

Z
tn

tn�1

Z

⌦+(tn)
�(u(tn)�  )⇠n dxdt

�
Z

tn

tn�1

Z

⌦+(tn)
(f(tn) +� )⇠n dxdt�

Z
tn

tn�1

Z

⌦0(t)
max{f(tn) +� , 0}⇠n dxdt

:= S(1)
4,n + S(2)

4,n + S(3)
4,n,

where

S(1)
4,n =

Z
tn

tn�1

Z

⌦+(t)
�(u(t)�  )⇠n dxdt�

Z
tn

tn�1

Z

⌦+(tn)
�(u(tn)�  )⇠n dxdt,

S(2)
4,n =

Z
tn

tn�1

Z

⌦\Dn

(f̃(x, t)� f̃(x, tn))⇠
n dxdt,

S(3)
4,n =

Z
tn

tn�1

Z

Dn

(f̃(x, t)� f̃(x, tn))⇠
n dxdt,

and f̃(·, ·) is given by

f̃(x, t) =

(
f(x, t) +� (x), x 2 ⌦+(t),

max(f(x, t) +� (x), 0), x 2 ⌦0(t).
(3.22)
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In the following, we will estimate S(1)
4,n, S

(2)
4,n, and S(3)

4,n separately. Since u(t) =  on ⌦0(t), we rewrite

S(1)
4,n as

S(1)
4,n =

Z
tn

tn�1

Z

⌦
�(u(t)�  )⇠n dxdt�

Z
tn

tn�1

Z

⌦
�(u(tn)�  )⇠n dxdt (3.23)

=

Z
tn

tn�1

Z

⌦
�(u(t)� u(tn))⇠

n dxdt

= �
Z

tn

tn�1

(r(u(t)� u(tn)),r⇠n)Thdt+

Z
tn

tn�1

h@nu(t)� @nu(tn), [[⇠
n]]iEh dt,

where we applied integration by parts. By the Cauchy-Schwarz inequality, Young’s inequality, and
Lemma 2.2, we have

�
Z

tn

tn�1

(r(u(t)� u(tn)),r⇠n)Thdt =

Z
tn

tn�1

⇣Z tn

t

r@u

@t
(z) dz,r⇠n

⌘

Th

dt (3.24)


Z

tn

tn�1

���
Z

tn

t

r@u

@t
(z) dz

���
L2(Th)

kr⇠nkL2(Th) dt


Z

tn

tn�1

Z
tn

tn�1

��r@u

@t
(z)
��
L2(Th)

dzkr⇠nkL2(Th) dt


Z

tn

tn�1

��@u
@t

��
L2(Jn;H1(⌦))

⌧
1
2 kr⇠nkL2(Th) dt

 C

✏
⌧2
��@u
@t

��2
L2(Jn;H1(⌦))

+ ✏⌧kr⇠nkL2(Th)

 C

✏
⌧2
��@u
@t

��2
L2(Jn;H1(⌦))

+ C✏⌧k⇠nkh.

Next, we estimate

Z
tn

tn�1

h@nu(t)� @nu(tn), [[⇠
n]]iEh dt (3.25)

C

✏

Z
tn

tn�1

kh
1
2
e @n(u(t)� u(tn))k2L2(Eh)

+ ✏
X

e2Eh

1

he

k[[⇠n]]k2
L2(e) dt.

Using the trace theorem with scaling, we have

kh
1
2
e @n(u(t)� u(tn))k2L2(Eh)

 C
X

T2Th

kr(u(t)� u(tn))k2L2(T ) (3.26)

+ C
X

T2Th

h2
T
(ku(t)k2

H2(T ) + ku(tn)k2H2(T )).

Moreover, we have

X

T2Th

kr(u(t)� u(tn))k2L2(T ) 
X

T2Th

Z

T

⇣Z tn

tn�1

��r@u

@t
(�)
�� d�

⌘2
dx (3.27)
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 ⌧
X

T2Th

Z
tn

tn�1

Z

T

��r@u

@t
(�)
��2 dx d�

 ⌧

Z
tn

tn�1

X

T2Th

��@u
@t

��2
H1(T )

d�

 ⌧
��@u
@t

��2
L2(Jn;H1(⌦))

.

From (3.26)–(3.27), we have

kh
1
2
e @n(u(t)� u(tn))k2L2(Eh)

 C(⌧
��@u
@t

��2
L2(Jn;H1(⌦))

+ h2kukL1(Jn;H2(⌦))). (3.28)

Then it follows from (3.25) and (3.28) that

Z
tn

tn�1

h@nu(t)� @nu(tn), [[⇠
n]]iEh dt 

C

✏

⇣
⌧2
��@u
@t

��2
L2(Jn;H1(⌦))

+ h2⌧kukL1(Jn;H2(⌦))

⌘
(3.29)

+ ✏⌧
X

e2Eh

1

he

k[[⇠n]]k2
L2(e).

Finally, we combine (3.23), (3.24), (3.29), and (2.16)–(2.17) to get

S(1)
4,n  C

✏

⇣
⌧2
��@u
@t

��2
L2(Jn;H1(⌦))

+ h2⌧kukL1(Jn;H2(⌦))

⌘
+ C✏⌧k⇠nk2

h
. (3.30)

Now we focus on the estimation of S(2)
4,n. For any x 2 ⌦ \Dn, it follows from the definition of Dn that

either x 2 ⌦+(tn) \ ⌦+(t) or x 2 ⌦0(tn) \ ⌦0(t) for t 2 Jn. Whenever x 2 ⌦+(tn) \ ⌦+(t), we have

|f̃(x, t)� f̃(x, tn)| = |f(x, t) +� (x)� f(x, tn)�� (x)| (3.31)

= |f(x, t)� f(x, tn)|.

Whenever x 2 ⌦0(tn) \ ⌦0(t), we have

|f̃(x, t)� f̃(x, tn)| = |max{f(x, t) +� (x), 0}�max{f(x, tn) +�(x) , 0}| (3.32)

 |f(x, t)� f(x, tn)|.

Combining these two estimates, we conclude that

|f̃(x, t)� f̃(x, tn)|  |f(x, t)� f(x, tn)| 8x 2 ⌦ \Dn, t 2 Jn, (3.33)

and thus

S(2)
4,n 

Z
tn

tn�1

Z

⌦\Dn

|f(x, t)� f(x, tn)| |⇠n| dxdt (3.34)


Z

tn

tn�1

C

✏
⌧
��@f
@t

��2
L2(Jn;L2(⌦))

+ ✏k⇠nk2
L2(⌦) dt

 C

✏
⌧2
��@f
@t

��2
L2(Jn;L2(⌦))

+ ✏⌧k⇠nk2
L2(⌦)

 C

✏
⌧2
��@f
@t

��2
L2(Jn;L2(⌦))

+ C✏⌧k⇠nk2
h
,
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where in the second inequality we applied the similar technique as used in (3.27) and in the last equality
we used Lemma 2.2.

To estimate S(3)
4,n, we apply the definitions of Dn and f̃(·, ·) and the Hölder inequality with 1

p
+ 1

q
= 1

for p 2 [1,1) to obtain

S(3)
4,n =

Z
tn

tn�1

Z

Dn

(f̃(x, t)� f̃(x, tn))⇠
n dxdt (3.35)

 C⌧kf +� kL1(Jn;L1(⌦))

Z

Dn

|⇠n| dx

 C⌧kf +� kL1(Jn;L1(⌦))k⇠nkLp(⌦)meas(Dn)
1/q.

From (3.21), (3.30), (3.34), and (3.35), we then have

|S4,n| 
C

✏

⇣
⌧2
��@u
@t

��2
L2(Jn;H1(⌦))

+ h2⌧kukL1(Jn;H2(⌦)

⌘
+ C✏⌧k⇠nk2

h
(3.36)

+
C

✏
⌧2
��@f
@t

��2
L2(Jn;L2(⌦))

+Qn(p),

where Qn(p) is given in (3.9).
The final estimate (3.8) follows from Lemma 3.1, (3.12), (3.15), (3.19), and (3.36).

From Lemma 3.2, it is key to estimate Qn(p). To this aim, we assume there exists a positive constant
C independent of N such that

NX

n=1

meas(Dn)  C, (3.37)

which indicates the contact and non-contact sets do not change too frequently [27]. By rearranging the
terms we could assume meas(Dn)  C

n
(n = 1, 2, ..., N) based on (3.37). In particular, such a condition

holds whenever

meas(Dn) 
C

N
8n = 1, 2, ..., N. (3.38)

Theorem 3.3. Let en = u(tn)� un

h
(n = 0, 1, 2, ..., N), where u (resp., un

h
) denotes the solution to (1.1)

(resp., (2.8)). Under the assumption (3.37), there exists a positive constant C independent of h and ⌧
such that

max
1nN

kenkL2(⌦) +
⇣ NX

n=1

⌧kenk2
h

⌘ 1
2  C

⇥
h+ ⌧

3
4 (log ⌧�1)

1
4
⇤
. (3.39)

In addition, under the assumption (3.38), there exists a positive constant C independent of h and ⌧ such

that

max
1nN

kenkL2(⌦) +
⇣ NX

n=1

⌧kenk2
h

⌘ 1
2  C

⇥
h+ ⌧(log ⌧�1)

1
2
⇤
. (3.40)

Proof. Summing over n = 1, 2, ..., N in (3.8), we have

max
1nN

k⇠nk2
L2(⌦) +

NX

n=1

⌧k⇠nk2
h
 Ck⇠0k2

L2(⌦) + C✏
NX

n=1

⌧k⇠nk2
h

(3.41)
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+ C✏h
2
⇣��@u

@t

��2
L2(J;H1(⌦))

+ kukL1(J;H2(⌦)) + k k2
H2(⌦) + kfkL1(J;H1(⌦)

⌘

+ C✏⌧
2
⇣��@u

@t

��2
L2(J;H1(⌦))

+
��@f
@t

��2
L2(J;L2(⌦))

⌘

+ C
NX

n=1

Qn(pn),

where C✏ := C

✏
. Choosing ✏ > 0 su�ciently small, the second term C✏

P
N

n=1 k⇠nk2h⌧ on the right-hand
side of (3.41) can be absorbed to the left-hand side. Note that in Lemma 3.2, the choice of p in (3.8) can
vary for di↵erent n. Therefore we used the notation pn in (3.41).

Next, we will focus on the estimation of
P

N

n=1 Qn(pn). We first assume (3.37) holds. By the Sobolev
Imbedding Theorem [28]

1
p
p
kvkLp(⌦)  C(krvkL2(Th) + kvkL2(⌦)) 8 v 2 W 1,p(Th), (3.42)

Lemma 2.1 and Lemma 2.2, we have

k⇠nkLp(⌦)  C
p
pk⇠nkh 8 p � 1. (3.43)

Let N1 and N2 be a disjoint partition of {1, 2, ..., N}. We choose pn = 2 for n 2 N1 and pn = p with
p 2 [1,1) for n 2 N2, and we apply (3.43), the Cauchy-Schwarz inequality, and Young’s inequality to
obtain

NX

n=1

Qn(pn) =
X

n2N1

Qn(2) +
X

n2N2

Qn(p) (3.44)

 Ckf +� kL1(J;L1(⌦))

⇣
⌧
X

n2N1

k⇠nkL2(⌦)meas(Dn)
1
2 + ⌧

X

n2N2

k⇠nkLp(⌦)meas(Dn)
1
q

⌘

 Ckf +� kL1(J;L1(⌦))

⇣
⌧
X

n2N1

k⇠nkL2(⌦)meas(Dn)
1
2 + ⌧

X

n2N2

p
pk⇠nkhmeas(Dn)

1
q

⌘

 Ckf +� kL1(J;L1(⌦))

⇣
✏ max
1nN

k⇠nk2
L2(⌦) + C✏⌧

2
� X

n2N1

meas(Dn)
1
2
�2

+ ✏⌧
NX

n=1

k⇠nk2
h
+ C✏p⌧

X

n2N2

meas(Dn)
2
q

⌘
,

where q satisfies 1/p+ 1/q = 1.
By Lemma 3 in [27], there exist a positive constant C independent of ⌧ and the choices of N1, N2, p

such that

⌧2
⇣ X

n2N1

meas(Dn)
1
2

⌘2
+ p⌧

X

n2N2

meas(Dn)
2
q  C⌧

3
2 (log ⌧�1)

1
2 . (3.45)

With su�ciently small ✏ > 0, we then obtain the error estimate

max
1nN

k⇠nk2
L2(⌦) +

NX

n=1

⌧k⇠nk2
h
 Ck⇠0k2

L2(⌦) (3.46)
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+ C✏h
2
⇣��@u

@t

��2
L2(J;H1(⌦))

+ kukL1(J;H2(⌦) + k k2
H2(⌦) + kfkL1(J;H1(⌦)

⌘

+ C✏⌧
2
⇣��@u

@t

��2
L2(J;H1(⌦))

+
��@f
@t

��2
L2(J;L2(⌦))

⌘

+ C⌧
3
2 (log ⌧�1)

1
2 (kfkL1(J;L1(⌦)) + k kW 2,1(⌦)).

The final estimate (3.39) follows from (3.46), Lemma 2.5, (2.11), and (3.1).
Now we assume (3.38) holds. In (3.44), we choose N1 = {1, 2, ...,M} and N2 = {M +1, ..., N}, where

M equals to the integer part of (N logN)
1
2 , and p = logN . Note that C

N
= O(⌧). A direct calculation

shows that

NX

n=1

Qn(pn) =
X

n2N1

Qn(2) +
X

n2N2

Qn(p) (3.47)

 Ckf +� kL1(J;L1(⌦))

⇣
✏

N

max
n=1

k⇠nk2
L2(⌦) + ✏

NX

n=1

⌧k⇠nk2
h
+ ⌧2 log ⌧�1)

⌘
.

We then obtain the estimate (3.40) under the assumption (3.38).

Remark 3.4. The rate of convergence in Theorem 3.3 is sharp with respect to the spatial mesh-size h.
However due to the low regularity of @u

@t
, the optimal rate with respect to the temporal mesh-size ⌧ is not

directly available. Under the assumption (3.37), we showed a convergence rate close to 3
4 , which agrees

with the results in [27, 34]. Indeed, under the assumption

NX

n=1

(meas(Dn))
1
2  C, (3.48)

we can derive the optimal convergence O(h+ ⌧) by slightly revising (3.44) in the proof of Theorem 3.3.
However, such an assumption may not hold in practice. Under a more reasonable assumption (3.38), we
recover a convergence rate close to 1 in ⌧ .

4. Numerical Experiments

In this section, we report several numerical tests to illustrate the performance of the fully discrete
methods (2.8) with �e := � for all e 2 Eh where � 2 {�1, 0, 1}. At each time step, we solve the discrete
problem by the primal-dual active set strategy [26]. To verify the rates in Theorem 3.3 for Example 1
and Example 2, we measure the relative total error (RTE)

RTE =

max
1nN

ku(tn)� un

h
kL2(⌦) +

 
NX

n=1

⌧ku(tn)� un

h
k2
h

! 1
2

max
1nN

ku(tn)kL2(⌦) +

 
NX

n=1

⌧kru(tn)k2L2(⌦)

! 1
2

, (4.1)

where N is the number of time steps on the interval J = [0, TF ].
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4.1. Example 1

In this example, we consider a benchmark where the contact set is the oscillating moving circle [35, 34].
Let ⌦ = [�1, 1]2, J = [0, 0.25], and  = 0. With r1 = 1

3 and ! = 4, define

r0(t) =
1

3
+ 0.3 sin(4!⇡t),

c(t) = r1(cos(!⇡t), sin(!⇡t)),

and the sets

⌦0(t) = {kx� c(t)k2  r0(t)},
⌦+(t) = {kx� c(t)k2 > r0(t)}.

Define the load function as

f(x, t) =

(
4
⇥
r20(t)� 2kx� c(t)k22 � 1

2 (kx� c(t)k22 � r20(t))((x� c(t))c0(t) + r0(t)r00(t))
⇤
, x 2 ⌦+(t),

�4r20
�
1� kx� c(t)k22 + r20(t)

�
, x 2 ⌦0(t).

The exact solution is

u(x, t) =

(
1
2

�
kx� c(t)k22 � r20(t)

�2
, x 2 ⌦+(t),

0, x 2 ⌦0(t).
(4.2)

Note that this example has nonhomogeneous boundary data g(t) determined by (4.2). As such, the fully
discrete scheme (2.8) is modified as

(@un

h
, vh � un

h
) + ah(u

n

h
, vh � un

h
) � Fn

h
(vh � un

h
) 8 vh 2 Kh, (4.3)

where

Fn

h
(v) := (f(tn), v)Th +

D�e
he

g(tn), v
E

EB
h

�
⌦
g(tn),rh,0v · n

↵
EB
h

8 v 2 Vh.

In Table 4.1, we display the relative errors (RTE) and rates of convergence. To determine a rate for h, we
fix ⌧ = 5⇥ 10�5 and vary h = {1/2, 1/4, ..., 1/32}. From Table 4.1, we observe the O(h) convergence for
all three penalty values as predicted in Theorem 3.3. To determine a rate for ⌧ , we reduce the mesh-size
h by a factor of 1

2 and we doubled the number of time steps. Furthermore, the denominator in (4.1)
is calculated on the finest temporal mesh. Numerical results indicate order 1 convergence with respect
to ⌧ . Indeed, from the definition of the exact solution (4.2), we can verify that the set Dn satisfies the
assumption (3.38). Therefore our numerical results agree with the error estimate in (3.40) of Theorem 3.3.

4.2. Example 2

In this numerical experiment we consider a homogeneous problem with a non-zero obstacle, which is
a slight modification from [37]. Let ⌦ = [0, 1]2, J = [0, 1], ↵(t) = 1

2 + 1
4 sin(2⇡t), and define the obstacle

function to be  (x) = x1(1� x1)x2(1� x2). We define the exact solution for the problem (1.1a)–(1.1b)

u(x, t) =

(
100x1(x1 � ↵(t))2x2(1� x2) + 2x1(1� x1) + x2(1� x2), x1 < ↵(t),

2x1(1� x1) + x2(1� x2), x1 � ↵(t)
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Table 4.1: Errors and convergence rates with respect to h and ⌧ for Example 1

h rate ⌧ rate

h RTE Rate N RTE Rate

� = �1

1 2.6157e-01 — 5 1.4707e+00 —
1/2 1.2528e-01 1.0621 10 7.3719e-01 0.9964
1/4 6.1189e-02 1.0338 20 3.7174e-01 0.9877
1/8 3.0775e-02 0.9915 40 1.9030e-01 0.9660
1/16 1.5542e-02 0.9855 80 9.6538e-02 0.9791
1/32 7.8714e-03 0.9815 160 4.8663e-02 0.9883

� = 0

1 2.6754e-01 — 5 1.4781e+00 —
1/2 1.2948e-01 1.0471 10 7.4718e-01 0.9842
1/4 6.3395e-02 1.0303 20 3.7762e-01 0.9845
1/8 3.1755e-02 0.9974 40 1.9307e-01 0.9678
1/16 1.5981e-02 0.9907 80 9.7812e-02 0.9811
1/32 8.0731e-03 0.9851 160 4.9259e-02 0.9896

� = 1

1 2.7322e-01 — 5 1.4842e+00 —
1/2 1.3281e-01 1.0407 10 7.5462e-01 0.9759
1/4 6.5049e-02 1.0298 20 3.8189e-01 0.9826
1/8 3.2479e-02 1.0020 40 1.9511e-01 0.9689
1/16 1.6304e-02 0.9942 80 9.8756e-02 0.9823
1/32 8.2231e-03 0.9875 160 4.9705e-02 0.9905

such that the load function is given by

f(x, t) =

(
@tu��u, x1 < ↵(t),

0, x2 � ↵(t).

In Table 4.2, we display the relative errors (RTE) and rates of convergence. We fix ⌧ = 5⇥10�5 and vary
h = {1/2, 1/4, ..., 1/64} to calculate the rate in h. We observe the O(h) convergence for all three penalty
values, which agrees with Theorem 3.3. A direct calculation demonstrated the assumption (3.38) holds.
The error estimate in (3.40) of Theorem 3.3 predicted the order 1 convergence with respect to ⌧ , which
is also confirmed from Table 4.2.

4.3. Example 3

In this experiment, we consider a problem without a known exact solution. Let ⌦ = [0, 1]2, J = [0, 1],
 (x) = cos(3⇡x1) + cos(3⇡x2), and f = �5. We also take u(x, t) =  (x) for t 2 J on @⌦. To estimate
the rate of convergence with respect to h, we fix ⌧ = 5 ⇥ 10�4 and vary h = {1/2, 1/4, ..., 1/64}. Since
the exact solution is unknown, we replace u(tn) with un

h/2 in (4.1) to estimate the relative total error:

RTE =

max
1nN

kun

h/2 � un

h
kL2(⌦) +

 
NX

n=1

⌧kun

h/2 � un

h
k2
h/2

! 1
2

max
1nN

kun

h/2kL2(⌦) +

 
NX

n=1

⌧krun

h/2k2L2(Th)

! 1
2

. (4.4)
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Table 4.2: Errors and convergence rates with respect to h and ⌧ for Example 2

h rate ⌧ rate

h RTE Rate N RTE Rate

� = �1

1/2 3.1968e-01 — 5 3.3185e-01 —
1/4 2.0704e-01 0.6267 10 2.2153e-01 0.5830
1/8 1.0875e-01 0.9289 20 1.1520e-01 0.9434
1/16 5.4894e-02 0.9862 40 5.9319e-02 0.9576
1/32 2.7533e-02 0.9955 80 2.9988e-02 0.9841
1/64 1.3777e-02 0.9989 160 1.5077e-02 0.9920

� = 0

1/2 3.5288e-01 — 5 3.6516e-01 —
1/4 2.2616e-01 0.6418 10 2.4108e-01 0.5990
1/8 1.1824e-01 0.9356 20 1.2481e-01 0.9498
1/16 5.9684e-02 0.9864 40 6.4082e-02 0.9618
1/32 2.9937e-02 0.9954 80 3.2362e-02 0.9856
1/64 1.4981e-02 0.9988 160 1.6262e-02 0.9928

� = 1

1/2 3.7934e-01 — 5 3.9179e-01 —
1/4 2.4017e-01 0.6594 10 2.5542e-01 0.6172
1/8 1.2508e-01 0.9412 20 1.3173e-01 0.9553
1/16 6.3104e-02 0.9871 40 6.7485e-02 0.9649
1/32 3.1646e-02 0.9957 80 3.4054e-02 0.9867
1/64 1.5837e-02 0.9987 160 1.7106e-02 0.9933

In order to estimate the rate of convergence with respect to ⌧ , we reduce the mesh-size h by a factor of 1
2

and doubled the number of time steps. For convenience, we denote un

⌧,h
by the numerical solution at time

point tn with the time step size ⌧ and the spatial mesh size h. Then we use u⌧/2,h/2(tn) to approximate
u(tn) and calculate the relative total error in the following:

RTE =

max
1nN

ku⌧/2,h/2(tn)� un

⌧,h
kL2(⌦) +

 
NX

n=1

⌧ku⌧/2,h/2(tn)� un

h
k2
h/2

! 1
2

max
1nN

ku⌧/2,h/2(tn)kL2(⌦) +

 
NX

n=1

⌧kru⌧/2,h/2(tn)k2L2(Th)

! 1
2

. (4.5)

The corresponding simulated errors and rates are displayed in Table 4.3, which agrees with the results in
Theorem 3.3.

5. Summary

In this paper, we have formulated a fully discrete dual-wind DG method for a parabolic variational
inequality. Under the reasonable assumptions on the contact sets, error estimates are obtained in the
energy norm. Several numerical examples are presented which demonstrate the theoretical rates of
convergence established in Theorem 3.3. It is possible to extend the analysis to the time-dependent
obstacle if the time derivative of the obstacle is su�ciently smooth. It is also of great interest to extend
the analysis to quadratic dual-wind DG methods and investigate the rate of convergence. However such an
analysis requires the construction of a positive-preserving interpolation error estimator that also satisfies

21



Table 4.3: Errors and convergence rates with respect to h and ⌧ for Example 3
h rate ⌧ rate

h RTE Rate N RTE Rate

� = �1

1/2 8.7405e-02 — 5 1.0172e-01 —
1/4 4.9549e-02 0.8189 10 5.3537e-02 0.9260
1/8 2.3074e-02 1.1026 20 2.4176e-02 1.1469
1/16 1.1057e-02 1.0612 40 1.1640e-02 1.0545
1/32 5.4271e-03 1.0268 80 5.7795e-03 1.0101
1/64 2.6971e-03 1.0088 160 2.9071e-03 0.9913

� = 0

1/2 8.8387e-02 — 5 1.0306e-01 —
1/4 4.9660e-02 0.8318 10 5.3774e-02 0.9384
1/8 2.2845e-02 1.1202 20 2.3977e-02 1.1652
1/16 1.0786e-02 1.0827 40 1.1376e-02 1.0757
1/32 5.2329e-03 1.0435 80 5.5879e-03 1.0256
1/64 2.5841e-03 1.0180 160 2.7955e-03 0.9992

� = 1

1/2 8.9865e-02 — 5 1.0306e-01 —
1/4 5.0125e-02 0.8422 10 5.3774e-02 0.9385
1/8 2.2841e-02 1.1339 20 2.3977e-02 1.1652
1/16 1.0655e-02 1.1001 40 1.1376e-02 1.0757
1/32 5.1215e-03 1.0570 80 5.5879e-03 1.0256
1/64 2.5146e-03 1.0262 160 2.7955e-03 0.9992

the constraints on the midpoint of the triangulation. This together with the a posteriori error analysis
for the adaptive algorithm of the proposed method will be investigated in the future.
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