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TYPE II QUANTUM SUBGROUPS OF 8ly. I: SYMMETRIES OF LOCAL
MODULES

CAIN EDIE-MICHELL, WITH AN APPENDIX BY TERRY GANNON

ABSTRACT. This paper is the first of a pair that aims to classify a large number of the
type II quantum subgroups of the categories C (8141, k). In this work we classify the
braided auto-equivalences of the categories of local modules for all known type I quan-
tum subgroups of C(81,+1, k). We find that the symmetries are all non-exceptional ex-
cept for four cases (up to level-rank duality). These exceptional cases are the orbifolds
C(812,16) %1 7,y C(813: 9 (2497 C(814:8)R e 7, 2N C(8L5. )R 7y

We develop several technical tools in this work. We give a skein theoretic descrip-
tion of the orbifold quantum subgroups of C(8,11, k). Our methods here are general,
and the techniques developed will generalise to give skein theory for any orbifold of a
braided tensor category. We also give a formulation of orthogonal level-rank duality
in the type D-D case, which is used to construct one of the exceptionals. We uncover
an unexpected connection between quadratic categories and exceptional braided auto-
equivalences of the orbifolds. We use this connection to construct two of the four ex-
ceptionals.

In the sequel to this paper we will use the classified braided auto-equivalences to
construct the corresponding type IT quantum subgroups of the categories C(8Ly41, k).
This will essentially finish the type IT classification for [, modulo type I classification.
When paired with Gannon’s type I classification for r < 6, our results will complete the
type II classification for these same ranks.

This paper includes an appendix by Terry Gannon, which provides useful results
on the dimensions of objects in the categories C(8Ly41, k).

1. INTRODUCTION

Given an algebraic object, say a group or algebra A, one can better understand the
object by studying its representation theory. That is, the homomorphisms

A - End(V),

where V is a vector space over some field F. In particular, if the representations can be
classified (as is the case when F = C for finite groups or the semi-simple complex Lie
algebras), then the algebraic object is very well understood.

A tensor category C [20] is a natural generalisation of both a group and an algebra.
The prototypical example of a tensor category is the representation category of a group
G, which is denoted Rep(G). A tensor category can be thought of as an abstract cate-
gory with the same sort of structure as Rep (G) (namely tensor products, direct sums,
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and dual objects). The notion of a tensor category can also be considered as a categori-
fication of an algebra, with multiplication and addition being lifted to tensor product
and direct sum. The additional structure to make a category a tensor category makes
these objects incredibly rigid, and allows classification [55] and exceptional examples
[1].

The notion of the representation theory of an algebra can be categorified to the level
of tensor categories. Instead of the target being the endomorphisms of a vector space,
we now want tensor functors

C - End(M),

where C is the tensor category in question, and End (M) is the category of endofunc-
tors of a semi-simple category M (see [53] for precise definitions). As in the group
and algebra setting, one wishes to completely understand the representation theory of
a tensor category C. In the classical case where C = Rep(G) for G a group, the repre-
sentations (or equivalently, module categories) of C are classified by subgroups of G,
along with some cohomological data. Because of this special case, representations of
a general tensor category C are often referred to by the moniker quantum subgroups of
C.

An important class of tensor categories is the categories of level-k integrable repre-
sentations of §, where k is a positive integer, and g is a semi-simple Lie algebra. This
category is typically denoted C(g, k) [59]. Among various other connections, this cat-
egory is the representation category of the Wess-Zumino-Witten chiral conformal field
theory V(g, k) [62].

One of the oldest open problems in the field of tensor categories has been the pro-
gram to classify the quantum subgroups (or module categories, or Morita equivalence
classes of algebra objects) of the categories C(g, k). This program was initially investi-
gated in the language of conformal field theory by Cappelli, Itzykson, and Zuber [7].
They used physical reasoning to argue that a quantum subgroup of C(g, k) is precisely
the data needed to extend a Wess-Zumino-Witten chiral conformal field theory (con-
structed from g and k) up to a full conformal field theory. With this motivation in hand
they were then able to give a combinatorial classification of the quantum subgroups of
C(81,,k). Their results were unexpected and exciting, falling into an A - D — E pattern.
The two infinite families A and D were expected, but far more intriguing were the three
exceptional examples Eg, E7, and Eg.

Inspired by the richness of the 81, classification, there was a flurry of activity to give
classification results for the higher rank Lie algebras [9, 10, 51]. However this proved
far more difficult than the rank one case. Despite the intense research activity directed
towards the problem, very few new classification results were achieved. Once the dust
had settled, a combinatorial classification for 8[3 had been given by Gannon [29], and
81,4 had been claimed by Ocneanu [52], but without supplied proof. It was here that
the project stagnated, with many considering it to be intractable.

In a more general setting, the problem of extending chiral conformal field theory up
to full conformal field theory was studied rigorously by Fuchs, Runkel, and Schweigert
[22,24-27]. They were able to mathematically confirm the physical arguments of Cap-
pelli, Itzykson, and Zuber. It was proven that the data to extend a chiral conformal
field theory is precisely a module category over the representation category of the chi-
ral theory. However, a module category is more than just its combinatorics, which is
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what was classified in [7] and [29]. There is also the categorical data of the module
category, which is captured by the 6-j symbols, or equivalently the associator, of the
module. Thus classification for 81, and 813 was incomplete. The categorical data for
the 81, case was worked out in the subfactor language in [2, 35, 36,41,42,53,63], and
in the categorical language in [53]. For the 813 case the categorical data was worked
outin [21].

There is a fundamental bifurcation in classification program of quantum subgroups
for any modular tensor category. This split occurs between the type I quantum sub-
groups and the type II quantum subgroups. These subclasses of quantum subgroups
are most easily defined using the Morita equivalence classes of algebra objects formal-
ism. A quantum subgroup is called type I if the Morita equivalence class of algebra ob-
jects contains a commutative representative, and it is called type II if there is no such
commutative representative. The differences between these two cases mean that dif-
ferent classification techniques are needed for each case. There is also the distinction
between non-exceptional quantum subgroups and exceptional quantum subgroups. We
say a quantum subgroup of C(81,,1,k) is non-exceptional if it can be obtained as the
category of modules of an algebra of the form Fun (G) € C(8(,,1, k), where G is a finite
group (necessarily a subgroup of Z,,1). A quantum subgroup is then exceptional if it
is not non-exceptional.

Recently there has been a massive revitalisation in the program to classifying quan-
tum subgroups of the higher rank Lie algebras. This began with work of Schopieray
[58], which gave level bounds on which categories C(g, k) could have exceptional type
I quantum subgroups for the rank two Lie algebras. These techniques were then drasti-
cally improved upon by Gannon [28], where effective level bounds were determined for
all Lie algebras. In short, this allowed for a computer search to find all type I quantum
subgroups for any Lie algebra. These computer searches were performed by Gannon,
and type I classification was given for all ranks less than 7, a dramatic improvement
on the state of knowledge. For these examples it was found that there are the expected
infinite families of de-equivariantisation (or orbifold) type I quantum subgroups, a fi-
nite number of type I quantum subgroups coming from conformal inclusions of Lie
groups [63], and four new examples not related to conformal inclusions of Lie groups.
We will refer to these latter four quantum subgroups as the truly exceptional quantum
subgroups.

Thus the type I case has essentially been solved, and classification up to higher ranks
is now a matter of computer power, rather than mathematical insight. However, the
type II case (which comprises all remaining examples) still remains entirely open. This
paper is the first in a pair to classify the type I quantum subgroups for 81,,. The tech-
niques developed in these papers will generalise to the other classical algebras. How-
ever we restrict our attention now to the type A case for three reasons. First is that
the details of working through the generalisation will require substantial effort that
would push the length of these papers beyond a readable limit. Second is that combi-
natorial evidence suggests that type A has the richest behaviour with type II quantum
subgroups, so we can expect to find the most interesting results by studying this case.
Finally, historically the type A case had received the most attention, and thus results
in type A will attract more interest than the other classical Lie algebras.
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Our main tool to classify type IT quantum subgroups of the categories C(8l,,1,k) is
Theorem 1.1 due to Davydov, Nikshych, and Ostrik, which gives a bijective correspon-
dence between all quantum subgroups, and pairs of type I quantum subgroups, and a
braided equivalence between their categories of local modules.

Theorem 1.1 ([12]). Let C be a modular category. There is a bijective correspondence

Triples (My, M3, F), where
{Irreducible modules over C} « { My and M are type I module categories, and ;.
F: MY — M9 is a braided equivalence

The work of Gannon has classified the type I modules of g1, for n < 7. Thus to
give the classification of the type II modules, and hence complete the classification of
all quantum subgroups, we need to determine all braided equivalences between their
local modules. Gannon finds that there are three kinds of type I modules [28]. The
first class (and most exciting as type I modules) is the four truly exceptional examples,
with two occurring at C(8ls,6) and two at C(8(7,7). These quantum subgroups have
categories of local modules equivalent to:

C(8035,1), C(§I2,10)§, Vec, and Vec,

where C(81,,10)¢ is a Galois conjugate of the category C(815,10). For all of these ex-
amples, the categories of local modules are completely understood.

Remark 1.2. We wish to point out that the paper [28] is unpublished as of the time of
publication of this article, and the statements of the previous paragraph were provided
to the author by Gannon in private communication. All of the theorems in this paper
are independent from the results of [28], and the implicit claims of existence of certain
exceptional type IT module categories over C(81,,1, k) are rigorous. In the sequel to this
paper, we classify all module categories over C(81,,1,k) for r < 6, which will require
the results of [28] to be rigorous.

The second class consists of the module categories constructed from conformal in-
clusions of Lie groups. These can be found in [11], and for the type A case they are:

A1,10 C Ba1, A8 C Gy, Aj9 CEgp1,

Az21 CE7p, Asg C D15 Ase C Cro0,15

Az,10 C D3s,1, Ann-1 CAmnes) o Annes CAnes) o)
Azni12n+2 C Bop24ani1,15 Azn2n+1 C Don(ns1),1 Aznit,anes C Bap2i7pn121-

Note that these conformal inclusions are embeddings of Wess-Zumino-Witten VOA’s.
For all of these examples, the category of local modules is braided equivalent to Rep (G1)
~ C(g,1), where g is the corresponding Lie algebra of the Lie group G [44, Theorem
5.2]. The third class consists of the infinite number of orbifold modules, constructed
via de-equivariantisation. For C(8l,,1, k) these are parametrised by m a divisor of r +1,
such that m? | k(r + 1) if 7 is even, or 2m? | k(r + 1) if r is odd. For m satisfying these
conditions, we have that Rep(Z,,) is a braided subcategory of C(31,.1, k). This can be
verified using the known formulas for the twists in C(8[,,1,k) [30, Section 3.1]. We
write C(8(r11,K)Rep(z,,) for the type I modules coming from de-equivariantisation by
these Tannakian subcategories. The category of local modules C(8(,,1, k)%ep(zm) for
these examples is described in the bulk of the paper.
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It is extremely rare that the categories of local modules for any of these type I mod-
ules coincide. Thus the interesting type II module categories of C(81,.1, k) come from
exceptional braided auto-equivalences of these categories of local modules. The goal
of this paper is to determine the braided auto-equivalences of the categories of local
modules for all known type I quantum subgroups. In the sequel to this paper we will
identify the small number of exceptions where the categories of local modules coincide,
and work through the details of Theorem 1.1 in order to explicitly construct and classify
the corresponding type II quantum subgroups. Paired with Gannon’s classification of
type I quantum subgroups, this will give type II classification for n < 7. Further, our
results of the sequel will show that for each 8[,,1, there is an effective bound on k for
which exceptional type II quantum subgroups of C(81,,1,k) can occur. These results
will put us in a strong position to classify type IT modules for larger n > 8, once the
type I classification has been sorted for these n.

Let us examine the braided auto-equivalences of the local modules for the known
type I quantum subgroups. For the four truly exceptional examples found by Gannon
we can quickly compute that the auto-equivalence groups are all trivial, except for the
Galois conjugate of C(81,, 10) which has auto-equivalence group Z, [15, Theorem 1.2].
For the type I quantum subgroups coming from conformal inclusions of Lie groups, the
group of braided auto-equivalences has been computed in earlier works of the author
[18, Theorem 1.1]. For completeness, we collect the results here.

Theorem 1.3. We have

EqBr(C(80s,1)) = EqBr(C(gz,1)) = EqBr(C(e7,1)) =
EqBr(C(§02(2n2+4n+1)+l’ 1)) = EqBr (C(§02(4n2+7n+2)+1’ 1)) = {e}’

EgBr(C(es, 1)) = EgBr(C(8029,1)) = EqBr(C(8py9,1)) =
EqBr(C(8070,1)) = 7,
EqBr(C(8{ iy ,-1)) = EQBr(C(8lnwmss) 1)) = 5,
2 2

EqBr(C(§D4n(n+1), 1)) = {Zz l:fn = {0’ 3} (mOd 4),

Szifn={1,2} (mod 4).

where p is the number of distinct odd primes that divide the rank plus one, and t is equal
to 1 if the rank is equivalent to 3 mod 4, and 0 otherwise.

Finally we have the orbifold type I quantum subgroups. Somewhat paradoxically
these have the most interesting categories of local modules, and hence determining
their group of braided auto-equivalences is highly non-trivial. The remainder of this
paper will be devoted to proving Theorem 1.4, which determines the braided auto-
equivalences groups in question. Excitingly we find a finite number of cases where the
braided auto-equivalence group is exceptional, which corresponds to the existence of
exceptional type II quantum subgroups. These exceptional type II quantum subgroups
will be explicitly constructed in the sequel.
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Theorem 1.4. Letr > 1 and k > 2 and m a divisor of r + 1 satisfying m* | k(r + 1) ifr
is even, and 2m? | k(r + 1) if r is odd. Then except for the cases

C(812,16)Rep(2,)s  C(83,9)Rep(z5)s  C(8Las8)Rep(z4)s C(8L5,5)Rep (z5)»
C(8Ls,4)Rep(24)» C(819,3)Rep(zs)  C(8116:2)Rep (z,)> AN C(8L16,2)Rep (24>
we have that
{e}ifk=2andr=1,
EQBr (C(8Lr11, k) Rep(z)) = {1 Zm X 25" ifk =20rr =1,
Dy X Z‘Z’” otherwise ,

where
e m' =gcd(m, k),
[ ] m” = %’
e p is the number of distinct odd primes dividing r;;ql,, but not %, and
1 k
if ' —isodd, orif — =0 (mod 4),
0 mm m
k 1
°! or if both — is odd and r — =2 (mod 4)
m mm

1 otherwise.
For the remaining exceptional cases we have that

EqBr(C(8L2,16)Rep(z,)) = S3» EqBr (C(813,9)Rep(zs)) = S4
EqBr (C(§I4, S)ORep(Z4)) = S4, EqBr (C(gIs, 5)%ep(zs)) = As,
EqBr (C(8ls,4)Rep(z4)) = S4» EqBr (C(8Lo, 3)Rep(zs)) = S4 X Z2,

EqBr(c(§[16’2)0Rep(Zz)) =S3 X 27>, and EqBr(C(QIlﬁ,Z)%ep(Z4)) =S3.

With Theorem 1.4 in hand, we are now placed to classify all type II quantum sub-
groups whose type I parents are in the known list. In particular this will allow us to
classify all type IT quantum subgroups of 31, for n < 7. This will complete the classi-
fication of all quantum subgroups for these examples. As mentioned earlier, this type
II classification will be dealt with in the sequel to this paper. Extrapolating from the
work of Gannon, we can expect the truly exceptional type I quantum subgroups of the
higher rank 8[,, to be exceedingly rare, and when they do occur, we can expect their
categories of local modules to be somewhat trivial. This means that when the type I
classification has been extended to higher rank, the results of this paper will allow the
type II classification to nearly immediately follow.

With the motivation and main theorem of this paper described, let us move on to
describing the structure of the article.

In Section 2 we introduce the background required to begin this paper. We intro-
duce the combinatorics of the categories C(8,,1,k). In particular we give the for-
mula for the dimensions of the simples, and prove useful inequalities which they obey.
We describe the structure of the orbifold C(8lr.1,k)rep(z,)» and of the local modules
C(8Ly11, k)ORep(Zm)' We explicitly determine useful structure of the category

C(80y11, k)ORep(Zm), including the parametrisation of the simples, the group of invert-
ibles, and the adjoint subcategory.
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In Section 3 we determine the so called non-exceptional braided auto-equivalences
of C(8Lr1, k)oRep(Zm)‘ These are the braided auto-equivalences which fix the image
of the adjoint representation under the free module functor. The end result is the
expected one, i.e. we show all non-exceptional braided auto-equivalences are charge
conjugation, simple current auto-equivalence, or come from the canonical Z,,-action.
Here a simple current auto-equivalence is a symmetry of the category constructed via
the action of invertible elements, see [18, Lemma 2.4] for additional details. Proving
this result is highly technical, and requires several powerful techniques. The difficulty
here is not surprising, as determining the non-exceptional braided auto-equivalences
has troubled researchers working on this same problem in the past. To begin we de-
velop skein theory for the adjoint subcategory of C(31,.1, k)(l’{ep (Zm) OUT methods here
are general, and will allow one to find skein theory for de-
equivariantisation by an abelian group of any braided category, given that skein theory
of the original category is known. With this skein theory in hand we can then use stan-
dard planar algebra techniques to find the non-exceptional braided auto-equivalence
group of the adjoint subcategory. To extend these auto-equivalences to the entire cate-
gory we use the techniques developed by the author in [17]. These techniques give an
upper bound on the number of auto-equivalences which may extend an auto-
equivalence on the adjoint subcategory. By a happy coincidence, this upper bound
is precisely realised by simple current auto-equivalences, introduced in the author’s
work [16], which was inspired by combinatorics from conformal field theory. This
happy coincidence suggests the potential for a general theorem.

Conjecture 1.5. Let C be a modular tensor category, C*® its adjoint subcategory, and F
an auto-equivalence of C which restricts to the identity on C%. Then F is isomorphic to a
simple current auto-equivalence.

The validity of this general conjecture remains to be investigated. All together, the
results of this section fully classify all non-exceptional braided auto-equivalences of the
categories C(8Lr+1,k)Rep (2,0)-

In Section 4 we investigate the combinatorics of the exceptional braided auto-
equivalences of C(81,.1, k)(l){ep Zm)* We show that with a finite number of exceptions,
every braided auto-equivalence of C(81,,, k)%ep (Zm) 1 non-exceptional, and hence is
covered by the results of the previous section. Our main observation here is simple. If
there were an exceptional braided auto-equivalence of C(81,., k)(l)zep (Zm)’ then its im-
age of the adjoint would have the same dimension and twist. This puts massive combi-
natorial restrictions on the objects of the category C(81,.1, k). By studying these restric-
tions in a case by case analysis, we are able to obtain a series of inequalities which imply
that both the rank and level must be small. From here we can computer search to find
the finite cases where C(81.1, k)ORep (Zm) has an exceptional braided auto-equivalence,
at the level of the fusion ring and twists. Up to level-rank duality we find four possi-
ble candidates for exceptional braided auto-equivalences. These are C(815, 16)0Rep )’
C(813,9)Rep (25) C(814,8)Rep (2, a0 C(8Ls, 5) e (7o)~ While the case by case analy-
sis is messy, and a uniform approach to this section would be desired, the exceptional
examples which are discovered mean that such a uniform approach is unlikely to exist.
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In Section 5 we finish up by realising all of the exceptional braided auto-equivalences
of C(8Lr41, k)%ep(zm) for the finite number of remaining cases identified in the previ-
ous section. We see two situations at hand. The first has already been observed in
the literature [46] in the 81, case, and concerns the categories C(8l,, 16)0Rep(22) and
C(814, 8)(1)1ep(z4)- Here the exceptional braided auto-equivalences exist due to coinci-
dences of categories connecting them to the Lie algebra 8o0g and hence triality. The sec-
ond situation is much more interesting and exotic. We show a connection between the
two remaining examples and C (3814, S)ORep(Z4)’ and three explicit quadratic categories.
This connection is sufficiently explicit, so that having a construction of the quadratic
categories allows us the construction of the exceptional braided auto-equivalences. For
the two remaining cases, we have that the corresponding quadratic categories have
been constructed by Izumi [37, 38], which allows these cases to be resolved.

The connection between type II quantum subgroups and quadratic categories ap-
pears to be more than just a convenient coincidence. It occurs for other Lie algebras
outside the A series, and the author will weakly conjecture that every exceptional type
IT quantum subgroup for a simple Lie algebra comes from either a coincidence of cat-
egories or from a connection to a quadratic category. We will not say much more on
this to avoid spoiling future work.

This paper also includes an appendix authored by Terry Gannon which contains
some results on the combinatorics of the categories C(8l,.1,k). The results of this
appendix are a key ingredient for the computations of Section 4.

2. PRELIMINARIES

We refer the reader to [20] for the basics of fusion categories.

2.1. Quantum integers, dimensions, and inequalities. The main object of study
in this paper will be the modular tensor categories C(8l,.1,k), the category of level
k integrable representations of 8{,,. For an overview of these categories see [59]. For
our purposes we will only require some basic combinatorics of these categories. The
simple objects of C(81,.1, k) are parametrised by

r r
Z/liA,- where 4; € N and Z/Ii =k.
i=0 i=0

Often we will omit the 1, term of a simple object, as its value can be deduced from the
remaining 4;’s. For example, the vector representation (k — 1)Ag + A; will usually be
written simply as A;. A special subset of these simples is the r + 1 invertibles (or simple
currents), which are the objects

{kAi :i € Zy ).

To describe the quantum dimensions of the simple objects of C(81,.1,k) we will
need two ingredients. The first are the quantum integers.

Definition 2.1. We define the n-th quantum integer (as a function of r and k) as

q'-q"
q-q!

27l
(n]rk = and gq=e¢" 20+ken),
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The second ingredient is the hook formula, which gives the quantum dimension of
asimple of C(8l,.1, k) in terms of quantum integers. To describe this formula, we have
to introduce the tableaux of a simple object. Let X = Zir=o AiA\; be a simple object, and
define an r X k tableaux T(X) whose j-th row contains er: j A; boxes. For each box
(x,y) in the tableaux T(X) we can define the content, which is the quantum integer
[r + 1+ —x + Y]k, and the hook length, which is the quantum integer [h]; ., where h
is the number of boxes with the same x or y coordinate. The quantum dimension of
X is the product over all the boxes of T(X) of the contents divided by the hooks. For a
quick example, we have that the tableaux for the object A; + Ay € C(8(,,1,k) has two
boxes in row one, and one box in row two. Thus the contents are

[r + l]r,k’ [r]r,k’ and [V + 2]r,k’

and the hooks are
[3]}’,1{5 [l]r,k, and [1]r,k-

Therefore the hook formula tells us that the quantum dimension of A; + A; is
[F]r e [r+1] g [r+2] i
[3]r,k ’
There are two natural actions of the simples of C(81,,1,k) that preserve the dimen-

sions. These are charge conjugation which sends

r r
ZliAi g Z/li/\,i.
i=0 i=0

The fact that this map preserves dimensions can be deduced from the hook formula.
The other action comes from simple currents, which sends

r r
Z/L'Ai — ZAiAi+a fora € Z,.1.
i=0 i=0
This map preserves dimensions as it is simply tensoring by the invertible kA,. For an
object X € C(81,1,k) we write [X] for its orbit under the action of simple currents.
For a given object X € C(81,,1,k) it will be useful to know which subgroup of in-
vertibles fix X. To that end we introduce the following notation.

Definition 2.2. Let X € C(8l,.1,k) a simple object. Given Zg a subgroup of the in-
vertibles of C(81,,1, k), we define

Stabz,(X) ={g€Z: 8@ X = X}.
The quantum dimensions of the simple objects of C(81,.1, k) satisfy a variety of use-
ful equalities and inequalities.
Our main tool is the fact that the dimensions of the simples of C(8!,,1, k) respect
the geometry of the truncated Weyl chamber in a nice manner. Namely if one draws a

convex hull in the truncated Weyl chamber, then the minimum of the dimensions in
this hull will occur at the corners.

Lemma 2.3 ([30]). For1 <i < N, let X; € C(8l,+1,k) simple objects, and t; € [0,1]
such that YN t; = 1. Then

N
dim(z tiXi) > min{dim(X;):1 <i < N},

i=1

with equality occurring exactly at the corners of the convex hull.
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We also have the following inequalities of quantum integers which occur due to the
cut-off of the level k in the truncated Weyl chamber.

Lemma2.4. Foralll <n<r+kwehave
[n]r,k < [n]r+1,k and [n]r,k < [n]r,k+1-

Proof. The second inequality holds as [n],x is equal to [n],-1,+k-n+1. The value
[1]n-1,r+k-n+1 is precisely the graph norm of the fusion graph for A; € C(8(,,r+k—-n+
1). This fusion graph embeds in the fusion graph for A; € C(8l,,r + k —n + 2), which
has graph norm [#],,_; r1k-n+2. As graph norms respect inclusions, we get that
[n]n—l,r+k—n+1 < [n]n—l,r+k—n+2a
which is equivalent to
[n]r,k < [n]r,k+1-
The first inequality now holds as [n], x = [n]k,r . O

Often it will be useful to bound a quantum integer by a simpler function of n. The
following inequalities allow us exactly that. The first bounds the quantum integer
above.

Lemma 2.5 ([58]). Forall n > 1 we have
[n]r,k <n
The second bounds the quantum integer below.

Lemma 2.6 ([58]). Supposethat1 <n < %(1 +r+k) forsomec €N, then

1

n > —.
[ ]r,k— P

With these general inequalities in hand, we can now prove a collection of useful
inequalities on the dimensions of the simples of C(81,,1, k).

Lemma 2.7. Forall0 <h <kand0 < a <rwehave
dim (hAg) =dim((k-h)Ag) .

Proof. By applying a simple current symmetry, we see that the objects (hAg) and ((k—
h)A_g) have the same dimension. Applying charge conjugation then gives the result.
O

Our first true inequality gives bounds on the symmetric powers of the fundamental
representations.

Lemma28. Letl<a<r+landl <A, < % If g < j<k-Aq then
dim (jAg) > dim(AgAq).
Proof. From Lemma 2.7 we have
dim (A5Aq) = dim ((k - 15)Aq)) -
‘We can write
N = R "
Thus the result follows from Lemma 2.3. O

) Aaha + (k= Aa)Aa.



122 CAIN EDIE-MICHELL

Applying level-rank duality to the above bound, we can also obtain the following.
Together, these bounds allow us to understand the ordering on the dimensions of the
symmetric powers of the fundamental representations.

Lemma29. Let1<a<iandl1<Aq <k Ifa<j<r+1-athen
dim (1qAj) > dim (AgAq).
Proof. Via a level-rank duality, we have that the dimension of (14A;) in C(81,.1,k)

is equal to the dimension of (jAz,) in C(8lk,r + 1). The result then follows from
Lemma 2.8. U

The last bound we will give applies to objects that are fixed by the invertible objects
of C(8l,+1,k). If this stabiliser subgroup of an object is non-trivial, then Lemma 2.10
gives strong restrictions on the dimension of that object.

Lemma 2.10. Suppose X € C(81,.1,k) with Stabz, , (X) =Zg. Letm €N, and 0 < a <
k. Then

dim (X) > dim(aAmm) .

Proof. As Stabz,,, (X) = Z4 we have that X is fixed by kA% Thus X is of the form

r+1

d_ d
2042 A et
=

=1

~

with

~

+1

NgL

Ai=
1
LetmeN, and0<a<kanddeﬁnef0 1<

P :=(k-a)A; +al,

TNEES

r + 1 the objects

i+mItl r+1

As kA1 ® P; = P;1, we have that dim (P;) = dim (P;) forall 1 <i,j <r+1.
We claim that

-

r+

X =

d
A
To see this we count the multiplicity of an arbitrary A, in both sides of the above equa-
tion. In the object X, the multiplicity of ¢ is equal to 4, (104 re1y. On the right hand

g
?r\ o

—

i=

2
mod £+l
side, A, will appear in the P, term where it appears with multiplicity aw,

A, o re1 r+l
€—mT (mod T)

and in the rs1 term where it appears with multiplicity (k - a) ——%—F—4%-= =

Bm
4, (mod %) . . . . . .
(k — a) ——F—2—. Thus in the entire right hand side, A, appears with multiplicity
Ao (mod ry, and so the claim is valid.
r+l
As Y4 % j.izl 1 =1, we can use Lemma 2.3 to see that
dim(X) > min(dim(P;):1<i<r+1)=dim(P) = dim(aAm%l)

as desired. O
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2.2. De-equivariantisation. Our main focus of study in this paper will be the orb-
ifold type I quantum subgroups, and their local modules. These are constructed as
de-equivariantisations of the modular categories C(8l,.1,k).

In general let C be a braided tensor category, and choose a distinguished subcategory
braided equivalent to Rep (G) for G a finite group. We can consider the function algebra
Fun(G) C Rep(G) — C, which lifts to a commutative algebra in Z(C) via the braiding.
We write (Fun(G), o) for this commutative central algebra object.

Definition 2.11. The de-equivariantisation of C by Rep (G) is defined as the category
of Fun (G) modules, which can be endowed with the structure of a G-crossed braided
category via . We write Cgep () for this de-equivariantisation.

The category Crep(c) has the canonical structure of a G-crossed braided category
(see [43,50,61]). The G-action is given by left translation of the algebra Fun(G), i.e.
multiplication by group elements. The category of local modules of the commutative
central algebra object (Fun(G),o) is the trivially graded subcategory of Cgep gy With
respect to the G-crossed structure. We write Cgep ) for this category of local modules.

With the generalities out of the way, let us now focus on the specific de-
equivariantisations of interest for this paper. The Tannakian subcategories of
C(81y.1,k) are completely understood and classified. These subcategories of C(80,.1, k)
are parametrised by m a divisor of r + 1 satisfying m? | k(r + 1) if r is even, and
2m? | k(r + 1) if r is odd. The corresponding Tannakian subcategory is equivalent
to Rep(Z), and is generated by the invertible object kA r+1.

Our goal is to describe the basic structure of the modular tensor category
C(8ly11, k)ORep(Zm)' We begin by looking at the Z,-crossed braided category
C(8Lr41,k)Rep(zm)- The objects of C(8Lr41,k)Rep (2, are of the form (Y, p), where Y
is an object which is fixed by tensoring by kAr+1, and p is a choice of isomorphism
Y - kAra @Y satisfying a standard coherence condition. We have the free module
functor

Fzm 1 C(8Lri1,k) = C(8Lrs1, k)Rep(Zm)
given by tensoring with the algebra object Fun(Z,,) = @;kA;rs1. It is known that the
functor Fz,, is dominant [5, Proposition 5.5]. The adjoint to ]r-"nzm is the lax monoidal
functor given by forgetting the isomorphism p. That is

Tz ((Y,p)) = Y.
In order to simplify our proofs and computations later, it is necessary to give a more
elementary description of the simple objects of C(80.1, k) rep (z,,)- Our skein theoretic
version of the proof can be found in Lemma 3.6.

Lemma 2.12 ([48, Corollary 5.3]). The simple objects of C(8Lr11,k)rep(z,) are
parametrised by pairs (X, yx ), where X is a simple object of C(81,,1,k) considered up
to action by kA re1, and yx is a character of the group Stabz,, (X).

The dimension of the simple object (X, xx ) is given by
dim (X)
| Stabz,, (X)|

The canonical Z,-action on these simples is given by multiplication of xx by the stan-

dim (X,Xx) =

; 27T g
dard character g/ — e~ 150z 1,
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Under this parametrisation, we can explicitly describe the free module functor Fz,,,.
We have

Fom(X) = @D (X, ) : C(8Lri1, k) > C(8Lr1, K)Rep (z)-
xeG
Note that the restriction of the adjoint 7 : C(80r11,k)Rep(zn) = C(8lr+1,k) to the
subcategory C(31,,1, k)%ep (zy) 18 @ ribbon lax monoidal functor [48, Lemma 3.10] or
[4, Lemme 3.3]. In practice, this means that the twist of (X, y) € C(8(,1, k)ORep(Zm) is
equal to the twist on X € C (8,1, k).

To obtain the simple objects of the category C (?afr+1,k)%ep (zy,) We must take the
objects which are 0-graded in the Z,,-graded category C(8L;41,k)Rrep(z,,)- The Zpm-
grading on the category C(8(y.1,Kk)rep(z,,) is inherited from the Z,,,-grading on the
category C(8l,,1,k). Thus a simple object (3.1_, AiA;, ) willlive in the };_, i4; graded
component of C(8l,,1,K)rep(z,,) taken modulo m. This gives the following.

Lemma 2.13. The simple objects of C(QIHl,k)ORep(Zm) are parametrised by pairs
(35, AiAi, x) where Y,i_ id; =0 (mod m), and  is a character of Stabz,, (3;_; AiA;).

Let us single out a distinguished object of C(8,,, k)%ep(zm)' Consider the object
(A1 +Ar) € C(8Lr:1,k)*. We can take the image of this object under the functor 7,
to obtain an object in (C(8Lr41,k))Rep (7m) )ad C C(8Lr41,K)Rep (z)-

Definition 2.14. We define the object
Q:= fzm, (A1 + Ar) (S C(§Ir+1, k)?&p @yt )*

The distinguished simple object Q € C(3L,,1, k)%ep(zm) satisfies several nice prop-
erties that will make it useful for us in our computations later. Immediately we have
that Q is self-dual, its dimension is [r], [ + 2], k, and there exists a map Q @ Q — Q.

We now compute some useful information about the categories C (81,1, k)‘l’{ep (Zm)*
Let us define m’ = ged (m, k) and m” := J7%.

For the remainder of the paper we will constantly encounter three exceptions in
nearly all of our lemmas and proofs. These are the categories C(3l,, 4)0Rep(Zz)’

C(813,3)Rep (75 a0d C(8L4,2)Re) (7,)- TO put them to rest, we deal with them now.

Lemma 2.15. The claims of Theorem 1.4 hold for the categories C(8l2,4)Rep (2, )
C(813,3)Rep (z25) and C(814,2)Rep (2, )-

Proof. From the formula of the dimensions of the simples of C (§Ir+1,k)°Rep (Zm) WE
immediately see that each of these cases is pointed. By considering twists we find that

C(812,4)3ep(z,) = Vec(Zs, {1,673, 2M13),
C(8L3,3)Rep(z5) = Vec(Z2 X Z,{1,-1,-1,-1),
C(3l4, 2)(1)1ep(zz) ~ Vec(Z, {1, ezni%’ezmg’ezm%’ezmg’ezm'liz %

where the second argument describes the non-degenerate quadratic form on Z,,. With
these explicit presentations, it is straight-forward to verify that they satisfy the claims
of Theorem 1.4. O
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Remark 2.16. In order to keep the statements of various lemmas tidy, for the remainder
of this paper we will implicitly assume that the three cases C (§12,4)0Rep (2)’

C(813,3)Rep (7> a0d C(8L4,2) R ) are ignored.

With the special cases mentioned in Remark 2.16 excluded, we can show that the
object Q is simple.

Lemma 2.17. The object Q is a simple object in C (81,1, k)%ep @m)"

Proof. Thislemma is equivalent to showing that Stabz,, (A1 +A,) is trivial. Let j € Zy,,
then the corresponding invertible object of C(81,,1,k) is kA ral. ‘We compute

KA ® (A1 + Ar) 2 (k= 2)Ajrs1 + Ajrat g + Ajea ).

A case by case analysis, where we consider k > 4, k = 3, and k = 2, gives the desired
result. O

Let us study the group of invertibles of the modular category C (81,1, k)ORep (Zm)*

Lemma 2.18. We have

InV(C(§Iy+1,k)ORep(Zm)) = {(kAgm",l) 3 EZ%}?}”} =7 re1 .

mm”

Proof. From the formula for the dimensions of the simples of C(811, k)ORep(Zm)’ itis
clear that (X, yx) € C(81y1, k)ORep(Zm) will be invertible if and only if X has integer
dimension, and lives in a graded component of C(81,.1,k) which is a multiple of m.
The objects with integer dimension in C(81,,1, k) have been classified [57], and aside
from the special cases we have discarded, the only such objects are the invertibles.
The invertible objects of C(8(,.1, k) are of the form kA; for i € Z,.1. These invertible
objects live in the graded component ki of C(8\,,1,k). Hence, to find the invertible

objects of C(8L;+1, k)ORep(Zm)’ we need to see which i € Z,,; satisfy the equation ki =
%
the definition of m’ and m”, we have that % and m” are coprime. Thus, m” divides i,
and so i is a multiple of m”. This tells us the group of invertibles of C(8L;.1, k)%ep (@m) 18

generated by the object (kA,»,1), and hence forms a group isomorphic to Z rs1 .
mm”

Nm for some N € N. We can write this equation as -5i = Nm". As a consequence of

The category C (@[;q,],k)%ep (Zm) 18 modular, which implies the universal grading
group is isomorphic to the group of invertibles. Hence we get Corollary 2.19.

Corollary 2.19. The universal grading group of C(81,,1, k)ORep (Zm) 18 the group Z el

Let us now identify the adjoint subcategory of C(8!,,1, k)%ep(zm)' Knowing this
subcategory will allow us to use powerful graded category techniques. A natural guess

d
would be that (C(§Ir+1,k)°Rep(Zm))a ~ (C(§1r+1,k)ad)Rep(Zm). However this doesn’t

even typecheck, as Rep (Z,,) is not necessarily always a subcategory of (C(80,.1,k)*),
i.e. consider C(8[s, 3)rep(z,)- Instead we find that the adjoint subcategory is equivalent

to C(§Ir+1,k)§dep @) As m' divides k, we have that Rep(Z,,) is a subcategory of
C(8Lpy1, k).
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Lemma 2.20. We have
0 ad ad
(CELr 1) Repzm ) = CEL1 K)o .

Proof. The category C(81,,1, k)‘f{iep(Z ,) haturally embeds in C(8Ly41, k)%ep(zm) via the
identity functor. As C(QIHl,k);ip @) is generated by the simple object Q, and
dimHom(Q ® @ —~ Q) > 1, the adjoint subcategory of C(8Lr+1,K)ep 2 )
Hence the adjoint subcategory of C (81,1, k)ORep(Zm) contains C(8l,,1, k);ip @) The

is itself.

d
global dimension of (C(QI,H, k)%ep(zm))a and C (801, k)j‘{iep(Z ) are the same, thus

we have an equivalence. O

Finally, we study the invertible objects of the adjoint subcategory
C(8lri1. K)Rep (2, -

Lemma 2.21. We have
Inv(Ad(C(81r41, k))Rep(Zm/)) ~ ZL/I,
where n' := ged (r + 1, k).

Proof. This proofis fairly similar to the proof of Lemma 2.18. The same idea shows that
any invertible of C(81,,1,k)% ) Will be of the form (kAi,1) where i € Zr+1 and

Rep (2,
ki =0 (mod r + 1). This implies that i has to be a multiple of %,1 Thus the invertible
objects of C(8L,,1, k)i“{iep(z ) are of the form (kA;rs1,1), where j € Z v . O

The invertible objects of C(8l;.1, k)%ep (2m) ACt transitively on the simple object Q
in all but one special case.

Lemma 2.22. Suppose (r,k,m) ¢ {(1,4,1),(2,3,1),(3,2,1)}, and let g €
IV (C(8Lr41,k)Rep (2, )- Then

g0 = g=~1.

Proof. By Lemma 2.18 we have that g = (kAp»,1) forsome ¢ € Z rs1 . AsgQQ = Q,
we get "

kAo @ (A1 +Ar) and (A1 +A,)
live in the same orbit under the action of Z,, in C(8l,,1,k). Thus there exists a j such
that

€8 A viomm + (k=2)Agmr + Apmrs1 = Ay, ira + (k- Z)Ajiml + Ay, .

Jm 1+j 5%
We first deal with the special case of » = 1. If m = 2, then we have that ¢ = 0
(mod I*1), and so g = 1. Otherwise m = 1, and Equation (1) becomes

mmll
2A€+1 + (k - 2)Ag =2N\ + (k - 2)A0

Either ¢ = 0 and the desired result is immediate, or £ = 1, which forces k = 4 (an
excluded case in the statement of the lemma).
With the case of r = 1 dealt with, we can assume that

A_1iemr £ Nor 1 and A—1+j% * A1+jiml'

‘We now break into cases depending on k.



TYPE II QUANTUM SUBGROUPS OF 8ln. I 127

If k > 3, then Equation (1) gives that #m” = j=1 (mod r + 1). Hence ¢ = 0
(mod r;;'rnl” ) and so g = 1 as desired.

If k = 3, then Equation (1) gives that €m” = {1+ jZL, j=L 14 j213 (mod r+1)}.
Ifém” = j’im1 (mod r + 1), then £ = 0 (mod ,;;“nl,,), and we have g = 1. If ém" =
+1+ jim1 (mod r + 1), then Equation (1) gives 3=0 (mod r + 1), and so r = 2. Either
we have m = 1, in which case we are excluded by the statement of the lemma, or m = 3,
in which case we are excluded by Remark 2.16.

If k = 2 then Equation (1) gives that either ém" = j%l (modr + 1) or ém” =
2+j2l = -2+ j= (mod r+1). In the first case, we have that ¢ =0 (mod ;=) and
we are done. In the latter case, we have that 4 =0 (mod r + 1), and so r = 3. We either
have m = 2, in which case we are excluded by Remark 2.16, or m = 1, in which case we

are excluded by the statement of the lemma. O

We will make Q the base point of our auto-equivalence computations, and distin-
guish auto-equivalences based on whether they fix or move this object.

Definition 2.23. We say an auto-equivalence of C(8(,,, k)ORep(Zm) is non-exceptional
if it maps Q to an image of Q under simple currents. We will say the auto-equivalence
is exceptional if it is not non-exceptional.

We will see in the bulk of this paper the surprising result that only a finite number
of auto-equivalences are exceptional, and that every non-exceptional auto-equivalence
comes from either a simple current auto-equivalence, charge conjugation, or from the
canonical Z,,-action.

While the definition of a non-exceptional auto-equivalence allows for the object Q
to be moved, Lemma 2.24 shows this is not the case.

Lemma 2.24. A non-exceptional auto-equivalence of C(81,,1, k)%ep(zm) must fix Q.

Proof. Let F a non-exceptional auto-equivalence of C(8/,,1, k)(l)zep (Zm)* Then there ex-
ists an invertible element g of C(8(,,1, k)%ep(zm) such that 7(Q) =2 g® Q. As gis of
the form (kAp,,»,1) for n € N, we compute that

g® 0= ((k - 2)Anm” + Apmr 11 + Aum? -1, 1)-

The object Q is self-dual, and so g ® Q must be as well, thus g® Q = g* ® Q.
Assuming that we are not in the excluded cases of Lemma 2.22, we can apply this
lemma to obtain g®2 =~ 1, and so g (kAj%,l) for j € {0,1}. If we are in one
of the three excluded cases, then a direct calculation shows that g ® Q =~ Q for all
g€ IHV(C(§[r+1,k)ORep(Zm)) and hence F fixes Q.

For the generic case of ¥ > 2 and k > 3, we know that dimhom(Q ® Q - Q) =2,
and thus dimhom (g Q® g ® Q - g ® Q) = 2. Using the braiding on the category,
along with the fact that g has order two, we see that dimhom(Q ® Q -~ g® Q) = 2.
We explicitly compute the simple decomposition of Q ® Q as

1B20@ (A +2A5,1) @ (Az + Ar_1,1) © (2A1 + Ar_1,1) @ (2A1 +2A,,1).
Asg®Q = ((k- Z)Ajr2+71 +Aj%1+1 +Ajr%1_1, 1) must appear in this decomposition, we
can immediately deduce that j = 0, i.e. g must be the identity.

For the remaining cases, the proof is almost identical, except the decomposition
of Q ® Q is smaller, and in some cases the stabiliser subgroup of the simples in the
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decomposition is non-trivial, so the characters of the stabiliser groups must be changed.
O

In light of the above result we make Definition 2.25.

Definition 2.25. We write EqBr (C(8r+1,k)Rep (2,0}

equivalences of C (§Ir+1,k)%ep (Zm) which fix Q, or equivalently, the group of non-
exceptional auto-equivalences.

Q) for the group of braided auto-

2.3. Planar algebras. A key tool for the results of this paper is planar algebras.
Roughly speaking a planar algebra P is a collection of vector spaces {P, : n € N},
along with a multi-linear action of planar tangles. The full definition can be found in
[40], and illuminating examples in [46].

We will be interested in planar algebras constructed from symmetrically self-dual
objects in pivotal fusion categories. Let X € C be such an object. Then we can define a
planar algebra Px by

(Px)n == Hom(1 - X®").

Supposing the object X generated C, then we can recover C by taking the idempotent
completion of Px. Here the objects are idempotents in the algebras (Px )2, (Where we
have n legs pointing up, and n legs pointing down) with vertical stacking as the multi-
plication. The morphisms between two idempotents are elements of the planar algebra
which intertwine the two idempotents. The tensor product is given by horizontal jux-
taposition, and direct sums are added formally. Additional information on these two
constructions can be found in [46].

Itis proven in [34, Theorem A] that the above bijection between planar algebras and
symmetrically self-dual objects X € C is functorial. That is, there is an isomorphism
between automorphisms of the planar algebra Py, and pivotal auto-equivalences of the
category C which fix X.

2.4. Simple current auto-equivalences. A useful class of auto-equivalences of
C(81r41, k)%ep(zm) is given by simple current auto-equivalences. These are graded auto-
equivalences which permute the simple objects by tensoring with certain invertible
objects in C (80,1, k)‘l){ep (zm)- The precise definition is as follows.

Lemma 2.26 ([18, Lemma 2.4]). Let C be a modular tensor category, and g an invertible
object of order M. Set q equal to the unique integer (modulo 2M) such that

Og.g = ik idgeg
(see [56, Proposition 2.5.1]), and choose a € {0,1,---,M — 1} such that
1+aq iscoprimeto M.
Then there exists a monoidal auto-equivalence Fg o of C defined on objects by
FgaX) =g " ®X,

where n is the unique integer (modulo M) such that ox g0gx = eiar idggx. The
monoidal auto-equivalence Fy q is braided if and only if

2
a+%50 (mod M).
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As Q is in the adjoint subcategory of C(81,.1, k)ORep(Zm)’ we have that any simple
current auto-equivalence fixes Q, and hence is non-exceptional.

3. NON-EXCEPTIONAL AUTO-EQUIVALENCES OF C (8,1, k)ORep (Zm)

In this section we will determine the braided auto-equivalences of C(81,,1, k)oRep (Zm)
that fix the distinguished object Q. In terms of the notation introduced in this paper, we
will determine the group EqBr(C(81,,, k)ORep (23 ). We show that non-exceptional
auto-equivalences (in the formal definition of this paper) are non-exceptional (in the
layman terms). That is, every non-exceptional braided auto-equivalence is charge con-
jugation, simple current, or comes from the canonical Z,-action on

0
C(81yr41, k)Rep(Zm)'

Let us outline the arguments of this section. To begin, we initially focus our atten-

tion on the distinguished subcategory C(8.1, k)‘f{;p @) The subcategory

C(8Ly11, k)i‘ép(z ) has two nice features that will assist with the results of this sec-
tion. First is that it has trivial universal grading group, and hence has a unique piv-
otal structure, and second the category C(8(,.1, k);rlfep(zm,) is generated by the distin-
guished object Q. Together these facts will allow us powerful planar algebra techniques
to determine the non-exceptional symmetries.

With the above in mind, we give a presentation of the planar algebra Pgq, i.e. the
planar algebra generated by the object Q € C(31,,1, k)?{iep(zm,). To achieve this, we
observe that Pq contains the planar algebra Px,.a,, i.e. the planar algebra generated
by the object A; + A, € C(8(,,1,k)*. The planar algebra Pa,+a, is well understood,
and is known to be generated by two trivalent vertices. We can then find an additional
generator in Pq, which together with the two trivalent vertices generates all of Pg. The
idea here is that the group Z,,,s is singly generated, which allows us to understand skein
theory for de-equivariantisation in terms of the addition of one additional generator.
With the generators of Pg, identified, we can then find relations that these generators
satisfy.

Remark 3.1. While it is not explicit in this paper, the techniques we have briefly de-
scribed above (and will explain in detail in the remainder of this section) can be used
to give skein theory for any de-equivariantisation by an abelian group.

With the presentation of the planar algebra Pq in hand, we can use it to give an
upper bound for the group of braided auto-equivalences of C(81,,1, k)‘i‘{}sp @) which
fix Q. We find that there are at most 2m’ of these auto-equivalences, which compose
to form a group isomorphic to D,,s. Further, we explicitly identify how these potential
auto-equivalences act on the simples of C(81,,1, k)ili{iep(zm,)' We then construct these
2m’ potential auto-equivalences by the charge-conjugation auto-equivalence, which
gives us a Z, subgroup, and by the canonical Z,,-action on C(81,,1, k)f{‘ep @) which
comes from de-equivariantisation.

To obtain the auto-equivalences of C (§[r+1’k)0Rep (zm) Which fix Q, we appeal to
the techniques developed in [17]. These techniques allow us to give an upper bound
for EqBr(C(é’aIHl,k)ORep(Zm);Q) in terms of EqBr(C(éIHl,k)i‘fep(zm,);ﬂ) and some
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cohomogical data. While there is no reason that this bound should be sharp (the tech-
niques involve verifying that certain obstructions vanish in order to show that auto-
equivalences lift) we are able to show that the theoretical upper bound is realised by
simple current auto-equivalences.

All together we prove Theorem 3.2.

Theorem 3.2. Letr,k € N, and m a divisor of r + 1 such that m* | k(r +1). Set m’ =
ged (m, k) and m” = ;. Then we have the following isomorphism of groups

{e}ifk=2andr=1,
EqBr(C(8ly+1, k)(l)lep(zm);ﬂ) 22 X leH'l ifk=2o0rr=1,
Dy X Z5* otherwise,

where

r+1

k
e but not g and

e pisthe number of distinct odd primes dividing

ifr+}, is odd, orif£, =0 (mod 4),
o mm m

or if both % is odd and

1 otherwise.

o [ = r+1

=2 d 4
mm” (mod 4)

With the high-level arguments in mind, let us begin with the details of proving The-
orem 3.2.

Consider the planar algebra Pg. As Q generates, and there exists amap Q ® Q —
Q, we have that C(80,1, k)‘f{‘ep @) has trivial universal grading group, and thus also
has a unique pivotal structure. Therefore we have that EqBr (C (80,11, k) i"‘fep Z)* Q) is
isomorphic to the group of braided planar algebra automorphisms of Pq. Our goal is
thus to specify as much of the structure of this planar algebra Pq as possible in order
to understand its auto-equivalence group.

As the free module functor C(8l,,1,k)*? — C(8lr1,k)
maps A; + Ay to Q, we obtain a planar algebra embedding

ad . .
Rep(Z,,) is dominant, and

Pa,+ar = Pa.

The planar algebra Px, 4, is well understood [18, 39]. It is generated by two triva-
lent vertices satisfying the Thurston relations (see [39, Lemma 3.2]). Hence the planar
algebra Pg also contains two trivalent vertices

A

satisfying these same Thurston relations. However, there are going to be additional
generators in this planar algebra. These additional generators come from the de-
equivariantisation by Rep (Z,,).

Remark 3.3. For the remainder of this section we will identify C(8(,1, k) as the idem-
potent completion of the planar algebra Pp,4,, and C(3L,,1, k);dep(zm,) as the idem-
potent completion of the planar algebra Pg,. This means that we regard simple objects

of these categories as minimal idempotents of the planar algebras, and morphisms as
elements of the planar algebra which commute with the idempotents.
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Let us write pxa w1 for the minimal idempotent of C(8!,,1, k) corresponding to

the simple object kA L. From the inclusion of planar algebras P, s, — Pq, we have
that this idempotent pkA .1 also exists in Pq.

m
The free module functor Fz C(8Ly11, )acl - C(8lp41, k)Rep(Z sends kAr;T} to
the tensor unit. Therefore in the planar algebra Pq, the trivial 1dempotent and pka .,
ml
are isomorphic. Thus there exists an invertible element S € Pq (which we draw as a

circle to differentiate it from the other planar algebra elements) satisfying

The element S lives in the n-box space of Pq, where n is the smallest n such that
kAm appears in the decomposition of (A; + A, )®".

We claim that Pq is generated by the two trivalent vertices, along with the new
element S.

Lemma 3.4. We have that Pq, is generated by the two Thurston trivalent vertices, and
the element S.

Proof. Let Pgs be the subplanar algebra of P, generated by these three elements, and
Cs the corresponding category. Then we have a chain of embeddings
Pay+ar = Ps = Pq.

This gives us dominant monoidal functors

Fi: C(§[r+17 k)ad - CSy

F2:Cs ~ C(gIrH’ k)zli{lep(zm,)’
and their adjoints

}T :Cs — C(Q’Ir+1;k)ad,

fz C(§Ir+1, k)Rep(Z ,) —> Cs.
From [6], we have that 77" (1¢,) is a commutative central algebra object, and that Cs is
equivalent to the category of 77 (1¢g)-modules in C(8l,.1, k)™

As these dominant functors F; and F, are just the inclusions of idempotents, we

have that the composition of these two dominant functors is equal on the nose to the
dominant functor C(8(,,1,k)* — C(8l,,1, k)Rep @,y y induced by the planar algebra
inclusion

Par+ar — Pa.
This induced functor C(8L,,1,k)*! — C(8(;,1, k)aRdep(Zm/) is precisely the free module
functor 7z _,. Hence we have that

FroFr=Fz,,,
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which implies that
FioF =F; .

From this fact we see
Fi(leg) CFioFy (IC(,e,Im,k)giep(Zm,)) =77 (IC(gIM,k)gep(Zm,)) = Fun(Zp),

as a central commutative algebra in C(8[,,1,k)*. In particular we get that 77 (1¢g) &
Fun(Z,) where ¢ | m'. As Fun(Z,,) is the central commutative algebra object in
C(80r+1,k)* corresponding to the de-equivariantisation by the Rep(Z,,) subcategory,
the central structure is given by the braiding of C(8!,,1, k). Hence the central struc-
ture on Fun(Z,) is also given by the braiding. This gives that Cg is a de-
equivariantisation of C(8\,,1,k)* by Rep(Z,), i.e.

d
CS ~ C(§Ir+1, k)%ep(Zg)'
In Cs we know that S gives an isomorphism from 1 — pga,.,

m' | €. Thus

which implies that

m

Cs = C(81r1.K)Rep(z,,/)
which gives the desired isomorphism of planar algebras

Ps = Pq.
O

In order to study the planar algebra automorphisms of Pg we need to study the
element S further, and deduce further relations that it satisfies.

Remark 3.5. To simplify notation, we will now draw multiple strands of a planar al-
gebra as a single strand in our graphical diagrams. It will be clear from context how
many strands are meant by the diagram.

In the category C(8l,1,k)* we have that kA%, = 1. Thus the object kAr+1 gen-
erates a subcategory with the fusion rules of Zm/’.n We are given that this subcategory
is Tannakian (as it is the subcategory we are de-equivariantating by), so it is braided
equivalent to Rep(Zy,y). For n € Z,y, let DA, .y € Pay+a, be the unique (by the
fusion rules) projection onto kA, r1 appearing in the smallest possible box-space of
Pa,+A,- Note that as A; + A, is self-dual, we get that kA, ra1 and kA_, ril live in the

same box space. We can choose a system of trivalent vertices

tnp=| thp : pkAn%,1 ® PkAp%,1 = PkA

(n+p)TEL

PhA e aPRA a1

in C(81,41,k)* with trivial 6j symbols, and such that the charge-conjugation auto-
equivalence kA, re1 = KA_p,re1 Maps typ = top,—p.
m m/
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We can build an isomorphism

Lr—11

/

o1

J=tiitar o1 = PP pem’ > 1

r+l1

ml

111

PrA pi1 PRA pi1 PRA pia PrA pi1

’
Hence we have that j is a map from the idempotent p,?,'\"r ,, tothe trivial idempotent in
m’

the planar algebra P, . a,. In the planar algebra Po we have that $®™ ig an isomor-
phism from the idempotent pg’\"r to the trivial idempotent. Thus we have that

r+l1
m/
!
°oJ
lives in the 0-box space of Pg and is non-zero. This allows us to normalise S so that we
get the relation

S®m

Pku\# Pku\# Pku\# Pku\#
-1
I
2 = p ,
-------- 2,1
~ 1
tm’—l.,l

in the planar algebra Pq.
This explicit presentation of the planar algebra Pg, is sufficient to compute the mini-
mal idempotents up to equivalence, and thus the simple objects of C(81.1, k)‘i‘{}sp @)

Lemma 3.6. The simple objects of C(81,,1, k)‘l’{iep z,,) e parametrised (up to isomor-
phism) by

(X, xx),
where X is a simple object of C(8,,1,k)™ (up to action by kAg) and yx is a character

dim (X)

of the group Stabz _, (X). The quantum dimension of (X, xx) is equal to [Stabz, , ("

Proof. The free module functor 7z _, is dominant, therefore every simple object of
C(8Lyi1, k)i{jep(z ) is asubobject of 77, , (X) for some X € C(8lr+1, k)34, Let px be the
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minimal projection in the planar algebra Pp,.a, corresponding to X. As
C(80y41, k)ﬁiep @) isidempotent complete, each simple subobject of X will correspond

(up to isomorphism) to a minimal subidempotent of px.
Assume that Stabz_, (X) = Zg, then there exists an isomorphism fx : px ®p w’
kA8

r+l1
m'

- px in C(§[r+1,k)ad. For each n € Zg3 we define isomorphisms rx, : px — px in
C(QIHl,k)i‘fep(Zm,) by

bx

fx

’
m
rX,n :=‘f)?os®n d =

fx

m'

Px

By design we have that rx ,rx , = rx n+n’. Furthermore, by relation (2) we have
thatrx g : px - px livesin Pa,+a,. As px is simple in C(31,.1, k)34, we have that rx.d
must be a scalar multiple of px. We normalise our choice of the isomorphism fx to
ensure that rx 4 = px. Thus we have that End (px) in C(8L,41, k)i{jep(zm,) is isomor-
phic to the group algebra C[Z4]. It is a classical result that the minimal idempotents
are indexed by characters y of Z; with

1

" TStabs, , (0] &2, (Ve

nezy

Px

The quantum dimension of the minimal idempotent p, is given by the trace. Note
that the trace of rx ,, is 0, unless n = 0, as otherwise we could build a non-trivial mor-
phism

!’
kAi% - 1.
ml
If n = 0, then the trace of rx,, is the quantum dimension of X. Hence the trace of p, is
equal to the quantum dimension of X divided by |Stabz , (X)|. O

Remark 3.7. For ease of notation, let us fix isomorphisms Zy — Zy by

ina
N yni=am- N,
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We can now determine an upper bound for the group Aut(Pg ), and hence also for
the group EqBr (C(8Lr+1,K)iep 2,3 Q) -

Lemma 3.8. We have that
EqBr (C(8Lr+1,k)Rep (2,13 @) € Do,

with generators

(X, xn) = (X, Xn+1)
and

X, xn) & (X, X-n)-

Proof. Let¢ € Aut(Pq) be abraided automorphism. Then ¢ is determined by where it

sends the three generators. Recall, we have two trivalent vertices satisfying the

Thurston relations, and the generator S which lives in the n-box space, where n is the

smallest n such that kA -1 appears in the decomposition of (A; + Ay )®". By explicitly
m

expanding (A; + A,)®* we can see that kA r1 appears as a summand only in the case

C(81,, 4)‘11{Lp (22)’ C(8Ls, 3)‘11{2}) (z5)» and C(814, Z)aRdep(Zz)‘ These cases have already been
excluded and dealt with previously in the paper.

Let us deal with the remaining cases. As S does not live in the three box space, we
know that there are scalars c1, ¢y, ¢3,c4 € C such that

¢)\:c1)\+
¢ /Sk :03)\+

The coefficients ¢y, ¢, c3, ¢4 for which ¢ preserves the Thurston relations are solved
for in [18, Lemma 3.1]. With the condition that ¢ is braided, there are two solutions,
which we denote ¢iq and ¢... These planar algebra automorphisms on the subplanar
algebra Py, ., are explicitly identified in the cited paper, where it is found that ¢
corresponds to the charge-conjugation auto-equivalence of C (81,1, k).

Now the charge-conjugation auto-equivalence maps kA ol b kA el thus we

C2
S

Cq .
S

have the following in the planar algebra Pp,a,:

$id (pkA+H} ) = PkAih}
and

¢cc (PkAtm) = pkAiﬁ .

As the planar algebra P, A, canonically embeds in Pq, we also have these relations
in the larger planar algebra.

To see when these auto-equivalences ¢;q and ¢ extend to the full planar algebra
Pqo we must determine if (and how) these automorphisms act on the generators S.
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Let us define isomorphisms in Pq by

PEA | ria

th-11

Sp=S8®"oty1tp1ty1,1 = ‘1= PkA yan -
ml

Note that trivially we have S; = S, and by relation (2) we have that S,y = 1.
To see when ¢iq extends to Pg, observe that ¢iq(S) is an isomorphism from 1 —
DkA ., - As this morphism space is 1-dimensional, we must have that ¢;q(S) = 8S for

m/
some non-zero scalar 8 € C. Applying the potential automorphism to relation (2) gives
that 8 must be an m’'-th root of unity.
To see when ¢, extends to Pgq, observe that ¢..(S) is an isomorphism from 1 —

PkA_,,, - This implies that ¢c.(S) = BS,_1 for some non-zero scalar § € C. We apply

m
this potential automorphism to relation (2) to obtain

PkA py1 PEA i1 PEA oia PEA_ri1
T - - 7

1

pkAi# PkA o1 til
1

m’ copies

AN

-1
tl—m’,—l

From this equation we expand out the S,,/_; terms to obtain an equation with (m’ —
1)m’ of S terms. We then apply relation (2) to get an equation purely in terms of the
trivalent vertices t. From here we then use that the trivalent vertices ¢ have trivial 6-j
symbols to obtain Bm, = 1. Thus § must be an m’-root of unity.

With the explicit presentation of how the 2m’ potential automorphisms act on the
generator S, it is straight-forward to determine that if these automorphisms existed,
then they would form a group isomorphic to Dy,,,. Note that the two automorphisms

1 A
corresponding to 8 = ™ and B = 1 are generators for the entire automorphism
group.
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We now determine how these D,,,» worth of potential automorphisms would act on
the simple objects of C(8l,1, k);}ﬂp(z ;- Let (X,xn) be a simple object of
C(Q»Irﬂ,k);‘jep(z ) where Stabzm, (X) = Z4 for some d | m’, and y, € 7,4 for some
n € Z, (using the isomorphism of Remark 3.7).

For the planar algebra automorphisms sendlng S to ,BS we pick the generator 8 =

ezm m’ to study. We compute that rx ; — ﬁf drx,j= ezmd rx,j- Therefore under this

planar algebra automorphism, we have

1 . iJ
PXam) & 5 D xn(j)earg ;= Z i 2’”‘”XJ = P(X,xns1)-
J€Zq jEZd

Thus the auto-equivalence of C(8(,,1,k ;‘Lp @) corresponding to the planar algebra

2mi-L

automorphism for 8 = ¢ m" maps

X, xn) & (X, X-n)-

For the planar algebra automorphism sending S — $5,,/_1 we have to work a little
harder to determine where it sends the simple object (X, x,). We pick the generator
£ = 1 to study. Recall that this planar algebra automorphism restricts to ¢.. on the sub-
planar algebra P, .a,. Thus we know how this automorphism acts on the trivalent
vertices t, so we can compute that

'_1 —-1,-1 d
fx = rfe o (tiitor -ty 21)®

for some y € C. By simultaneously rescaling the trivalent vertices ¢, we can ensure that
y = 1. With this information we compute that
rx,jr/m rxs—j,
and hence
PXam) ™ 5 Z Xn()rx—j = Z X (=i)rxey = 5 =Y Kenl)rxe = P -
]GZd ]EZd Jj€Zy
Thus the auto-equivalence of C(8l,,1, k);‘tp @) corresponding to the planar algebra

automorphism for 8 = 1 maps

X, xn) = (X, X-n)-
]

Lemma 3.8 gives an upper bound on the braided auto-equivalence group (which
fix Q) for the category C(8!,,1, k)i‘{ép(zm,). In theory we could determine a complete
set of relations for the planar algebra Pgq, and verify that the auto-equivalences exist by
checking that they preserve all relations. However this requires additional work which
is beyond the scope of this paper. Instead we construct 2m’ worth of braided auto-
equivalences of the category C(81,,1, k)"I‘f‘ep @) directly, realising the upper bound.

Lemma 3.9. We have

Zyy ifk=20rr=1

EqBr (C(80,41, k)% Q) =
q (( r+1 )Rep(Zm/) ) {Dm/ otherwise
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Proof. Let us begin by constructing the Z,,» worth of braided auto-equivalences. Via
construction, we have that Z,,s acts on C(8l;,1, k)‘f{iep Z,) via the map

(X’)(n) = (X’Xru-l)'

To obtain the full Z,, worth of auto-equivalences we need to show this action is faithful.
This is equivalent to finding an object X € C(81,,1,k)* with Stabz _,(X) = Zpy. It m’
is odd, then the object

k™
i Z Ajra
m i1 m
satisfies X ® kAr1 = X, and lives in C(8Ly.1, k)24 as
: %
m' 5
When m' is even, the above object does not live in C (81,1, k)ad. To choose a suitable

object, we observe that r + 1 is even in this setting (as m | r + 1), and so 2m? | (r + 1)k.
In particular 2% is an integer. For this case we pick the object

z(m/)Z
= (7 —1)2/\ r+1 +2A rel (r+Dk .

mt 2(m")2

k(m + 1)

)=

=0 (modr+1).

This object satisfies X ® kArs1 =X as desired, and lives in C(81,.1, k)2 as
m/

!

mopyl (+1)k k( +1)
(7_1)erm’ Z zr(m)Z‘( 1)( . Zm)

i=1 =1

=(r+1) (k(n;;,; 2)) =0 (modr+1).

In either case, we have an object X € C(81,,1,k)* with Stabz,_, (X) = Zyy as desired.

To construct the remaining auto-equivalences, we observe that the charge-
conjugation auto-equivalences exist for C(8l,,1,k)* when k > 3 and r > 2 [18]. These
auto-equivalences preserve the Rep(Z,,) subcategory, and hence descend to auto-
equivalences of C(8/;,1, k)iidep @)

To finish the proof, we must show that the charge-conjugation auto-equivalence
never coincides with the Z,, action. Thus we have to find an object X € C(8),,1,k)*
such that X* is not in the orbit of the action of kA . This object is given by

X = A1 + 2Ar,1.

This satisfies the required properties when r > 3 and k > 3.
Ifr = 2 and k > 3, then we can use the object

X =3A;.
Ifk=2orr=1,then m’ € {1,2} and the result is given in [14, Theorem 1.2]. O

Now that we understand the auto-equivalences of the subcategory
C(é[rﬂ,k)%dep(z which fix Q, we can leverage this to determine the auto-

equivalences of the full category C(8,,1,k)$ Rep (Zm)" The idea here is to use the fact that
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C(8Ly11, k)ORep(Zm) isa Z%ml” -graded extension of C (8,1, k)ﬁjep(zm, ) This allows us to

apply the results of [17] to classify the auto-equivalences of C(81,,1, k)°Rep (Zm) extend-
ing a given auto-equivalence of C (§Ir+1,k)§ip (z.,)- To convenience the reader, the

results of [17] state for a G-graded category @cCg, the number of auto-equivalences
extending F € Eq(C,) is bounded above by

|¢ € Aut(G) : Cg ~ Cg(q) as Ce-bimodules for all g € G|
-[H' (G, Inv(Z(Ce)))| - |H*(G,C)|.
With this bound, we can determine the following result.

Lemma 3.10. The group of auto-equivalences of C (8,1, k)ORep(Zm) extending the iden-
tity on the subcategory C(81,,1, k)%‘ip @) 8 isomorphic to the group

k . , r+1
a€”Z rn :1+a— iscoprimeto —
m mm

mm//

unlessr =1, k = 2, and m = 1, in which case the group is trivial.

Proof. We begin with the group {¢ € Aut (Z s, ) : Cg = Cy(g) as Co-bimodules for all
g§E€”Z i1 }. Asthe C, bimodules form a group, we have that Cg =~ Cy(g) as Co-bimodules
for all g e Z ra if and only if Cy(g)g-1 is equivalent to the trivial C.-bimodule, and

mm/

so only if Cg(4)e-1 contains an invertible object. Recall that the invertible objects of
C (§Ir+1,k)°Rep (zm) are generated by the object (kApn,1), which lives in the graded
component C o = =C k . Therefore the invertible objects of C(81;.1, k)Rep(Z ) live in
the graded components Cy .3 for N e N.

Letc € 7%, , then Ceg_g contams an invertible object if and only if C._, does. For
mm//

this to happen, we need thatc =1+ N 7 for some N € N. Using Bezout’s identity, this
is equivalent to having ¢ =1 (mod gcd( 4, x1)). A direct prime by prime compu-

tation reveals that ged (%, e er;;},, = m’, , where we recall that n’ = ged(r + 1,k). Thus

together we have a bound

{¢ € Aut(Z rs1 ) : Cg = Cyg) as Ce-bimodules for all g € Z r+1 }|

n
<{ceZ%4 :c=1 (mod —)}|.
mm" m

Now we count the group H (Z e, ,Inv(Z(C(8141, k)?z(iep(zm, )))). As a 1-cocycle

is determined by its value on the generator, we have that the size of this group is
bounded above by the size of Inv(Z(C (81,1, k)"liftep (Zm/)))' As the universal grading
group of C(81,,1, k);llidep(zmy) is trivial, we can use [33] to see that every invertible of
C(8Ly11, k)ilzdep(zm,) has at most one lift to the centre. Further, as C(81,,1, k)?{iep(zm,) is
braided each invertible object has a lift to the centre via the braiding. Therefore

InV(Z(C(§Ir+1, k)Rep(Z ,))) = InV(C(§Ir+1, k)Rep(Z ()) = ZL’,’
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and so the size of the group H! (ZLl” ,Inv(Z(C(8Lr41, k)‘ii{dep @) ))) isbounded above
by :;T,'
It is a classical group theory result that H? (Z el CX) is trivial.

mm//

Thus there are at most

’

{ceZXrLlﬂ :c=1 (mod :rlz’)}‘

auto-equivalences of C (§Ir+1,k)%ep @m) extending the identity on the
C (élrﬂ,k)i‘{’ep @) subcategory. We now show this bound is sharp by constructing

enough distinct auto-equivalences of C (80,1, k)%ep (zm) 1O realise the upper bound.
We will construct these auto-equivalences as simple current auto-equivalences. For
the definition of simple current auto-equivalences we use in this paper, see [18, Lemma
2.4].

To construct simple current auto-equivalences, we pick out the invertible object
(kApr,1) € C(§1r+l’k)(1)zep(zm)- This object has order -*%;, and has self-braiding

mmll b

”n
) 2mimm’a .
eigenvalue equal to e T2+ where q = rrn—k, Thus we get simple current auto-

equivalences of C(8,,1, k)%ep @m) for each element of the set

rk . , r+1
a€Z ra1 11+ a— iscoprime to .
mm” m’ mm”

To see that these simple current auto-equivalences are distinct, note that they form
a group. Therefore, we need to show that for each a # 0, the corresponding simple
current auto-equivalence acts non-trivially. Consider (Ayy,1) € C (§Ir+1,k)%ep (Zm)*
Then we have that the simple current auto-equivalence sends

(Amts1) = (A1) @ (KAyr 1) = (k= 1) Ay + At r ), 1).

To verify that this action in non-trivial, we have to check that (k — 1)Ayr + Apromr
does not live in the orbit of A, under the action of Z,,. Supposing this was the case,
then there would exist a t € N such that

(k=D Apr + Ayt o) = (k- l)Atiml +At%ll+m"
Assuming k > 2, we get the equation

r+1

~=1 (modr+1),
mm

which is nonsense, as #ml,, is clearly not invertible in Z,,;.

If k = 2, then we get that 2m’ =0 (mod r + 1), and thus m’ = %1 Asm' | k, we see
that either r =1 and m’ = 1, or r = 3 and m’ = 2. The latter case is one of the excluded
cases. For the former case, it is known that the simple current auto-equivalence acts
trivially [14, Theorem 1.2].

The same argument used in [18, Lemma A.2] shows that the set of simple current
auto-equivalences and the set

mmH m!

{bEZMn/:bEI (modn/)}
m
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have the same size. We give a bijection

n n n

,-{CEZXrH ic=1 (mod/)}»{bezmn/:bsl (mod/)}

m mm” m mm” m’ m
by sending

I

n
(N,c)»c+N—.
m

As the simple current auto-equivalences are all distinct (except for C (§Iz,2)%ep (Zl)),

and the number of them is equal to the upper bound of auto-equivalences extending

the identity on the subcategory C(8l,.1, k)"f{dep @,y We therefore have that every auto-
m

equivalence extending the identity on the subcategory C(81,,1,k) is isomor-

ad
Rep(Z,,1)
phic to the group of simple current auto-equivalences, which is

rk . . r+1
a€Z ra1 :1+a— iscoprime to .
mm” m’ mm”
(]

A-priori there should be no reason that the upper bound on the number of auto-
equivalences we construct should be tight. We suspect that something deep is going
on here that deserves to be investigated.

As a corollary, we can determine which auto-equivalences which extend the identity
are braided.

Corollary 3.11. The group of braided auto-equivalences of C(81y,1, k)°Rep (@m) extending
the identity on the subcategory C (81,1, k)‘f{ip @) is isomorphic to the group

p+t
Zz 9

where

r+1
mmll

e pis the number of distinct odd primes dividing but not % and

1 k
if re —isodd, orif — =0 (mod 4),
0 mm . m
= 1
°! or if both — is odd and T — =2 (mod 4)
m mm

1 otherwise,

unlessr =1, k = 2, and m = 1, in which case the group is trivial.

Proof. We know that a simple current auto-equivalence is braided precisely when
azrrn—k, -2a =0 (mod 2, ;rnl// ). It is then immediate that the group of simple currents

for C(81y.1, k)%ep(zm) is isomorphic to the group of simple currents for C (8! 1, %)

(with compositions as in [18, Appendix A]). The claim then follows from [1”;3, Theo-
rem 1.1], where we ignore the Z; factor of EqBr (C(8l r1 , %)) which corresponds to

a non-simple current auto-equivalence. O

Now that we completely understand the braided auto-equivalences of

0 . . . d
C(8Ly11, k)Rep(Zm) which extend the identity on the subcategory C(80;.1, k);ep @)’
we can use a torsor argument to fairly easily leverage this information to understand
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the auto-equivalences extending the charge-conjugation auto-equivalence on the sub-
category C(81,,1, k)"f{‘]tep ..,y Which fix the distinguished object Q. This completes the

proof of Theorem 3.2, the main result of this section.

Proof of Theorem 3.2. All that remains to be done is to show that there exists a braided
auto-equivalence of C(81,,, k)‘l){ep (z,n) Which restricts to give the charge-conjugation

auto-equivalence of C(81,,1,k) . This follows from the fact that charge conju-

ad
Rep(Z,,)
gation exists for C(8l,,1,k), and it preserves the Rep(Zy,) subcategory. Therefore it

descends to the category C(80,.1, k)(l){ep(Zm)' O

4. CANDIDATES FOR EXCEPTIONAL AUTO-EQUIVALENCES

In the previous section we were able to completely determine all non-exceptional
braided auto-equivalences of the categories C(8/,,1, k)ORep(Zm)' That is, we could de-
termine all braided auto-equivalences which fixed the distinguished object Q. For this
section we will focus on determining the braided auto-equivalences which move Q.
This section will be combinatorial in nature, making use of the rich combinatorics of
the categories C(8l,.1,k). Let us outline the arguments of this section.

Our main tool to determine when the category C (81,1, k)(l)zep (z,,) Nas an exceptional
auto-equivalence will be Lemma 4.1, which gives very restrictive necessary conditions.

Lemma 4.1. The category C(8ly,1, k)ORep (zm) has a braided exceptional auto-
equivalence only if there exists an object X € C(8\1,k) such that

X ¢ [A1+Ay], and

the orbit of X under the action of Zy, is closed under charge conjugation,

we have

_dim(X) S dim (X)
[Stab,, (X)] ~ [Stabz,,, (X)]

[r]r,k[r + 2:|r,k

and
the twist of X is equal to the twist of A1 + A,.

Proof. Suppose C (QIHl,k)%ep (Zm) has a braided exceptional auto-equivalence, then
by definition there is an object (X, yx) € C(841, k)ORep(Zm) such that Q is mapped to
(X, xx) under the exceptional auto-equivalence, and (X, yx) is not in the orbit of Q
under simple currents.

As Q is self-dual, we have that (X, yx) is self-dual, and hence the orbit of X under
Zp, is closed under conjugation.

To obtain the dimension bound for X, we note that

dim (Q) = dim ((X, xx))-
From this we can obtain the inequality
dim (Q) = dim (X) > dim (X) .
| Stabzm (X)| | Stabzrﬂ (X)‘

The dimension of the object Q is [r] k[r + 2], x, hence we have the result.
To get the condition on the twist of X, note that a braided auto-equivalence of
C (§Ir+1,k)°Rep (zm) Will preserve twists by [18, Lemma 2.2]. The twist of an object
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(X, xx) € C(§Ir+1,k)°Rep(Zm) is equal to the twist of X € C(8l,,1,k). The condition
is then immediate. O

The key restriction here is the existence of an object X € C(81,,1,k) with

dim (X)
>

[r]r,k [r + 2]r,k = ‘ Stabzm (X)|

If Stabz,,, (X) is non-trivial, then we can use Lemma 2.10 to bound the dimension
of X below by the dimension of a simpler object in C(8l,,1,k), say for example 2A,.
We can then use the hook formula to write the dimension of this simpler object as a
product of quantum integers. For our 2A, example we would have the dimension is
(1 i [r+107 g [r+2]r

Bl k217

obeyed for there to exist an exceptional auto-equivalence. By suitably bounding this
inequality we can then obtain strong restrictions on the rank and level of the category.
With this approach we are able to show that there are only a finite number of cases
where the inequality may hold. From here we can then directly search for X where the
condition

. This then gives us an inequality of quantum integers that must be

~dim(X)
(rlrklr+2]rk = m

holds. This yields a very small number of candidates for exceptional auto-equivalences.
When Staby, ., (X) is trivial, we search for objects X € C(81,,1, k) which satisfy

[r]rklr +2]px = dim(X).

Here there are many candidates for X. In particular, any object in [A; + A, ] will satisfy
this condition. However, when paired with the condition that X ¢ [A; + A,], we can
again reduce the list of candidates down to a finite list via similar techniques as before.
This case is a bit more fiddly than the case with non-trivial stabiliser group, as now we
have to carefully avoid the objects in the orbit of A; + A, however the technical details
remain the same.

In order to suitably bound the inequalities of quantum integers, we have to assume
that k > r + 1 in order to apply Lemma 2.6. To deal with the k < r + 1 cases, we use
level-rank duality to reduce it to the k > r + 1 case.

All together we can give a complete list of objects X € C(8l,,1,k) such that X ¢
[A1 + Ar] and such that

~dim(X)
(rlrlr +2]rk = [Staby, (X

From this finite list we then search for objects which satisfy the remaining conditions
of Lemma 4.1 to obtain an even smaller list.

Finally, we computer search the fusion rings of these remaining candidates, looking
for fusion ring automorphisms which preserve the twists of the simples. This yields the
main theorem of this section.

Theorem 4.2. Letr > 1 and k > 2 and m a divisor of r + 1 satisfying m? | k(r + 1) if r
is even, and 2m? | k(r + 1) if r is odd. Then except for the cases

C(812,16)Rep(zs)r  C(813,Rep(zs)s C(804:8)Rep (z4): C(8Ls,5)Rep (25>
C(§[3’4)(1){ep(24)’ C(§[9’3)0Rep(23)’ 0(3116’2)%@(22)’“”‘1 C(§I16’2)0Rep(24)’
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every braided auto-equivalence of C (81,1, k)(l)zep (Zm) is non-exceptional.
For the first four cases, we have that there are two possibilities for the group of braided
auto-equivalences:

EqBr (C(812,16)Rep(2,)) € {22,553}, EqBr(C(813,9)Rep(z)) € {D3, 54},
EqBr (C(8L4,8)Rep(z,)) € {D4,Sa}, and  EqBr(C(8Ls,5)pep (zs)) € {Ds:As}
For the remaining four cases, we have that
EQBr (C(8l8,4)Rep(z,)) = EABI (C(8L4,8)Rep(2,))>
EqBr (C(8L0,3)Rep(zs)) = BABr (C(8L3,9)Rep (z5)) X Z25
EqBr (C(8L16,2)Rep(2,)) = EABI (C(8L2,16)Rep (2,)) X Z2, and
EqBr (C(8L16:2)Rep(z4)) = EABr(C(8L2,16)Rep (2,))-

With the high-level arguments and end goal in mind. Let us proceed with the fine
details of the arguments. Let C (§[r+1,k)0Rep (Zm) be a category with an exceptional
braided auto-equivalence. Then by Lemma 4.1 we get an object X € C(8(,,1,k) sat-
isfying the conditions of the lemma. Our goal is show that r, k, and m are severely
constrained. We will have to split into several cases, depending on the stabiliser group
of X € C(8l,,1,k), and on the size of k compared to r + 1.

Case (Stabgz,,, (X) = r + 1). Let us first deal with the case where X has full stabiliser
subgroup, i.e. Stabz,  (X) = Z,.1. As |Stabz,,, (X)| divides k, we necessarily have
k > r + 1 in this case. From Lemma 2.10 we can deduce that

dim(X) > dim(24;), dim(X)>dim(6A;), and dim(X) > dim(3A3).

These inequalities hold when k > 2, k > 6, and k > 3 respectively. Recalling dim (X) =
[r]rk[r + 2]k, we get the inequalities

dim (2A dim (6A
sl s 2rac 2 TR 4+ 22 O
dim (3A
and [r]r,k[r+2]r,k2#-

Let us focus on this first inequality for now. As k > r + 1 in this case, we have that
k > 2 for all r > 1, and so this inequality holds in all cases. Expanding this inequality
with the hook formula and simplifying gives

3 (r+ D3]k 2 [r+ 15

The left hand side we can bound above by (r + 1) - 12 by Lemma 2.5, giving that the
above inequality can only hold if the weaker inequality
4 12(r+1) > [r+1]f,k

holds. Ask > r+1, we have thatr + 1 < 2(1+r+1+r) < 3(1+r+k), so we can
apply Lemma 2.6 to obtain the bound [r + 1], x > %1 This gives us the even weaker
inequality

48(r+1) > (r+1)*
which only holds if r < 47.
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For each r < 47 we still have an infinite number of k where the initial inequality
may hold. Let us return to the inequality from Equation (4). For each fixed r < 47,
the left hand side is constant, while the right hand side is an increasing function of k.
Therefore if we can find a smallest k for which this inequality breaks, then we know it
will also break for all larger k. This leaves us with a finite list of k for which the initial
inequality from Equation (3) can hold. Finally, we check each of these finite potential
solutions against Equation (3) to obtain an even smaller list of potential candidates.

We find the following finite list of potential solutions for r > 12.

r Potential k
12 13<k<68
13 14 <k<49
14 15<k<42
15 16 <k <38
16 17<k<35
17 18 <k <33
18 19<k<32
19 20<k<31
20<r<22|r+1<k<30
23<r<29 | r+1<k<29
r>30 (%]

Remark 4.3. We will repeatedly use the above trick in order to leverage an inequality
of quantum integers, into an explicit list of r and k where the inequality holds. To
summarise, we begin with an inequality left < right of quantum integers. We then
use the bound from Lemma 2.6 to bound the left equation below, and the bound from
Lemma 2.5 to bound the right equation above. These bounds remove the quantum
integers, and the resulting inequality gives an upper bound on r. We now return to the
equation left < right, but this time only bound the right hand side above, by a function
of . We plug each of our finite r into this inequality, giving a new inequality which
states that a product of quantum integers is less than some constant. As quantum
integers are an increasing function of k (once r is fixed), we can find the smallest k
which breaks the inequality, which tells us it also breaks for all larger k. At this point
we may find that no k breaks the inequality. When this happens we have to throw away
the r, and find a different inequality of quantum integers to deal with that particular r.
This leaves us with a finite number of r where the inequality may hold, and for some
subset of these 7, a finite list of k where the inequality may hold. To further the finite list
of k, we test each possible solution against the initial inequality of quantum integers.

For r < 11 there is no k where Equation (4) breaks. To deal with the case of r < 11
let us now consider the inequality

dim (6A1 )

dim(X) >
im( )_ r+1

Recall this inequality holds if k > 6. Assuming k > 6, we expand the above inequality
with the hook formula to get the inequality

[6]r,k[5]r,k[4]r,k[3]r,k[2]r,k[r]r,k(r+ 1) 2 [r+6]r,k[r+5]r,k[r+4]r,k[r+ 3]r,k[r+ 1]r,k-
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Playing the game from Remark 4.3 we find this inequality breaks for all k > 41. Hence,
the object X can only satisfy the dimension condition of Lemma 4.1 if k < max(6,41) =
41.

Together we have a finite list of 7 and k such that X could possibly have the correct
dimension. That is, if r < 11, then k < 41, and if r > 12, then k is one of the finite
number of values in the above table. This is still an unreasonable number of cases
to computer search through. For example C (8130, 30) has on the order of 10'¢ simple
objects. To refine our finite list of potential solutions further we run each solution of r
and k through the inequality

dim (3A3 )

+2 >
(rlrilr +2]rk 2 P

Recall this inequality only holds when k > 3. As k > r+1 in this case, the only situation
where this inequality doesn’t necessarily hold is ¥ = 1 and k = 2. However for these
values the inequality is still good (as the inequality simplifies to 1 > %).

This yields the following list of r and k, such that C(8l,,1, k) may have an object X
with Stabz,,, (X) = Z.1, and with % < [rlrklr + 2]k
Potential k
2<k<40
3<k<40
4<k<40
5<k<15
6<k<8

7

>7 %]

ST O R W

From this small finite list, we can computer search to find all objects X € C(8ly.1,k)
such that ¥ _ ] [r + 2], . This yields the following result

r+1

Lemma 4.4. Letr > 1, and k > r + 1. There exists an object X of C(8(,,1,k) with
dim (X . ,
Hrri(l ) - [rrxlr + 2]k if and only if

(1) r=1and k = 16, in which case X = 8, or
(2) r=2andk =9, inwhich case X = 3A1 + 3/A,, or
(3) r=4and k =5, inwhich case X = Ay + Ay + Az + Ay.

Case (k > r +1 and |Stabz,, (X)| ¢ {1,r + 1}). Let us now consider the case where
k > r+1, and |Stabg,,, (X)| ¢ {1,r + 1}. We can immediately assume that r > 3, as
if r € {1,2}, then there are no possibilities for |Stabz,,, (X)| which must divide r + 1.
Hence we can also assume that k > 4.

As|Stabz,,, (X)| ¢ {1,r + 1} and r > 3 we have 2 < WM <r-1. Ask>4,
we can use Lemma 2.10, along with Lemma 2.9, to see that

dim (X) 2 dim (3A 1 ) 2 dim (3A2).

We expand this inequality as

| Stabz, ., (X)|[41rk[317 k[217 4 = [r+ 102, [r + 2] riclr + 3]k
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As |Stabg,,, (X)| < ™!, we can bound the left hand side above to get the weaker
inequality

r+1

©) T[“]r,k[?’]i,k[ﬂik >[r+ 1]3,1{[" + 2] k[ + 3] k-

Asr > 3, we have that
3 3
r+1,r+2,r+3§Z(1+r+1+r)§1(1+r+k).

Thus we can apply Lemma 2.6 to get the lower bounds

r+3 r+2 r+1
[r+3]r’k2T’ [r+2],,sz, and [r+1]r’sz.

With these bounds, we can use the methods described in Remark 4.3 to obtain a
finite list of solutions. We can ignore the r = 4 and r = 6 cases, as in both these cases
r + 1is prime, and so |Staby,, (X)| must be either 1 or r + 1.

This yields the following list of r and k, such that C(8!,,1, k) may have an object X
with Stabz, , (X) ¢ {1, + 1}, and with % < [rlrklr +2]rk-

r | Potential k
3 4<k<9
5
r

6<k<7
>6 1%}

From this small finite list, we can computer search to find all objects X € C(81y41,k)
such that % = [r];k[¥ + 2]y k. This yields the following result
Lemma 4.5. Letr > 1, k > r + 1, and m a divisor of r + 1 such that m? | k(r + 1) ifr is
even, or such that 2m? | k(r+1) ifr is odd. There exists an object of X € C(81,,1,k) with
dim (X . ;

|Stabz,, (X)| ¢ {1,r +1} and % = [rlyx[r + 2],k if and only if

(1) r=3, k=8, and m =2, in which case X € [4A;], or

(2) r=3,k=8, and m = 4, in which case X € [4/;].

Case (| Stabz, , (X)| = 1). We now have to deal with the case where the object X has
trivial stabilizer group. The difficulty here lies in the fact that many objects close to
the corners of the Weyl chamber have trivial stabilizer subgroup, and are of small
dimension. In fact, the object 2A; (nearly always) has trivial stabilizer group, and
has dimension smaller than [r],k[r + 2], . The objects X € C(8l;.1,k) such that
dim (X) = [r]yk[r + 2]k are classified in Appendix A (Proposition A.1).

Case (k < r +1). We now have to consider the case where the level is small compared
to the rank, i.e. k < r + 1. Using level-rank duality we can reduce this argument to the
k >r+1 case.

There are many interpretations of level-rank duality (see [54]). For us, we only need
a weak version, which relates the dimensions of objects in the categories C(8(,,1,k)
and C(8ly,r +1). Given an object

.
X =Y 2iAi € C(8Lr41,k),
i=0
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we can form the r X k Young tableaux

r r
T(X) = (Z/li,Z/li, ---,/lr) .
i=1 =2
Taking the transpose of this tableaux gives a k X r tableaux. Initially this presents a
spanner for a level rank-duality connection, as the objects of C(8l, r+ 1) are identified
by (k- 1) x (r + 1) tableaux. Thus level-rank duality at first glance appears to give a
connection between C(81,.1,k) and C(3lk.1,r). However this connection is superfi-
cial at best, and only shows the ranks of the two categories are equal. Instead we will
restrict our attention to objects X € C(81,,1,k) with 1p # 0. With this restriction, the
tableaux T(X) can be considered as an r X (k- 1) tableaux, and thus the transpose can
be identified with an object of C(8ly,r + 1). We write X7 for this transposed object of

C(8lk,r +1). Explicitly we have that

k
X" =" XeAe,
£=1
where
j-1
le=1<j<r:> Ai=k-¢|.
i=0

Using the hook formula, along with the fact that [n],x = [1 +r + k — n]i ,, we see

that
dim(X) = dim(x7).

In order to apply level-rank duality arguments to study the exceptional auto-
equivalences of C(8,,1, k)(l)zep (Zm)> WE need to understand how the stabiliser group
Stabz,, (X) is affected by level-rank duality. There is a subtlety here in that m doesn’t
necessarily divide k, and so talking about Stabz, (XT) doesn’t make sense. We solve
this problem, and resolve the subtlety in Lemma 4.6.

Lemma 4.6. Let m be a divisor of r + 1, such that m? | k(r +1) if r is even, or such that
2m? | k(r+1) ifris odd, and set m" = gcd (k,m). Then we have isomorphisms

Stabz,, (X) = Stabz_, (X) 2 Stabz_, (XT).
Proof. We will first show that
Stabz,, (X) = Stabz_, (X).
Suppose that Stabz,, (X) = Z4, then we have that

r+1

Nd&

X =

+i*

d
i 2 Ay
2,42,

1

This implies that d divides k, and therefore Stabz_, (X) = Zg.
For the second isomorphism we want to show that

Stabzm, (X) = Stabzm, (XT) .
Suppose Stabz,, (X) = Z4. Then

Il
—

Ai = Aiorgt
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for all i € Z,. This implies that for any j € Z, we have

J 1+r+1

IR

To prove the claim of the lemma, we have to show that

Ae = ié’+ ’

alx

for all ¢ € Zy.
Suppose we have 0 < j < r contributes to A,. That is

j-1
Didi=k-e.
i=0
Then we have that
+1 .
_T_ j-1 j-1 k
Z Z i=k-€-=,
= £=0 R | d
- i=j-
and so j — ﬂ contributes to /ié ik This implies that
Ae = /1€+§
and hence we have the result. O

Now suppose k < r + 1, and let m a divisor of 7 + 1 such that m? | k(r +1). Let X be

an object of C(8!,.1, k) with Stabz,, (X) = Z4 for some d, with dim (X) = %,
By hitting X with a suitable simple current, we can assume that 4o # 0, and thus we

can apply level-rank duality to get an object X € C(81,r + 1) with

. [r]rk[r+2]rk
dim (XT) = ==t 2
4= [stab,,., (7

Furthermore, we note that if X € [A; + Ax], then X € {A; + Ay, (k=2)A1 +Ag, Apq +
(k=2)Ar} C[A1+Ar]

Together with Lemma 4.4, Lemma 4.5, and Proposition A.1, which tell us the objects
X € C(3ly41,k) with Stilbmi% [r]rk[r + 2],k when k > r + 1, we can use level-rank
duality to extend this result to all k > 2. From this finite list, we can directly search for
objects that satisfy the remaining conditions of Lemma 4.1. Namely, we consider the
subset of objects X with the same twist as A; + A, and such that X* € [X]. This yields
Lemma 4.7.

Lemmad4.7. Letr > 1, k > 2, and m be a divisor of r+1 such that m? | k(r+1) ifr is even,
or such that 2m?* | k(r + 1) if r is odd. There may exist an exceptional auto-equivalence
of C(8Ly41, k)ORep (2m) Ny in the following cases:
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C ‘ Image of Q
C(812,16)R 1 (2, (8A1, xn) :NEZ,
C(§I3,9)°Rep(23) (3A1 +3A2, xn) :NEZ;
C(§I4,8)‘O)Rep(zz) (4M2, xn) N EZ,
C(§[4’8)(1)2ep(22) (4/\1 + 4A3,){n) ‘neZ,
C(§I4, 8)Rep(Z4) (4A2,){n) IneEZ,
C(815,5)Rep(zs) | (A1 + A2+ A3+ As, )xn) iNEZs
C(§I8’4)§ep(zz) (2A4, xn) NEZ,
C(§18’4)Rep(24) (2[\4,)(”) InNEeZ,
C(§I9’3)(l){ep(23) (A3 + A6’Xn) InE”Z;
C(§116,2)§ep@2) (Ag, xn) :nE€EZ,
C(§I16’2)Rep(l4) (Ag,)(n) INEZ,

Now that we have this extremely small finite list of candidates for exceptional
braided auto-equivalences of C(81,,, k)%ep(zm), we can explicitly search the fusion
rings of these candidates to see if the exceptional braided auto-equivalence exists at
the level of the fusion ring. Additionally, we check that the fusion ring automorphisms
preserve the twists of the simple objects. We obtain the explicit data for these categories
from the results of [23]. The idea behind [23] is to use the free module functor to use
the given knowledge of the modular data of C to determine as much about the S-matrix
and twists of Cgep (Zm) 38 possible. This functor completely determines the twists with
no ambiguities. The ambiguities in the S-matrix regarding objects which split in the de-
equivariantisation are then resolved using the standard modular data relations (such
as (ST) = S?). The fusion rules can then be determined via Verlinde. The ranks
of the categories C(802,16)Rep (7,): C(813,9)Rep (25 C (814, 8)Rep (2, C (814, 8)Rep (2,
and C(8ls, 5)(1)2ep(zs) are 6,9, 50,16, and 10 respectively. The remaining relevant data
can be found in Mathematica files attached to the arXiv submission of this paper.

From the results of the previous section, we know precisely the non-exceptional
braided auto-equivalences of all of the categories C(8(,.1, k)%ep (Zm)* This information
helps us in two ways. First, we know that for all cases except for the finite excep-
tions in the above list, all braided auto-equivalences are non-exceptional, hence we
now fully understand their braided auto-equivalence groups. Second, we also know
the braided auto-equivalences which fix the object Q of the finite number of excep-
tions in the above list. Via compositional arguments, this allows us to rule out many
potential exceptional auto-equivalences of these categories. This allows us to essen-
tially determine the group structure of the braided auto-equivalence groups, up to the
exceptional auto-equivalences existing.
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Lemma 4.8. We have that
EqBr (C(8l2,16)Rep(z,)) € {Z2, 53}, EqBr (C(8L3,9)Rep(zs)) € {D3» 4}
EQBr (C(8L4,8)Rep(z,)) € {D2}, EQBI (C(8L4,8)Rep (z4)) € {Da:S4},
EqBr (C(8Ls, 5)Rep(zs)) € {Ds»As}.

Proof. From the results of [23] we have the fusion rings and twists of each of the five
above categories. We compute the group of fusion ring automorphisms which preserve
the twists. We will refer to these groups as the braided fusion ring symmetries.

For C(8l4, 8)°Rep(zz) we see that every braided fusion ring symmetry is non-
exceptional, thus EqBr(C(8l4, 8)%ep(zz)) = D, by Theorem 3.2.

For the case of C(31,, 16)%ep (2,) We have that the braided fusion rings symmetries
form a group isomorphic to S3, with generators

(8A1, x0) < (8A1, 11),

and
Qo (8/\1,){0).

From Theorem 3.2 we know that the first generator is realised as a braided auto-
equivalence of C(812,16)3,, 7,)- Thus EqBr (C(8l2,16)R,, ,,)) isan intermediate sub-
group of Z, and S3. There are only two such intermediate subgroups which are the end
points.

For the case of C(3l3, 9)%ep (z) We have that the braided fusion rings symmetries

form a group isomorphic to Z, X S4, with generators
(3A1,1) > (3A2,1) , (3A1 +3A2,}(1) > (3A1 +3A2,){2),

and
(3A1 + 3A2,)(0) g (3A1 + 3A2,){1) g (3A1 + 3A2,){2),
and
Q- (3A1 + 3A2,)(0) - (3A1 + 3/\2,)(1) g (3A1 + 3/\2,){2).

From Theorem 3.2 we know that the first two generators are realised as braided
auto-equivalences of C (813, 9)0Rep (25)" and form a group isomorphic to D3. Further,
this theorem tells us that any braided auto-equivalence which fixes Q must be in the
subgroup generated by the first two generators. Thus EqBr (C (315, 9)°Rep (ZS)) is an in-
termediate subgroup of D3 C Z, X S4 with the property that if Q is fixed by an auto-
equivalence, then this auto-equivalence lives in the D3 subgroup. With this knowledge,
we can study the intermediate subgroups of D3 C Z, X S4 to see that there are only two
such subgroups with this property. These are D3 with the first two generators, and S4
with the first two generators, and the new generator

Qo (3/\1 + 3/\2,){0) , (3/\1 + 3A2,}(1) > (3/\1 + 3/\2,){2).
Thus EqBr(C (813, 9)°Rep(23)) is isomorphic to either D3 or Sy.

The remaining two cases fall to the same argument. For C(314, 8)(1)2ep(z4)
of braided fusion ring symmetries is Z, X S4. We have that the generators

the group

(4/\2,)(0) > (4/\2,)(1) . (2A1 + 2A2 + 2/\3,)&) d (2A1 + 2A2 + 2A3,){i+1)
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and
(2A1 + Az, 1) > (A2 + 2A3, 1) . (2/\1 + 2[\2 + 2/\3,){1) > (2A1 + 2[\2 + 2A3,){3)

form a D4 subgroup of EqBr (C (3814, 8)0Rep (Za) ), and that any braided auto-equivalence
which fixes Q must be in this subgroup. Analysing the subgroup structure between D4
and Z, x S4 shows that at most there can be one more generator

Qo (4[\2,){0) , (2A1 +A2,1) d (2A1 +2A2+2A3,){0)
- (A2 + 2A3, 1) = (2A1 + 2A2 + 2A3,}(2)
in the braided auto-equivalence group, which would form a group isomorphic to Sy.

Thus EqBr(C (84, S)ORep(Z4)) is either isomorphic to D4 or Sy.

Finally for the case C(8ls, S)ORep(Zs) we have that the group of braided fusion sym-
metries is Sg. We have that the generators

(A1 +A2 +A3 +A4,)(i) =4 (Al +A2 +A3 +A4,)(i+1)

and
(A1 + Az + A3 + A4,)(i) =4 (A1 + A2 + A3 + A4,)(,l')
form a Ds subgroup of EqBr (C(3!s, 5)(1’{ep @s) ), and that any braided auto-equivalence

which fixes Q must be in this subgroup. Analysing the subgroup structure between Ds
and S¢ shows that at most there can be one more generator

Qi (M +MA+A35+A4,01) = (A1 + A2+ A5+ Mg, X0)s
(Al +A2 +A3 +A4,){2) [ (Al +A2 +A3 +A4,)(3) (g (Al +A2 +A3 +A4,){4)

in the braided auto-equivalence group, which would form a group isomorphic to As.
Thus EqBr (C(81s, 5)(1)2ep(zs)) is either isomorphic to Ds or As. O

To finish off the proof of the main theorem of this section, we need to deal with the
remaining four cases. These can be dealt with easily by a level-rank duality argument.

Proposition 4.9. We have the following braided equivalences:
C(8L162)Rep(z4) = (C(812,16)Rep,7,))™ W Ve (25, {1,e2’”%}) :
C(8L16,2)Rep (22

~ (C(8l,, 16)%ep(zz))m |Z|Vec(Zg, {1, ezni%,ezm%,ez’”%, l,eZ”i%,eZ”i%,eZHi% }) ,
C(§[9’3)0Rep(z3) ~ (C(§I3,9)0Rep(z3))”" &Vec(Z3, {l,ezm%,ezm%}), and
C(8Ls,4)Rep(zy) = (C(8La.8)Rep z))" B Vee(Z2, {1,674} ).

Proof. Let us do the computation for C(81s, Z)ORep(Z4)’ as the other cases follow in a
similar fashion.
From Lemma 2.20 we know that C (81, 2)(1’2ep (24) has a subcategory braided equiva-

lent to (C(8L16,2)*)rep(z,)- Via level-rank duality [54], we have a braided equivalence
C(8116,2) > (C(812,16)™)™".

Thus together we have a braided subcategory of C(8ls, 2)0Rep a) equivalent to
((C(812,16)**)™ ) Rep(z,)- Taking the reverse braiding on the category commutes with
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taking the de-equivariantisation (as Rep(Z;)™" = Rep(Z2)), thus we have a subcate-
gory braided equivalent to (C(8l2,16)Rep (7,))""- AS (C(812,16)pe) 1,))™" is modular,
Mugers theorem [49, Theorem 4.2] gives us that the category C (81, 2)0Rep(Z4) factors
as

) rev

C(8116,2)Rep (z4) = (C(8L2,16)Rep (2,))* KD,
where D is a modular category with global dimension 2. To identify D we study the
object ([2A;2],1) € C(§I16,2)°Rep(z4). The twist of this object is ¢¥™i%, and the or-
der of the object is 2. Thus ([2A;],1) generates a modular subcategory equivalent to
Vec (Zz, e2is ) As the category C(31,, 16)%ep (z,) has no non-trivial invertible objects,
we must have that ([2A;], 1) generates D, which completes the claim. O

Corollary 4.10. We have
EqBr (C(8L162)Rep(z4)) = EABI(C(8L2,16)Rep (2,))s
EqBr (C(8L16:2)Rep(2,)) = EIBI (C(8L2,16)Rep (2,)) X Z2s
EqBr (C(8L9,3)Rep (z5)) = EABI(C(813,9)Rep(z,)) X Z2, and
EqBr(C(§I8,4)%ep (z4)) = EqBr(C(8l4, 8)(1)2ep(Z4) ).
Proof. We use the canonical embedding
EqBr(C) x EqBr (D) — EqBr(C X D).
By analysing the fusion rings and twists of the Deligne products from Proposition 4.9,
we see that this embedding is an isomorphism. O
5. REALISATION OF THE EXCEPTIONALS

In the previous section we identified a finite list of the categories C(81,.1, k)ORep @m)
which may have an exceptional braided auto-equivalence, and furthermore, gave upper
bounds for the number of such auto-equivalences that may exist. In this section, our
goal is to construct all the exceptional braided auto-equivalences of these finite number
of categories. That is, we want to compute the braided auto-equivalence groups of the
categories

C(§I2’16)0Rep(22)’ C(Q’I3’9)0Rep(23)’
C(§[4’8)(1)2ep(24)’ and C(§IS’5)(1)2ep(Zs)'

While it is not immediate from the above list, there are two situations in play here.
The first is for the category C(815, 16)0Rep (25)° where the exceptional auto-equivalences
come from the coincidence of categories

C(808,3) = (C(812,16)Rep (z,))" " I C(805,1).
0

The S3 worth of braided exceptional auto-equivalences of C(81,, 16)Rep ) is then nat-
urally seen due to the triality of the Dynkin diagram D,. This connection was initially
discovered in [47].

Lemma 5.1 ([47, Theorem 4.3]). We have

EqBr (C(802,16)%ep 25 ) = S5
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The far more interesting situation occurs with the other three categories. Studying
the dimensions of these three examples, one notices that they are all defined over small
quadratic fields. For C(803,9)gep (7, the dimensions live in Q[V/3], for C(8L4, 8)Rep (z)

the dimensions live in @[v/3], and for C(8ls, 5)R,, () the dimensions live in Q[v/5].
Such behaviour with the dimensions does not hold for general C(31,,1, k)ORep (Zm)’ and
suggests that these dimensions may have something to do with the potential excep-
tional auto-equivalences of these categories.

Alarge class of categories with objects living in quadratic fields is the quadratic cat-
egories, where the simple objects consist of the group of invertibles, and an object p,
along with the orbit of p under the action of the invertibles. The natural suspicion to
draw is that the three categories C(8(3, 9)0Rep(23), C(8ly, S)ORep(Z4)’ and C(8[s, 5)(1){ep(25)
should in some way be connected to quadratic categories. The naive guess, that these
three categories are quadratic categories on the nose, is immediately thwarted by fact
that the dimensions in these examples take on more than two values. Further, qua-
dratic categories are almost never modular, whereas our three examples are. However,
this lack of modularity suggests the next place to look for a connection.

Taking the Drinfeld centre of a quadratic category gives a modular category whose
dimensions lie in the same field as the quadratic category. While in the quadratic cate-
gory, the dimensions of the simples can only have two possible values, the dimensions
of the simples in the centre can be any integer combination of 1 and the dimension of
the non-invertible of the quadratic. This provides strong evidence that the three cate-
gories C(813,9)ep (z3)> C(814,8)Rep (2, a0 C(8Ls,5)Re 7,y May be related to Drin-
feld centres of quadratic categories.

Now that we have an idea of what to look for, we can make educated guesses as to the
identity of the quadratic categories. For example, the dimensions of C(8l3, 9)%ep(23)
are

1, 7+4/3, 8+4/3, and 3+2V3 (6times).

I£C(313,9)Rep (zs)
for the dimension of the non-invertible would be 3 + 2\/§, as all the above dimensions
can be constructed as integer combinations of 1 and 3 + 2./3. There is a known qua-
dratic category with an object of this dimension, which is a near-group category with
group of invertibles Z3 = {1,g,g*}, and a single non-invertible with fusion

were the Drinfeld centre of a quadratic category, then a natural guess

PRP=1HgD g @ 6p.

The global dimension of this category is 24 + 121/3, so the global dimension of its
Drinfeld centre is 1008 + 576/3. Whereas the global dimension of C (§I3,9)0Rep @)

is 336 + 192/3. These global dimensions are off by a factor of three, which suggests
a Z5 factor is involved. From all this we conjecture that there is a quadratic category
C3,0,3 with fusion as above such that

izl izl
Z(C3,9,3) ~ C(§[3’9)(l)2ep(23) &VGC(Z3, {1,621713,62”13 })

Using similar reasoning we conjecture the existence of a fusion category C4 5,4 With
invertibles Z, X Z, = {1,e,m,em} and non-invertibles {p, mp} with fusion

PR®p=1Ped 6p D 4mp,
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such that
Z(C4,8,4) ad C(§[4, S)ORep(Z4) & Vec (Zz X Zz, {1, ezm% ,—1, eﬁn% }),

and a fusion category Cs s 5 with invertibles Z, X Z, = {1, e, m,em} and non-invertibles
{p,ep, mp,emp} with fusion

PR®P=1®p®ep®mpdemp,
such that
Z(Cs5,5) = C(8Ls,5)Rep (z5) B Vec(Z2 X Z5,{1,-1,-1,-1}).
We make all this precise with Theorem 5.2.

Theorem 5.2. There exist unitary fusion categories Cs 9,3, C4,8,3, and Cs 5 5 with combi-
natorics as above, such that

Z(C303) =~ C(§I3,9)%ep(z3) &Vec(z3’{l’eZiﬂ%’ezin'%})’
Z(Cag,4) = C(§I4,8)%ep(z4) X Vec(Z, X Z,, {1’e2iﬂ%’ —l,eZi”%}), and
Z(Cs55) = C(81s, S)ORep(ZS) X Vec(Z, X Z5,{1,-1,-1,-1}).

Proof. Let us begin with the case C (§I3,9)°Rep (z5)- 1t is well known that there is a
conformal inclusion SU(3)y C (Eg); which induces a commutative algebra object
A € C(813,9). The category Mod (C(813,9),A) is then a unitary fusion category, as
described in [8, Figure 4]. The category Mod (C(813,9),A) is Z3-graded. Let C3 93 be
the trivially graded subcategory of this grading.

By [3, Corollary 4.8] we have that
Z(Mod (C(813,9),A)) ~C(8l3,9) X (Mod (C(8!3,9),A4)°)™".
For this particular case, we have that
Mod (C(813,9),4)° = C(eq, 1) = Vec(Zs, {1,273, 6373 }).

Now the results of [31] allow us to compute the Drinfeld centre of the subcategory
C3,9,3 in terms of the Drinfeld centre of Mod (C(8!3,9),A). This gives that

Lo
Z(C3,03) = C(813,9)Rep z,) W Ve (Zs, {1,€775,7731)

as desired.

The case of C(8l4, 8)‘1){ep a) is almost identical, except now we use the conformal
inclusion SU(4)s C Spin(20);. The structure of the associated algebra object, and
category of modules, can be found in [10, Section 2.6].

The case of C(81s, 5)%ep s) should follow in the same manner, where now we work
with the conformal inclusion SU(5)s C Spin(24),. However, the author was unable
to find a suitable description of the category of modules in this case. Instead we have
[64, Theorem 3.2] which proves the precise statement in this case. They show that Cs s 5
is the even part of the 32222 subfactor. O

With these alternate identifications of the categories C(§[3’9)(1)2ep(z3)’

C(814,8)Rep(z,)» a0d C(8Ls,5)pe 7, identified, we now have the tools to construct
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their exceptional braided auto-equivalences, and hence determine their braided auto-
equivalence groups. We are able to complete this for the cases C(§I3,9)0Rep ) and

C(81s,5)Rep z5) in this paper. Let us begin with C(813,9)%¢p (7,)-

Lemma 5.3. We have
EqBr (C(83,9)Rep(z5)) = Sa-

Proof. From Theorem 4.2 we have that EqBr (C(8!3, 9)0Rep(z3)) is either D3 or S4. By
analysing the fusion rings and twists of

Z(C393) = C(813,9)%ep 2,y B Vee (Zs, {1,€275, 273},
we see that
EqBr(Z(Cg,9’3)) = EqBI' (C(§I3, 9)0Rep(Z3)) X Z;.
It is proven in [37, Section 10.6] that Out(Cs,93) = D4. From [45] we have an embed-
ding
Out(Cs9,3) > EqBr(Z(Cs,3)).

Thus EqBr (C (813, 9)0Rep (23)) X Z; has a subgroup isomorphic to Dy4. This is only pos-
sible if EqBr (C(83,9)Rep (z5)) = Sa- O

We now deal with the case of C(31s, 5) This case has been examined in the

literature previously [32,64].

0
Rep(Zs)*

Lemma 5.4. We have
EqBr(C(§I5, S)%ep (ZS)) = AS.

Proof. From Theorem 4.2 we have that EqBr (C(8ls, S)ORep(Zs)) is either Ds or As. By
analysing the fusion rings and twists of

Z(CS,S,S) =~ C(QIS’ S)ORep(ZS) @ VeC(ZZ X ZZa {1’ _1’ _1’ _1}),

we see that
EqBr(2(Cs;s,s)) = EqBr(C(8Ls, 5)Rep(zs)) X S3-
It is proven in [38, Theorem 9.4] that Out(Css5) = As. Thus EqBr(C(8ls, 5)(1)2ep(z;,)) X

S3 has a subgroup isomorphic to A4. This is only possible if EqBr (C(3ls, 5)%ep (Zs)) =
As. 0

Unfortunately we are unable to use the quadratic category C4 s 4 to construct the ex-
ceptional braided auto-equivalence of C(3l4, 8)%ep (Z4)" This is because an explicit con-
struction of the quadratic category Cs 5 4 has yet to be given. One way to construct this
category is via the Cuntz algebra method, where it will be realised as endomorphisms
on the C*-algebra Oy, X Z,. The large multiplicity spaces of the quadratic category
C4,8,4 mean that this method required solving for roughly 1700 complex variables in
20000 polynomial equations. This makes the problem too complex, even for modern
computer algebra programs.

Instead we construct the exceptional braided auto-equivalence of C(3l4, S)ORep(Z4)

using a coincidence of categories to connect it to 8og, similar to the C(8[,, 16)(1)2ep(zz)

case. Recall that 814 is isomorphic to 80s. Hence the category C(314,8) can be viewed as
C(806,8). Now level-rank duality will give a (non-trivial) connection between C(30, 8)
and C(8pg, 6). Via this connection we can pull back the triality of $0g in order to obtain
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gn order 3 auto-equivalence of C(814, S)ORep(Z4)’ which forces EqBr (C (814, 8)%ep (24)) =
4.

Let us expand more on this connection between C(80¢, 8) and C(3ps, 6). These cat-
egories have different ranks, so even as abelian categories they are not equivalent.
Thus there are several steps we must take to get some sort of equivalence. First let
CV(30n, k) be the Z,-graded subcategory of C(8on, k) generated by the “vector rep-
resentation” A;. To get “orthogonal categories”, where level-rank duality applies, we
have to “add in” the determinant representation by taking the Z,-equivariantisation
via the D, Dynkin diagram symmetry. This gives us the braided equivalence

CVeC(§D6’ 8)22 ~ [Cvec(éﬂg, 6)22]—rev.

Here —rev means to take the reverse braiding, and to negate it on the non-trivial piece
of the grading. However this equivalence doesn’t preserve the determinant representa-
tions, so we can’t de-equivariantise by a single Rep (Z,) subcategory to obtain a braided
equivalence. Instead we must de-equivariantise by the maximal Tannakian subcate-
gory. This gives us a braided equivalence

C(§D6’8)(1){ep(zz) = Cvec(§06’8)(8/\1) = [Cvec(§08’6)(6/\1)]7rev = [C(§08’6)0Rep(22)]7rev'

However triality doesn’t preserve the (8A;) subcategory of CV*°(80g,6), so it won’t
descend to [C(80og, 6)(1’{ep (ZZ)]‘reV. Thus we have to take local modules with respect to
the remaining Rep (Z,) subcategory to get

C(§D6’ S)ORep(Z4) =~ [C(QDS’ 6)(1)1ep (ZZXZZ)

Triality now preserves the Rep (Z, X Z,) subcategory of C(30s,6) and hence descends
to give us an order 3 auto-equivalence of C (30, S)ORep(Z4) =C(8ls, S)ORep(Z4)'
To make this all precise we begin with Lemma 5.5, which formalises type D-D level-

rank duality.

:| rev

Lemma 5.5. Let N and k be even integers. We have a braided equivalence
C(80N,K) {iny) = [C(80k, N) {ya,y] 7"
Proof. Let
Xn k= (A1, +) € CV* (30N, k)72,
and
XiN = (A1, +) € CV*(80k,N)*2.
From [60] we have that

27T =L 2771 - N=1
PXN,k = BMW (e AN+D) o E(NAR-D) |,

and

i1 i k1
PXk,N = BMW (e TN | o T AN D) )’

where BMW(q, ) is the semi-simplified planar algebra generated by a single crossing
and the Kauffman relation (see [60, Section 7], [18, Definition 2.12]). It is routine to

verify that
AKX
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gives an isomorphism of planar algebras
Pxnx = Pxin-
Via [34, Theorem A] this induces a braided equivalence
CY* (80N, k)72 — [CV*(80k, N)P2] ™.
Let us define the two groups
GNk = InV(Cvec(é’aoN,k)ZZ) ={(1,+), (1,-), (kAy,+), and (kA1,-)},
and
Gin = Inv([CV* (80, N)P2] ™) = {(L,+), (1,-), (NAy,+), and (NAy,-)}.

The above braided equivalence will preserve the group of invertibles, so we have that
it maps Gy k to Gk, N

As kA; and NA; are symmetric objects in their respective categories and have trivial
twist (these facts require both N and k even), we get that

Rep (Gn.k) € Z2(CY** (30, k)"2),
and
Rep(Gr.N) C Zo([CV* (80, N) 2] ™).
Thus we can de-equivariantise to obtain a braided isomorphism
Cvec(éoN,k)ﬁp(GN’k) - [CV‘”(Q,ok,N)Zz]‘ng(Gk’N).
From [13, Theorem 4.9] we have that ((1,-)) generates a copy of Rep(Z,) C
CVe(8on, k)72 (resp. [CV*¢(80k, N)?2] ™), and that de-equivaraiantising C¥*(8oy, k)2
(resp.  [CV*(80k,N)%2]7™) by this copy of Rep(Z;) recovers CY*(80n,k)
(resp. [CY*°(30k,N)]™") up to braided equivalence. As ((1,-)) is normal in Gy i

and G n respectively we can use the above fact, along with [48, Proposition 4.12], to
get braided equivalences

CveC(QDN, k)?ep(GN,k) ~ Cvec(QDN, k)(kAl)’
and
[Cv“(ﬁvk,N)Zz]’R?S(ck,N) =~ [CY**(80k, N) (WA, -

As C(8on, k) is modular, and CV*(8oy, k) is the adjoint subcategory with respect to a
Z,-grading on C(8oy, k), we have that CV*(8on,k) = Z,(C(8on, k), H) for some H C
Inv(C(8on,k)) (this is a consequence of the isomorphism Inv(C) = U/(C) [19, Propo-
sition 4.14.3]). From the modular data of C(30x, k) we can see that kA; is symmetric in
C¥*¢(30n, k), and the invertibles kAx and kAx_1 do not centralise A; € C¥*¢(30n, k).
Thus H = (kA;), and so C¥*¢(8on, k) =~ Z»(C (80N, k), (kA1)). This implies that

C(80N, k) (kay) = CV (80N, k) kay) -
The same argument works to show that

C(80k,N) (g = CV (80K N) (N ay)»
which completes the proof. O

As a corollary we get our desired exceptional braided auto-equivalence.
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Corollary 5.6. We have
EqBr (C(8L4,8)Rep (z4)) = S4-
Proof. Via a coincidence of Dynkin diagrams we have
C(814,8) =~ C(806,8).
Thus Lemma 5.5 gives a braided equivalence

C(§[4’ 8)(1)2ep (z2) = [C(§089 6)(1)2ep(22)]_rev'

By taking local-modules with respect to the remaining Rep (Z, ) subcategory we obtain

C(§I4’8)(1)2ep(24) = [C(§08’6)0Rep(lzxzz)]_rev = [C(§08’6)(1){ep(zzxzz)]rev'

The triality of the D4 Dynkin diagram induces an order 3 braided auto-equivalence of
C(80g,6) ™ by [18, Corollary 2.7]. This auto-equivalence preserves the Rep(Z, X Z,)
subcategory, and thus descends to [C (608,6)%ep (szzz)]re". To see that this braided
auto-equivalence is non-trivial, we observe that triality will send

2A1 - 2A3
in C(80g,6) ™, which implies that the induced braided auto-equivalence will map
Fzaxzy (201) & Fzyxz, (2A3)

in [C(80g, 6)°Rep(zzxzz)]re". However the two objects 2A; and 2A; are not in the same
orbit under the simple currents of C(80g,6)™" which implies

fzzxzz(ZAI) # fzzxzz(2A3).

Thus the induced braided auto-equivalence of [C(30s,6)
Recall from Theorem 4.2 that EqBr (C (814, 8)‘1){ep Za)

there exists an order 3 braided auto-equivalence of C (814, 8)‘1){ep (z4)> We can only have
the latter option. O

0 rev ; ..
Rep (Z2xZ3) ] is non-trivial.

) is either D4 or S4. As we know

APPENDIX A. COINCIDENCES OF SMALL DIMENSIONS

By Terry Gannon
In this appendix, we prove the following result regarding coincidences of dimen-
sions in the categories C(81,,1, k).

Proposition A.1. Let X be a simple object of C(8L,.1, k) such that dim (X) = dim (A; +
Ay). Then either X € [A1 + Ar], or

(r,k)=(8,3),(8,15) and X €[As], or

(r,k)=(2,9),(14,9) and X e€[3\4], or
(r,k) =(3,6),(5,4) and X €[2A;], or
(r,k)=(7,4),(7,6) and X €[A4], or
(r,k)=(3,8),(5,8) and X e[4A].

The main technical tool we use to prove this result is Lemma A.2, which allows us
to shuffle around the Dynkin labels of a simple object X to decrease its dimension.
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Lemma A.2. Let X = Y;_, AiA; be a simple object of C(8Ly,1,k). For any two indices
0<j,l <r, andintegers 0 < cj < Aj and 0 < ¢; < A; we have that

dim (X) > min (dim (X - ¢jAj + ¢jA),dim (X + ¢;Aj — c1A})),
with equality if and only if cj = 0 or ¢; = 0.

Proof. Note that we can write

c cj
X = —L (X —¢jAj+cjiA)) + —1—(X + c1Aj - ciA).
cjte cjt+c
Thus the result follows immediately from Lemma 2.3. (]

With this tool we can now prove Proposition A.1.

Proof. Let X be a simple object of C(38L,.1, k) such that dim (X) = dim(A; + A,). First
assume that more than three of the labels A; are non-zero. Pick two of these non-zero
labels 4;,4;. Then Lemma A.2 tells us that either X — A;A; + jA; or X + LA — LA
has dimension less than or equal to X. Hence we get an object X' € C(8!,,1,k) with
dim(X') < dim(A; + A;) and with one less non-zero label than X. By repeating this
process we can assume that dim (X) < dim(A; + A;) and X has at most three non-zero
labels.

Now suppose X has exactly three non-zero labels. By applying a simple current
symmetry we can assume that X = 190Ag + 43Aq + ApAp. By applying Lemma A.2 with
co=Ap—1landcq =1, — 1 we get that

dim (X) > min (Aq + ApAp, (Ao + g — 1)Agq + ApAp).
By repeating this process with the 4, label and applying a simple current symmetry
we get that dim (X) > Ay + Ay for some 0 < a’ < b, with equality if and only if X €
[Ag’+Ap ] Bylevel-rank duality we have that dim (Ag +Ap ) = dim ((b'-a’)A1+a’Az).
By applying Lemma A.2 several times we obtain
dim((b'-a")A;+a'Az) > min (dim (A; +Az), dim (A +(k-2)Az),dim ((k-2)A;1 +A2))
=min (dim (A1 +Az), dim (A +Ar)).
Hence all together we have
dim(A; + Ay) > min(dim (A + Az),dim (A + Ar))
with equality only if X € [Ay + Apr ]
Using [30, Equation (2.1c)] we compute that

X . m(r+1)
dim(Ay +Ap) Sln((k+r+1))

dim (A1 +Ar)  sin

This is always > 1, with equality only if » = 2 or k = 3. Hence if X has exactly three
non-zero labels then r = 2 or k = 3 and X € [A; + Az]. However in these cases we get
that A; + Ay € [A1 + Ar] and so X € [A; + Ar].

Finally suppose X has exactly two non-zero labels (if X has one non-zero label, then
X =1). Then we can write X = aAp with a,b > 2. We can assume that r > 3 and hence
k > 4 by level-rank duality. By applying Lemma A.2 withcp =k—-a-2andcp =a -2
to get

dim (aAp) > min (dim (2Ap),dim ((k - 2)Ap)) = dim (2Ap).
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By applying level-rank duality and using the same trick we find that dim(aAp) >
dim (2A;). We compute

2
dim(ZAz) _ Sin(k+7;+1)8in((kr::+)—f) > Sin(ﬁ)ﬂn(%)z
T Am AT A Sin( 2 ) sin () sin(e2) sin( )

asr > 3 and k > 4. By level-rank duality we can assume that r + 1 < k. Simple calculus

. .2
SIn)sin(4) 5 1 when x < Z. Hence r + k + 1 < 10. For these finite
sin?(4x) sin(3x) 10

possible cases, we can directly search to find when dim (aAp) = dim(A; + A,). The
only solutions are (r,k) = (3,6), (5,4) where X = 2A,.
Finally (by level-rank duality) it suffices to consider X = Ap for b < % We have

shows that

dim(n,) _ sin(35) sin (R (o sin("ER)
dim (A1 + Ay) sin(1+7rr+k)2 11 sin(%)

In particular this shows

dim (A1) <dim(Az) < -+ < dim (Ars1).

2

Let’s now study when the terms % are equal to 1. We will start by studying
the case b = 1, and will increase b until we can show that this term is always strictly
bigger than 1.

For the case of b = 1, we find that % =1lifand onlyif A; € [A; +A;]. With
the b = 1 case done, we can now assume r > 3.

For the case of b = 2, we can use the inequality coming from the concavity of

In|sin(x)|:
(6) sin(a) sin(b) < sin(a - x) sin(b + x)
forO<b<a<mand0< x < “T‘b,toget
dim (Az)
dim (Ag + Ay)

With the b = 2 case done, we can now assume r > 5.

For the case of b = 3 we have to consider several subcases. Ifr € {5,6,7} and k > r+1,
then we get % <1lfromsin(z(r+1)/(1+r+k)) <sin(z(r+2)/(1+r+k)) and
the fact that 2SIV 44 gecreasing for 0 < x < Z. If r € {5,6,7} and k < r +1

sin (2x) sin (3x)
then there are just a small number of cases to check. Ifr = 8 then % is astrictly
increasing function of k, which equals 1 atk = 15. Whenr > 9,k >4,and 1+r+k > 19
we can use Equation (6) again to obtain
dim (A3)
dim (A; + Ay)

< 1.

Whenr > 9 and k = 3 we get

dim(As) _ sin(g7g)sin(ehe) ||
dim (A1 + Ay) sin( 1+2rﬂ+k)2

With the b = 3 case done we can now assume r > 7.
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Finally for the case of b = 4 we have that when r = 7 and k > 3, we have %

1.

Thus all we have remaining is a finite list of pairs (r, k) where we could possibly
have dim (Ap) = dim (A; + A,). Searching these pairs and applying level-rank duality
gives the statement of the proposition. O
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