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PENALTY PARAMETER AND DUAL-WIND DISCONTINUOUS

GALERKIN APPROXIMATION METHODS FOR ELLIPTIC

SECOND ORDER PDES

THOMAS LEWIS, AARON RAPP, YI ZHANG

Abstract. This article analyzes the e↵ect of the penalty parameter used in
symmetric dual-wind discontinuous Galerkin (DWDG) methods for approx-
imating second order elliptic partial di↵erential equations (PDE). DWDG
methods follow from the DG di↵erential calculus framework that defines dis-
crete di↵erential operators used to replace the continuous di↵erential operators
when discretizing a PDE. We establish the convergence of the DWDG approxi-
mation to a continuous Galerkin approximation as the penalty parameter tends
towards infinity. We also test the influence of the regularity of the solution
for elliptic second-order PDEs with regards to the relationship between the
penalty parameter and the error for the DWDG approximation. Numerical
experiments are provided to validate the theoretical results and to investigate
the relationship between the penalty parameter and the L

2-error.

1. Introduction

Let ⌦ ⇢ Rd be a bounded convex polygonal domain, f 2 L
2(⌦), and g 2

H
1/2(@⌦). We consider the second order elliptic partial di↵erential problem: find

u 2 H
2(⌦) such that

��u = f in ⌦, (1.1a)

u = g on @⌦, (1.1b)

where �u =
P

d

i=1
@
2

@x
2
i
u. Dual-Wind Discontinuous Galerkin (DWDG) methods

have been applied to the second order elliptic PDE (1.1) as well as its Neumann
boundary condition counterpart in [14, 10, 11]. The focus of these papers was to
establish a priori results for the proposed DWDG methods initially analyzed in a
discrete H

1-space inspired by the weak form of (1.1): find u 2 H
1
g
(⌦) such that

(ru,rv)⌦ = (f, v)⌦ 8v 2 H
1
0 (⌦), (1.2)

where (v, w)⌦ =
R
⌦ vw dx. In this paper we will further investigate properties of

the DWDG method and the e↵ects of adding a jump stabilization term since one of

2020 Mathematics Subject Classification. 65N30, 65N99.
Key words and phrases. Discontinuous Galerkin methods; DWDG methods;
penalty parameter; Poisson problem.
©2022 This work is licensed under a CC BY 4.0 license.
Published August 25, 2022.

123



124 T. LEWIS, A. RAPP, Y. ZHANG EJDE-2022/CONF/26

the key features of DWDG is the fact that it is naturally stable without penalizing
jumps.

There are many continuous Galerkin (CG) methods and discontinuous Galerkin
(DG) methods that accurately approximate (1.2) with both weak and strong en-
forcement of the boundary information. For DG methods, a jump penalization sta-
bility term scaled by a penalty parameter � is introduced in the discrete variational
formulation to ensure coercivity; such terms are not needed for CG approximations.
It was shown in [5, 6, 12] that a continuous Galerkin method is the limit of a DG
interior penalty method as the penalty parameter tends towards infinity. Since
DWDG methods are more similar to the more general class of flux-based DG meth-
ods such as local discontinuous Galerkin (LDG) methods, a goal of this paper will
be to show that DWDG methods will also approach the CG approximation as its
limit as � ! 1. We also note that DWDG methods allow for natural enforcement
of the Dirichlet boundary condition instead of the typical weak or strong approach.

The penalty parameter � is an artificial parameter that is traditionally intro-
duced into the discrete formulation of a problem to guarantee the stability of the
method in a discontinuous space. For interior-penalty methods, the penalty term
naturally occurs in the derivation of a discrete Friedrich’s inequality (see [2, 4]). For
LDG methods, the parameter does not arise as naturally, and it can be eliminated
under certain assumptions in the formulation of the problem [9, 13]. For DWDG
methods, the inclusion of an LDG-like penalty term was introduced to ensure sta-
bility of the methods for non quasi-uniform meshes. Investigation of the stability
and convergence of the dual-wind derivatives and the penalty term for second order
elliptic PDEs found that the penalty term was not necessary for a shape-regular
mesh. If the mesh was quasi-uniform and each triangle did not have more than one
edge on the boundary, then the penalty term could be removed by setting �e = 0
for all edges of a mesh e, or it could be negative as long as �e > �C⇤ for some
constant C⇤ > 0 (see [13, 14, 10]).

The possibility of a non-positive penalty parameter indicates that DWDG meth-
ods naturally weight jumps in the discontinuous approximation space without
adding jump terms. The discrete derivatives r±

h,g
themselves control the jumps

of the approximation eliminating the need for �e 6= 0 for all edges of the mesh
e. This allows us to interpret � as an artificial penalty parameter for the DWDG
methods that can be controlled or eliminated.

We refer the reader to [16] which contains a wide range of numerical experiments
that first explored the relationship between the penalty parameter � and the L

2-
error for the DWDG approximation. The numerical experiments in [16] showed a
strictly increasing relationship between � and the L

2-error given that the solution
was smooth and the approximation was found on a fine mesh. There was no sig-
nificant impact from the minimal angle of the mesh, or whether the problem had
homogeneous or non-homogeneous boundary conditions. The solutions for the nu-
merical experiments in [16] were either in C

1(⌦) or in the test function space V
r

h
.

A second goal of this paper will be to extend the initial tests in [16] by experimen-
tally studying the e↵ect of the regularity of the solution to (1.2) on the relationship
between � and the L

2-error.
The rest of the paper is organized as follows. Section 2 introduces notation and

briefly discusses the discrete DG interior calculus that will be used to formulate
the symmetric dual-wind DG methods in Section 3. In Section 4, we will present
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analysis that shows the DWDG methods will converge to a CG method as � !
1. Numerical experiments verifying the DWDG limit result will be presented in
Section 5. Further investigations of the relationship between � and the L

2-error of
the DWDG approximation with regards to the regularity of the solution of (1.2)
will also be presented in Section 5.

Throughout this article, C will denote a generic positive constant independent of
the mesh size and �. As such, the constant C can take di↵erent values at di↵erent
occurrences.

2. Notation and DG differential calculus

2.1. Notation. We will use the standard space and function notation from [1]
and [3] in this paper. Let W

m,p(⌦) denote the set of all Lp(⌦) functions whose
distributional derivatives up to order m are in L

p(⌦) and W
m,p

0 (⌦) denote the
set of Wm,p(⌦) functions whose traces vanish up to order m � 1 on @⌦. In the
special case where p = 2, we denote this as H

m := W
m,2 and H

m

0 := W
m,2
0 .

Bold-face format will be used for the corresponding vector-valued Sobolev spaces
Wm,p(⌦) := [Wm,p(⌦)]d,Hm(⌦) := [Hm(⌦)]d, etc. We choose to introduce the
discrete derivatives for a general dimension d � 1 that will be used to formulate
the numerical methods and establish our analytic results in Section 4. However,
the numerical experiments presented in Section 5 will be done with d = 2.

Let Th denote a shape-regular simplicial triangulation of ⌦ [3, 8]. Let EI

h
be the

set of interior (d � 1)-dimensional simplices for the triangulation and EB

h
the set

of boundary (d � 1)-dimensional simplices so that Eh := EI

h
[ EB

h
. We will denote

the diameter of the simplex K 2 Th as hK , and we set h := maxK2Th hK . Let
dK represent the diameter of the inscribed circle of a triangle K. A mesh Th is
shape-regular if there is a constant C > 0 such that

max
K2Th

hK

dK
 C.

A mesh Th is quasi-uniform if there exist a constant ⇢ > 0 such that

⇢ < hK/hK0 < ⇢
�1 8K,K

0 2 Th.
We define the piecewise vector spaces with respect to the triangulation

W
m,p(Th) :=

Y

K2Th

W
m,p(K), Wm,p(Th) :=

Y

K2Th

Wm,p(K), etc.

with the special cases Vh := W
1,1(Th) \ C

0(Th) and Vh := [Vh]d. Let

(v, w)Th :=
X

K2Th

Z

K

vw dx

be the piecewise L
2 inner product with respect to the triangulation, and let

hv, wiSh :=
X

e2Sh

Z

e

vw ds

be the piecewise L
2 inner product over any subset Sh ✓ Eh. To further simplify

notation used later in this paper we will use

hcev, wiSh :=
X

e2Sh

Z

e

cevw ds
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where ce is a constant that depends on the edge e 2 Sh ✓ Eh. We will also use the
following notation for the L

2 norm over the triangularization in this paper:

kvk2
L2(Th)

:= (v, v)Th and kvk2
L2(Sh)

:= hv, viSh

for Sh ✓ Eh. For an integer r � 1, we define the DG polynomial space V
r

h
to be

V
r

h
:=

Y

K2Th

Pr(K),

where Pr(K) denotes the space of polynomials with domain K and degree not
exceeding r. We will denote the DG polynomial space with zero-trace over @⌦
as V r

h,0 = {vh 2 V
r

h
: vh = 0 on @⌦}. As with the vector-valued Sobolev spaces, we

will define the vector-valued polynomial spaces using bold-face format; Vr

h
:= [V r

h
]d

and Vr

h,0 := [V r

h,0]
d. For other spaces throughout this paper, we will use bold-face

notation to indicate the vector-valued space. We note the inclusions V r

h
⇢ Vh and

Vr

h
⇢ Vh.
Let K+

,K
� 2 Th, and let e = @K

� \ @K
+ 2 EI

h
. Without loss of generality we

will assume the global labeling number of K+ is larger than that of K�. Letting
v± := v|K± , we define the jumps and averages across the (d�1)-dimensional simplex
e as

[[v]]e := v+ � v�, {v}e :=
1

2

�
v+ + v�

�
8v 2 Vh.

If K+ contains an edge in EB

h
, then for the boundary (d� 1)-dimensional simplex

e = @K
+ \ @⌦, we define [[v]]e := v+ and {v}e := v+. Set (n(1)

e , n
(2)
e , . . . , n

(d)
e )t =

ne := nK+ |e = �nK� |e to be the unit normal on e 2 Eh. For i 2 {1, 2, . . . , d} and
v 2 Vh, we define the labeling-dependent upwind trace operator, Q+

i
(v), and the

labeling dependent downwind trace operator, Q�
i
(v), on e 2 EI

h
in the direction xi

as

Q±
i
(v) := {v} ± 1

2
sgn(n(i)

e
)[[v]], where sgn(n(i)

e
) =

8
><

>:

1 if n(i)
e > 0,

�1 if n(i)
e < 0,

0 if n(i)
e = 0,

and Qi(v) := 1
2

�
Q�

i
(v) + Q+

i
(v)

�
. The operators Q�

i
(v) and Q+

i
(v) can be re-

garded as the “backward” and “forward” limit of v in the xi direction on e 2 EI

h
, ,

respectively. On a boundary simplex e 2 Eb

h
, we define Q±

i
(v) = Qi(v) = v.

2.2. Discontinuous Galerkin calculus. We use the trace operators Q�
i
, Q+

i
,

and Qi to define our DG discrete partials derivative operators @
�
h,xi

, @
+
h,xi

, @h,xi :

Vh ! V
h

r
that will be used to formulate the DWDG method for approximating

(1.2).

Definition 2.1. Let v 2 Vh, g 2 L
1(@⌦), i 2 {1, 2, . . . , d}, let @xi be the usual

(weak) partial derivative operator in the direction xi, and let n
(i) be the piece-

wise constant vector-valued function satisfying n
(i)|e = [ne]i. The discrete partial

derivative operators @±
h,xi

, @h,xi : Vh ! V
r

h
are defined by

�
@
±
h,xi

v,'h

�
Th

:=
⌦
Q±

i
(v)n(i)

, [['h]]
↵
Eh

�
�
v, @xi'h

�
Th

8'h 2 V
r

h
,

�
@h,xiv,'h

�
Th

:=
⌦
Qi(v)n

(i)
, [['h]]

↵
Eh

�
�
v, @xi'h

�
Th

8'h 2 V
r

h
.
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The discrete partial derivatives with given boundary data @
±,g

h,xi
, @

g

h,xi
: Vh ! V

r

h

are defined as
�
@
±,g

h,xi
v,'h

�
Th

:=
�
@
±
h,xi

v,'h)Th + h(g � v)n(i)
,'hiEB

h
8'h 2 V

r

h
,

�
@
g

h,xi
v,'h

�
Th

:=
�
@h,xiv,'h)Th + h(g � v)n(i)

,'hiEB
h

8'h 2 V
r

h
.

Remark 2.2. The definition of @±,g

h,xi
and @

g

h,xi
is equivalent to setting Q±

i
(v) = g

and Qi(v) = g on EB

h
implying that the trace data g is naturally incorporated into

the discrete partial derivative operator.

Definition 2.3. The discrete gradient operators r±
h
,rh,r±

h,g
,rh,g : Vh ! Vr

h

are defined as
⇥
r±

h
v
⇤
i
:= @

±
h,xi

v,
⇥
rhv

⇤
i
:= @h,xiv,

⇥
r±

h,g
v
⇤
i
:= @

±,g

h,xi
v,

⇥
rh,gv

⇤
i
:= @

g

h,xi
v.

The discrete divergence operators div±
h
, divh : Vh ! V

r

h
are defined as

div±
h
v :=

dX

i=1

@
±
h,xi

[v]i, divhv =
1

2

�
div+

h
v + div�

h
v
�
.

We end this section by listing some properties of the DG discrete derivatives
that will be used in the formulation of our proposed methods. From Definition 2.3,
we can relate r±

h,g
and r±

h,0 for all v, w 2 Vh by
�
r±

h,g
v,'

h
)Th =

�
r±

h,0v,'h
)Th + hg,'

h
· niEB

h
8'

h
2 Vr

h
, (2.1)

⇣
r±

h,g
v �r±

h,g
w,'

h

⌘

Th

=
⇣
r±

h,0(v � w),'
h

⌘

Th

8'
h
2 Vr

h
. (2.2)

The following discrete analog of integration by parts holds (i = 1, 2, . . . , d), see [11],

(@±
h,xi

vh,'h)Th = �(vh, @
⌥
h,xi

'h)Th + hvh,'hn
(i)iEB

h
8vh, 'h 2 V

r

h
(2.3)

yielding

(r±
h
vh,'h

)Th = �(vh, div
⌥
h
'

h
)Th + hvh,'h

· niEB
h

8vh 2 V
r

h
, '

h
2 Vr

h
, (2.4)

(r±
h,0vh,'h

)Th = �(vh, div
⌥
h
'

h
)Th 8vh 2 V

r

h
, '

h
2 Vr

h
. (2.5)

An important property of the DG discrete derivatives is that they are the L
2

projections of the derivative of a function v if v 2 H
1(⌦).

Lemma 2.4 ([11]). For any v 2 H
1(⌦), both @

±
h,xi

v and @h,xiv are the L
2 projec-

tions of @xiv onto V
r

h
; that is, (@±

h,xi
v, wh)Th = (@h,xiv, wh)Th = (@xiv, wh)Th for

all wh 2 V
r

h
. Moreover, if v 2 H

1(⌦) satisfies v|@⌦ = g for some g 2 L
2(⌦), then

both @
±,g

h,xi
v and @

g

h,xi
v are the L

2 projection of @xiv onto V
r

h
.

From the above lemma, it is possible to derive another useful identity for the
discrete di↵erential operators.

Lemma 2.5 ([14]). Let v 2 H
2(⌦) with v = g on the boundary @⌦. Then it holds

� (�v,'h)Th = (rh,gv,rh,0')Th + h
�
rh,gv �rv

 
· n, [['h]]iEh 8'h 2 V

r

h
. (2.6)
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3. Dual-wind discontinuous Galerkin approximation method for
Poisson’s equation

Recall that the strong form of Poisson’s equation (1.1) is: find a function u such
that

��u = f in ⌦,

u = g on @⌦.

Now we define the discrete Laplacian operator �h,g : V r

h
�! V

r

h
by

�h,gvh :=
div+

h
r�

h,g
vh + div�

h
r+

h,g
vh

2
8vh 2 V

r

h
, (3.1)

which involves an up-wind gradient operator and a down-wind gradient operator
utilized in a symmetric way. The DWDG method for (1.1) seeks a function u

�

h
2 V

r

h

such that

��h,gu
�

h
+ jh,g(u

�

h
) = Phf, (3.2)

where Phf 2 V
r

h
is the L2 projection of f onto V r

h
defined by (Phf, vh)Th

= (f, vh)Th

for all vh 2 V
r

h
and jh,g : Vh �! V

r

h
is a jump penalization/stabilization operator

defined by

(jh,g(v), wh)Th := �hh�1
e

[[v]], [[wh]]iEh � �hh�1
e

g, whiEB
h

8wh 2 V
r

h
. (3.3)

Traditionally for DWDG methods, we can let � = �e be a piecewise constant for
each e 2 Eh. However, for this paper we will assume that the “penalty” parameter
is constant across all edges, including boundary edges. We say “penalty” because
we can set �  0 and still have an accurate approximation method [10, 14, 15, 16].

Using (2.5) and (2.1), a direct calculation shows that problem (3.2) is equivalent
to finding u

�

h
2 V

r

h
such that

Bh,�(u
�

h
, vh) = Fh,�(vh) 8vh 2 V

r

h
, (3.4)

where

Bh,�(vh, wh) :=
1

2

⇣�
r+

h,0vh,r
+
h,0wh

�
Th

+
�
r�

h,0vh,r
�
h,0wh

�
Th

⌘

+ �hh�1
e

[[vh]], [[wh]]iEh 8vh, wh 2 V
r

h
,

(3.5)

Fh,�(v) := (f, v)Th + �hh�1
e

g, viEB
h
� hg,rh,0v · niEB

h
8v 2 Vh. (3.6)

We define the associated discrete energy norms by

kvhk2h :=
1

2

⇣
kr+

h,0vhk
2
L2(⌦) + kr�

h,0vhk
2
L2(⌦)

⌘
, (3.7)

|||vh|||2h,� := Bh,�(vh, vh) = kvhk2h + �

X

e2Eh

��h�1/2
e

[[vh]]
��2
L2(e)

. (3.8)

Note that k|| · |||h,� is a norm on V
r

h
whenever � � 0 and that the bilinear form

Bh,�(·, ·) is stable with respect to ||| · |||h,� [14, 15].

4. DWDG converges to CG

In this section, we prove analytically that the DWDG approximation (3.4) will
converge to a continuous Galerkin (CG) approximation as � ! 1. For this section,
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we will assume that � > 0. Note that this only requires the mesh to be shape-
regular. We will also assume that g = ⇧hg on @⌦ where ⇧hg is the standard nodal
interpolation of g into V

r

h
. We define the spaces

V
c

h
= {v 2 C(⌦) : v|K 2 Pr(K), 8K 2 Th},
V

c

h,0 = {vh 2 V
c

h
: vh = 0 on @⌦}.

The following lemma is adapted from [12, Lemma 3.1], and it shows an important
equivalence of norms that will be used for our main analytical result. Note that we
choose � = 1 for (3.5) to define the energy norm in our analysis, and to state the
following lemma based on the energy norm ||| · |||h,1.

Lemma 4.1. There is a positive constant C independent of h and � such that

|||wh|||2V r
h /V

c
h
 C

X

e2Eh

kh�1/2
e

[[wh]]k2L2(e) 8wh 2 V
r

h
/V

c

h
,

where ||| · |||V r
h /V

c
h
denotes the quotient norm

|||wh|||V r
h /V

c
h
= inf

v2V
c
h

|||wh + v|||h,1.

Remark 4.2. The argument in the proof of [12, Lemma 3.1] is for an energy norm
derived from a flux-based DG method. However, the proof does not invoke any
special properties of the energy norm, and it can be generalized to any flux-based
DG energy norm defined over the finite dimensional DG space V

r

h
. Thus, we omit

the proof.

Recalling that we have assumed that g = ⇧hg on @⌦, the CG approximation
corresponds to finding u

c

h
2 V

c

h
with u

c

h
|@⌦ = ⇧hg such that

B(uc

h
, vh) = (f, vh) 8vh 2 V

c

h,0, (4.1)

where B(vh, wh) = (rvh,rwh)Th . To prove our main result, we first show u
�

h

satisfies a Galerkin orthogonality condition.

Lemma 4.3. Let u
�

h
be the solution to the DWDG method (3.4) and u

c

h
be the

solution to the CG method (4.1). Then

Bh,1(u
c

h
� u

�

h
, vh) = 0 8vh 2 V

c

h,0.

Proof. Let u�

h
be the solution (3.4), uc

h
be the solution to (4.1), and vh 2 V

r

h,0 ⇢ V
r

h
.

By (3.5), (3.4), the fact that [[vh]] = 0 for all e 2 EI

h
, and the fact that vh = 0 on

@⌦, we have

Bh,1(u
c

h
� u

�

h
, vh)

= Bh,1(u
c

h
, vh)�Bh,1(u

�

h
, vh)

= Bh,1(u
c

h
, vh)�Bh,�(u

�

h
, vh) + h� � 1

he

[[u�

h
]], [[vh]]iEh

= Bh,1(u
c

h
, vh)� Fh,�(vh)

=
1

2

⇣�
r+

h,0u
c

h
,r+

h,0vh

�
Th

+
�
r�

h,0u
c

h
,r�

h,0vh

�
Th

⌘

+ hh�1
e

[[uc

h
]], [[vh]]iEh � Fh,�(vh)

=
1

2

�
r+

h,0u
c

h
,r+

h,0vh

�
Th

+
1

2

�
r�

h,0u
c

h
,r�

h,0vh

�
Th

� Fh,�(vh).

(4.2)
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By (2.1) and Lemma 2.4, equation (4.2) becomes

Bh,1(u
c

h
� u

�

h
, vh)

=
1

2

�
r+

h,g
u
c

h
,r+

h,0vh

�
Th

+
1

2

�
r�

h,g
u
c

h
,r�

h,0vh

�
Th

� hg,rh,0vh · niEB
h
� Fh,�(vh)

=
1

2

�
ru

c

h
,r+

h,0vh

�
Th

+
1

2

�
ru

c

h
,r�

h,0vh

�
Th

� hg,rh,0vh · niEB
h

� Fh,�(vh) (4.3)

=
�
ru

c

h
,rh,0vh

�
Th

� hg,rh,0vh · niEB
h
� Fh,�(vh)

=
�
ru

c

h
,rvh

�
Th

� hg,rh,0vh · niEB
h
� Fh,�(vh)

=
�
f, vh

�
Th

� hg,rh,0vh · niEB
h
� Fh,�(vh)

Lastly, by applying (3.6) to (4.3), we have

Bh,1(u
c

h
� u

�

h
, vh)

=
�
f, vh

�
Th

� hg,rh,0vh · niEB
h
� (f, vh)Th � �hh�1

e
g, vhiEB

h
+ hg,rh,0vh · niEB

h

= ��hh�1
e

g, vhiEB
h
= 0.

⇤

Now we prove the main result of our paper. In [16], it was shown through nu-
merical experiments that the L

2-error was following a check-mark trend or strictly
increasing as the the choice of � increased. Based on the DWDG bilinear form
(3.5), any jumps in the DWDG approximation will introduce more energy into in
discrete system for large values of �. Intuitively, this would encourage the DWDG
approximation to minimize any jumps, making it resemble a continuous Galerkin
approximation for large enough values of �. In the next theorem, we will show that
the di↵erence of the DWDG approximation (3.4) and the CG approximation (4.1)
in a discrete energy norm will be bounded, and the bound will explicitly depend
on the choice of � and h.

Theorem 4.4. If u 2 H
r+1(⌦) for r � 1 is the solution to (1.1), u�

h
is the solution

to the DWDG method (3.4), and u
c

h
is the solution to the CG method (4.1), then

|||uc

h
� u

�

h
|||h,1  Ch

r

�
kukHr+1(⌦).

Proof. Let u 2 H
r+1(⌦) be the solution to (1.1), let u�

h
be the solution to (3.4) and

u
c

h
be the solution to (4.1). By Lemma 4.3 and the boundedness of ||| · |||h,1, we have

|||uc

h
� u

�

h
|||2
h,1 = Bh,1(u

c

h
� u

�

h
, u

c

h
� u

�

h
)

= Bh,1(u
c

h
� u

�

h
, u

c

h
� u

�

h
+ v)

 |||uc

h
� u

�

h
|||h,1|||uc

h
� u

�

h
+ v|||h,1

(4.4)

for any v 2 V
c

h,0. Dividing both sides of (4.4) by |||uc

h
� u

�

h
|||h,1, we obtain

|||uc

h
� u

�

h
|||h,1  |||uc

h
� u

�

h
+ v|||h,1 (4.5)
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for all v 2 V
c

h,0. Since this holds for all v 2 V
c

h,0, we have by Lemma 4.1 that

|||uc

h
� u

�

h
|||h,1  inf

v2V
c
h,0

|||uc

h
� u

�

h
+ v|||h,1

= |||uc

h
� u

�

h
|||V r

h /V
c
h,0

 C

⇣ X

e2Eh

kh�1/2
e

[[uc

h
� u

�

h
]]k2

L2(e)

⌘1/2
.

(4.6)

By (3.5) we have

�

X

e2Eh

kh�1/2
e

[[uc

h
� u

�

h
]]k2

L2(e)

 Bh,�(u
c

h
� u

�

h
, u

c

h
� u

�

h
)

= Bh,�(u
c

h
� u, u

c

h
� u

�

h
) +Bh,�(u� u

�

h
, u

c

h
� u

�

h
).

(4.7)

Now we consider the first term on the right-hand side of (4.7). Recall our assump-
tion ⇧hg = g, which implies u

c

h
� u 2 H

1
0 (⌦). By the Cauchy-Schwarz inequality

and the fact that [[uc

h
� u]]e = 0 for all e 2 Eh, we have

Bh,�(u
c

h
� u, u

c

h
� u

�

h
)  1

2
kr+

h,0(u
c

h
� u)kL2(Th)kr

+
h,0(u

c

h
� u

�

h
)kL2(Th)

+
1

2
kr�

h,0(u
c

h
� u)kL2(Th)kr

�
h,0(u

c

h
� u

�

h
)kL2(Th)

+ �

X

e2Eh

hh�1
e

[[uc

h
� u]], [[uc

h
� u

�

h
]]iL2(e)

=
1

2
kr+

h,0(u
c

h
� u)kL2(Th)kr

+
h,0(u

c

h
� u

�

h
)kL2(Th)

+
1

2
kr�

h,0(u
c

h
� u)kL2(Th)kr

�
h,0(u

c

h
� u

�

h
)kL2(Th).

By Lemma 2.4, (3.8) with our assumption that � > 0, and (4.6), we have

Bh,�(u
c

h
� u, u

c

h
� u

�

h
) =

1

2
kr+

h,0(u
c

h
� u)kL2(Th)kr

+
h,0(u

c

h
� u

�

h
)kL2(Th)

+
1

2
kr�

h,0(u
c

h
� u)kL2(Th)kr

�
h,0(u

c

h
� u

�

h
)kL2(Th)

=
1

2
kr+

h,0(u
c

h
� u)kL2(Th)

⇣
kr+

h,0(u
c

h
� u

�

h
)kL2(Th)

+ kr�
h,0(u

c

h
� u

�

h
)kL2(Th)

⌘

 1

2
kuc

h
� ukh (2kuc

h
� u

�

h
kh)

 |||uc

h
� u|||h,1|||uc

h
� u

�

h
|||h,1

 C|||uc

h
� u|||h,1

� X

e2Eh

kh�1/2
e

[[uc

h
� u

�

h
]]k2

L2(e)

�1/2
.

(4.8)



132 T. LEWIS, A. RAPP, Y. ZHANG EJDE-2022/CONF/26

We will next consider the second term on the right-hand side of (4.7). By (3.4) and
(3.5), we have

Bh,�(u� u
�

h
, u

c

h
� u

�

h
)

= Bh,�(u, u
c

h
� u

�

h
)�Bh,�(u

�

h
, u

c

h
� u

�

h
)

= Bh,�(u, u
c

h
� u

�

h
)� Fh,�(u

c

h
� u

�

h
)

=
1

2

⇣�
r+

h,0u,r
+
h,0(u

c

h
� u

�

h
)
�
Th

+
�
r�

h,0u,r
�
h,0(u

c

h
� u

�

h
)
�
Th

⌘

+ �hh�1
e

u, (uc

h
� u

�

h
)iEB

h
� Fh,�(u

c

h
� u

�

h
).

(4.9)

Next, by applying (3.6), (2.1), and Lemma 2.5 to (4.9), we have

Bh,�(u� u
�

h
, u

c

h
� u

�

h
)

=
1

2

�
r+

h,0u,r
+
h,0(u

c

h
� u

�

h
)
�
Th

+
1

2

�
r�
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�
h,0(u

c

h
� u

�

h
)
�
Th

+ �hh�1
e

u, u
c

h
� u

�

h
iEB

h
� (f, uc

h
� u

�

h
)Th � �hh�1

e
g, u

c

h
� u

�

h
iEB

h

+ hg,rh,0(u
c

h
� u

�

h
) · niEB

h

=
1

2
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c

h
� u

�

h
)
�
Th

+
1

2

�
r�

h,g
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h,0(u
c

h
� u

�

h
)
�
Th

� (f, uc

h
� u

�

h
)Th

=
�
rh,gu,rh,0(u

c

h
� u

�

h
)
�
Th

� (f, uc

h
� u

�

h
)Th

=
�
rh,gu,rh,0(u

c

h
� u

�

h
)
�
Th

� (��u, u
c

h
� u

�

h
)Th

=
�
rh,gu,rh,0(u

c

h
� u

�

h
)
�
Th

� (rh,gu,rh,0(u
c

h
� u

�

h
))Th

+ h
�
rh,gu�ru

 
· n, [[uc

h
� u

�

h
]]iEh

= h
�
rh,gu�ru

 
· n, [[uc

h
� u

�

h
]]iEh .

Applying the Cauchy-Schwarz inequality, the trace theorem with scaling, and Lemma 2.4,
we have

Bh,�(u� u
�

h
, u

c

h
� u

�

h
)

= h
�
rh,gu�ru

 
· n, [[uc

h
� u

�
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]]iEh
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⇣ X

e2Eh
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L2(e)

⌘1/2⇣ X

e2Eh
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e

[[uc

h
� u

�

h
]]k2

L2(e)
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⇣ X

e2Eh

kh�1/2
e
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h
� u

�

h
]]k2

L2(e)

⌘1/2
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(4.10)

Combining (4.7), (4.8), and (4.10), we have

�

X

e2Eh

kh�1/2
e

[[uc

h
� u

�

h
]]k2

L2(e)

 C
�
|||uc

h
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�⇣ X

e2Eh
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e
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h
� u

�

h
]]k2

L2(e)

⌘1/2
.

Dividing both sides above by
�P

e2Eh
kh�1

e
[[uc

h
� u

�

h
]]k2

L2(e)

�1/2
and � gives us

⇣ X

e2Eh

kh�1/2
e
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h
� u

�

h
]]k2

L2(e)

⌘1/2
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�

�
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h
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rkukHr+1(⌦)

�
. (4.11)
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Lastly, recalling that uc

h
� u 2 H

1
0 (⌦), from (2.1) and Lemma 2.4, we have

|||uc

h
� u|||2

h,1 =
1

2
kr+

h,0(u
c

h
� u)k2

L2(Th)
+

1

2
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+
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e2Eh
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e
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=
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2
kr+
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1

2
kr�

h,0(u
c

h
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L2(Th)

 1

2
kru

c

h
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1
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h
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c

h
�ruk2
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. (4.12)

By combining (4.6), (4.11), and (4.12), we obtain the result
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e2Eh
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e
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� u

�

h
]]k2
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�
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�
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=
Ch
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�
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⇤
Since u

c

h
, u

�

h
2 V

r

h
and ||| · |||h,1 is a norm on V

r

h
, an immediate consequence of

Theorem 4.4 is the following.

Corollary 4.5. If u 2 H
r+1(⌦) for r � 1 is the solution to (1.1), u�

h
is the solution

to the DWDG method (3.4), and u
c

h
is the solution to the CG method (4.1), then

lim
�!1

|||u�

h
� u

c

h
|||h,1 = 0.

5. Numerical experiments

In this section, we will verify the results of Theorem 4.4. We will also investigate
the e↵ect of the regularity of solutions to (1.2) on the relationship between the
penalty parameter �, the energy error, and the L

2-error of the DWDG approxima-
tion.

5.1. DWDG Converges to CG. To validate Theorem 4.4, we consider the ho-
mogeneous problem

��u = 2⇡2 sin(⇡x) sin(⇡y) in ⌦ = [0, 1]2,

u = 0 on @⌦.
(5.1)

The solution to this equation is u = sin(⇡x) sin(⇡y). The approximations and error
calculations were done on a fixed mesh with h = 1

32 for linear basis polynomials
and h = 1

16 for quadratic and cubic basis polynomials. Based on the proof of
Theorem 4.4 and [16, Lemma IV.4], we measured the error in

• the energy norm |||uc

h
� u

�

h
|||h,1,

• the H
1 semi-norm kr(uc

h
� u

�

h
)kL2(Th),
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• the jump error
⇣P

e2Eh
kh�1/2

e [[uc

h
� u

�

h
]] k2

L2(e)

⌘1/2
.

The error and rates using linear, quadratic, and cubic basis polynomials for the
DWDG approximation with varying values of the penalty parameter � can be found
in Table 1. In all three error measurements, we are able to achieve a rate of 1 with
respect to � as � ! 1. Note that the matrix corresponding to the bilinear form
Bh,�(·, ·) will require special treatment for larger values of � due to the spectral
radius increasing instep with the value of �.

Table 1. Energy error, H1 semi-norm error, jump error and their
respective rates for (5.1).

Poly � |||uc
h � u

�
h|||h,1 Rate kr(uc

h � u
�
h)kL2(Th) Rate Jump Error Rate

r = 1

1 1.3514e-02 — 1.1934e-02 — 9.4287e-03 —
10 7.2250e-03 0.2719 6.3040e-03 0.2772 4.9789e-03 0.2773
102 1.2874e-03 0.7491 1.1171e-03 0.7515 8.8320e-04 0.7511
103 1.3971e-04 0.9645 1.2114e-04 0.9648 9.5790e-05 0.9647
104 1.4094e-05 0.9962 1.2237e-05 0.9956 9.6608e-06 0.9963
105 1.4440e-06 0.9895 1.4043e-06 0.9402 9.6691e-07 0.9996

r = 2

1 1.0215e-03 — 9.9343e-04 — 5.4330e-04 —
10 6.9298e-04 0.1685 7.2228e-04 0.1384 3.4854e-04 0.1928
102 1.7932e-04 0.5871 2.0400e-04 0.5491 8.4431e-05 0.6157
103 2.1642e-05 0.9183 2.5125e-05 0.9095 1.0034e-05 0.9250
104 2.2109e-06 0.9907 2.5726e-06 0.9897 1.0232e-06 0.9915
105 2.2157e-07 0.9991 2.5771e-07 0.9992 1.0253e-07 0.9991

r = 3

1 1.0741e-05 — 1.4247e-05 — 4.9554e-06 —
10 7.7927e-06 0.1393 1.0155e-05 0.1470 3.5359e-06 0.1466
102 2.1274e-06 0.5638 2.7326e-06 0.5701 9.4950e-07 0.5710
103 2.5835e-07 0.9156 3.3106e-07 0.9167 1.1482e-07 0.9175
104 2.6405e-08 0.9905 3.3830e-08 0.9906 1.1730e-08 0.9907
105 2.6645e-09 0.9961 3.4807e-09 0.9876 1.1755e-09 0.9991

5.2. Relationship between � and the L
2-error. For our experiments, we will

test the DWDG methods for approximating (1.2). We will find the L
2-error on a

fixed mesh with h = 1
16 . We will run the DWDG approximation with two sets of

�’s to get an idea of the behavior of the L
2-error near � = 0 as well as for large

values of �. To determine the behavior of the L
2-error around � = 0 we chose � 2

{�2,�1.8,�1.6,�1.4,�1.2, · · · , 10}. Since the constant C⇤ has a complex deriva-
tion, the exact value is generally unknown. Going only as low as � = �2 should
guarantee that the method is stable, and it gives us more information about the ef-
fect of � decreasing towards zero and becoming negative. To determine the behavior
of the L2-error as � ! 1 we chose � 2 {10, 101.5, 102, 102.5, 103, 103.5, 104, 104.5, 105}
to reflect the results found in Table 1. We measure the error of the DWDG approx-
imation in the the L2 norm ku�u

�

h
kL2(Th). Since the choice of starting mesh, based

on minimal angle, did not have a noticeable e↵ect on the L
2-error of the DWDG

approximation [16], we have chosen to preform our experiments on a uniform criss-
cross mesh. LDG methods are known to require � > 0 for cris-cross meshes [13].
Thus, the choice represents a potentially challenging meshing strategy for DWDG
methods without penalization.

The numerical experiment was run on the problem

��u↵ = f in ⌦ = [�1, 1]2,

u↵|@⌦ = g on @⌦,
(5.2)
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where ↵ > 0 is a constant. The functions f and g are chosen so that the solution
for (5.2) is

u↵(x, y) =

(
cos(⇡2 y) if x < 0,

cos(⇡2 y) + x
↵ if x � 0.

This solution belongs to H
↵+ 1

2 (⌦) but does not belong to H
↵+1/2+✏(⌦) for all ✏ > 0

[7]. To test the impact of the regularity of the solution on the choice of � we will
choose ↵ 2 {1.5, 2.5, 3.5, 4.5}. We have also plotted the CG approximation L

2-error
in each plot of Figure 1. Note that the CG L

2-error was larger than the DWDG
L
2-errors in Figure 2, even though the CG L

2-error was not plotted. The CG L
2-

error values are given instead of plotted for each combination of ↵ and the smaller
� in Figure 2, as the relatively large di↵erence in the L

2-error for the DWDG and
CG method prevented both errors to be plotted while visually retaining the shape
of the DWDG’s L2-error curve.

For the linear DWDG methods, we see a check-mark relationship between � and
the L2-error of the approximation when � is close to zero (see Figure 2). When the
solution u 2 H

2(⌦), we see an upward trend in the L
2-error after � = 5 creating

a wide check-mark relationship. As the regularity of the solution increased, we see
the bottom of the check-mark relationship move to the left, indicating that if the
regularity was high enough, we would see a strictly increasing relationship between
� and the DWDG L

2-error. This is a similar observation for the linear DWDG
approximation in [16], where refining the mesh also moved the bottom of the check-
mark relationship to the left. For the larger values of � (see Figure 1), we see a
strictly increasing relationship that tapers o↵ as the DWDG L

2-error approaches the
CG L

2-error. From this, we conjecture that there is a strictly increasing relationship
between the L

2-error and � for the linear DWDG approximation for values of �
that are large enough or if the regularity of the solution is high enough.

For the DWDG methods with quadratic and cubic basis polynomials, we see a
strictly increasing relationship between � and the L

2-error of the DWDG approxi-
mation when looking at the smaller range of � (see Figure 2). For the larger range
of � (see Figure 1) a strictly increasing relationship was persistent for quadratic
basis functions. For cubic basis functions, we see a strictly increasing trend until
the largest values of � when u 2 H

3(⌦) or u 2 H
4(⌦).

Overall, we observe that as the regularity of the solution to (1.1) increased, we
could see a strictly increasing trend between the L

2-error and � for � � 0. It
is of interest to note that as � ! 1, the spectral radius of the DWDG matrix
from the bilinear form Bh,�(·, ·) will scale with the choice of �. Though we choose
large values of � to show the convergence of the DWDG approximation to the
CG approximation in our numerical results, the DWDG approximation always had
lower errors than the CG approximation. Furthermore, the best L

2-errors were
found near � = 0. The choice of � = 0 simplifies the approximation, and it appears
to yield a more accurate approximation.
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