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PENALTY PARAMETER AND DUAL-WIND DISCONTINUOUS
GALERKIN APPROXIMATION METHODS FOR ELLIPTIC
SECOND ORDER PDES

THOMAS LEWIS, AARON RAPP, YI ZHANG

ABSTRACT. This article analyzes the effect of the penalty parameter used in
symmetric dual-wind discontinuous Galerkin (DWDG) methods for approx-
imating second order elliptic partial differential equations (PDE). DWDG
methods follow from the DG differential calculus framework that defines dis-
crete differential operators used to replace the continuous differential operators
when discretizing a PDE. We establish the convergence of the DWDG approxi-
mation to a continuous Galerkin approximation as the penalty parameter tends
towards infinity. We also test the influence of the regularity of the solution
for elliptic second-order PDEs with regards to the relationship between the
penalty parameter and the error for the DWDG approximation. Numerical
experiments are provided to validate the theoretical results and to investigate
the relationship between the penalty parameter and the L2-error.

1. INTRODUCTION

Let © C R? be a bounded convex polygonal domain, f € L?*(Q), and g €
H'2(09Q). We consider the second order elliptic partial differential problem: find
u € H?(Q) such that

—Au=f inQ, (1.1a)

u=g¢g on Jf, (1.1b)
where Au = Zle aa—;gu. Dual-Wind Discontinuous Galerkin (DWDG) methods
have been applied to the second order elliptic PDE (1.1) as well as its Neumann
boundary condition counterpart in [14] [10 [11]. The focus of these papers was to
establish a priori results for the proposed DWDG methods initially analyzed in a
discrete H'-space inspired by the weak form of (1.1): find u € H, gl(Q) such that

(Vu, Vo)g = (f,v)a Yo € Hy(Q), (1.2)

where (v,w)q = [,vwdz. In this paper we will further investigate properties of
the DWDG method and the effects of adding a jump stabilization term since one of
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the key features of DWDG is the fact that it is naturally stable without penalizing
jumps.

There are many continuous Galerkin (CG) methods and discontinuous Galerkin
(DG) methods that accurately approximate with both weak and strong en-
forcement of the boundary information. For DG methods, a jump penalization sta-
bility term scaled by a penalty parameter v is introduced in the discrete variational
formulation to ensure coercivity; such terms are not needed for CG approximations.
It was shown in [5] [6] [12] that a continuous Galerkin method is the limit of a DG
interior penalty method as the penalty parameter tends towards infinity. Since
DWDG methods are more similar to the more general class of flux-based DG meth-
ods such as local discontinuous Galerkin (LDG) methods, a goal of this paper will
be to show that DWDG methods will also approach the CG approximation as its
limit as v — co. We also note that DWDG methods allow for natural enforcement
of the Dirichlet boundary condition instead of the typical weak or strong approach.

The penalty parameter ~ is an artificial parameter that is traditionally intro-
duced into the discrete formulation of a problem to guarantee the stability of the
method in a discontinuous space. For interior-penalty methods, the penalty term
naturally occurs in the derivation of a discrete Friedrich’s inequality (see [2,4]). For
LDG methods, the parameter does not arise as naturally, and it can be eliminated
under certain assumptions in the formulation of the problem [9] [13]. For DWDG
methods, the inclusion of an LDG-like penalty term was introduced to ensure sta-
bility of the methods for non quasi-uniform meshes. Investigation of the stability
and convergence of the dual-wind derivatives and the penalty term for second order
elliptic PDEs found that the penalty term was not necessary for a shape-regular
mesh. If the mesh was quasi-uniform and each triangle did not have more than one
edge on the boundary, then the penalty term could be removed by setting v, = 0
for all edges of a mesh e, or it could be negative as long as 7. > —C, for some
constant C, > 0 (see [13] [14] [10]).

The possibility of a non-positive penalty parameter indicates that DWDG meth-
ods naturally weight jumps in the discontinuous approximation space without
adding jump terms. The discrete derivatives Vi p themselves control the jumps
of the approximation eliminating the need for v, # 0 for all edges of the mesh
e. This allows us to interpret v as an artificial penalty parameter for the DWDG
methods that can be controlled or eliminated.

We refer the reader to [L6] which contains a wide range of numerical experiments
that first explored the relationship between the penalty parameter v and the L2-
error for the DWDG approximation. The numerical experiments in [16] showed a
strictly increasing relationship between v and the L?-error given that the solution
was smooth and the approximation was found on a fine mesh. There was no sig-
nificant impact from the minimal angle of the mesh, or whether the problem had
homogeneous or non-homogeneous boundary conditions. The solutions for the nu-
merical experiments in [16] were either in C°°(€2) or in the test function space V7.
A second goal of this paper will be to extend the initial tests in [16] by experimen-
tally studying the effect of the regularity of the solution to on the relationship
between v and the L2-error.

The rest of the paper is organized as follows. Section |2 introduces notation and
briefly discusses the discrete DG interior calculus that will be used to formulate
the symmetric dual-wind DG methods in Section [3] In Section [d] we will present
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analysis that shows the DWDG methods will converge to a CG method as v —
0o. Numerical experiments verifying the DWDG limit result will be presented in
Section [5, Further investigations of the relationship between ~ and the L2-error of
the DWDG approximation with regards to the regularity of the solution of
will also be presented in Section

Throughout this article, C' will denote a generic positive constant independent of
the mesh size and . As such, the constant C' can take different values at different
occurrences.

2. NOTATION AND DG DIFFERENTIAL CALCULUS

2.1. Notation. We will use the standard space and function notation from [I]
and [3] in this paper. Let W™P(Q) denote the set of all LP(€2) functions whose
distributional derivatives up to order m are in LP(2) and W;""(Q) denote the
set of W™P(Q)) functions whose traces vanish up to order m — 1 on 9. In the
special case where p = 2, we denote this as H™ := W™? and HJ' := 6”’2.
Bold-face format will be used for the corresponding vector-valued Sobolev spaces
WmP(Q) = [WmP(Q)]4,H™(Q) := [H™(Q)]¢, etc. We choose to introduce the
discrete derivatives for a general dimension d > 1 that will be used to formulate
the numerical methods and establish our analytic results in Section However,
the numerical experiments presented in Section [5| will be done with d = 2.

Let 75, denote a shape-regular simplicial triangulation of 2 [3, 8. Let £/ be the
set of interior (d — 1)-dimensional simplices for the triangulation and £Z the set
of boundary (d — 1)-dimensional simplices so that &, := & UEP. We will denote
the diameter of the simplex K € 7T, as hg, and we set h := maxge7, hx. Let
dg represent the diameter of the inscribed circle of a triangle K. A mesh 7, is
shape-regular if there is a constant C' > 0 such that

hi
max — < C.
KeT, di

A mesh 7}, is quasi-uniform if there exist a constant p > 0 such that
p<hr/hg <p ' VK,K' €T
We define the piecewise vector spaces with respect to the triangulation
WmP(Ty) = [ Wmr(EK), W™P(T,) = [[ W™P(K), ete.
KeTn KeTsn
with the special cases Vj, := WHL(T,) N CO(Ty,) and Vy, == [V3,]%. Let
Z / vw dx
KeTn
be the piecewise L? inner product with respect to the triangulation, and let
(v, w)s, = Z /vwds
eeS, V¢

be the piecewise L? inner product over any subset S, C &,. To further simplify
notation used later in this paper we will use

(cev,w)s Z /cevw ds

eeSy
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where ¢, is a constant that depends on the edge e € S}, C &,. We will also use the
following notation for the L? norm over the triangularization in this paper:

lolZz = (,0)7  and  vlZas,) = (v, v)s,

for Sp, C &,. For an integer r > 1, we define the DG polynomial space V} to be

Vi = H P (K),
KeTh

where P,.(K) denotes the space of polynomials with domain K and degree not
exceeding r. We will denote the DG polynomial space with zero-trace over 0f2
as Vi o = {vn € V)] tvp, = 0 on 00}, As with the vector-valued Sobolev spaces, we
will define the vector-valued polynomial spaces using bold-face format; V} := [V,{]d
and V} = [Vhr o]d. For other spaces throughout this paper, we will use bold-face
notation to indicate the vector-valued space. We note the inclusions V;, C V}, and
V;; C V.

Let KT, K~ € Ty, and let e = 0K~ NOK ™ € £]. Without loss of generality we
will assume the global labeling number of K+ is larger than that of K—. Letting
v4 := V| g+, we define the jumps and averages across the (d—1)-dimensional simplex
e as

1
[v]e = vy —v—, {v}e:= §(v+ +v_) Vv €V

If K* contains an edge in &P, then for the boundary (d — 1)-dimensional simplex
e = 0Kt NoQ, we define [v]. := v; and {v}. := vi. Set (ngl),ng), o méd))t =
N, := Ng+|e = —Ng- | to be the unit normal on e € &,. For ¢ € {1,2,...,d} and
v € Vp,, we define the labeling-dependent upwind trace operator, Qf (v), and the
labeling dependent downwind trace operator, Q; (v), on e € & in the direction w;
as

1 ifal >0,
+ 1 (i) (i) O
Q7 (v) :=={v} £ B sgn(nt)[v], where sgn(ng”) =< —1 if ne” <0,
0 ifnl? =0,
and Q;(v) := 3(Q; (v) + Q (v)). The operators Q; (v) and Q; (v) can be re-
garded as the “backward” and “forward” limit of v in the x; direction on e € E,{ -

respectively. On a boundary simplex e € &7, we define Qii(v) = Q;(v) = .

2.2. Discontinuous Galerkin calculus. We use the trace operators Q; , Q;r,
and Q; to define our DG discrete partials derivative operators 8;“,8;%_, Oh,z;
V, — VP that will be used to formulate the DWDG method for approximating

2.

Definition 2.1. Let v € Vj,, g € LY(09Q), i € {1,2,...,d}, let 9., be the usual
(weak) partial derivative operator in the direction x;, and let n® be the piece-
wise constant vector-valued function satisfying n(¥|, = [n.];. The discrete partial
derivative operators B,j;mi 75;1@1. : Vi =V, are defined by

(3?;%%%)% = (QF (v)n, [[SOh]]>gh - (U,ami@h)n Von € Vi,
(ghﬂmiv’soh)ﬂl = <§i(u)n(i)’ [[Sph]]>£h - (v,amiﬁph)Th Yoy € Vhr
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The discrete partial derivatives with given boundary data 62:,255’52% V=V
are defined as
=+, j
(ah,wgiv7 @h)Th = (6iwiv7 @h)'rh + <(g - ’U)n(Z)v @h>5f V‘Ph € Vfrv
—g _ .
(8h,mivv @h)Th = (6}%1@'”’ <ph)7'h + <(g - U)n(l)v @h>$f V@h € V}:

Remark 2.2. The definition of (“),f’rgl and 5,’;’11, is equivalent to setting QF (v) =g
and Q;(v) = g on S;LB implying that the trace data g is naturally incorporated into
the discrete partial derivative operator.

Definition 2.3. The discrete gradient operators vfﬁh,v,ﬁfﬂﬁh,g WV — Vi
are defined as

[va]i = 82':,9:1”’ Whv]i = 5;1711,1), [Vigv} = 8?:’;11), Whvgv}i = gi@%v.

i
The discrete divergence operators divf,ah : Vi — V) are defined as

d
divi v = Z@f% V], divpv =

i=1

(divz v +div, v).

|~

We end this section by listing some properties of the DG discrete derivatives
that will be used in the formulation of our proposed methods. From Definition [2.3]
we can relate V,fg and Vio for all v,w € V, by

(vigv’ (ph)Th = (Vi()v7 (th>Th + <ga Ph -1’1>5}? V(ph € V27 (2'1)
(Vigv - Ving goh> = (Vﬁo(v —w), Lph) Y, € V. (2.2)
Th Th
The following discrete analog of integration by parts holds (i = 1,2,...,d), see [11],
(@fmivh, on)7, = —(vn, OF . on)7, + (n, @hn(i)>55 Yop, on € Vi, (2.3)
yielding

(Vv @) 7 = —(0n, divil ©3) 75 + (v, @y - m)en Yun € Vi, @y, € Vi, (2.4)
(Viovh,goh)n = —(’l}h,divz YT, Yon €Vy, @, € V). (2.5)

An important property of the DG discrete derivatives is that they are the L2
projections of the derivative of a function v if v € H' ().

Lemma 2.4 ([11]). For any v € H(Q), both (‘ﬁriv and Oy .,v are the L* projec-
tions of Oy, v onto V; that is, (8,Li’$iv,wh)7-h = (Oh,z;0,0n) 75, = (0,0, w3)7;, for
all wy, € V' Moreover, if v € H' () satisfies v|pq = g for some g € L*(Q), then

both ai’iv and gi’xiv are the L? projection of Oy, v onto V}.

From the above lemma, it is possible to derive another useful identity for the
discrete differential operators.

Lemma 2.5 ([14]). Let v € H?(Q) with v = g on the boundary OQ. Then it holds
= (Av,01)7, = (Vigv, Vioo) 7 + ({Vigv = Vol -m, [onl)e,  Yon € V. (2.6)
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3. DUAL-WIND DISCONTINUOUS (GALERKIN APPROXIMATION METHOD FOR
POISSON’S EQUATION

Recall that the strong form of Poisson’s equation (|1.1)) is: find a function u such
that

—Au=f inQ,
u=g on Jf).
Now we define the discrete Laplacian operator Ay 4 : V' — V) by
divy VgV £ divy, V;gvh
2

which involves an up-wind gradient operator and a down-wind gradient operator
utilized in a symmetric way. The DWDG method for (I.1)) seeks a function u) € V)
such that

Ah,gvh = Yo, € V), (3.1)

— Apguy, + Jng(u)) = Puf, (3.2)

where P, f € V" is the L? projection of f onto V; defined by (P4, f, op)7, = (fyon)7,
for all vy, € V)7 and jp,g : Vo — V) is a jump penalization/stabilization operator
defined by

(g () wn)7s, = (kg [0, [wnl)e, — v(he'g.wn)ep  Yun € V). (3.3)

Traditionally for DWDG methods, we can let v = =, be a piecewise constant for
each e € &,. However, for this paper we will assume that the “penalty” parameter
is constant across all edges, including boundary edges. We say “penalty” because
we can set v < 0 and still have an accurate approximation method [10] [14! [15] [16].

Using ([2.5)) and (2.1)), a direct calculation shows that problem (3.2)) is equivalent
to finding u; € V; such that

Bhﬂ(uz,vh) = Fhv.y(vh) Yy, € V}:, (34)

where

1 _ _

Bh, (0n, wn) = 5((v;o”hvviowh)7h + (Vh,ovhavh,owh)n)
+ (b o], [wnl)e,  Yon,wn € V3,

Fh,"/(v) = (va)Th + ’Y<he_1.gvv>€f - <g’vh,0’v : n>8}f Vo € Vp. (3.6)

We define the associated discrete energy norms by

(3.5)

1 _
ol = 5 (I 0vnll3e@) + IV gunliEa ) (3.7)
. 2
lonlls - == Bh~(vn,vn) = llvalli +v > ||he 1/2[[Uh]]||L2(e)~ (3.8)
ecéy
Note that ||| - ||n,y is @ norm on V" whenever v > 0 and that the bilinear form

B (-, -) is stable with respect to || - |5, [14} 15].

4. DWDG CONVERGES TO CG

In this section, we prove analytically that the DWDG approximation (3.4]) will
converge to a continuous Galerkin (CG) approximation as v — oco. For this section,
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we will assume that v > 0. Note that this only requires the mesh to be shape-
regular. We will also assume that g = I g on 02 where 11} ¢ is the standard nodal
interpolation of g into V;/. We define the spaces
VE={ve ) vk € P(K), VK € Tp},
Viro = {vn € Vi v = 0 on 0Q}.
The following lemma is adapted from [12] Lemma 3.1], and it shows an important
equivalence of norms that will be used for our main analytical result. Note that we

choose v = 1 for (3.5 to define the energy norm in our analysis, and to state the
following lemma based on the energy norm || - ||5,1.

Lemma 4.1. There is a positive constant C independent of h and ~ such that
bwnll e < C S 107 2wndlBa)  Voon € Vi VR,
ecéy,
where || - ||y, ve denotes the quotient norm

lwnllvyyve = Uien‘ﬁff lwn + vlln,1-

Remark 4.2. The argument in the proof of [12] Lemma 3.1] is for an energy norm
derived from a flux-based DG method. However, the proof does not invoke any
special properties of the energy norm, and it can be generalized to any flux-based
DG energy norm defined over the finite dimensional DG space V}'. Thus, we omit
the proof.

Recalling that we have assumed that ¢ = II,g on 0f), the CG approximation
corresponds to finding uf, € V¢ with uf|an = II,g such that
B(uj,vp) = (f,vn) Yo, € Vios (4.1)

where B(vi,,ws) = (Vop, Vwy)7,. To prove our main result, we first show
satisfies a Galerkin orthogonality condition.

Lemma 4.3. Let u] be the solution to the DWDG method (3.4) and uf be the
solution to the CG method (4.1). Then

Bh$1(ufl — UZ,U}Z) =0 Vo€ th’(].

Proof. Let u; be the solution (3.4), u§ be the solution to (4.1, and v;, € Vo C Vi

By (3.5)), , the fact that Jus] = 0 for all e € &/, and the fact that v, = 0 on
09, we have

B 1 (uf, — u)l,vp)

= B (uj,,vn) — Bn(u

)

(]
= Bux(u§vn) — Bus(u], on) + (2 [4], [onl)e,

= Bu,1(uj,,vn) = Fpy(vn) (4.2)
1 C - (&3 —
= 5((v;{,0uh’ VZ,O”L)Th + (vh,ouh’ Vh,o“h)n)

+ (b M ui], [on])e, — Fiy(vn)

1
(9 g Vi)

I
2 + 5 (Vi Viovn) 7, = Fuq(vn).

Th 2
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By (2.1) and Lemma[2.4] equation (4.2)) becomes

B 1 (uf, — u)l,vp)

1 1, . =
= i(v;gufw V;{yovh)n + §(vh,gu?w vh,ovh)Th — {9, Vhovn - n>€§ — Fy ()
1 1 _ —
i(Vu,cl, VZ’Ovh)Th + §(Vuz, Vh’ovh)n —{g, Vi ovp - n)gfs
— Fh’y(’l}h) (43)
= (Vuh, Viotn) . = (9: Viovn - n)es — Fry(vp)
= (VUZ,VU;,)Th — <g,ﬁh,ovh . n>55 — Fh,'y(vh)
= (f,vn) 7, = (9: Viovn - n)en — Frq(vn)
Lastly, by applying (3.6) to (4.3)), we have
B 1 (uf, — u)l,vp)
= (f;vn) 7, = (9:Viovn - m)er — (foon)7, — v(he g, vn)er + (9, Viovn - n)ep
—y(hg g, vn)ep = 0.

O

Now we prove the main result of our paper. In [16], it was shown through nu-
merical experiments that the L2-error was following a check-mark trend or strictly
increasing as the the choice of v increased. Based on the DWDG bilinear form
, any jumps in the DWDG approximation will introduce more energy into in
discrete system for large values of . Intuitively, this would encourage the DWDG
approximation to minimize any jumps, making it resemble a continuous Galerkin
approximation for large enough values of . In the next theorem, we will show that
the difference of the DWDG approximation and the CG approximation
in a discrete energy norm will be bounded, and the bound will explicitly depend
on the choice of v and h.

Theorem 4.4. Ifu € H™ " (Q) forr > 1 is the solution to (1.1, u] is the solution
to the DWDG method (3.4)), and u§, is the solution to the CG method ({.1)), then

T

|”qu 7“Z|”h,1 < ||U||Hr+1(ﬂ)

Proof. Let u € H™(2) be the solution to (L.1), let u] be the solution to (3.4) and
ug, be the solution to (£.1)). By Lemma[4.3|and the boundedness of || - [|,1, we have

luf, = uplli 2 = Bua(uf, — uj, ufy, — uj)
= By (uf — u},uf —u) +v) (4.4)
< i, = upllnalluy =y +vllna

for any v € Vi,. Dividing both sides of [4.4) by [luf, — u;|

|1, we obtain

llur, = wpllng < lluh —uy + vlina (4.5)
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for all v € Vj¢,. Since this holds for all v € Vj¢,, we have by Lemma |{4.1] that

luj, = upllny < inf o fluj, — up + vlln,
“GVh,o

= [luh = wnllvy v (4.6)
- . 1/2
<3 I 2l - williag)
ecéy,

By (3.5) we have

v APl — w7z e
e€ly (4 7)
< Bh,’y(uz - UZ,U(;; - ’U”II) .

= B (uj, — u,uj, — up) + Bh o (u —uy, uf, —uy).

Now we consider the first term on the right-hand side of (4.7). Recall our assump-
tion II,g = g, which implies u§, —u € H} (). By the Cauchy-Schwarz inequality
and the fact that [u§ —u]. = 0 for all e € &, we have

C C 1 C C
B (up, — u,uj, — UZ) < §||VZ,0(% - U)HLQ(E)||VZ7O(uh - UZ)”L?(T;L)

Vioth = up)llL2(7)

v Y (o uf, =l [uf, — 4] Lage)
ecEp

1 — c
+ §||vh,o(uh —u)l[r2(7)

1 c c
= §||VZ,0(U;L - U)HL?(E)HV%(% - UZ)HL"‘(Th)

1 — c — c
+ §||Vh,o(uh - U)HLZ(Th)”Vh,o(Uh - UZ)”LQ(Th)'
By Lemma (3.8)) with our assumption that v > 0, and (4.6]), we have

C C 1 C C
B (ufy, —w ufy =) = SV o(uh = wlle2 ) IV o(ufy, = w2 )

+ 2195000 = )2 Vo0 — 0 27
= IV o~ =y (1970 sk — )l

+ Vo, = w2 ) (48)
< 2l — ula 2l — )
= R T

< Clluf, = ullna (D e 2 [ug, — w72
ecéy

1/2
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We will next consider the second term on the right-hand side of (4.7)). By (3.4) and
(3.5), we have

By (u =y, up — )
= By (u, uj, — ) = Bhy(u)), up — up)

= B, (u, uj, — Uh) Fy, o (uf, — uh)

) (4.9)
=3 ((Vh ott: Vi o(uh — “Z))Th + (VI:,O% Vio(uh — “71))71)
(s () e — P (0, — uz>.
Next, by applying (3.6| ., and Lemma-to , we have
By (w =y, ujy, — “Z)
= %(v;o“v v;{,o(“z - “Z))Th + %(V;Ou, Violug, = “Z))Th
+y(he tusuf, —up)es — (fuf, —ul) 7, —v(he tg,uf —uj)en
+{9, Vao(u, —up) -n)gp
= }(V;mrg“ﬂ VZO(UZ —uy, ) (Vh gt Vio(uh — uh))T (fs uh = up) 7
= (Vhgt, Vio(ui, —up)) . = (f,u; )T
= (Vhgt, Vio(u, —u;)) . — (= Au,uf — uj)7,
= (Vhgu, Vio(u, = u})) 7. = (Vagu, Vi O(Uh —up))7,

+ {Vh,gu — Vu} ‘n, [uf, —u}l])e,
= ({Vhgu—Vu}-n, [uf, —u)])e,

Applying the Cauchy-Schwarz inequality, the trace theorem with scaling, and Lemma[2.4]
we have

By (u =y, uj, — UZ)

{Vh gu—Vu} n, [uj —u}])e,
_ 1/2 1/2
< (D I {Tngu - Vu}nia(e)) (3 020w = widle)  (a.10)
ecép e€lp
1/2
< OWJullzrnqoy (D I 20w — wil3ay) -
e€ly

Combining (4.7), (4.8), and (4.10)), we have

SN [ A [P

ecty,

B . 1/2
< O (g, — ullas + OW o) (3 102210~ w3eg)
el

Dividing both sides above by (> .c¢, e ' [uf, — uh]]||L2(e))1/2 and 7 gives us

— c 1/2 C T
( Z l[he 1/2[[% - UZ]]H%%)) =7 (\||Uh — ullp,1 + Ch"||ul

e€ly

Hr+1 Q)) (4.11)
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Lastly, recalling that u,“l —u € HY(Q), from (2.1) and Lemma we have

lluf, =l 1 = ||Vh o(wh = WlTae) + 51 Vo (uh = )7z,
+ > (b Py = u]l17 2,
ecly
1
= 51Vio(wh = liem) + 5 ||Vh oluf, = w727, (4.12)

IN

1

§||Vuﬁ = Vulla(g) + §||Vui — V227,
IVuf, = VulZ2 0

< Chzr”““%{rﬂ Q)

By combining ([4.6] , and (£.12), we obtain the result
b, = wllna < ( Z 5220, — 1)

ecéy,

C T

<% (i, = wllny + CA [l 1 (@)

C T a

;(Oh ||’U,||Hr+1(9) + Ch ||UHH”+1(Q))

C’hr

”uHH'”H(Q)-
O

Since u§,u; € V7 and | - ||n,1 is a norm on V;’, an immediate consequence of

Theorem is the following.

Corollary 4.5. Ifu € Ht1(Q) for r > 1 is the solution to (L.1)), u] is the solution
to the DWDG method (3.4)), and uf, is the solution to the CG method (4.1)), then

. Y _,c —
Jin g, — g flny = 0.

5. NUMERICAL EXPERIMENTS

In this section, we will verify the results of Theorem We will also investigate
the effect of the regularity of solutions to on the relatlonshlp between the
penalty parameter v, the energy error, and the L2—err0r of the DWDG approxima-
tion.

5.1. DWDG Converges to CG. To validate Theorem |4.4] we consider the ho-
mogeneous problem
—Au = 272 sin(rx) sin(my) in Q = [0,1]?,
u=0 on 9.

The solution to this equation is v = sin(nz) sin(7y). The approximations and error
calculations were done on a fixed mesh with h = é for linear basis polynomials
and h = for quadratic and cubic basis polynomials. Based on the proof of
Theorem and [16] Lemma IV.4], we measured the error in

e the energy norm [|u§ — u}|ln 1,

e the H' semi-norm ||V (u§ — u})|l 12(7:)

(5.1)
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. ~1/20 e ooz )Y
e the jump error (Zee& he ™~ uf, — )] ||L2(e)) :

The error and rates using linear, quadratic, and cubic basis polynomials for the
DWDG approximation with varying values of the penalty parameter v can be found
in Table|ll In all three error measurements, we are able to achieve a rate of 1 with
respect to v as v — oo. Note that the matrix corresponding to the bilinear form
B, ~(+,-) will require special treatment for larger values of v due to the spectral
radius increasing instep with the value of ~.

TABLE 1. Energy error, H' semi-norm error, jump error and their

respective rates for (|5.1)).

Poly 5 lluf, —u}lln,y  Rate | [[V(uj, — uZ)HLg(Th) Rate | Jump Error  Rate
1 1.3514e-02 1.1934e-02 9.4287e-03
10 7.2250e-03 0.2719 6.3040e-03 0.2772 4.9789e-03 0.2773
r=1 102 1.2874e-03 0.7491 1.1171e-03 0.7515 8.8320e-04 0.7511
103 1.3971e-04 0.9645 1.2114e-04 0.9648 9.5790e-05 0.9647
104 1.4094e-05 0.9962 1.2237e-05 0.9956 9.6608e-06 0.9963
10° 1.4440e-06 0.9895 1.4043e-06 0.9402 9.6691e-07 0.9996
1 1.0215e-03 — 9.9343e-04 — 5.4330e-04 —
10 6.9298e-04 0.1685 7.2228e-04 0.1384 3.4854e-04 0.1928
r=29 102 1.7932e-04 0.5871 2.0400e-04 0.5491 8.4431e-05 0.6157
102 2.1642e-05 0.9183 2.5125e-05 0.9095 1.0034e-05 0.9250
10* 2.2109e-06 0.9907 2.5726e-06 0.9897 1.0232e-06 0.9915
10° 2.2157e-07 0.9991 2.5771e-07 0.9992 1.0253e-07 0.9991
1 1.0741e-05 — 1.4247e-05 — 4.9554e-06 —
10 7.7927e-06 0.1393 1.0155e-05 0.1470 3.5359e-06 0.1466
r=3 102 2.1274e-06 0.5638 2.7326e-06 0.5701 9.4950e-07 0.5710
10® 2.5835e-07 0.9156 3.3106e-07 0.9167 1.1482e-07 0.9175
104 2.6405e-08 0.9905 3.3830e-08 0.9906 1.1730e-08 0.9907
10° 2.6645e-09 0.9961 3.4807e-09 0.9876 1.1755e-09 0.9991

5.2. Relationship between v and the L%-error. For our experiments, we will
test the DWDG methods for approximating (1.2). We will find the L2-error on a
fixed mesh with h = 1—16. We will run the DWDG approximation with two sets of
7’s to get an idea of the behavior of the L?-error near v = 0 as well as for large
values of . To determine the behavior of the L2-error around v = 0 we chose v €
{-2,-1.8,-1.6,—1.4,—1.2,--- ,10}. Since the constant C, has a complex deriva-
tion, the exact value is generally unknown. Going only as low as 7 = —2 should
guarantee that the method is stable, and it gives us more information about the ef-
fect of v decreasing towards zero and becoming negative. To determine the behavior
of the L?-error as v — oo we chose v € {10, 105,102,102, 10,103,104, 10*?,10°}
to reflect the results found in Table[l] We measure the error of the DWDG approx-
imation in the the L? norm [|u—u] || 12(7;). Since the choice of starting mesh, based
on minimal angle, did not have a noticeable effect on the L?-error of the DWDG
approximation [16], we have chosen to preform our experiments on a uniform criss-
cross mesh. LDG methods are known to require v > 0 for cris-cross meshes [13].
Thus, the choice represents a potentially challenging meshing strategy for DWDG
methods without penalization.
The numerical experiment was run on the problem

—Au, = f inQ=[-1,1

(5.2)
Unlon =g on Of,
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where o > 0 is a constant. The functions f and g are chosen so that the solution

for (5.2)) is

o () = cos(5y) if x <0,
el cos(Gy) +x* ifx >0.

This solution belongs to H*2 (€2) but does not belong to H*+/2¢(Q)) for all € > 0
[7]. To test the impact of the regularity of the solution on the choice of v we will
choose a € {1.5,2.5,3.5,4.5}. We have also plotted the CG approximation L2-error
in each plot of Figure |1, Note that the CG L2-error was larger than the DWDG
L2%-errors in Figure |2, even though the CG L2-error was not plotted. The CG L2-
error values are given instead of plotted for each combination of o and the smaller
7 in Figure [2| as the relatively large difference in the L2-error for the DWDG and
CG method prevented both errors to be plotted while visually retaining the shape
of the DWDG’s L2-error curve.

For the linear DWDG methods, we see a check-mark relationship between v and
the L2-error of the approximation when ~ is close to zero (see Figure . When the
solution u € H2(Q), we see an upward trend in the L?-error after v = 5 creating
a wide check-mark relationship. As the regularity of the solution increased, we see
the bottom of the check-mark relationship move to the left, indicating that if the
regularity was high enough, we would see a strictly increasing relationship between
~ and the DWDG L2-error. This is a similar observation for the linear DWDG
approximation in [L6], where refining the mesh also moved the bottom of the check-
mark relationship to the left. For the larger values of v (see Figure [1)), we see a
strictly increasing relationship that tapers off as the DWDG L2-error approaches the
CG L2-error. From this, we conjecture that there is a strictly increasing relationship
between the L2-error and ~ for the linear DWDG approximation for values of ~y
that are large enough or if the regularity of the solution is high enough.

For the DWDG methods with quadratic and cubic basis polynomials, we see a
strictly increasing relationship between v and the L2-error of the DWDG approxi-
mation when looking at the smaller range of 7y (see Figure . For the larger range
of v (see Figure [1) a strictly increasing relationship was persistent for quadratic
basis functions. For cubic basis functions, we see a strictly increasing trend until
the largest values of v when u € H3(Q) or u € H*(1Q).

Overall, we observe that as the regularity of the solution to increased, we
could see a strictly increasing trend between the L2-error and ~ for v > 0. It
is of interest to note that as v — oo, the spectral radius of the DWDG matrix
from the bilinear form By, (-, ) will scale with the choice of 7. Though we choose
large values of v to show the convergence of the DWDG approximation to the
CG approximation in our numerical results, the DWDG approximation always had
lower errors than the CG approximation. Furthermore, the best L2-errors were
found near v = 0. The choice of v = 0 simplifies the approximation, and it appears
to yield a more accurate approximation.
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