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TYPE 𝐼𝐼 QUANTUM SUBGROUPS OF 𝔰𝔩𝑁 . 𝐼: SYMMETRIES OF LOCAL
MODULES

CAIN EDIE-MICHELL, WITH AN APPENDIX BY TERRY GANNON

Abstract. This paper is the first of a pair that aims to classify a large number of the
type 𝐼𝐼 quantum subgroups of the categories C(𝔰𝔩𝑟+1, 𝑘). In this work we classify the
braided auto-equivalences of the categories of local modules for all known type 𝐼 quan-
tum subgroups of C(𝔰𝔩𝑟+1, 𝑘). We find that the symmetries are all non-exceptional ex-
cept for four cases (up to level-rank duality). These exceptional cases are the orbifolds
C(𝔰𝔩2, 16)0Rep(ℤ2), C(𝔰𝔩3, 9)0Rep(ℤ3), C(𝔰𝔩4, 8)0Rep(ℤ4), and C(𝔰𝔩5, 5)0Rep(ℤ5).

We develop several technical tools in this work. We give a skein theoretic descrip-
tion of the orbifold quantum subgroups of C(𝔰𝔩𝑟+1, 𝑘). Our methods here are general,
and the techniques developed will generalise to give skein theory for any orbifold of a
braided tensor category. We also give a formulation of orthogonal level-rank duality
in the type 𝐷-𝐷 case, which is used to construct one of the exceptionals. We uncover
an unexpected connection between quadratic categories and exceptional braided auto-
equivalences of the orbifolds. We use this connection to construct two of the four ex-
ceptionals.

In the sequel to this paper we will use the classified braided auto-equivalences to
construct the corresponding type 𝐼𝐼 quantum subgroups of the categories C(𝔰𝔩𝑟+1, 𝑘).
This will essentially finish the type 𝐼𝐼 classification for 𝔰𝔩𝑛modulo type 𝐼 classification.
When paired with Gannon’s type 𝐼 classification for 𝑟 ≤ 6, our results will complete the
type 𝐼𝐼 classification for these same ranks.

This paper includes an appendix by Terry Gannon, which provides useful results
on the dimensions of objects in the categories C(𝔰𝔩𝑟+1, 𝑘).

1. Introduction

Given an algebraic object, say a group or algebra 𝐴, one can better understand the
object by studying its representation theory. That is, the homomorphisms𝐴→ End(𝑉),
where 𝑉 is a vector space over some field 𝔽. In particular, if the representations can be
classified (as is the case when 𝔽 = ℂ for finite groups or the semi-simple complex Lie
algebras), then the algebraic object is very well understood.
A tensor category C [20] is a natural generalisation of both a group and an algebra.

The prototypical example of a tensor category is the representation category of a group𝐺, which is denoted Rep(𝐺). A tensor category can be thought of as an abstract cate-
gory with the same sort of structure as Rep(𝐺) (namely tensor products, direct sums,
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and dual objects). The notion of a tensor category can also be considered as a categori-
fication of an algebra, with multiplication and addition being lifted to tensor product
and direct sum. The additional structure to make a category a tensor category makes
these objects incredibly rigid, and allows classification [55] and exceptional examples
[1].
The notion of the representation theory of an algebra can be categorified to the level

of tensor categories. Instead of the target being the endomorphisms of a vector space,
we now want tensor functors

C → End(M),
where C is the tensor category in question, and End(M) is the category of endofunc-
tors of a semi-simple categoryM (see [53] for precise definitions). As in the group
and algebra setting, one wishes to completely understand the representation theory of
a tensor category C. In the classical case where C = Rep(𝐺) for 𝐺 a group, the repre-
sentations (or equivalently, module categories) of C are classified by subgroups of 𝐺,
along with some cohomological data. Because of this special case, representations of
a general tensor category C are often referred to by the moniker quantum subgroups of
C.
An important class of tensor categories is the categories of level-𝑘 integrable repre-

sentations of ̂𝔤, where 𝑘 is a positive integer, and 𝔤 is a semi-simple Lie algebra. This
category is typically denoted C(𝔤, 𝑘) [59]. Among various other connections, this cat-
egory is the representation category of theWess-Zumino-Witten chiral conformal field
theory V(𝔤, 𝑘) [62].
One of the oldest open problems in the field of tensor categories has been the pro-

gram to classify the quantum subgroups (or module categories, or Morita equivalence
classes of algebra objects) of the categories C(𝔤, 𝑘). This program was initially investi-
gated in the language of conformal field theory by Cappelli, Itzykson, and Zuber [7].
They used physical reasoning to argue that a quantum subgroup of C(𝔤, 𝑘) is precisely
the data needed to extend a Wess-Zumino-Witten chiral conformal field theory (con-
structed from 𝔤 and 𝑘) up to a full conformal field theory. With this motivation in hand
they were then able to give a combinatorial classification of the quantum subgroups of
C(𝔰𝔩2, 𝑘). Their results were unexpected and exciting, falling into an 𝐴−𝐷−𝐸 pattern.
The two infinite families𝐴 and𝐷were expected, but farmore intriguingwere the three
exceptional examples 𝐸6, 𝐸7, and 𝐸8.
Inspired by the richness of the 𝔰𝔩2 classification, there was a flurry of activity to give

classification results for the higher rank Lie algebras [9, 10, 51]. However this proved
far more difficult than the rank one case. Despite the intense research activity directed
towards the problem, very few new classification results were achieved. Once the dust
had settled, a combinatorial classification for 𝔰𝔩3 had been given by Gannon [29], and𝔰𝔩4 had been claimed by Ocneanu [52], but without supplied proof. It was here that
the project stagnated, with many considering it to be intractable.
In a more general setting, the problem of extending chiral conformal field theory up

to full conformal field theory was studied rigorously by Fuchs, Runkel, and Schweigert
[22,24–27]. They were able to mathematically confirm the physical arguments of Cap-
pelli, Itzykson, and Zuber. It was proven that the data to extend a chiral conformal
field theory is precisely a module category over the representation category of the chi-
ral theory. However, a module category is more than just its combinatorics, which is
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what was classified in [7] and [29]. There is also the categorical data of the module
category, which is captured by the 6-j symbols, or equivalently the associator, of the
module. Thus classification for 𝔰𝔩2 and 𝔰𝔩3 was incomplete. The categorical data for
the 𝔰𝔩2 case was worked out in the subfactor language in [2, 35, 36, 41, 42, 53, 63], and
in the categorical language in [53]. For the 𝔰𝔩3 case the categorical data was worked
out in [21].
There is a fundamental bifurcation in classification program of quantum subgroups

for any modular tensor category. This split occurs between the type 𝐼 quantum sub-
groups and the type 𝐼𝐼 quantum subgroups. These subclasses of quantum subgroups
are most easily defined using the Morita equivalence classes of algebra objects formal-
ism. A quantum subgroup is called type 𝐼 if the Morita equivalence class of algebra ob-
jects contains a commutative representative, and it is called type 𝐼𝐼 if there is no such
commutative representative. The differences between these two cases mean that dif-
ferent classification techniques are needed for each case. There is also the distinction
between non-exceptional quantum subgroups and exceptional quantum subgroups. We
say a quantum subgroup of C(𝔰𝔩𝑟+1, 𝑘) is non-exceptional if it can be obtained as the
category of modules of an algebra of the form Fun(𝐺) ∈ C(𝔰𝔩𝑟+1, 𝑘), where𝐺 is a finite
group (necessarily a subgroup of ℤ𝑟+1). A quantum subgroup is then exceptional if it
is not non-exceptional.
Recently there has been a massive revitalisation in the program to classifying quan-

tum subgroups of the higher rank Lie algebras. This began with work of Schopieray
[58], which gave level bounds on which categories C(𝔤, 𝑘) could have exceptional type𝐼 quantum subgroups for the rank two Lie algebras. These techniqueswere then drasti-
cally improved upon byGannon [28], where effective level boundswere determined for
all Lie algebras. In short, this allowed for a computer search to find all type 𝐼 quantum
subgroups for any Lie algebra. These computer searches were performed by Gannon,
and type 𝐼 classification was given for all ranks less than 7, a dramatic improvement
on the state of knowledge. For these examples it was found that there are the expected
infinite families of de-equivariantisation (or orbifold) type 𝐼 quantum subgroups, a fi-
nite number of type 𝐼 quantum subgroups coming from conformal inclusions of Lie
groups [63], and four new examples not related to conformal inclusions of Lie groups.
We will refer to these latter four quantum subgroups as the truly exceptional quantum
subgroups.
Thus the type 𝐼 case has essentially been solved, and classification up to higher ranks

is now a matter of computer power, rather than mathematical insight. However, the
type 𝐼𝐼 case (which comprises all remaining examples) still remains entirely open. This
paper is the first in a pair to classify the type 𝐼𝐼 quantum subgroups for 𝔰𝔩𝑛. The tech-
niques developed in these papers will generalise to the other classical algebras. How-
ever we restrict our attention now to the type 𝐴 case for three reasons. First is that
the details of working through the generalisation will require substantial effort that
would push the length of these papers beyond a readable limit. Second is that combi-
natorial evidence suggests that type 𝐴 has the richest behaviour with type 𝐼𝐼 quantum
subgroups, so we can expect to find the most interesting results by studying this case.
Finally, historically the type 𝐴 case had received the most attention, and thus results
in type 𝐴 will attract more interest than the other classical Lie algebras.
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Our main tool to classify type 𝐼𝐼 quantum subgroups of the categories C(𝔰𝔩𝑟+1, 𝑘) is
Theorem 1.1 due to Davydov, Nikshych, and Ostrik, which gives a bijective correspon-
dence between all quantum subgroups, and pairs of type 𝐼 quantum subgroups, and a
braided equivalence between their categories of local modules.

Theorem 1.1 ([12]). Let C be a modular category. There is a bijective correspondence

{Irreducible modules over C}↔ ⎧⎪⎪⎨⎪⎪⎩
Triples (M1,M2,F), where
M1 andM2 are type 𝐼 module categories, and
F ∶M

01 →M02 is a braided equivalence
⎫⎪⎪⎬⎪⎪⎭ .

The work of Gannon has classified the type 𝐼 modules of 𝔰𝔩𝑛 for 𝑛 ≤ 7. Thus to
give the classification of the type 𝐼𝐼 modules, and hence complete the classification of
all quantum subgroups, we need to determine all braided equivalences between their
local modules. Gannon finds that there are three kinds of type 𝐼 modules [28]. The
first class (and most exciting as type 𝐼 modules) is the four truly exceptional examples,
with two occurring at C(𝔰𝔩6, 6) and two at C(𝔰𝔩7, 7). These quantum subgroups have
categories of local modules equivalent to:

C(𝔰𝔬35, 1), C(𝔰𝔩2, 10)𝜁, Vec, and Vec,
where C(𝔰𝔩2, 10)𝜁 is a Galois conjugate of the category C(𝔰𝔩2, 10). For all of these ex-
amples, the categories of local modules are completely understood.

Remark 1.2. We wish to point out that the paper [28] is unpublished as of the time of
publication of this article, and the statements of the previous paragraph were provided
to the author by Gannon in private communication. All of the theorems in this paper
are independent from the results of [28], and the implicit claims of existence of certain
exceptional type 𝐼𝐼module categories over C(𝔰𝔩𝑟+1, 𝑘) are rigorous. In the sequel to this
paper, we classify all module categories over C(𝔰𝔩𝑟+1, 𝑘) for 𝑟 ≤ 6, which will require
the results of [28] to be rigorous.

The second class consists of the module categories constructed from conformal in-
clusions of Lie groups. These can be found in [11], and for the type 𝐴 case they are:𝐴1,10 ⊂ 𝐵2,1, 𝐴1,28 ⊂ 𝐺2,1, 𝐴2,9 ⊂ 𝐸6,1,𝐴2,21 ⊂ 𝐸7,1, 𝐴3,8 ⊂ 𝐷10,1, 𝐴5,6 ⊂ 𝐶10,1,𝐴7,10 ⊂ 𝐷35,1, 𝐴𝑛,𝑛−1 ⊂ 𝐴 (𝑛−1)(𝑛−2)2 ,1, 𝐴𝑛,𝑛+3 ⊂ 𝐴 𝑛(𝑛+3)2 ,1,𝐴2𝑛+1,2𝑛+2 ⊂ 𝐵2𝑛2+4𝑛+1,1, 𝐴2𝑛,2𝑛+1 ⊂ 𝐷2𝑛(𝑛+1),1, 𝐴2𝑛+1,4𝑛+5 ⊂ 𝐵4𝑛2+7𝑛+2,1.
Note that these conformal inclusions are embeddings of Wess-Zumino-Witten VOA’s.
For all of these examples, the category of localmodules is braided equivalent toRep(𝐺1)≃ C(𝔤, 1), where 𝔤 is the corresponding Lie algebra of the Lie group 𝐺 [44, Theorem
5.2]. The third class consists of the infinite number of orbifold modules, constructed
via de-equivariantisation. For C(𝔰𝔩𝑟+1, 𝑘) these are parametrised by𝑚 a divisor of 𝑟+1,
such that𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is even, or 2𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is odd. For𝑚 satisfying these
conditions, we have that Rep(ℤ𝑚) is a braided subcategory of C(𝔰𝔩𝑟+1, 𝑘). This can be
verified using the known formulas for the twists in C(𝔰𝔩𝑟+1, 𝑘) [30, Section 3.1]. We
write C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚) for the type 𝐼 modules coming from de-equivariantisation by
these Tannakian subcategories. The category of local modules C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) for
these examples is described in the bulk of the paper.



116 CAIN EDIE-MICHELL

It is extremely rare that the categories of local modules for any of these type 𝐼 mod-
ules coincide. Thus the interesting type 𝐼𝐼 module categories of C(𝔰𝔩𝑟+1, 𝑘) come from
exceptional braided auto-equivalences of these categories of local modules. The goal
of this paper is to determine the braided auto-equivalences of the categories of local
modules for all known type 𝐼 quantum subgroups. In the sequel to this paper we will
identify the small number of exceptionswhere the categories of localmodules coincide,
andwork through the details of Theorem1.1 in order to explicitly construct and classify
the corresponding type 𝐼𝐼 quantum subgroups. Paired with Gannon’s classification of
type 𝐼 quantum subgroups, this will give type 𝐼𝐼 classification for 𝑛 ≤ 7. Further, our
results of the sequel will show that for each 𝔰𝔩𝑟+1, there is an effective bound on 𝑘 for
which exceptional type 𝐼𝐼 quantum subgroups of C(𝔰𝔩𝑟+1, 𝑘) can occur. These results
will put us in a strong position to classify type 𝐼𝐼 modules for larger 𝑛 ≥ 8, once the
type 𝐼 classification has been sorted for these 𝑛.
Let us examine the braided auto-equivalences of the local modules for the known

type 𝐼 quantum subgroups. For the four truly exceptional examples found by Gannon
we can quickly compute that the auto-equivalence groups are all trivial, except for the
Galois conjugate of C(𝔰𝔩2, 10)which has auto-equivalence groupℤ2 [15, Theorem 1.2].
For the type 𝐼 quantum subgroups coming from conformal inclusions of Lie groups, the
group of braided auto-equivalences has been computed in earlier works of the author
[18, Theorem 1.1]. For completeness, we collect the results here.

Theorem 1.3. We have

EqBr(C(𝔰𝔬5, 1)) = EqBr(C(𝔤2, 1)) = EqBr(C(𝔢7, 1)) =EqBr(C(𝔰𝔬2(2𝑛2+4𝑛+1)+1, 1)) = EqBr(C(𝔰𝔬2(4𝑛2+7𝑛+2)+1, 1)) = {𝑒},
EqBr(C(𝔢6, 1)) = EqBr(C(𝔰𝔬20, 1)) = EqBr(C(𝔰𝔭20, 1)) =EqBr(C(𝔰𝔬70, 1)) = ℤ2,
EqBr(C(𝔰𝔩 (𝑛−1)(𝑛−2)2 +1, 1)) = EqBr(C(𝔰𝔩 𝑛(𝑛+3)2 +1, 1)) = ℤ𝑝+𝑡2 ,
EqBr(C(𝔰𝔬4𝑛(𝑛+1), 1)) = ⎧⎪⎪⎨⎪⎪⎩

ℤ2 if 𝑛 ≡ {0, 3} (mod 4).𝑆3 if 𝑛 ≡ {1, 2} (mod 4).
where 𝑝 is the number of distinct odd primes that divide the rank plus one, and 𝑡 is equal
to 1 if the rank is equivalent to 3mod 4, and 0 otherwise.
Finally we have the orbifold type 𝐼 quantum subgroups. Somewhat paradoxically

these have the most interesting categories of local modules, and hence determining
their group of braided auto-equivalences is highly non-trivial. The remainder of this
paper will be devoted to proving Theorem 1.4, which determines the braided auto-
equivalences groups in question. Excitingly we find a finite number of cases where the
braided auto-equivalence group is exceptional, which corresponds to the existence of
exceptional type 𝐼𝐼 quantum subgroups. These exceptional type 𝐼𝐼 quantum subgroups
will be explicitly constructed in the sequel.
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Theorem 1.4. Let 𝑟 ≥ 1 and 𝑘 ≥ 2 and𝑚 a divisor of 𝑟 + 1 satisfying𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟
is even, and 2𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is odd. Then except for the cases
C(𝔰𝔩2, 16)0Rep(ℤ2), C(𝔰𝔩3, 9)0Rep(ℤ3), C(𝔰𝔩4, 8)0Rep(ℤ4), C(𝔰𝔩5, 5)0Rep(ℤ5),
C(𝔰𝔩8, 4)0Rep(ℤ4), C(𝔰𝔩9, 3)0Rep(ℤ3), C(𝔰𝔩16, 2)0Rep(ℤ2), and C(𝔰𝔩16, 2)0Rep(ℤ4),
we have that

EqBr(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚)) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{𝑒} if 𝑘 = 2 and 𝑟 = 1,ℤ𝑚′ × ℤ𝑝+𝑡2 if 𝑘 = 2 or 𝑟 = 1,𝐷𝑚′ × ℤ𝑝+𝑡2 otherwise ,
where

● 𝑚′ = gcd(𝑚,𝑘),
● 𝑚″ = 𝑚𝑚′ ,
● 𝑝 is the number of distinct odd primes dividing 𝑟+1𝑚𝑚″ but not 𝑘𝑚′ , and

● 𝑡 =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑟 + 1𝑚𝑚″ is odd, or if 𝑘𝑚′ ≡ 0 (mod 4),
or if both 𝑘𝑚′ is odd and 𝑟 + 1𝑚𝑚″ ≡ 2 (mod 4)1 otherwise.

For the remaining exceptional cases we have that

EqBr(C(𝔰𝔩2, 16)0Rep(ℤ2)) = 𝑆3, EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) = 𝑆4EqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)) = 𝑆4, EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5)) = 𝐴5,EqBr(C(𝔰𝔩8, 4)0Rep(ℤ4)) = 𝑆4, EqBr(C(𝔰𝔩9, 3)0Rep(ℤ3)) = 𝑆4 × ℤ2,EqBr(C(𝔰𝔩16, 2)0Rep(ℤ2)) = 𝑆3 × ℤ2, and EqBr(C(𝔰𝔩16, 2)0Rep(ℤ4)) = 𝑆3.
With Theorem 1.4 in hand, we are now placed to classify all type 𝐼𝐼 quantum sub-

groups whose type 𝐼 parents are in the known list. In particular this will allow us to
classify all type 𝐼𝐼 quantum subgroups of 𝔰𝔩𝑛 for 𝑛 ≤ 7. This will complete the classi-
fication of all quantum subgroups for these examples. As mentioned earlier, this type𝐼𝐼 classification will be dealt with in the sequel to this paper. Extrapolating from the
work of Gannon, we can expect the truly exceptional type 𝐼 quantum subgroups of the
higher rank 𝔰𝔩𝑛 to be exceedingly rare, and when they do occur, we can expect their
categories of local modules to be somewhat trivial. This means that when the type 𝐼
classification has been extended to higher rank, the results of this paper will allow the
type 𝐼𝐼 classification to nearly immediately follow.
With the motivation and main theorem of this paper described, let us move on to

describing the structure of the article.
In Section 2 we introduce the background required to begin this paper. We intro-

duce the combinatorics of the categories C(𝔰𝔩𝑟+1, 𝑘). In particular we give the for-
mula for the dimensions of the simples, and prove useful inequalities which they obey.
We describe the structure of the orbifold C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚), and of the local modules
C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). We explicitly determine useful structure of the category
C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚), including the parametrisation of the simples, the group of invert-
ibles, and the adjoint subcategory.
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In Section 3 we determine the so called non-exceptional braided auto-equivalences
of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). These are the braided auto-equivalences which fix the image
of the adjoint representation under the free module functor. The end result is the
expected one, i.e. we show all non-exceptional braided auto-equivalences are charge
conjugation, simple current auto-equivalence, or come from the canonical ℤ𝑚-action.
Here a simple current auto-equivalence is a symmetry of the category constructed via
the action of invertible elements, see [18, Lemma 2.4] for additional details. Proving
this result is highly technical, and requires several powerful techniques. The difficulty
here is not surprising, as determining the non-exceptional braided auto-equivalences
has troubled researchers working on this same problem in the past. To begin we de-
velop skein theory for the adjoint subcategory of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). Ourmethods here
are general, and will allow one to find skein theory for de-
equivariantisation by an abelian group of any braided category, given that skein theory
of the original category is known. With this skein theory in hand we can then use stan-
dard planar algebra techniques to find the non-exceptional braided auto-equivalence
group of the adjoint subcategory. To extend these auto-equivalences to the entire cate-
gory we use the techniques developed by the author in [17]. These techniques give an
upper bound on the number of auto-equivalences which may extend an auto-
equivalence on the adjoint subcategory. By a happy coincidence, this upper bound
is precisely realised by simple current auto-equivalences, introduced in the author’s
work [16], which was inspired by combinatorics from conformal field theory. This
happy coincidence suggests the potential for a general theorem.

Conjecture 1.5. Let C be a modular tensor category, Cad its adjoint subcategory, and F
an auto-equivalence of C which restricts to the identity on Cad. ThenF is isomorphic to a
simple current auto-equivalence.

The validity of this general conjecture remains to be investigated. All together, the
results of this section fully classify all non-exceptional braided auto-equivalences of the
categories C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚).
In Section 4 we investigate the combinatorics of the exceptional braided auto-

equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). We show that with a finite number of exceptions,
every braided auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is non-exceptional, and hence is
covered by the results of the previous section. Our main observation here is simple. If
there were an exceptional braided auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚), then its im-
age of the adjoint would have the same dimension and twist. This puts massive combi-
natorial restrictions on the objects of the category C(𝔰𝔩𝑟+1, 𝑘). By studying these restric-
tions in a case by case analysis, we are able to obtain a series of inequalitieswhich imply
that both the rank and level must be small. From here we can computer search to find
the finite cases where C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) has an exceptional braided auto-equivalence,
at the level of the fusion ring and twists. Up to level-rank duality we find four possi-
ble candidates for exceptional braided auto-equivalences. These are C(𝔰𝔩2, 16)0Rep(ℤ2),
C(𝔰𝔩3, 9)0Rep(ℤ3), C(𝔰𝔩4, 8)0Rep(ℤ4), and C(𝔰𝔩5, 5)0Rep(ℤ5). While the case by case analy-
sis is messy, and a uniform approach to this section would be desired, the exceptional
examples which are discoveredmean that such a uniform approach is unlikely to exist.
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In Section 5wefinishupby realising all of the exceptional braided auto-equivalences
of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) for the finite number of remaining cases identified in the previ-
ous section. We see two situations at hand. The first has already been observed in
the literature [46] in the 𝔰𝔩2 case, and concerns the categories C(𝔰𝔩2, 16)0Rep(ℤ2) and
C(𝔰𝔩4, 8)0Rep(ℤ4). Here the exceptional braided auto-equivalences exist due to coinci-
dences of categories connecting them to the Lie algebra 𝔰𝔬8 and hence triality. The sec-
ond situation is muchmore interesting and exotic. We show a connection between the
two remaining examples and C(𝔰𝔩4, 8)0Rep(ℤ4), and three explicit quadratic categories.
This connection is sufficiently explicit, so that having a construction of the quadratic
categories allows us the construction of the exceptional braided auto-equivalences. For
the two remaining cases, we have that the corresponding quadratic categories have
been constructed by Izumi [37, 38], which allows these cases to be resolved.
The connection between type 𝐼𝐼 quantum subgroups and quadratic categories ap-

pears to be more than just a convenient coincidence. It occurs for other Lie algebras
outside the 𝐴 series, and the author will weakly conjecture that every exceptional type𝐼𝐼 quantum subgroup for a simple Lie algebra comes from either a coincidence of cat-
egories or from a connection to a quadratic category. We will not say much more on
this to avoid spoiling future work.
This paper also includes an appendix authored by Terry Gannon which contains

some results on the combinatorics of the categories C(𝔰𝔩𝑟+1, 𝑘). The results of this
appendix are a key ingredient for the computations of Section 4.

2. Preliminaries

We refer the reader to [20] for the basics of fusion categories.

2.1. Quantum integers, dimensions, and inequalities. The main object of study
in this paper will be the modular tensor categories C(𝔰𝔩𝑟+1, 𝑘), the category of level𝑘 integrable representations of ̂𝔰𝔩𝑛. For an overview of these categories see [59]. For
our purposes we will only require some basic combinatorics of these categories. The
simple objects of C(𝔰𝔩𝑟+1, 𝑘) are parametrised by𝑟∑𝑖=0 𝜆𝑖Λ𝑖 where 𝜆𝑖 ∈ ℕ and

𝑟∑𝑖=0 𝜆𝑖 = 𝑘.
Often we will omit the 𝜆0 term of a simple object, as its value can be deduced from the
remaining 𝜆𝑖’s. For example, the vector representation (𝑘 − 1)Λ0 + Λ1 will usually be
written simply asΛ1. A special subset of these simples is the 𝑟+1 invertibles (or simple
currents), which are the objects

{𝑘Λ𝑖 ∶ 𝑖 ∈ ℤ𝑟+1}.
To describe the quantum dimensions of the simple objects of C(𝔰𝔩𝑟+1, 𝑘) we will

need two ingredients. The first are the quantum integers.

Definition 2.1. We define the 𝑛-th quantum integer (as a function of 𝑟 and 𝑘) as
[𝑛]𝑟,𝑘 ≔ 𝑞𝑛 − 𝑞−𝑛𝑞 − 𝑞−1 and 𝑞 = 𝑒2𝜋𝑖 12(1+𝑘+𝑟) .
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The second ingredient is the hook formula, which gives the quantum dimension of
a simple of C(𝔰𝔩𝑟+1, 𝑘) in terms of quantum integers. To describe this formula, we have
to introduce the tableaux of a simple object. Let 𝑋 =∑𝑟𝑖=0 𝜆𝑖Λ𝑖 be a simple object, and
define an 𝑟 × 𝑘 tableaux 𝑇(𝑋) whose 𝑗-th row contains ∑𝑟𝑖=𝑗 𝜆𝑖 boxes. For each box(𝑥, 𝑦) in the tableaux 𝑇(𝑋) we can define the content, which is the quantum integer[𝑟 + 1 + −𝑥 + 𝑦]𝑟,𝑘, and the hook length, which is the quantum integer [ℎ]𝑟,𝑘, where ℎ
is the number of boxes with the same 𝑥 or 𝑦 coordinate. The quantum dimension of𝑋 is the product over all the boxes of 𝑇(𝑋) of the contents divided by the hooks. For a
quick example, we have that the tableaux for the object Λ1 +Λ2 ∈ C(𝔰𝔩𝑟+1, 𝑘) has two
boxes in row one, and one box in row two. Thus the contents are

[𝑟 + 1]𝑟,𝑘, [𝑟]𝑟,𝑘, and [𝑟 + 2]𝑟,𝑘,
and the hooks are [3]𝑟,𝑘, [1]𝑟,𝑘, and [1]𝑟,𝑘.
Therefore the hook formula tells us that the quantum dimension of Λ1 + Λ2 is
[𝑟]𝑟,𝑘[𝑟+1]𝑟,𝑘[𝑟+2]𝑟,𝑘

[3]𝑟,𝑘 .
There are two natural actions of the simples of C(𝔰𝔩𝑟+1, 𝑘) that preserve the dimen-

sions. These are charge conjugation which sends𝑟∑𝑖=0 𝜆𝑖Λ𝑖 ↦ 𝑟∑𝑖=0 𝜆𝑖Λ−𝑖.
The fact that this map preserves dimensions can be deduced from the hook formula.
The other action comes from simple currents, which sends𝑟∑𝑖=0 𝜆𝑖Λ𝑖 ↦ 𝑟∑𝑖=0 𝜆𝑖Λ𝑖+𝑎 for 𝑎 ∈ ℤ𝑟+1.
This map preserves dimensions as it is simply tensoring by the invertible 𝑘Λ𝑎. For an
object 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) we write [𝑋] for its orbit under the action of simple currents.
For a given object 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) it will be useful to know which subgroup of in-

vertibles fix 𝑋 . To that end we introduce the following notation.
Definition 2.2. Let 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) a simple object. Given ℤ𝑑 a subgroup of the in-
vertibles of C(𝔰𝔩𝑟+1, 𝑘), we defineStabℤ𝑑(𝑋)≔ {𝑔 ∈ ℤ𝑑 ∶ 𝑔⊗ 𝑋 ≅ 𝑋}.
The quantum dimensions of the simple objects of C(𝔰𝔩𝑟+1, 𝑘) satisfy a variety of use-

ful equalities and inequalities.
Our main tool is the fact that the dimensions of the simples of C(𝔰𝔩𝑟+1, 𝑘) respect

the geometry of the truncated Weyl chamber in a nice manner. Namely if one draws a
convex hull in the truncated Weyl chamber, then the minimum of the dimensions in
this hull will occur at the corners.

Lemma 2.3 ([30]). For 1 ≤ 𝑖 ≤ 𝑁, let 𝑋𝑖 ∈ C(𝔰𝔩𝑟+1, 𝑘) simple objects, and 𝑡𝑖 ∈ [0, 1]
such that∑𝑁𝑖=1 𝑡𝑖 = 1. Then

dim⎛⎝ 𝑁∑𝑖=1 𝑡𝑖𝑋𝑖⎞⎠ ≥ min{dim(𝑋𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑁} ,
with equality occurring exactly at the corners of the convex hull.
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We also have the following inequalities of quantum integers which occur due to the
cut-off of the level 𝑘 in the truncated Weyl chamber.
Lemma 2.4. For all 1 ≤ 𝑛 ≤ 𝑟 + 𝑘 we have

[𝑛]𝑟,𝑘 < [𝑛]𝑟+1,𝑘 and [𝑛]𝑟,𝑘 < [𝑛]𝑟,𝑘+1.
Proof. The second inequality holds as [𝑛]𝑟,𝑘 is equal to [𝑛]𝑛−1,𝑟+𝑘−𝑛+1. The value[𝑛]𝑛−1,𝑟+𝑘−𝑛+1 is precisely the graph norm of the fusion graph forΛ1 ∈ C(𝔰𝔩𝑛, 𝑟+𝑘−𝑛+1). This fusion graph embeds in the fusion graph for Λ1 ∈ C(𝔰𝔩𝑛, 𝑟 + 𝑘 − 𝑛 + 2), which
has graph norm [𝑛]𝑛−1,𝑟+𝑘−𝑛+2. As graph norms respect inclusions, we get that

[𝑛]𝑛−1,𝑟+𝑘−𝑛+1 < [𝑛]𝑛−1,𝑟+𝑘−𝑛+2,
which is equivalent to [𝑛]𝑟,𝑘 < [𝑛]𝑟,𝑘+1.
The first inequality now holds as [𝑛]𝑟,𝑘 = [𝑛]𝑘,𝑟 . □

Often it will be useful to bound a quantum integer by a simpler function of 𝑛. The
following inequalities allow us exactly that. The first bounds the quantum integer
above.

Lemma 2.5 ([58]). For all 𝑛 ≥ 1 we have
[𝑛]𝑟,𝑘 ≤ 𝑛.

The second bounds the quantum integer below.

Lemma 2.6 ([58]). Suppose that 1 ≤ 𝑛 ≤ 𝑐−1𝑐 (1 + 𝑟 + 𝑘) for some 𝑐 ∈ ℕ, then
[𝑛]𝑟,𝑘 ≥ 1𝑐 .

With these general inequalities in hand, we can now prove a collection of useful
inequalities on the dimensions of the simples of C(𝔰𝔩𝑟+1, 𝑘).
Lemma 2.7. For all 0 ≤ ℎ ≤ 𝑘 and 0 ≤ 𝑎 ≤ 𝑟 we havedim(ℎΛ𝑎) = dim((𝑘 − ℎ)Λ𝑎) .
Proof. By applying a simple current symmetry, we see that the objects (ℎΛ𝑎) and ((𝑘−ℎ)Λ−𝑎) have the same dimension. Applying charge conjugation then gives the result.

□

Our first true inequality gives bounds on the symmetric powers of the fundamental
representations.

Lemma 2.8. Let 1 ≤ 𝑎 ≤ 𝑟 + 1 and 1 ≤ 𝜆𝑎 ≤ 𝑘−12 . If 𝜆𝑎 ≤ 𝑗 ≤ 𝑘 − 𝜆𝑎 thendim(𝑗Λ𝑎) ≥ dim(𝜆𝑎Λ𝑎).
Proof. From Lemma 2.7 we havedim(𝜆𝑎Λ𝑎) = dim((𝑘 − 𝜆𝑎)Λ𝑎)) .
We can write 𝑗Λ𝑎 = (1 − 𝑗 − 𝜆𝑎𝑘 − 2𝜆𝑎 ) ⋅ 𝜆𝑎Λ𝑎 + 𝑗 − 𝜆𝑎𝑘 − 2𝜆𝑎 ⋅ (𝑘 − 𝜆𝑎)Λ𝑎.

Thus the result follows from Lemma 2.3. □
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Applying level-rank duality to the above bound, we can also obtain the following.
Together, these bounds allow us to understand the ordering on the dimensions of the
symmetric powers of the fundamental representations.

Lemma 2.9. Let 1 ≤ 𝑎 ≤ 𝑟2 and 1 ≤ 𝜆𝑎 ≤ 𝑘. If 𝑎 ≤ 𝑗 ≤ 𝑟 + 1 − 𝑎 thendim(𝜆𝑎Λ𝑗) ≥ dim(𝜆𝑎Λ𝑎).
Proof. Via a level-rank duality, we have that the dimension of (𝜆𝑎Λ𝑗) in C(𝔰𝔩𝑟+1, 𝑘)
is equal to the dimension of (𝑗Λ𝜆𝑎) in C(𝔰𝔩𝑘, 𝑟 + 1). The result then follows from
Lemma 2.8. □

The last bound we will give applies to objects that are fixed by the invertible objects
of C(𝔰𝔩𝑟+1, 𝑘). If this stabiliser subgroup of an object is non-trivial, then Lemma 2.10
gives strong restrictions on the dimension of that object.

Lemma 2.10. Suppose 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘)with Stabℤ𝑟+1(𝑋) = ℤ𝑑. Let𝑚 ∈ ℕ, and 0 ≤ 𝑎 ≤𝑘. Then dim(𝑋) ≥ dim(𝑎Λ𝑚 𝑟+1𝑑 ) .
Proof. As Stabℤ𝑟+1(𝑋) = ℤ𝑑 we have that 𝑋 is fixed by 𝑘Λ 𝑟+1𝑑 . Thus 𝑋 is of the form

𝑟+1𝑑∑𝑖=1 𝜆𝑖
𝑑∑𝑗=1Λ𝑖+𝑗 𝑟+1𝑑 ,

with 𝑟+1𝑑∑𝑖=1 𝜆𝑖 = 𝑘𝑑 .
Let𝑚 ∈ ℕ, and 0 ≤ 𝑎 ≤ 𝑘 and define for 1 ≤ 𝑖 ≤ 𝑟 + 1 the objects𝑃𝑖 ≔ (𝑘 − 𝑎)Λ𝑖 + 𝑎Λ𝑖+𝑚 𝑟+1𝑑 .
As 𝑘Λ1⊗𝑃𝑖 = 𝑃𝑖+1, we have that dim(𝑃𝑖) = dim(𝑃𝑗) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑟 + 1.
We claim that

𝑋 = 𝑟+1𝑑∑𝑖=1 𝜆𝑖𝑘
𝑑∑𝑗=1𝑃𝑖+𝑗 𝑟+1𝑑 .

To see this we count the multiplicity of an arbitraryΛℓ in both sides of the above equa-
tion. In the object 𝑋 , the multiplicity of ℓ is equal to 𝜆ℓ (mod 𝑟+1𝑑 ). On the right hand
side, Λℓ will appear in the 𝑃ℓ term where it appears with multiplicity 𝑎𝜆ℓ (mod 𝑟+1𝑑 )𝑘 ,

and in the 𝑃ℓ−𝑚 𝑟+1𝑑 term where it appears with multiplicity (𝑘 − 𝑎)𝜆ℓ−𝑚𝑟+1𝑑 (mod 𝑟+1𝑑 )𝑘 =

(𝑘 − 𝑎)𝜆ℓ (mod 𝑟+1𝑑 )𝑘 . Thus in the entire right hand side, Λℓ appears with multiplicity𝜆ℓ (mod 𝑟+1𝑑 ), and so the claim is valid.

As∑ 𝑟+1𝑑𝑖=1 𝜆𝑖𝑘 ∑𝑑𝑗=1 1 = 1, we can use Lemma 2.3 to see thatdim(𝑋) ≥ min(dim(𝑃𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑟 + 1) = dim(𝑃0) = dim(𝑎Λ𝑚 𝑟+1𝑑 )
as desired. □
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2.2. De-equivariantisation. Our main focus of study in this paper will be the orb-
ifold type 𝐼 quantum subgroups, and their local modules. These are constructed as
de-equivariantisations of the modular categories C(𝔰𝔩𝑟+1, 𝑘).
In general let C be a braided tensor category, and choose a distinguished subcategory

braided equivalent toRep(𝐺) for𝐺 a finite group. We can consider the function algebraFun(𝐺) ⊂ Rep(𝐺)→ C, which lifts to a commutative algebra inZ(C) via the braiding.
We write (Fun(𝐺), 𝜎) for this commutative central algebra object.
Definition 2.11. The de-equivariantisation of C by Rep(𝐺) is defined as the category
of Fun(𝐺)modules, which can be endowed with the structure of a 𝐺-crossed braided
category via 𝜎. We write CRep(𝐺) for this de-equivariantisation.
The category CRep(𝐺) has the canonical structure of a 𝐺-crossed braided category

(see [43, 50, 61]). The 𝐺-action is given by left translation of the algebra Fun(𝐺), i.e.
multiplication by group elements. The category of local modules of the commutative
central algebra object (Fun(𝐺), 𝜎) is the trivially graded subcategory of CRep(𝐺) with
respect to the𝐺-crossed structure. We write C0Rep(𝐺) for this category of local modules.
With the generalities out of the way, let us now focus on the specific de-

equivariantisations of interest for this paper. The Tannakian subcategories of
C(𝔰𝔩𝑟+1, 𝑘) are completely understood and classified. These subcategories ofC(𝔰𝔩𝑟+1, 𝑘)
are parametrised by 𝑚 a divisor of 𝑟 + 1 satisfying 𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is even, and2𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is odd. The corresponding Tannakian subcategory is equivalent
to Rep(ℤ𝑚), and is generated by the invertible object 𝑘Λ 𝑟+1𝑚 .
Our goal is to describe the basic structure of the modular tensor category

C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). We begin by looking at the ℤ𝑚-crossed braided category
C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚). The objects of C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚) are of the form (𝑌, 𝜌), where 𝑌
is an object which is fixed by tensoring by 𝑘Λ 𝑟+1𝑚 , and 𝜌 is a choice of isomorphism𝑌 → 𝑘Λ 𝑟+1𝑚 ⊗ 𝑌 satisfying a standard coherence condition. We have the free module
functor

Fℤ𝑚 ∶ C(𝔰𝔩𝑟+1, 𝑘)→ C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚)
given by tensoring with the algebra object Fun(ℤ𝑚) = ⊕𝑖𝑘Λ𝑖 𝑟+1𝑚 . It is known that the
functor Fℤ𝑚 is dominant [5, Proposition 5.5]. The adjoint to Fℤ𝑚 is the lax monoidal
functor given by forgetting the isomorphism 𝜌. That is

F
∗ℤ𝑚((𝑌, 𝜌)) = 𝑌.

In order to simplify our proofs and computations later, it is necessary to give a more
elementary description of the simple objects of C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚). Our skein theoretic
version of the proof can be found in Lemma 3.6.

Lemma 2.12 ([48, Corollary 5.3]). The simple objects of C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚) are
parametrised by pairs (𝑋,𝜒𝑋), where 𝑋 is a simple object of C(𝔰𝔩𝑟+1, 𝑘) considered up
to action by 𝑘Λ 𝑟+1𝑚 , and 𝜒𝑋 is a character of the group Stabℤ𝑚(𝑋).
The dimension of the simple object (𝑋,𝜒𝑋) is given bydim(𝑋,𝜒𝑋) = dim(𝑋)

∣Stabℤ𝑚(𝑋)∣ .
The canonical ℤ𝑚-action on these simples is given by multiplication of 𝜒𝑋 by the stan-

dard character 𝑔𝑗 ↦ 𝑒2𝜋𝑖 𝑗
∣Stabℤ𝑚 (𝑋)∣ .
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Under this parametrisation, we can explicitly describe the freemodule functorFℤ𝑚 .
We have

Fℤ𝑚(𝑋) =⨁𝜒∈𝐺̂(𝑋,𝜒) ∶ C(𝔰𝔩𝑟+1, 𝑘)→ C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚).
Note that the restriction of the adjoint F∗ℤ𝑚 ∶ C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚) → C(𝔰𝔩𝑟+1, 𝑘) to the
subcategory C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is a ribbon lax monoidal functor [48, Lemma 3.10] or
[4, Lemme 3.3]. In practice, this means that the twist of (𝑋,𝜒) ∈ C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is
equal to the twist on 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘).
To obtain the simple objects of the category C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) we must take the

objects which are 0-graded in the ℤ𝑚-graded category C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚). The ℤ𝑚-
grading on the category C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚) is inherited from the ℤ𝑟+1-grading on the
category C(𝔰𝔩𝑟+1, 𝑘). Thus a simple object (∑𝑟𝑖=1 𝜆𝑖Λ𝑖, 𝜒)will live in the∑𝑟𝑖=1 𝑖𝜆𝑖 graded
component of C(𝔰𝔩𝑟+1, 𝑘)Rep(ℤ𝑚), taken modulo𝑚. This gives the following.
Lemma 2.13. The simple objects of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) are parametrised by pairs
(∑𝑟𝑖=1 𝜆𝑖Λ𝑖, 𝜒) where∑𝑟𝑖=1 𝑖𝜆𝑖 ≡ 0 (mod 𝑚), and 𝜒 is a character of Stabℤ𝑚(∑𝑟𝑖=1 𝜆𝑖Λ𝑖).
Let us single out a distinguished object of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). Consider the object(Λ1 +Λ𝑟) ∈ C(𝔰𝔩𝑟+1, 𝑘)ad. We can take the image of this object under the functor Fℤ𝑚

to obtain an object in (C(𝔰𝔩𝑟+1, 𝑘))Rep(ℤ𝑚))𝑎𝑑 ⊂ C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚).
Definition 2.14. We define the objectΩ ≔ Fℤ𝑚′ (Λ1 +Λ𝑟) ∈ C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′).
The distinguished simple object Ω ∈ C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) satisfies several nice prop-

erties that will make it useful for us in our computations later. Immediately we have
thatΩ is self-dual, its dimension is [𝑟]𝑟,𝑘[𝑟+ 2]𝑟,𝑘, and there exists a mapΩ⊗Ω→ Ω.
We now compute some useful information about the categories C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚).

Let us define𝑚′ = gcd(𝑚,𝑘) and𝑚″ ≔ 𝑚𝑚′ .
For the remainder of the paper we will constantly encounter three exceptions in

nearly all of our lemmas and proofs. These are the categories C(𝔰𝔩2, 4)0Rep(ℤ2),
C(𝔰𝔩3, 3)0Rep(ℤ3), and C(𝔰𝔩4, 2)0Rep(ℤ2). To put them to rest, we deal with them now.

Lemma 2.15. The claims of Theorem 1.4 hold for the categories C(𝔰𝔩2, 4)0Rep(ℤ2),
C(𝔰𝔩3, 3)0Rep(ℤ3), and C(𝔰𝔩4, 2)0Rep(ℤ2).
Proof. From the formula of the dimensions of the simples of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) we
immediately see that each of these cases is pointed. By considering twists we find that

C(𝔰𝔩2, 4)0Rep(ℤ2) ≃ Vec(ℤ3,{1, 𝑒2𝜋𝑖 13 , 𝑒2𝜋𝑖 13 ),
C(𝔰𝔩3, 3)0Rep(ℤ3) ≃ Vec(ℤ2 × ℤ2,{1,−1,−1,−1),
C(𝔰𝔩4, 2)0Rep(ℤ2) ≃ Vec(ℤ6,{1, 𝑒2𝜋𝑖 512 , 𝑒2𝜋𝑖 23 , 𝑒2𝜋𝑖 34 , 𝑒2𝜋𝑖 23 , 𝑒2𝜋𝑖 512 },

where the second argument describes the non-degenerate quadratic form on ℤ𝑛. With
these explicit presentations, it is straight-forward to verify that they satisfy the claims
of Theorem 1.4. □
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Remark 2.16. In order to keep the statements of various lemmas tidy, for the remainder
of this paper we will implicitly assume that the three cases C(𝔰𝔩2, 4)0Rep(ℤ2),
C(𝔰𝔩3, 3)0Rep(ℤ3), and C(𝔰𝔩4, 2)0Rep(ℤ2) are ignored.
With the special cases mentioned in Remark 2.16 excluded, we can show that the

object Ω is simple.

Lemma 2.17. The objectΩ is a simple object in C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚).
Proof. This lemma is equivalent to showing that Stabℤ𝑚(Λ1+Λ𝑟) is trivial. Let 𝑗 ∈ ℤ𝑚,
then the corresponding invertible object of C(𝔰𝔩𝑟+1, 𝑘) is 𝑘Λ𝑗 𝑟+1𝑚 . We compute

𝑘Λ𝑗 𝑟+1𝑚 ⊗ (Λ1 +Λ𝑟) ≅ ((𝑘 − 2)Λ𝑗 𝑟+1𝑚 +Λ𝑗 𝑟+1𝑚 +1 +Λ𝑗 𝑟+1𝑚 −1) .
A case by case analysis, where we consider 𝑘 ≥ 4, 𝑘 = 3, and 𝑘 = 2, gives the desired
result. □

Let us study the group of invertibles of the modular category C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚).
Lemma 2.18. We haveInv(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚)) = {(𝑘Λℓ𝑚″ , 1) ∶ ℓ ∈ ℤ 𝑟+1𝑚𝑚″ } ≅ ℤ 𝑟+1𝑚𝑚″ .
Proof. From the formula for the dimensions of the simples of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚), it is
clear that (𝑋,𝜒𝑋) ∈ C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) will be invertible if and only if 𝑋 has integer
dimension, and lives in a graded component of C(𝔰𝔩𝑟+1, 𝑘) which is a multiple of 𝑚.
The objects with integer dimension in C(𝔰𝔩𝑟+1, 𝑘) have been classified [57], and aside
from the special cases we have discarded, the only such objects are the invertibles.
The invertible objects of C(𝔰𝔩𝑟+1, 𝑘) are of the form 𝑘Λ𝑖 for 𝑖 ∈ ℤ𝑟+1. These invertible

objects live in the graded component 𝑘𝑖 of C(𝔰𝔩𝑟+1, 𝑘). Hence, to find the invertible
objects of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚), we need to see which 𝑖 ∈ ℤ𝑟+1 satisfy the equation 𝑘𝑖 =𝑁𝑚 for some 𝑁 ∈ ℕ. We can write this equation as 𝑘𝑚′ 𝑖 = 𝑁𝑚″. As a consequence of
the definition of𝑚′ and𝑚″, we have that 𝑘𝑚′ and𝑚″ are coprime. Thus,𝑚″ divides 𝑖,
and so 𝑖 is amultiple of𝑚″. This tells us the group of invertibles of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is
generated by the object (𝑘Λ𝑚″ , 1), and hence forms a group isomorphic to ℤ 𝑟+1𝑚𝑚″ . □

The category C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is modular, which implies the universal grading
group is isomorphic to the group of invertibles. Hence we get Corollary 2.19.

Corollary 2.19. The universal grading group of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is the group ℤ 𝑟+1𝑚𝑚″ .
Let us now identify the adjoint subcategory of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). Knowing this

subcategory will allow us to use powerful graded category techniques. A natural guess
would be that (C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚))ad ≃ (C(𝔰𝔩𝑟+1, 𝑘)ad)Rep(ℤ𝑚). However this doesn’t
even typecheck, as Rep(ℤ𝑚) is not necessarily always a subcategory of (C(𝔰𝔩𝑟+1, 𝑘)ad),
i.e. consider C(𝔰𝔩8, 3)Rep(ℤ2). Insteadwefind that the adjoint subcategory is equivalent
to C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). As 𝑚′ divides 𝑘, we have that Rep(ℤ𝑚′) is a subcategory of
C(𝔰𝔩𝑟+1, 𝑘)ad.
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Lemma 2.20. We have

(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚))ad ≃ C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′).
Proof. The category C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) naturally embeds in C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) via the
identity functor. As C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is generated by the simple object Ω, anddimHom(Ω ⊗ Ω → Ω) ≥ 1, the adjoint subcategory of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is itself.
Hence the adjoint subcategory of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) contains C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). The
global dimension of (C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚))ad and C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) are the same, thus
we have an equivalence. □

Finally, we study the invertible objects of the adjoint subcategory
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′).
Lemma 2.21. We have Inv(Ad(C(𝔰𝔩𝑟+1, 𝑘))Rep(ℤ𝑚′)) ≅ ℤ 𝑛′𝑚′ ,
where 𝑛′ ≔ gcd(𝑟 + 1, 𝑘).
Proof. This proof is fairly similar to the proof of Lemma 2.18. The same idea shows that
any invertible of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) will be of the form (𝑘Λ𝑖, 1) where 𝑖 ∈ ℤ 𝑟+1𝑚′ and𝑘𝑖 ≡ 0 (mod 𝑟 + 1). This implies that 𝑖 has to be a multiple of 𝑟+1𝑛′ . Thus the invertible
objects of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) are of the form (𝑘Λ𝑗 𝑟+1𝑛′ , 1), where 𝑗 ∈ ℤ 𝑛′𝑚′ . □

The invertible objects of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) act transitively on the simple object Ω
in all but one special case.

Lemma 2.22. Suppose (𝑟, 𝑘,𝑚) ∉ {(1, 4, 1), (2, 3, 1), (3, 2, 1)}, and let 𝑔 ∈Inv(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚)). Then 𝑔⊗Ω ≅ Ω ⟹ 𝑔 ≅ 𝟏.
Proof. By Lemma 2.18 we have that 𝑔 ≅ (𝑘Λℓ𝑚″ , 1) for some ℓ ∈ ℤ 𝑟+1𝑚𝑚″ . As 𝑔⊗Ω ≅ Ω,
we get 𝑘Λℓ𝑚″ ⊗ (Λ1 +Λ𝑟) and (Λ1 +Λ𝑟)
live in the same orbit under the action of ℤ𝑚 in C(𝔰𝔩𝑟+1, 𝑘). Thus there exists a 𝑗 such
that
(1) Λ−1+ℓ𝑚″ + (𝑘 − 2)Λℓ𝑚″ +Λℓ𝑚″

+1 = Λ−1+𝑗 𝑟+1𝑚 + (𝑘 − 2)Λ𝑗 𝑟+1𝑚 +Λ1+𝑗 𝑟+1𝑚 .
We first deal with the special case of 𝑟 = 1. If 𝑚 = 2, then we have that ℓ ≡ 0(mod 𝑟+1𝑚𝑚″ ), and so 𝑔 ≅ 𝟏. Otherwise𝑚 = 1, and Equation (1) becomes2Λℓ+1 + (𝑘 − 2)Λℓ = 2Λ1 + (𝑘 − 2)Λ0.

Either ℓ = 0 and the desired result is immediate, or ℓ = 1, which forces 𝑘 = 4 (an
excluded case in the statement of the lemma).
With the case of 𝑟 = 1 dealt with, we can assume thatΛ−1+ℓ𝑚″ ≠ Λℓ𝑚″

+1 and Λ
−1+𝑗 𝑟+1𝑚 ≠ Λ1+𝑗 𝑟+1𝑚 .

We now break into cases depending on 𝑘.
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If 𝑘 > 3, then Equation (1) gives that ℓ𝑚″ ≡ 𝑗 𝑟+1𝑚 (mod 𝑟 + 1). Hence ℓ ≡ 0
(mod 𝑟+1𝑚𝑚″ ) and so 𝑔 ≅ 𝟏 as desired.
If 𝑘 = 3, then Equation (1) gives that ℓ𝑚″ ≡ {−1+𝑗 𝑟+1𝑚 , 𝑗 𝑟+1𝑚 , 1+𝑗 𝑟+1𝑚 } (mod 𝑟+1)}.

If ℓ𝑚″ ≡ 𝑗 𝑟+1𝑚 (mod 𝑟 + 1), then ℓ ≡ 0 (mod 𝑟+1𝑚𝑚″ ), and we have 𝑔 ≅ 𝟏. If ℓ𝑚″ ≡±1 + 𝑗 𝑟+1𝑚 (mod 𝑟 + 1), then Equation (1) gives 3 ≡ 0 (mod 𝑟 + 1), and so 𝑟 = 2. Either
we have𝑚 = 1, in which case we are excluded by the statement of the lemma, or𝑚 = 3,
in which case we are excluded by Remark 2.16.
If 𝑘 = 2 then Equation (1) gives that either ℓ𝑚″ ≡ 𝑗 𝑟+1𝑚 (mod 𝑟 + 1) or ℓ𝑚″ ≡2+ 𝑗 𝑟+1𝑚 ≡ −2+ 𝑗 𝑟+1𝑚 (mod 𝑟+1). In the first case, we have that ℓ ≡ 0 (mod 𝑟+1𝑚𝑚″ ) and

we are done. In the latter case, we have that 4 ≡ 0 (mod 𝑟+ 1), and so 𝑟 = 3. We either
have𝑚 = 2, in which case we are excluded by Remark 2.16, or𝑚 = 1, in which case we
are excluded by the statement of the lemma. □

We will make Ω the base point of our auto-equivalence computations, and distin-
guish auto-equivalences based on whether they fix or move this object.

Definition 2.23. We say an auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is non-exceptional
if it mapsΩ to an image ofΩ under simple currents. We will say the auto-equivalence
is exceptional if it is not non-exceptional.

We will see in the bulk of this paper the surprising result that only a finite number
of auto-equivalences are exceptional, and that every non-exceptional auto-equivalence
comes from either a simple current auto-equivalence, charge conjugation, or from the
canonical ℤ𝑚-action.
While the definition of a non-exceptional auto-equivalence allows for the object Ω

to be moved, Lemma 2.24 shows this is not the case.

Lemma 2.24. A non-exceptional auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) must fixΩ.
Proof. LetF a non-exceptional auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). Then there ex-
ists an invertible element 𝑔 of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) such that F(Ω) ≅ 𝑔 ⊗Ω. As 𝑔 is of
the form (𝑘Λ𝑛𝑚″ , 1) for 𝑛 ∈ ℕ, we compute that𝑔⊗Ω ≅ ((𝑘 − 2)Λ𝑛𝑚″ +Λ𝑛𝑚″

+1 +Λ𝑛𝑚″
−1, 1).

The object Ω is self-dual, and so 𝑔 ⊗ Ω must be as well, thus 𝑔 ⊗ Ω ≅ 𝑔∗ ⊗ Ω.
Assuming that we are not in the excluded cases of Lemma 2.22, we can apply this
lemma to obtain 𝑔⊗2 ≅ 𝟏, and so 𝑔 ≅ (𝑘Λ𝑗 𝑟+12𝑚 , 1) for 𝑗 ∈ {0, 1}. If we are in one
of the three excluded cases, then a direct calculation shows that 𝑔 ⊗ Ω ≅ Ω for all𝑔 ∈ Inv(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚)) and hence F fixes Ω.
For the generic case of 𝑟 ≥ 2 and 𝑘 ≥ 3, we know that dimhom(Ω⊗Ω → Ω) = 2,

and thus dimhom(𝑔 ⊗Ω⊗ 𝑔⊗Ω → 𝑔 ⊗Ω) = 2. Using the braiding on the category,
along with the fact that 𝑔 has order two, we see that dimhom(Ω⊗Ω → 𝑔 ⊗ Ω) = 2.
We explicitly compute the simple decomposition of Ω⊗Ω as𝟏⊕ 2Ω⊕ (Λ2 + 2Λ𝑟, 1)⊕ (Λ2 +Λ𝑟−1, 1)⊕ (2Λ1 +Λ𝑟−1, 1)⊕ (2Λ1 + 2Λ𝑟, 1).
As 𝑔⊗Ω = ((𝑘−2)Λ𝑗 𝑟+12𝑚 +Λ𝑗 𝑟+12𝑚 +1 +Λ𝑗 𝑟+12𝑚 −1, 1)must appear in this decomposition, we
can immediately deduce that 𝑗 = 0, i.e. 𝑔must be the identity.
For the remaining cases, the proof is almost identical, except the decomposition

of Ω ⊗ Ω is smaller, and in some cases the stabiliser subgroup of the simples in the



128 CAIN EDIE-MICHELL

decomposition is non-trivial, so the characters of the stabiliser groupsmust be changed.
□

In light of the above result we make Definition 2.25.

Definition 2.25. Wewrite EqBr(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚);Ω) for the group of braided auto-
equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) which fix Ω, or equivalently, the group of non-
exceptional auto-equivalences.

2.3. Planar algebras. A key tool for the results of this paper is planar algebras.
Roughly speaking a planar algebra P is a collection of vector spaces {P𝑛 ∶ 𝑛 ∈ ℕ},
along with a multi-linear action of planar tangles. The full definition can be found in
[40], and illuminating examples in [46].
We will be interested in planar algebras constructed from symmetrically self-dual

objects in pivotal fusion categories. Let 𝑋 ∈ C be such an object. Then we can define a
planar algebra P𝑋 by

(P𝑋)𝑛 ≔ Hom(𝟏→ 𝑋⊗𝑛).
Supposing the object 𝑋 generated C, then we can recover C by taking the idempotent
completion of P𝑋 . Here the objects are idempotents in the algebras (P𝑋)2𝑛 (where we
have 𝑛 legs pointing up, and 𝑛 legs pointing down) with vertical stacking as the multi-
plication. Themorphisms between two idempotents are elements of the planar algebra
which intertwine the two idempotents. The tensor product is given by horizontal jux-
taposition, and direct sums are added formally. Additional information on these two
constructions can be found in [46].
It is proven in [34, TheoremA] that the above bijection between planar algebras and

symmetrically self-dual objects 𝑋 ∈ C is functorial. That is, there is an isomorphism
between automorphisms of the planar algebraP𝑋 , and pivotal auto-equivalences of the
category C which fix 𝑋 .
2.4. Simple current auto-equivalences. A useful class of auto-equivalences of
C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is given by simple current auto-equivalences. These are graded auto-
equivalences which permute the simple objects by tensoring with certain invertible
objects in C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). The precise definition is as follows.
Lemma 2.26 ([18, Lemma 2.4]). Let C be amodular tensor category, and 𝑔 an invertible
object of order𝑀. Set 𝑞 equal to the unique integer (modulo 2𝑀) such that𝜎𝑔,𝑔 = 𝑒2𝜋𝑖 𝑞2𝑀 id𝑔⊗𝑔
(see [56, Proposition 2.5.1]), and choose 𝑎 ∈ {0, 1,⋯,𝑀 − 1} such that1 + 𝑎𝑞 is coprime to𝑀.
Then there exists a monoidal auto-equivalence F𝑔,𝑎 of C defined on objects by

F𝑔,𝑎(𝑋) = 𝑔−𝑎𝑛⊗𝑋,
where 𝑛 is the unique integer (modulo 𝑀) such that 𝜎𝑋,𝑔𝜎𝑔,𝑋 = 𝑒2𝜋𝑖 𝑛𝑀 id𝑔⊗𝑋 . The
monoidal auto-equivalence F𝑔,𝑎 is braided if and only if

𝑎 + 𝑎2𝑞2 ≡ 0 (mod 𝑀).



TYPE 𝐼𝐼 QUANTUM SUBGROUPS OF 𝔰𝔩𝑁 . 𝐼 129

As Ω is in the adjoint subcategory of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚), we have that any simple
current auto-equivalence fixes Ω, and hence is non-exceptional.

3. Non-exceptional auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚)
In this sectionwewill determine the braided auto-equivalences ofC(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚)

that fix the distinguished objectΩ. In terms of the notation introduced in this paper, we
will determine the group EqBr(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚);Ω). We show that non-exceptional
auto-equivalences (in the formal definition of this paper) are non-exceptional (in the
layman terms). That is, every non-exceptional braided auto-equivalence is charge con-
jugation, simple current, or comes from the canonical ℤ𝑚-action on
C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚).
Let us outline the arguments of this section. To begin, we initially focus our atten-

tion on the distinguished subcategory C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). The subcategory
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) has two nice features that will assist with the results of this sec-
tion. First is that it has trivial universal grading group, and hence has a unique piv-
otal structure, and second the category C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is generated by the distin-
guished objectΩ. Together these factswill allowus powerful planar algebra techniques
to determine the non-exceptional symmetries.
With the above in mind, we give a presentation of the planar algebra PΩ, i.e. the

planar algebra generated by the object Ω ∈ C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). To achieve this, we
observe that PΩ contains the planar algebra PΛ1+Λ𝑟 , i.e. the planar algebra generated
by the object Λ1 + Λ𝑟 ∈ C(𝔰𝔩𝑟+1, 𝑘)ad. The planar algebra PΛ1+Λ𝑟 is well understood,
and is known to be generated by two trivalent vertices. We can then find an additional
generator inPΩ, which togetherwith the two trivalent vertices generates all ofPΩ. The
idea here is that the groupℤ𝑚′ is singly generated, which allows us to understand skein
theory for de-equivariantisation in terms of the addition of one additional generator.
With the generators of PΩ identified, we can then find relations that these generators
satisfy.

Remark 3.1. While it is not explicit in this paper, the techniques we have briefly de-
scribed above (and will explain in detail in the remainder of this section) can be used
to give skein theory for any de-equivariantisation by an abelian group.

With the presentation of the planar algebra PΩ in hand, we can use it to give an
upper bound for the group of braided auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) which
fix Ω. We find that there are at most 2𝑚′ of these auto-equivalences, which compose
to form a group isomorphic to 𝐷𝑚′ . Further, we explicitly identify how these potential
auto-equivalences act on the simples of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). We then construct these2𝑚′ potential auto-equivalences by the charge-conjugation auto-equivalence, which
gives us a ℤ2 subgroup, and by the canonical ℤ𝑚′ -action on C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) which
comes from de-equivariantisation.
To obtain the auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) which fix Ω, we appeal to

the techniques developed in [17]. These techniques allow us to give an upper bound
for EqBr(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚);Ω) in terms of EqBr(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′);Ω) and some
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cohomogical data. While there is no reason that this bound should be sharp (the tech-
niques involve verifying that certain obstructions vanish in order to show that auto-
equivalences lift) we are able to show that the theoretical upper bound is realised by
simple current auto-equivalences.
All together we prove Theorem 3.2.

Theorem 3.2. Let 𝑟, 𝑘 ∈ ℕ, and 𝑚 a divisor of 𝑟 + 1 such that 𝑚2 ∣ 𝑘(𝑟 + 1). Set 𝑚′ =gcd(𝑚,𝑘) and𝑚″ = 𝑚𝑚′ . Then we have the following isomorphism of groups

EqBr(C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚);Ω) ≅
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{𝑒} if 𝑘 = 2 and 𝑟 = 1,ℤ𝑚′ × ℤ𝑝+𝑡2 if 𝑘 = 2 or 𝑟 = 1,𝐷𝑚′ × ℤ𝑝+𝑡2 otherwise,
where

● 𝑝 is the number of distinct odd primes dividing 𝑟+1𝑚𝑚″ but not 𝑘𝑚′ , and

● 𝑡 =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑟 + 1𝑚𝑚″ is odd, or if 𝑘𝑚′ ≡ 0 (mod 4),
or if both 𝑘𝑚′ is odd and 𝑟 + 1𝑚𝑚″ ≡ 2 (mod 4)1 otherwise.

With the high-level arguments in mind, let us begin with the details of proving The-
orem 3.2.
Consider the planar algebra PΩ. As Ω generates, and there exists a map Ω⊗Ω →Ω, we have that C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) has trivial universal grading group, and thus also

has a unique pivotal structure. Therefore we have that EqBr(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′),Ω) is
isomorphic to the group of braided planar algebra automorphisms of PΩ. Our goal is
thus to specify as much of the structure of this planar algebra PΩ as possible in order
to understand its auto-equivalence group.
As the free module functor C(𝔰𝔩𝑟+1, 𝑘)ad → C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is dominant, and

maps Λ1 +Λ𝑟 to Ω, we obtain a planar algebra embedding
PΛ1+Λ𝑟 → PΩ.

The planar algebra PΛ1+Λ𝑟 is well understood [18, 39]. It is generated by two triva-
lent vertices satisfying the Thurston relations (see [39, Lemma 3.2]). Hence the planar
algebra PΩ also contains two trivalent vertices

and
S

satisfying these same Thurston relations. However, there are going to be additional
generators in this planar algebra. These additional generators come from the de-
equivariantisation by Rep(ℤ𝑚′).
Remark 3.3. For the remainder of this sectionwewill identify C(𝔰𝔩𝑟+1, 𝑘)ad as the idem-
potent completion of the planar algebra PΛ1+Λ𝑟 , and C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) as the idem-
potent completion of the planar algebra PΩ. This means that we regard simple objects
of these categories as minimal idempotents of the planar algebras, and morphisms as
elements of the planar algebra which commute with the idempotents.
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Let us write 𝑝𝑘Λ 𝑟+1𝑚′ for the minimal idempotent of C(𝔰𝔩𝑟+1, 𝑘)ad corresponding to
the simple object 𝑘Λ 𝑟+1𝑚′ . From the inclusion of planar algebras PΛ1+Λ𝑟 → PΩ, we have
that this idempotent 𝑝𝑘Λ 𝑟+1𝑚′ also exists in PΩ.
The free module functor Fℤ𝑚′ ∶ C(𝔰𝔩𝑟+1, 𝑘)ad → C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) sends 𝑘Λ 𝑟+1𝑚′ to

the tensor unit. Therefore in the planar algebra PΩ, the trivial idempotent and 𝑝𝑘Λ 𝑟+1𝑚′
are isomorphic. Thus there exists an invertible element 𝑆 ∈ PΩ (which we draw as a
circle to differentiate it from the other planar algebra elements) satisfying

S
−1

S

= 1 and

S
−1

S

= pkΛr+1
k
.

The element 𝑆 lives in the 𝑛-box space of PΩ, where 𝑛 is the smallest 𝑛 such that𝑘Λ 𝑟+1𝑚′ appears in the decomposition of (Λ1 +Λ𝑟)⊗𝑛.
We claim that PΩ is generated by the two trivalent vertices, along with the new

element 𝑆.
Lemma 3.4. We have that PΩ is generated by the two Thurston trivalent vertices, and
the element 𝑆.
Proof. Let P𝑆 be the subplanar algebra of PΩ generated by these three elements, and
C𝑆 the corresponding category. Then we have a chain of embeddings

PΛ1+Λ𝑟 → P𝑆 → PΩ.
This gives us dominant monoidal functors

F1 ∶ C(𝔰𝔩𝑟+1, 𝑘)ad → C𝑆 ,
F2 ∶ C𝑆 → C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′),

and their adjoints
F
∗1 ∶ C𝑆 → C(𝔰𝔩𝑟+1, 𝑘)ad,
F
∗2 ∶ C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) → C𝑆 .

From [6], we have that F∗1 (𝟏C𝑆) is a commutative central algebra object, and that C𝑆 is
equivalent to the category of F∗1 (𝟏C𝑆)-modules in C(𝔰𝔩𝑟+1, 𝑘)ad.
As these dominant functors F1 and F2 are just the inclusions of idempotents, we

have that the composition of these two dominant functors is equal on the nose to the
dominant functor C(𝔰𝔩𝑟+1, 𝑘)ad → C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) induced by the planar algebra
inclusion

PΛ1+Λ𝑟 → PΩ.
This induced functor C(𝔰𝔩𝑟+1, 𝑘)ad → C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is precisely the free module
functor Fℤ𝑚′ . Hence we have that

F2 ○F1 = Fℤ𝑚′ ,
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which implies that
F
∗1 ○F∗2 = F∗ℤ𝑚′ .

From this fact we see

F
∗1 (𝟏C𝑆) ⊆ F∗1 ○F∗2 (𝟏C(𝔰𝔩𝑟+1,𝑘)adRep(ℤ𝑚′ )) = F∗ℤ𝑚′ (𝟏C(𝔰𝔩𝑟+1,𝑘)adRep(ℤ𝑚′ )) = Fun(ℤ𝑚′),

as a central commutative algebra in C(𝔰𝔩𝑟+1, 𝑘)ad. In particular we get that F∗1 (𝟏C𝑆) ≅Fun(ℤℓ) where ℓ ∣ 𝑚′. As Fun(ℤ𝑚′) is the central commutative algebra object in
C(𝔰𝔩𝑟+1, 𝑘)ad corresponding to the de-equivariantisation by theRep(ℤ𝑚′) subcategory,
the central structure is given by the braiding of C(𝔰𝔩𝑟+1, 𝑘)ad. Hence the central struc-
ture on Fun(ℤℓ) is also given by the braiding. This gives that C𝑆 is a de-
equivariantisation of C(𝔰𝔩𝑟+1, 𝑘)ad by Rep(ℤℓ), i.e.

C𝑆 ≃ C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤℓ).
In C𝑆 we know that 𝑆 gives an isomorphism from 𝟏 → 𝑝𝑘Λ 𝑟+1𝑚′ which implies that𝑚′ ∣ ℓ. Thus

C𝑆 ≃ C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′)
which gives the desired isomorphism of planar algebras

P𝑆 ≅ PΩ.
□

In order to study the planar algebra automorphisms of PΩ we need to study the
element 𝑆 further, and deduce further relations that it satisfies.
Remark 3.5. To simplify notation, we will now draw multiple strands of a planar al-
gebra as a single strand in our graphical diagrams. It will be clear from context how
many strands are meant by the diagram.

In the category C(𝔰𝔩𝑟+1, 𝑘)ad we have that 𝑘Λ⊗𝑚′𝑟+1𝑚′ ≅ 𝟏. Thus the object 𝑘Λ 𝑟+1𝑚′ gen-
erates a subcategory with the fusion rules of ℤ𝑚′ . We are given that this subcategory
is Tannakian (as it is the subcategory we are de-equivariantating by), so it is braided
equivalent to Rep(ℤ𝑚′). For 𝑛 ∈ ℤ𝑚′ , let 𝑝𝑘Λ𝑟 𝑟+1𝑚′ ∈ PΛ1+Λ𝑟 be the unique (by the
fusion rules) projection onto 𝑘Λ𝑛 𝑟+1𝑚′ appearing in the smallest possible box-space of
PΛ1+Λ𝑟 . Note that as Λ1 + Λ𝑟 is self-dual, we get that 𝑘Λ𝑛 𝑟+1𝑚′ and 𝑘Λ−𝑛 𝑟+1𝑚′ live in the
same box space. We can choose a system of trivalent vertices

𝑡𝑛,𝑝 = tn,p

pkΛ
n

r+1

m′

pkΛ
p
r+1

m′

pkΛ
(n+p)

r+1

m′

∶ 𝑝𝑘Λ𝑛 𝑟+1𝑚′ ⊗𝑝𝑘Λ𝑝 𝑟+1𝑚′ → 𝑝𝑘Λ
(𝑛+𝑝) 𝑟+1𝑚′

in C(𝔰𝔩𝑟+1, 𝑘)ad with trivial 6-j symbols, and such that the charge-conjugation auto-
equivalence 𝑘Λ𝑛 𝑟+1𝑚′ ↦ 𝑘Λ

−𝑛 𝑟+1𝑚′ maps 𝑡𝑛,𝑝 ↦ 𝑡−𝑛,−𝑝.
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We can build an isomorphism

𝑗 ≔ 𝑡1,1𝑡2,1⋯𝑡𝑚′
−1,1 =

t1,1

pkΛ r+1

m
′

pkΛ r+1

m
′

pkΛ r+1

m
′

t2,1

pkΛ r+1

m
′

tm′
−1,1

∶ 𝑝𝑘Λ⊗𝑚′𝑟+1𝑚′ → 𝟏.

Hence we have that 𝑗 is a map from the idempotent 𝑝⊗𝑚′𝑘Λ 𝑟+1𝑚′ to the trivial idempotent in
the planar algebra PΛ1+Λ𝑟 . In the planar algebra PΩ we have that 𝑆⊗𝑚′ is an isomor-
phism from the idempotent 𝑝⊗𝑚′𝑘Λ 𝑟+1𝑚′ to the trivial idempotent. Thus we have that𝑆⊗𝑚′

○ 𝑗
lives in the 0-box space of PΩ and is non-zero. This allows us to normalise 𝑆 so that we
get the relation

(2)
S SS

=

t−1

1,1

pkΛ r+1

m
′

pkΛ r+1

m
′

pkΛ r+1

m
′

t−1

2,1

pkΛ r+1

m
′

t−1

m′
−1,1

,

in the planar algebra PΩ.
This explicit presentation of the planar algebraPΩ is sufficient to compute themini-

mal idempotents up to equivalence, and thus the simple objects of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′).
Lemma 3.6. The simple objects of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) are parametrised (up to isomor-
phism) by (𝑋,𝜒𝑋),
where 𝑋 is a simple object of C(𝔰𝔩𝑟+1, 𝑘)ad (up to action by 𝑘Λ 𝑟+1𝑚′ ) and 𝜒𝑋 is a character

of the group Stabℤ𝑚′ (𝑋). The quantum dimension of (𝑋,𝜒𝑋) is equal to dim(𝑋)
∣Stabℤ𝑚′ (𝑋)∣ .

Proof. The free module functor Fℤ𝑚′ is dominant, therefore every simple object of
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is a subobject ofFℤ𝑚′ (𝑋) for some𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘)ad. Let 𝑝𝑋 be the
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minimal projection in the planar algebra PΛ1+Λ𝑟 corresponding to 𝑋 . As
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is idempotent complete, each simple subobject of𝑋 will correspond
(up to isomorphism) to a minimal subidempotent of 𝑝𝑋 .
Assume that Stabℤ𝑚′ (𝑋) ≅ ℤ𝑑, then there exists an isomorphism 𝑓𝑋 ∶ 𝑝𝑋⊗𝑝𝑘Λ⊗𝑚′𝑑𝑟+1𝑚′

→ 𝑝𝑋 in C(𝔰𝔩𝑟+1, 𝑘)ad. For each 𝑛 ∈ ℤ𝑑 we define isomorphisms 𝑟𝑋,𝑛 ∶ 𝑝𝑋 → 𝑝𝑋 in
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) by

𝑟𝑋,𝑛 ≔ 𝑓𝑛𝑋 ○ 𝑆⊗𝑛𝑚′𝑑 =
fX

S S

pX

pX

S

fX

S
︸ ︷︷ ︸

m′

d
︸ ︷︷ ︸

nm′

d

.

By design we have that 𝑟𝑋,𝑛𝑟𝑋,𝑛′ = 𝑟𝑋,𝑛+𝑛′ . Furthermore, by relation (2) we have
that 𝑟𝑋,𝑑 ∶ 𝑝𝑋 → 𝑝𝑋 lives in PΛ1+Λ𝑟 . As 𝑝𝑋 is simple in C(𝔰𝔩𝑟+1, 𝑘)ad, we have that 𝑟𝑋,𝑑
must be a scalar multiple of 𝑝𝑋 . We normalise our choice of the isomorphism 𝑓𝑋 to
ensure that 𝑟𝑋,𝑑 = 𝑝𝑋 . Thus we have that End(𝑝𝑋) in C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is isomor-
phic to the group algebra ℂ[ℤ𝑑]. It is a classical result that the minimal idempotents
are indexed by characters 𝜒 of ℤ𝑑 with

𝑝𝜒 = 1
∣Stabℤ𝑚′ (𝑋)∣ ∑𝑛∈ℤ𝑑 𝜒(𝑛)𝑟𝑋,𝑛.

The quantum dimension of the minimal idempotent 𝑝𝜒 is given by the trace. Note
that the trace of 𝑟𝑋,𝑛 is 0, unless 𝑛 = 0, as otherwise we could build a non-trivial mor-
phism

𝑘Λ⊗ 𝑛𝑚′𝑑𝑟+1𝑚′ → 𝟏.
If 𝑛 = 0, then the trace of 𝑟𝑋,𝑛 is the quantum dimension of 𝑋 . Hence the trace of 𝑝𝜒 is
equal to the quantum dimension of 𝑋 divided by ∣Stabℤ𝑚′ (𝑋)∣. □

Remark 3.7. For ease of notation, let us fix isomorphisms ℤ𝑁 → ℤ̂𝑁 by

𝑛 ↦ 𝜒𝑛 ≔ 𝑎↦ 𝑒2𝜋𝑖 𝑛𝑎𝑁 .
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We can now determine an upper bound for the group Aut(PΩ), and hence also for
the group EqBr(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′);Ω) .
Lemma 3.8. We have thatEqBr(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′);Ω) ⊆ 𝐷𝑚′ ,
with generators

(𝑋,𝜒𝑛)↦ (𝑋,𝜒𝑛+1)
and

(𝑋,𝜒𝑛)↦ (𝑋∗, 𝜒−𝑛).
Proof. Let 𝜙 ∈ Aut(PΩ) be a braided automorphism. Then 𝜙 is determined bywhere it
sends the three generators. Recall, we have two trivalent vertices satisfying the
Thurston relations, and the generator 𝑆 which lives in the 𝑛-box space, where 𝑛 is the
smallest 𝑛 such that 𝑘Λ 𝑟+1𝑚′ appears in the decomposition of (Λ1 +Λ𝑟)⊗𝑛. By explicitly
expanding (Λ1 +Λ𝑟)⊗3 we can see that 𝑘Λ 𝑟+1𝑚′ appears as a summand only in the case
C(𝔰𝔩2, 4)adRep(ℤ2), C(𝔰𝔩3, 3)adRep(ℤ3), and C(𝔰𝔩4, 2)adRep(ℤ2). These cases have already been
excluded and dealt with previously in the paper.
Let us deal with the remaining cases. As 𝑆 does not live in the three box space, we

know that there are scalars 𝑐1, 𝑐2, 𝑐3, 𝑐4 ∈ ℂ such that

𝜙⎛⎜⎜⎝
⎞⎟⎟⎠ = 𝑐1 + 𝑐2

S

𝜙⎛⎜⎜⎜⎝ S

⎞⎟⎟⎟⎠
= 𝑐3 + 𝑐4

S

.
The coefficients 𝑐1, 𝑐2, 𝑐3, 𝑐4 for which 𝜙 preserves the Thurston relations are solved

for in [18, Lemma 3.1]. With the condition that 𝜙 is braided, there are two solutions,
which we denote 𝜙id and 𝜙cc. These planar algebra automorphisms on the subplanar
algebra PΛ1+Λ𝑟 are explicitly identified in the cited paper, where it is found that 𝜙cc
corresponds to the charge-conjugation auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)ad.
Now the charge-conjugation auto-equivalence maps 𝑘Λ± 𝑟+1𝑚′ ↦ 𝑘Λ∓ 𝑟+1𝑚′ , thus we

have the following in the planar algebra PΛ1+Λ𝑟 :
𝜙id (𝑝𝑘Λ± 𝑟+1𝑚′ ) = 𝑝𝑘Λ± 𝑟+1𝑚′

and 𝜙cc (𝑝𝑘Λ± 𝑟+1𝑚′ ) = 𝑝𝑘Λ∓ 𝑟+1𝑚′ .
As the planar algebra PΛ1+Λ𝑟 canonically embeds in PΩ, we also have these relations
in the larger planar algebra.
To see when these auto-equivalences 𝜙id and 𝜙cc extend to the full planar algebra

PΩ we must determine if (and how) these automorphisms act on the generators 𝑆.



136 CAIN EDIE-MICHELL

Let us define isomorphisms in PΩ by

𝑆𝑛 ≔ 𝑆⊗𝑛 ○ 𝑡1,1𝑡2,1⋯𝑡𝑛−1,1 =
t1,1

t2,1

pkΛ
n

r+1

m
′

tn−1,1

S S S S

∶ 𝟏→ 𝑝𝑘Λ𝑛 𝑟+1𝑚′ .

Note that trivially we have 𝑆1 = 𝑆, and by relation (2) we have that 𝑆𝑚′ = 1.
To see when 𝜙id extends to PΩ, observe that 𝜙id(𝑆) is an isomorphism from 𝟏 →𝑝𝑘Λ 𝑟+1𝑚′ . As this morphism space is 1-dimensional, we must have that 𝜙id(𝑆) = 𝛽𝑆 for

some non-zero scalar 𝛽 ∈ ℂ. Applying the potential automorphism to relation (2) gives
that 𝛽 must be an𝑚′-th root of unity.
To see when 𝜙cc extends to PΩ, observe that 𝜙cc(𝑆) is an isomorphism from 𝟏 →𝑝𝑘Λ
−
𝑟+1𝑚 . This implies that 𝜙cc(𝑆) = ̂𝛽𝑆𝑚′

−1 for some non-zero scalar ̂𝛽 ∈ ℂ. We apply
this potential automorphism to relation (2) to obtain

̂𝛽𝑚′
Sm′

−1

pkΛ
−

r+1

m
′

Sm′
−1

pkΛ
−

r+1

m
′

︸ ︷︷ ︸

m′ copies

=

t−1

−1,−1

pkΛ
−

r+1

m
′

pkΛ
−

r+1

m
′

pkΛ
−

r+1

m
′

t−1

−2,−1

pkΛ
−

r+1

m
′

t−1

1−m′,−1

.

From this equation we expand out the 𝑆𝑚′
−1 terms to obtain an equation with (𝑚′

−1)𝑚′ of 𝑆 terms. We then apply relation (2) to get an equation purely in terms of the
trivalent vertices 𝑡. From here we then use that the trivalent vertices 𝑡 have trivial 6-j
symbols to obtain ̂𝛽𝑚′

= 1. Thus ̂𝛽 must be an𝑚′-root of unity.
With the explicit presentation of how the 2𝑚′ potential automorphisms act on the

generator 𝑆, it is straight-forward to determine that if these automorphisms existed,
then they would form a group isomorphic to 𝐷𝑚′ . Note that the two automorphisms
corresponding to 𝛽 = 𝑒2𝜋𝑖 1𝑚′ and ̂𝛽 = 1 are generators for the entire automorphism
group.
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We now determine how these 𝐷𝑚′ worth of potential automorphisms would act on
the simple objects of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). Let (𝑋,𝜒𝑛) be a simple object of
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′), where Stabℤ𝑚′ (𝑋) ≅ ℤ𝑑 for some 𝑑 ∣ 𝑚′, and 𝜒𝑛 ∈ ̂ℤ𝑑 for some𝑛 ∈ ℤ𝑑 (using the isomorphism of Remark 3.7).
For the planar algebra automorphisms sending 𝑆 to 𝛽𝑆 we pick the generator 𝛽 =𝑒2𝜋𝑖 1𝑚′ to study. We compute that 𝑟𝑋,𝑗 ↦ 𝛽𝑗𝑚′𝑑 𝑟𝑋,𝑗 = 𝑒2𝜋𝑖 𝑗𝑑 𝑟𝑋,𝑗 . Therefore under this

planar algebra automorphism, we have

𝑝(𝑋,𝜒𝑛) ↦ 1𝑑 ∑𝑗∈ℤ𝑑 𝜒𝑛(𝑗)𝑒2𝜋𝑖 𝑗𝑑 𝑟𝑋,𝑗 = 1𝑑 ∑𝑗∈ℤ𝑑 𝑒2𝜋𝑖 𝑛𝑗𝑑 𝑒2𝜋𝑖 𝑗𝑑 𝑟𝑋,𝑗 = 𝑝(𝑋,𝜒𝑛+1).
Thus the auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) corresponding to the planar algebra
automorphism for 𝛽 = 𝑒2𝜋𝑖 1𝑚′ maps

(𝑋,𝜒𝑛)↦ (𝑋∗, 𝜒−𝑛).
For the planar algebra automorphism sending 𝑆 ↦ ̂𝛽𝑆𝑚′

−1 we have to work a little
harder to determine where it sends the simple object (𝑋,𝜒𝑛). We pick the generator̂𝛽 = 1 to study. Recall that this planar algebra automorphism restricts to 𝜙cc on the sub-
planar algebra PΛ1+Λ𝑟 . Thus we know how this automorphism acts on the trivalent
vertices 𝑡, so we can compute that𝑓𝑋 ↦ 𝛾𝑓𝑚′

−1𝑋∗ ○ (𝑡−11,1𝑡−12,1⋯𝑡−1𝑚′
−2,1)⊗𝑑

for some 𝛾 ∈ ℂ. By simultaneously rescaling the trivalent vertices 𝑡, we can ensure that𝛾 = 1. With this information we compute that𝑟𝑋,𝑗 ↦ 𝑟𝑋∗,−𝑗 ,
and hence𝑝(𝑋,𝜒𝑛) ↦ 1𝑑 ∑𝑗∈ℤ𝑑 𝜒𝑛(𝑗)𝑟𝑋∗,−𝑗 = 1𝑑 ∑𝑗∈ℤ𝑑 𝜒𝑛(−𝑗)𝑟𝑋∗,𝑗 = 1𝑑 ∑𝑗∈ℤ𝑑 𝜒−𝑛(𝑗)𝑟𝑋∗,𝑗 = 𝑝(𝑋∗,𝜒−𝑛).
Thus the auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) corresponding to the planar algebra
automorphism for ̂𝛽 = 1maps

(𝑋,𝜒𝑛)↦ (𝑋∗, 𝜒−𝑛).
□

Lemma 3.8 gives an upper bound on the braided auto-equivalence group (which
fix Ω) for the category C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). In theory we could determine a complete
set of relations for the planar algebraPΩ, and verify that the auto-equivalences exist by
checking that they preserve all relations. However this requires additional work which
is beyond the scope of this paper. Instead we construct 2𝑚′ worth of braided auto-
equivalences of the category C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) directly, realising the upper bound.
Lemma 3.9. We have

EqBr(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′);Ω) ≅ ⎧⎪⎪⎨⎪⎪⎩ℤ𝑚′ if 𝑘 = 2 or 𝑟 = 1𝐷𝑚′ otherwise .
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Proof. Let us begin by constructing the ℤ𝑚′ worth of braided auto-equivalences. Via
construction, we have that ℤ𝑚′ acts on C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) via the map

(𝑋,𝜒𝑛)↦ (𝑋,𝜒𝑛+1).
To obtain the fullℤ𝑚worth of auto-equivalenceswe need to show this action is faithful.
This is equivalent to finding an object 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘)ad with Stabℤ𝑚′ (𝑋) = ℤ𝑚′ . If𝑚′
is odd, then the object

𝑋 = 𝑘𝑚′
𝑚′∑𝑖=1Λ𝑖 𝑟+1𝑚′

satisfies 𝑋 ⊗ 𝑘Λ 𝑟+1𝑚′ = 𝑋 , and lives in C(𝔰𝔩𝑟+1, 𝑘)ad as𝑘𝑚′
𝑚′∑𝑖=1 𝑖 𝑟 + 1𝑚′ = (𝑟 + 1)𝑘(𝑚′

+ 1)2𝑚′ ≡ 0 (mod 𝑟 + 1).
When𝑚′ is even, the above object does not live in C(𝔰𝔩𝑟+1, 𝑘)ad. To choose a suitable

object, we observe that 𝑟 + 1 is even in this setting (as𝑚 ∣ 𝑟 + 1), and so 2𝑚2 ∣ (𝑟 + 1)𝑘.
In particular (𝑟+1)𝑘2(𝑚′)2 is an integer. For this case we pick the object

𝑋 = ( 𝑘𝑚′ − 1) 𝑚′∑𝑖=1Λ𝑖 𝑟+1𝑚′ +
𝑚′∑𝑖=1Λ𝑖 𝑟+1𝑚′ + (𝑟+1)𝑘2(𝑚′)2 .

This object satisfies 𝑋 ⊗ 𝑘Λ 𝑟+1𝑚′ = 𝑋 as desired, and lives in C(𝔰𝔩𝑟+1, 𝑘)ad as
( 𝑘𝑚′ − 1) 𝑚′∑𝑖=1 𝑖 𝑟 + 1𝑚′ +

𝑚′∑𝑖=1 𝑖 𝑟 + 1𝑚′ + (𝑟 + 1)𝑘2(𝑚′)2 = (𝑟 + 1)(𝑘(𝑚′
+ 1)2𝑚′ +

𝑘2𝑚′ )
= (𝑟 + 1)(𝑘(𝑚′

+ 2)2𝑚′ ) ≡ 0 (mod 𝑟 + 1).
In either case, we have an object 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘)ad with Stabℤ𝑚′ (𝑋) = ℤ𝑚′ as desired.
To construct the remaining auto-equivalences, we observe that the charge-

conjugation auto-equivalences exist for C(𝔰𝔩𝑟+1, 𝑘)ad when 𝑘 ≥ 3 and 𝑟 ≥ 2 [18]. These
auto-equivalences preserve the Rep(ℤ𝑚′) subcategory, and hence descend to auto-
equivalences of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′).
To finish the proof, we must show that the charge-conjugation auto-equivalence

never coincides with the ℤ𝑚′ action. Thus we have to find an object 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘)ad
such that 𝑋∗ is not in the orbit of the action of 𝑘Λ 𝑟+1𝑚′ . This object is given by𝑋 = Λ1 + 2Λ𝑟−1.
This satisfies the required properties when 𝑟 ≥ 3 and 𝑘 ≥ 3.
If 𝑟 = 2 and 𝑘 ≥ 3, then we can use the object𝑋 = 3Λ1.
If 𝑘 = 2 or 𝑟 = 1, then𝑚′ ∈ {1, 2} and the result is given in [14, Theorem 1.2]. □

Now that we understand the auto-equivalences of the subcategory
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) which fix Ω, we can leverage this to determine the auto-
equivalences of the full category C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). The idea here is to use the fact that
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C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is aℤ 𝑟+1𝑚𝑚″ -graded extension of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). This allows us to
apply the results of [17] to classify the auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) extend-
ing a given auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). To convenience the reader, the
results of [17] state for a 𝐺-graded category ⊕𝐺C𝑔, the number of auto-equivalences
extending F ∈ Eq(C𝑒) is bounded above by
∣𝜙 ∈ Aut(𝐺) ∶ C𝑔 ≃ C𝜙(𝑔) as C𝑒-bimodules for all 𝑔 ∈ 𝐺∣⋅ ∣𝐻1(𝐺, Inv(Z(C𝑒)))∣ ⋅ ∣𝐻2(𝐺,ℂ×)∣.
With this bound, we can determine the following result.

Lemma 3.10. The group of auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) extending the iden-
tity on the subcategory C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is isomorphic to the group

{𝑎 ∈ ℤ 𝑟+1𝑚𝑚″ ∶ 1 + 𝑎 𝑘𝑚′ is coprime to 𝑟 + 1𝑚𝑚″ } ,
unless 𝑟 = 1, 𝑘 = 2, and𝑚 = 1, in which case the group is trivial.
Proof. We begin with the group {𝜙 ∈ Aut(ℤ 𝑟+1𝑚𝑚″ ) ∶ C𝑔 ≃ C𝜙(𝑔) as C𝑒-bimodules for all𝑔 ∈ ℤ 𝑟+1𝑚𝑚″ }. As the C𝑒 bimodules forma group, wehave that C𝑔 ≃ C𝜙(𝑔) as C𝑒-bimodules
for all 𝑔 ∈ ℤ 𝑟+1𝑚𝑚″ if and only if C𝜙(𝑔)𝑔−1 is equivalent to the trivial C𝑒-bimodule, and
so only if C𝜙(𝑔)𝑔−1 contains an invertible object. Recall that the invertible objects of
C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) are generated by the object (𝑘Λ𝑚″ , 1), which lives in the graded
component C 𝑘𝑚″𝑚 = C 𝑘𝑚′ . Therefore the invertible objects of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) live in
the graded components C𝑁 𝑘𝑚′ for 𝑁 ∈ ℕ.
Let 𝑐 ∈ ℤ×𝑟+1𝑚𝑚″ , then C𝑐𝑔−𝑔 contains an invertible object if and only if C𝑐−1 does. For

this to happen, we need that 𝑐 ≡ 1+𝑁 𝑘𝑚′ for some 𝑁 ∈ ℕ. Using Bezout’s identity, this
is equivalent to having 𝑐 ≡ 1 (mod gcd( 𝑘𝑚′ , 𝑟+1𝑚𝑚″ )). A direct prime by prime compu-
tation reveals that gcd( 𝑘𝑚′ , 𝑟+1𝑚𝑚″ ) = 𝑛′𝑚′ , where we recall that 𝑛′ = gcd(𝑟 + 1, 𝑘). Thus
together we have a bound

∣{𝜙 ∈ Aut(ℤ 𝑟+1𝑚𝑚″ ) ∶ C𝑔 ≃ C𝜙(𝑔) as C𝑒-bimodules for all 𝑔 ∈ ℤ 𝑟+1𝑚𝑚″ }∣≤ ∣{𝑐 ∈ ℤ×𝑟+1𝑚𝑚″ ∶ 𝑐 ≡ 1 (mod 𝑛′𝑚′ )}∣.
Now we count the group 𝐻1 (ℤ 𝑟+1𝑚𝑚″ , Inv(Z(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′)))). As a 1-cocycle

is determined by its value on the generator, we have that the size of this group is
bounded above by the size of Inv(Z(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′))). As the universal grading
group of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is trivial, we can use [33] to see that every invertible of
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) has at most one lift to the centre. Further, as C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is
braided each invertible object has a lift to the centre via the braiding. ThereforeInv(Z(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′))) ≅ Inv(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′)) ≅ ℤ 𝑛′𝑚′ ,
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and so the size of the group𝐻1 (ℤ 𝑟+1𝑚𝑚″ , Inv(Z(C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′)))) is bounded above
by 𝑛′𝑚′ .
It is a classical group theory result that 𝐻2 (ℤ 𝑟+1𝑚𝑚″ , ℂ×) is trivial.
Thus there are at most𝑛′𝑚′ ⋅ ∣{𝑐 ∈ ℤ×𝑟+1𝑚𝑚″ ∶ 𝑐 ≡ 1 (mod 𝑛′𝑚′ )}∣

auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) extending the identity on the
C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) subcategory. We now show this bound is sharp by constructing
enough distinct auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) to realise the upper bound.
We will construct these auto-equivalences as simple current auto-equivalences. For
the definition of simple current auto-equivalenceswe use in this paper, see [18, Lemma
2.4].
To construct simple current auto-equivalences, we pick out the invertible object(𝑘Λ𝑚″ , 1) ∈ C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). This object has order 𝑟+1𝑚𝑚″ , and has self-braiding

eigenvalue equal to 𝑒2𝜋𝑖𝑚𝑚″𝑞2(𝑟+1) where 𝑞 = 𝑟𝑘𝑚′ . Thus we get simple current auto-
equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) for each element of the set

{𝑎 ∈ ℤ 𝑟+1𝑚𝑚″ ∶ 1 + 𝑎 𝑟𝑘𝑚′ is coprime to 𝑟 + 1𝑚𝑚″ } .
To see that these simple current auto-equivalences are distinct, note that they form

a group. Therefore, we need to show that for each 𝑎 ≠ 0, the corresponding simple
current auto-equivalence acts non-trivially. Consider (Λ𝑚′ , 1) ∈ C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚).
Then we have that the simple current auto-equivalence sends

(Λ𝑚′ , 1)↦ (Λ𝑚′ , 1)⊗ (𝑘Λ𝑚″ , 1) = ((𝑘 − 1)Λ𝑚″ +Λ𝑚′
+𝑚″), 1).

To verify that this action in non-trivial, we have to check that (𝑘 − 1)Λ𝑚″ + Λ𝑚′
+𝑚″)

does not live in the orbit of Λ𝑚′ under the action of ℤ𝑚. Supposing this was the case,
then there would exist a 𝑡 ∈ ℕ such that

(𝑘 − 1)Λ𝑚″ +Λ𝑚′
+𝑚″) = (𝑘 − 1)Λ𝑡 𝑟+1𝑚 +Λ𝑡 𝑟+1𝑚 +𝑚′ .

Assuming 𝑘 > 2, we get the equation
𝑡 𝑟 + 1𝑚𝑚″ ≡ 1 (mod 𝑟 + 1),

which is nonsense, as 𝑟+1𝑚𝑚″ is clearly not invertible in ℤ𝑟+1.
If 𝑘 = 2, then we get that 2𝑚′ ≡ 0 (mod 𝑟+ 1), and thus𝑚′ = 𝑟+12 . As𝑚′ ∣ 𝑘, we see

that either 𝑟 = 1 and𝑚′ = 1, or 𝑟 = 3 and𝑚′ = 2. The latter case is one of the excluded
cases. For the former case, it is known that the simple current auto-equivalence acts
trivially [14, Theorem 1.2].
The same argument used in [18, Lemma A.2] shows that the set of simple current

auto-equivalences and the set

{𝑏 ∈ ℤ 𝑟+1𝑚𝑚″ 𝑛′𝑚′ ∶ 𝑏 ≡ 1 (mod 𝑛′𝑚′ )}
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have the same size. We give a bijection𝑛′𝑚′ ⋅ {𝑐 ∈ ℤ×𝑟+1𝑚𝑚″ ∶ 𝑐 ≡ 1 (mod 𝑛′𝑚′ )}→ {𝑏 ∈ ℤ 𝑟+1𝑚𝑚″ 𝑛′𝑚′ ∶ 𝑏 ≡ 1 (mod 𝑛′𝑚′ )}
by sending

(𝑁, 𝑐)↦ 𝑐 +𝑁 𝑛′𝑚′ .
As the simple current auto-equivalences are all distinct (except for C(𝔰𝔩2, 2)0Rep(ℤ1)),
and the number of them is equal to the upper bound of auto-equivalences extending
the identity on the subcategory C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′), we therefore have that every auto-
equivalence extending the identity on the subcategory C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is isomor-
phic to the group of simple current auto-equivalences, which is

{𝑎 ∈ ℤ 𝑟+1𝑚𝑚″ ∶ 1 + 𝑎 𝑟𝑘𝑚′ is coprime to 𝑟 + 1𝑚𝑚″ } .
□

A-priori there should be no reason that the upper bound on the number of auto-
equivalences we construct should be tight. We suspect that something deep is going
on here that deserves to be investigated.
As a corollary, we can determinewhich auto-equivalenceswhich extend the identity

are braided.

Corollary 3.11. The group of braided auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) extending
the identity on the subcategory C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) is isomorphic to the groupℤ𝑝+𝑡2 ,
where

● 𝑝 is the number of distinct odd primes dividing 𝑟+1𝑚𝑚″ but not 𝑘𝑚′ , and

● 𝑡 =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑟 + 1𝑚𝑚″ is odd, or if 𝑘𝑚′ ≡ 0 (mod 4),
or if both 𝑘𝑚′ is odd and 𝑟 + 1𝑚𝑚″ ≡ 2 (mod 4)1 otherwise,

unless 𝑟 = 1, 𝑘 = 2, and𝑚 = 1, in which case the group is trivial.
Proof. We know that a simple current auto-equivalence is braided precisely when𝑎2 𝑟𝑘𝑚′ − 2𝑎 ≡ 0 (mod 2 𝑟+1𝑚𝑚″ ). It is then immediate that the group of simple currents
for C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is isomorphic to the group of simple currents for C(𝔰𝔩 𝑟+1𝑚𝑚″ , 𝑘𝑚′ )
(with compositions as in [18, Appendix A]). The claim then follows from [18, Theo-
rem 1.1], where we ignore the ℤ𝑐2 factor of EqBr(C(𝔰𝔩 𝑟+1𝑚𝑚″ , 𝑘𝑚′ )) which corresponds to
a non-simple current auto-equivalence. □

Now that we completely understand the braided auto-equivalences of
C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) which extend the identity on the subcategory C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′),
we can use a torsor argument to fairly easily leverage this information to understand
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the auto-equivalences extending the charge-conjugation auto-equivalence on the sub-
category C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′) which fix the distinguished object Ω. This completes the
proof of Theorem 3.2, the main result of this section.

Proof of Theorem 3.2. All that remains to be done is to show that there exists a braided
auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) which restricts to give the charge-conjugation
auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)adRep(ℤ𝑚′). This follows from the fact that charge conju-
gation exists for C(𝔰𝔩𝑟+1, 𝑘), and it preserves the Rep(ℤ𝑚) subcategory. Therefore it
descends to the category C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). □

4. Candidates for exceptional auto-equivalences

In the previous section we were able to completely determine all non-exceptional
braided auto-equivalences of the categories C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). That is, we could de-
termine all braided auto-equivalences which fixed the distinguished objectΩ. For this
section we will focus on determining the braided auto-equivalences which move Ω.
This section will be combinatorial in nature, making use of the rich combinatorics of
the categories C(𝔰𝔩𝑟+1, 𝑘). Let us outline the arguments of this section.
Ourmain tool to determinewhen the category C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) has an exceptional

auto-equivalence will be Lemma 4.1, which gives very restrictive necessary conditions.

Lemma 4.1. The category C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) has a braided exceptional auto-
equivalence only if there exists an object 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) such that

● 𝑋 ∉ [Λ1 +Λ𝑟], and
● the orbit of 𝑋 under the action of ℤ𝑚 is closed under charge conjugation,
● we have

[𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 = dim(𝑋)
∣Stabℤ𝑚(𝑋)∣ ≥ dim(𝑋)

∣Stabℤ𝑟+1(𝑋)∣ ,
and
● the twist of 𝑋 is equal to the twist of Λ1 +Λ𝑟.

Proof. Suppose C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) has a braided exceptional auto-equivalence, then
by definition there is an object (𝑋,𝜒𝑋) ∈ C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) such that Ω is mapped to
(𝑋,𝜒𝑋) under the exceptional auto-equivalence, and (𝑋,𝜒𝑋) is not in the orbit of Ω
under simple currents.
As Ω is self-dual, we have that (𝑋,𝜒𝑋) is self-dual, and hence the orbit of 𝑋 underℤ𝑚 is closed under conjugation.
To obtain the dimension bound for 𝑋 , we note thatdim(Ω) = dim((𝑋,𝜒𝑋)).

From this we can obtain the inequality

dim(Ω) = dim(𝑋)
∣Stabℤ𝑚(𝑋)∣ ≥ dim(𝑋)

∣Stabℤ𝑟+1(𝑋)∣ .
The dimension of the object Ω is [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘, hence we have the result.
To get the condition on the twist of 𝑋 , note that a braided auto-equivalence of

C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) will preserve twists by [18, Lemma 2.2]. The twist of an object
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(𝑋,𝜒𝑋) ∈ C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is equal to the twist of 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘). The condition
is then immediate. □

The key restriction here is the existence of an object 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) with
[𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 ≥ dim(𝑋)

∣Stabℤ𝑟+1(𝑋)∣ .
If Stabℤ𝑟+1(𝑋) is non-trivial, then we can use Lemma 2.10 to bound the dimension
of 𝑋 below by the dimension of a simpler object in C(𝔰𝔩𝑟+1, 𝑘), say for example 2Λ2.
We can then use the hook formula to write the dimension of this simpler object as a
product of quantum integers. For our 2Λ2 example we would have the dimension is
[𝑟]𝑟,𝑘[𝑟+1]2𝑟,𝑘[𝑟+2]𝑟,𝑘

[3]𝑟,𝑘[2]2𝑟,𝑘 . This then gives us an inequality of quantum integers that must be
obeyed for there to exist an exceptional auto-equivalence. By suitably bounding this
inequality we can then obtain strong restrictions on the rank and level of the category.
With this approach we are able to show that there are only a finite number of cases
where the inequality may hold. From here we can then directly search for 𝑋 where the
condition

[𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 = dim(𝑋)
∣Stabℤ𝑚(𝑋)∣

holds. This yields a very small number of candidates for exceptional auto-equivalences.
When Stabℤ𝑟+1(𝑋) is trivial, we search for objects 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) which satisfy

[𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 = dim(𝑋).
Here there are many candidates for 𝑋 . In particular, any object in [Λ1 +Λ𝑟]will satisfy
this condition. However, when paired with the condition that 𝑋 ∉ [Λ1 + Λ𝑟], we can
again reduce the list of candidates down to a finite list via similar techniques as before.
This case is a bit more fiddly than the case with non-trivial stabiliser group, as now we
have to carefully avoid the objects in the orbit ofΛ1 +Λ𝑟, however the technical details
remain the same.
In order to suitably bound the inequalities of quantum integers, we have to assume

that 𝑘 ≥ 𝑟 + 1 in order to apply Lemma 2.6. To deal with the 𝑘 < 𝑟 + 1 cases, we use
level-rank duality to reduce it to the 𝑘 ≥ 𝑟 + 1 case.
All together we can give a complete list of objects 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) such that 𝑋 ∉[Λ1 +Λ𝑟] and such that

[𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 = dim(𝑋)
∣Stabℤ𝑚(𝑋)∣ .

From this finite list we then search for objects which satisfy the remaining conditions
of Lemma 4.1 to obtain an even smaller list.
Finally, we computer search the fusion rings of these remaining candidates, looking

for fusion ring automorphismswhich preserve the twists of the simples. This yields the
main theorem of this section.

Theorem 4.2. Let 𝑟 ≥ 1 and 𝑘 ≥ 2 and𝑚 a divisor of 𝑟 + 1 satisfying𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟
is even, and 2𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is odd. Then except for the cases
C(𝔰𝔩2, 16)0Rep(ℤ2), C(𝔰𝔩3, 9)0Rep(ℤ3), C(𝔰𝔩4, 8)0Rep(ℤ4), C(𝔰𝔩5, 5)0Rep(ℤ5),
C(𝔰𝔩8, 4)0Rep(ℤ4), C(𝔰𝔩9, 3)0Rep(ℤ3), C(𝔰𝔩16, 2)0Rep(ℤ2), and C(𝔰𝔩16, 2)0Rep(ℤ4),
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every braided auto-equivalence of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) is non-exceptional.
For the first four cases, we have that there are two possibilities for the group of braided

auto-equivalences:

EqBr(C(𝔰𝔩2, 16)0Rep(ℤ2)) ∈ {ℤ2, 𝑆3}, EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) ∈ {𝐷3, 𝑆4},EqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)) ∈ {𝐷4, 𝑆4}, and EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5)) ∈ {𝐷5, 𝐴5}.
For the remaining four cases, we have thatEqBr(C(𝔰𝔩8, 4)0Rep(ℤ4)) = EqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)),EqBr(C(𝔰𝔩9, 3)0Rep(ℤ3)) = EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3))× ℤ2,EqBr(C(𝔰𝔩16, 2)0Rep(ℤ2)) = EqBr(C(𝔰𝔩2, 16)0Rep(ℤ2))× ℤ2, andEqBr(C(𝔰𝔩16, 2)0Rep(ℤ4)) = EqBr(C(𝔰𝔩2, 16)0Rep(ℤ2)).
With the high-level arguments and end goal in mind. Let us proceed with the fine

details of the arguments. Let C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) be a category with an exceptional
braided auto-equivalence. Then by Lemma 4.1 we get an object 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) sat-
isfying the conditions of the lemma. Our goal is show that 𝑟, 𝑘, and 𝑚 are severely
constrained. We will have to split into several cases, depending on the stabiliser group
of 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘), and on the size of 𝑘 compared to 𝑟 + 1.
Case (Stabℤ𝑟+1(𝑋) = 𝑟 + 1). Let us first deal with the case where 𝑋 has full stabiliser
subgroup, i.e. Stabℤ𝑟+1(𝑋) = ℤ𝑟+1. As ∣Stabℤ𝑟+1(𝑋)∣ divides 𝑘, we necessarily have𝑘 ≥ 𝑟 + 1 in this case. From Lemma 2.10 we can deduce thatdim(𝑋) ≥ dim(2Λ2), dim(𝑋) ≥ dim(6Λ1), and dim(𝑋) ≥ dim(3Λ3).
These inequalities hold when 𝑘 ≥ 2, 𝑘 ≥ 6, and 𝑘 ≥ 3 respectively. Recalling dim(𝑋) =[𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘, we get the inequalities

[𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 ≥ dim(2Λ2)𝑟 + 1 , [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 ≥ dim(6Λ1)𝑟 + 1 ,
and [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 ≥ dim(3Λ3)𝑟 + 1 .

Let us focus on this first inequality for now. As 𝑘 ≥ 𝑟 + 1 in this case, we have that𝑘 ≥ 2 for all 𝑟 ≥ 1, and so this inequality holds in all cases. Expanding this inequality
with the hook formula and simplifying gives

(3) (𝑟 + 1)[3]𝑟,𝑘[2]2𝑟,𝑘 ≥ [𝑟 + 1]2𝑟,𝑘.
The left hand side we can bound above by (𝑟+ 1) ⋅ 12 by Lemma 2.5, giving that the

above inequality can only hold if the weaker inequality

(4) 12(𝑟 + 1) ≥ [𝑟 + 1]2𝑟,𝑘
holds. As 𝑘 ≥ 𝑟 + 1, we have that 𝑟 + 1 ≤ 12(1 + 𝑟 + 1 + 𝑟) ≤ 12(1 + 𝑟 + 𝑘), so we can
apply Lemma 2.6 to obtain the bound [𝑟 + 1]𝑟,𝑘 ≥ 𝑟+12 . This gives us the even weaker
inequality 48(𝑟 + 1) ≥ (𝑟 + 1)2
which only holds if 𝑟 ≤ 47.
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For each 𝑟 ≤ 47 we still have an infinite number of 𝑘 where the initial inequality
may hold. Let us return to the inequality from Equation (4). For each fixed 𝑟 ≤ 47,
the left hand side is constant, while the right hand side is an increasing function of 𝑘.
Therefore if we can find a smallest 𝑘 for which this inequality breaks, then we know it
will also break for all larger 𝑘. This leaves us with a finite list of 𝑘 for which the initial
inequality from Equation (3) can hold. Finally, we check each of these finite potential
solutions against Equation (3) to obtain an even smaller list of potential candidates.
We find the following finite list of potential solutions for 𝑟 ≥ 12.𝑟 Potential 𝑘

12 13 ≤ 𝑘 ≤ 68
13 14 ≤ 𝑘 ≤ 49
14 15 ≤ 𝑘 ≤ 42
15 16 ≤ 𝑘 ≤ 38
16 17 ≤ 𝑘 ≤ 35
17 18 ≤ 𝑘 ≤ 33
18 19 ≤ 𝑘 ≤ 32
19 20 ≤ 𝑘 ≤ 3120 ≤ 𝑟 ≤ 22 𝑟 + 1 ≤ 𝑘 ≤ 3023 ≤ 𝑟 ≤ 29 𝑟 + 1 ≤ 𝑘 ≤ 29𝑟 ≥ 30 ∅

Remark 4.3. We will repeatedly use the above trick in order to leverage an inequality
of quantum integers, into an explicit list of 𝑟 and 𝑘 where the inequality holds. To
summarise, we begin with an inequality left ≤ right of quantum integers. We then
use the bound from Lemma 2.6 to bound the left equation below, and the bound from
Lemma 2.5 to bound the right equation above. These bounds remove the quantum
integers, and the resulting inequality gives an upper bound on 𝑟. We now return to the
equation left ≤ right, but this time only bound the right hand side above, by a function
of 𝑟. We plug each of our finite 𝑟 into this inequality, giving a new inequality which
states that a product of quantum integers is less than some constant. As quantum
integers are an increasing function of 𝑘 (once 𝑟 is fixed), we can find the smallest 𝑘
which breaks the inequality, which tells us it also breaks for all larger 𝑘. At this point
wemay find that no 𝑘 breaks the inequality. When this happens we have to throw away
the 𝑟, and find a different inequality of quantum integers to deal with that particular 𝑟.
This leaves us with a finite number of 𝑟 where the inequality may hold, and for some
subset of these 𝑟, a finite list of 𝑘where the inequalitymay hold. To further the finite list
of 𝑘, we test each possible solution against the initial inequality of quantum integers.

For 𝑟 ≤ 11 there is no 𝑘 where Equation (4) breaks. To deal with the case of 𝑟 ≤ 11
let us now consider the inequality

dim(𝑋) ≥ dim(6Λ1)𝑟 + 1 .
Recall this inequality holds if 𝑘 ≥ 6. Assuming 𝑘 ≥ 6, we expand the above inequality
with the hook formula to get the inequality

[6]𝑟,𝑘[5]𝑟,𝑘[4]𝑟,𝑘[3]𝑟,𝑘[2]𝑟,𝑘[𝑟]𝑟,𝑘(𝑟+ 1) ≥ [𝑟+ 6]𝑟,𝑘[𝑟+ 5]𝑟,𝑘[𝑟+ 4]𝑟,𝑘[𝑟+ 3]𝑟,𝑘[𝑟+ 1]𝑟,𝑘.
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Playing the game from Remark 4.3 we find this inequality breaks for all 𝑘 ≥ 41. Hence,
the object 𝑋 can only satisfy the dimension condition of Lemma 4.1 if 𝑘 <max(6, 41) =41.
Together we have a finite list of 𝑟 and 𝑘 such that 𝑋 could possibly have the correct

dimension. That is, if 𝑟 ≤ 11, then 𝑘 < 41, and if 𝑟 ≥ 12, then 𝑘 is one of the finite
number of values in the above table. This is still an unreasonable number of cases
to computer search through. For example C(𝔰𝔩30, 30) has on the order of 1016 simple
objects. To refine our finite list of potential solutions further we run each solution of 𝑟
and 𝑘 through the inequality

[𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 ≥ dim(3Λ3)𝑟 + 1 .
Recall this inequality only holds when 𝑘 ≥ 3. As 𝑘 ≥ 𝑟+1 in this case, the only situation
where this inequality doesn’t necessarily hold is 𝑟 = 1 and 𝑘 = 2. However for these
values the inequality is still good (as the inequality simplifies to 1 ≥ 1𝑟+1 ).
This yields the following list of 𝑟 and 𝑘, such that C(𝔰𝔩𝑟+1, 𝑘)may have an object 𝑋

with Stabℤ𝑟+1(𝑋) = ℤ𝑟+1, and with dim(𝑋)Stabℤ𝑟+1(𝑋) ≤ [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘.𝑟 Potential 𝑘
1 2 ≤ 𝑘 ≤ 40
2 3 ≤ 𝑘 ≤ 40
3 4 ≤ 𝑘 ≤ 40
4 5 ≤ 𝑘 ≤ 15
5 6 ≤ 𝑘 ≤ 8
6 7𝑟 ≥ 7 ∅

From this small finite list, we can computer search to find all objects 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘)
such that dim(𝑋)𝑟+1 = [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘. This yields the following result
Lemma 4.4. Let 𝑟 ≥ 1, and 𝑘 ≥ 𝑟 + 1. There exists an object 𝑋 of C(𝔰𝔩𝑟+1, 𝑘) withdim(𝑋)𝑟+1 = [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 if and only if

(1) 𝑟 = 1 and 𝑘 = 16, in which case 𝑋 = 8Λ1, or
(2) 𝑟 = 2 and 𝑘 = 9, in which case 𝑋 = 3Λ1 + 3Λ2, or
(3) 𝑟 = 4 and 𝑘 = 5, in which case 𝑋 = Λ1 +Λ2 +Λ3 +Λ4.

Case (𝑘 ≥ 𝑟 + 1 and ∣Stabℤ𝑟+1(𝑋)∣ ∉ {1, 𝑟 + 1}). Let us now consider the case where𝑘 ≥ 𝑟 + 1, and ∣Stabℤ𝑟+1(𝑋)∣ ∉ {1, 𝑟 + 1}. We can immediately assume that 𝑟 ≥ 3, as
if 𝑟 ∈ {1, 2}, then there are no possibilities for ∣Stabℤ𝑟+1(𝑋)∣ which must divide 𝑟 + 1.
Hence we can also assume that 𝑘 ≥ 4.
As ∣Stabℤ𝑟+1(𝑋)∣ ∉ {1, 𝑟 + 1} and 𝑟 ≥ 3 we have 2 ≤ 𝑟+1

∣Stabℤ𝑟+1(𝑋)∣ ≤ 𝑟 − 1. As 𝑘 ≥ 4,
we can use Lemma 2.10, along with Lemma 2.9, to see that

dim(𝑋) ≥ dim(3Λ 𝑟+1𝑑 ) ≥ dim(3Λ2).
We expand this inequality as

∣Stabℤ𝑟+1(𝑋)∣[4]𝑟,𝑘[3]2𝑟,𝑘[2]2𝑟,𝑘 ≥ [𝑟 + 1]2𝑟,𝑘[𝑟 + 2]𝑟,𝑘[𝑟 + 3]𝑟,𝑘.
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As ∣Stabℤ𝑟+1(𝑋)∣ ≤ 𝑟+12 , we can bound the left hand side above to get the weaker
inequality

(5) 𝑟 + 12 [4]𝑟,𝑘[3]2𝑟,𝑘[2]2𝑟,𝑘 ≥ [𝑟 + 1]2𝑟,𝑘[𝑟 + 2]𝑟,𝑘[𝑟 + 3]𝑟,𝑘.
As 𝑟 ≥ 3, we have that

𝑟 + 1, 𝑟 + 2, 𝑟 + 3 ≤ 34(1 + 𝑟 + 1 + 𝑟) ≤ 34(1 + 𝑟 + 𝑘).
Thus we can apply Lemma 2.6 to get the lower bounds

[𝑟 + 3]𝑟,𝑘 ≥ 𝑟 + 34 , [𝑟 + 2]𝑟,𝑘 ≥ 𝑟 + 24 , and [𝑟 + 1]𝑟,𝑘 ≥ 𝑟 + 14 .
With these bounds, we can use the methods described in Remark 4.3 to obtain a

finite list of solutions. We can ignore the 𝑟 = 4 and 𝑟 = 6 cases, as in both these cases𝑟 + 1 is prime, and so ∣Stabℤ𝑟+1(𝑋)∣must be either 1 or 𝑟 + 1.
This yields the following list of 𝑟 and 𝑘, such that C(𝔰𝔩𝑟+1, 𝑘)may have an object 𝑋

with Stabℤ𝑟+1(𝑋) ∉ {1, 𝑟 + 1}, and with dim(𝑋)Stabℤ𝑟+1(𝑋) ≤ [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘.𝑟 Potential 𝑘
3 4 ≤ 𝑘 ≤ 9
5 6 ≤ 𝑘 ≤ 7𝑟 ≥ 6 ∅

From this small finite list, we can computer search to find all objects 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘)
such that dim(𝑋)Stabℤ𝑚(𝑋) = [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘. This yields the following result
Lemma 4.5. Let 𝑟 ≥ 1, 𝑘 ≥ 𝑟 + 1, and𝑚 a divisor of 𝑟 + 1 such that𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is
even, or such that 2𝑚2 ∣ 𝑘(𝑟+1) if 𝑟 is odd. There exists an object of 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘)with∣Stabℤ𝑚(𝑋)∣ ∉ {1, 𝑟 + 1} and dim(𝑋)

∣Stabℤ𝑚(𝑋)∣ = [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 if and only if
(1) 𝑟 = 3, 𝑘 = 8, and𝑚 = 2, in which case 𝑋 ∈ [4Λ2], or
(2) 𝑟 = 3, 𝑘 = 8, and𝑚 = 4, in which case 𝑋 ∈ [4Λ2].

Case (∣Stabℤ𝑟+1(𝑋)∣ = 1). We now have to deal with the case where the object 𝑋 has
trivial stabilizer group. The difficulty here lies in the fact that many objects close to
the corners of the Weyl chamber have trivial stabilizer subgroup, and are of small
dimension. In fact, the object 2Λ1 (nearly always) has trivial stabilizer group, and
has dimension smaller than [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘. The objects 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) such thatdim(𝑋) = [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 are classified in Appendix A (Proposition A.1).

Case (𝑘 < 𝑟 + 1). We now have to consider the case where the level is small compared
to the rank, i.e. 𝑘 < 𝑟 + 1. Using level-rank duality we can reduce this argument to the𝑘 ≥ 𝑟 + 1 case.
There aremany interpretations of level-rank duality (see [54]). For us, we only need

a weak version, which relates the dimensions of objects in the categories C(𝔰𝔩𝑟+1, 𝑘)
and C(𝔰𝔩𝑘, 𝑟 + 1). Given an object

𝑋 = 𝑟∑𝑖=0 𝜆𝑖Λ𝑖 ∈ C(𝔰𝔩𝑟+1, 𝑘),
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we can form the 𝑟 × 𝑘 Young tableaux
𝑇(𝑋)≔ ⎛⎝ 𝑟∑𝑖=1 𝜆𝑖,

𝑟∑𝑖=2 𝜆𝑖,⋯, 𝜆𝑟⎞⎠ .
Taking the transpose of this tableaux gives a 𝑘 × 𝑟 tableaux. Initially this presents a
spanner for a level rank-duality connection, as the objects of C(𝔰𝔩𝑘, 𝑟+1) are identified
by (𝑘 − 1) × (𝑟 + 1) tableaux. Thus level-rank duality at first glance appears to give a
connection between C(𝔰𝔩𝑟+1, 𝑘) and C(𝔰𝔩𝑘+1, 𝑟). However this connection is superfi-
cial at best, and only shows the ranks of the two categories are equal. Instead we will
restrict our attention to objects 𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) with 𝜆0 ≠ 0. With this restriction, the
tableaux 𝑇(𝑋) can be considered as an 𝑟× (𝑘−1) tableaux, and thus the transpose can
be identified with an object of C(𝔰𝔩𝑘, 𝑟 + 1). We write 𝑋𝑇 for this transposed object of
C(𝔰𝔩𝑘, 𝑟 + 1). Explicitly we have that

𝑋𝑇
=

𝑘∑ℓ=1 ̂𝜆ℓΛℓ,
where ̂𝜆ℓ ≔ RRRRRRRRRRRR1 ≤ 𝑗 ≤ 𝑟 ∶ 𝑗−1∑𝑖=0 𝜆𝑖 = 𝑘 − ℓ

RRRRRRRRRRRR
.

Using the hook formula, along with the fact that [𝑛]𝑟,𝑘 = [1 + 𝑟 + 𝑘 − 𝑛]𝑘,𝑟, we see
that dim(𝑋) = dim(𝑋𝑇) .
In order to apply level-rank duality arguments to study the exceptional auto-

equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚), we need to understand how the stabiliser groupStabℤ𝑚(𝑋) is affected by level-rank duality. There is a subtlety here in that 𝑚 doesn’t
necessarily divide 𝑘, and so talking about Stabℤ𝑚(𝑋𝑇) doesn’t make sense. We solve
this problem, and resolve the subtlety in Lemma 4.6.

Lemma 4.6. Let𝑚 be a divisor of 𝑟 + 1, such that𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is even, or such that2𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is odd, and set𝑚′ = gcd(𝑘,𝑚). Then we have isomorphismsStabℤ𝑚(𝑋) ≅ Stabℤ𝑚′ (𝑋) ≅ Stabℤ𝑚′ (𝑋𝑇).
Proof. We will first show that Stabℤ𝑚(𝑋) ≅ Stabℤ𝑚′ (𝑋).
Suppose that Stabℤ𝑚(𝑋) ≅ ℤ𝑑, then we have that

𝑋 = 𝑟+1𝑑∑𝑖=1 𝜆𝑖
𝑑∑𝑗=1Λ𝑗 𝑟+1𝑑 +𝑖.

This implies that 𝑑 divides 𝑘, and therefore Stabℤ𝑚′ (𝑋) ≅ ℤ𝑑.
For the second isomorphism we want to show thatStabℤ𝑚′ (𝑋) ≅ Stabℤ𝑚′ (𝑋𝑇) .

Suppose Stabℤ𝑚′ (𝑋) ≅ ℤ𝑑. Then 𝜆𝑖 = 𝜆𝑖+ 𝑟+1𝑑
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for all 𝑖 ∈ ℤ𝑟. This implies that for any 𝑗 ∈ ℤ𝑟 we have
𝑗−1+ 𝑟+1𝑑∑𝑖=𝑗 𝜆𝑖 = 𝑘𝑑 .

To prove the claim of the lemma, we have to show that̂𝜆ℓ = ̂𝜆ℓ+ 𝑘𝑑 ,
for all ℓ ∈ ℤ𝑘.
Suppose we have 0 ≤ 𝑗 ≤ 𝑟 contributes to ̂𝜆ℓ. That is

𝑗−1∑𝑖=0 𝜆𝑖 = 𝑘 − ℓ.
Then we have that

𝑗− 𝑟+1𝑑 −1∑𝑖=0 𝜆𝑖 = 𝑗−1∑ℓ=0𝜆𝑖 −
𝑗−1∑𝑖=𝑗− 𝑟+1𝑑

𝜆𝑖 = 𝑘 − ℓ − 𝑘𝑑 ,
and so 𝑗 − 𝑟+1𝑑 contributes to ̂𝜆ℓ+ 𝑘𝑑 . This implies that̂𝜆ℓ = ̂𝜆ℓ+ 𝑘𝑑
and hence we have the result. □

Now suppose 𝑘 < 𝑟 + 1, and let𝑚 a divisor of 𝑟 + 1 such that𝑚2 ∣ 𝑘(𝑟 + 1). Let 𝑋 be
an object of C(𝔰𝔩𝑟+1, 𝑘) with Stabℤ𝑚(𝑋) = ℤ𝑑 for some 𝑑, with dim(𝑋) = [𝑟]𝑟,𝑘[𝑟+2]𝑟,𝑘𝑑 .
By hitting 𝑋 with a suitable simple current, we can assume that 𝜆0 ≠ 0, and thus we
can apply level-rank duality to get an object 𝑋𝑇 ∈ C(𝔰𝔩𝑘, 𝑟 + 1) with

dim(𝑋𝑇) = [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘∣Stabℤ𝑚′ (𝑋𝑇)∣ .
Furthermore, we note that if 𝑋𝑇 ∈ [Λ1 +Λ𝑘], then 𝑋 ∈ {Λ1 +Λ𝑟, (𝑘−2)Λ1 +Λ2, Λ𝑟−1 +(𝑘 − 2)Λ𝑟} ⊂ [Λ1 +Λ𝑟].
Together with Lemma 4.4, Lemma 4.5, and PropositionA.1, which tell us the objects𝑋 ∈ C(𝔰𝔩𝑟+1, 𝑘) with dim(𝑋)Stabℤ𝑚(𝑋) = [𝑟]𝑟,𝑘[𝑟 + 2]𝑟,𝑘 when 𝑘 ≥ 𝑟 + 1, we can use level-rank

duality to extend this result to all 𝑘 ≥ 2. From this finite list, we can directly search for
objects that satisfy the remaining conditions of Lemma 4.1. Namely, we consider the
subset of objects 𝑋 with the same twist as Λ1 +Λ𝑟 and such that 𝑋∗ ∈ [𝑋]. This yields
Lemma 4.7.

Lemma 4.7. Let 𝑟 ≥ 1, 𝑘 ≥ 2, and𝑚 be a divisor of 𝑟+1 such that𝑚2 ∣ 𝑘(𝑟+1) if 𝑟 is even,
or such that 2𝑚2 ∣ 𝑘(𝑟 + 1) if 𝑟 is odd. There may exist an exceptional auto-equivalence
of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚) only in the following cases:
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C Image ofΩ
C(𝔰𝔩2, 16)0Rep(ℤ2) (8Λ1, 𝜒𝑛) : 𝑛 ∈ ℤ2
C(𝔰𝔩3, 9)0Rep(ℤ3) (3Λ1 + 3Λ2, 𝜒𝑛) : 𝑛 ∈ ℤ3
C(𝔰𝔩4, 8)0Rep(ℤ2) (4Λ2, 𝜒𝑛) : 𝑛 ∈ ℤ2
C(𝔰𝔩4, 8)0Rep(ℤ2) (4Λ1 + 4Λ3, 𝜒𝑛) : 𝑛 ∈ ℤ2
C(𝔰𝔩4, 8)0Rep(ℤ4) (4Λ2, 𝜒𝑛) : 𝑛 ∈ ℤ2
C(𝔰𝔩5, 5)0Rep(ℤ5) (Λ1 +Λ2 +Λ3 +Λ4, 𝜒𝑛) : 𝑛 ∈ ℤ5
C(𝔰𝔩8, 4)0Rep(ℤ2) (2Λ4, 𝜒𝑛) : 𝑛 ∈ ℤ2
C(𝔰𝔩8, 4)0Rep(ℤ4) (2Λ4, 𝜒𝑛) : 𝑛 ∈ ℤ2
C(𝔰𝔩9, 3)0Rep(ℤ3) (Λ3 +Λ6, 𝜒𝑛) : 𝑛 ∈ ℤ3
C(𝔰𝔩16, 2)0Rep(ℤ2) (Λ8, 𝜒𝑛) : 𝑛 ∈ ℤ2
C(𝔰𝔩16, 2)0Rep(ℤ4) (Λ8, 𝜒𝑛) : 𝑛 ∈ ℤ2

Now that we have this extremely small finite list of candidates for exceptional
braided auto-equivalences of C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚), we can explicitly search the fusion
rings of these candidates to see if the exceptional braided auto-equivalence exists at
the level of the fusion ring. Additionally, we check that the fusion ring automorphisms
preserve the twists of the simple objects. We obtain the explicit data for these categories
from the results of [23]. The idea behind [23] is to use the free module functor to use
the given knowledge of themodular data of C to determine asmuch about the S-matrix
and twists of C0Rep(ℤ𝑚) as possible. This functor completely determines the twists with
no ambiguities. The ambiguities in the S-matrix regarding objects which split in the de-
equivariantisation are then resolved using the standard modular data relations (such
as (𝑆𝑇)3 = 𝑆2). The fusion rules can then be determined via Verlinde. The ranks
of the categories C(𝔰𝔩2, 16)0Rep(ℤ2),C(𝔰𝔩3, 9)0Rep(ℤ3),C(𝔰𝔩4, 8)0Rep(ℤ2),C(𝔰𝔩4, 8)0Rep(ℤ4),
and C(𝔰𝔩5, 5)0Rep(ℤ5) are 6, 9, 50, 16, and 10 respectively. The remaining relevant data
can be found in Mathematica files attached to the arXiv submission of this paper.
From the results of the previous section, we know precisely the non-exceptional

braided auto-equivalences of all of the categories C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚). This information
helps us in two ways. First, we know that for all cases except for the finite excep-
tions in the above list, all braided auto-equivalences are non-exceptional, hence we
now fully understand their braided auto-equivalence groups. Second, we also know
the braided auto-equivalences which fix the object Ω of the finite number of excep-
tions in the above list. Via compositional arguments, this allows us to rule out many
potential exceptional auto-equivalences of these categories. This allows us to essen-
tially determine the group structure of the braided auto-equivalence groups, up to the
exceptional auto-equivalences existing.
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Lemma 4.8. We have thatEqBr(C(𝔰𝔩2, 16)0Rep(ℤ2)) ∈ {ℤ2, 𝑆3}, EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) ∈ {𝐷3, 𝑆4},EqBr(C(𝔰𝔩4, 8)0Rep(ℤ2)) ∈ {𝐷2}, EqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)) ∈ {𝐷4, 𝑆4},EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5)) ∈ {𝐷5, 𝐴5}.
Proof. From the results of [23] we have the fusion rings and twists of each of the five
above categories. We compute the group of fusion ring automorphismswhich preserve
the twists. We will refer to these groups as the braided fusion ring symmetries.
For C(𝔰𝔩4, 8)0Rep(ℤ2) we see that every braided fusion ring symmetry is non-

exceptional, thus EqBr(C(𝔰𝔩4, 8)0Rep(ℤ2)) = 𝐷2 by Theorem 3.2.
For the case of C(𝔰𝔩2, 16)0Rep(ℤ2) we have that the braided fusion rings symmetries

form a group isomorphic to 𝑆3, with generators
(8Λ1, 𝜒0)↔ (8Λ1, 𝜒1),

and Ω↔ (8Λ1, 𝜒0).
From Theorem 3.2 we know that the first generator is realised as a braided auto-
equivalence of C(𝔰𝔩2, 16)0Rep(ℤ2). ThusEqBr(C(𝔰𝔩2, 16)0Rep(ℤ2)) is an intermediate sub-
group ofℤ2 and 𝑆3. There are only two such intermediate subgroups which are the end
points.
For the case of C(𝔰𝔩3, 9)0Rep(ℤ3) we have that the braided fusion rings symmetries

form a group isomorphic to ℤ2 × 𝑆4, with generators
(3Λ1, 1)↔ (3Λ2, 1) , (3Λ1 + 3Λ2, 𝜒1)↔ (3Λ1 + 3Λ2, 𝜒2),

and
(3Λ1 + 3Λ2, 𝜒0)↦ (3Λ1 + 3Λ2, 𝜒1)↦ (3Λ1 + 3Λ2, 𝜒2),

and Ω↦ (3Λ1 + 3Λ2, 𝜒0)↦ (3Λ1 + 3Λ2, 𝜒1)↦ (3Λ1 + 3Λ2, 𝜒2).
From Theorem 3.2 we know that the first two generators are realised as braided

auto-equivalences of C(𝔰𝔩3, 9)0Rep(ℤ3), and form a group isomorphic to 𝐷3. Further,
this theorem tells us that any braided auto-equivalence which fixes Ω must be in the
subgroup generated by the first two generators. Thus EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) is an in-
termediate subgroup of 𝐷3 ⊂ ℤ2 × 𝑆4 with the property that if Ω is fixed by an auto-
equivalence, then this auto-equivalence lives in the𝐷3 subgroup. With this knowledge,
we can study the intermediate subgroups of𝐷3 ⊂ ℤ2×𝑆4 to see that there are only two
such subgroups with this property. These are 𝐷3 with the first two generators, and 𝑆4
with the first two generators, and the new generatorΩ↔ (3Λ1 + 3Λ2, 𝜒0) , (3Λ1 + 3Λ2, 𝜒1)↔ (3Λ1 + 3Λ2, 𝜒2).
Thus EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) is isomorphic to either 𝐷3 or 𝑆4.
The remaining two cases fall to the same argument. For C(𝔰𝔩4, 8)0Rep(ℤ4) the group

of braided fusion ring symmetries is ℤ2 × 𝑆4. We have that the generators
(4Λ2, 𝜒0)↔ (4Λ2, 𝜒1) , (2Λ1 + 2Λ2 + 2Λ3, 𝜒𝑖)↦ (2Λ1 + 2Λ2 + 2Λ3, 𝜒𝑖+1)
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and

(2Λ1 +Λ2, 1)↔ (Λ2 + 2Λ3, 1) , (2Λ1 + 2Λ2 + 2Λ3, 𝜒1)↔ (2Λ1 + 2Λ2 + 2Λ3, 𝜒3)
form a 𝐷4 subgroup of EqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)), and that any braided auto-equivalence
which fixesΩmust be in this subgroup. Analysing the subgroup structure between𝐷4
and ℤ2 × 𝑆4 shows that at most there can be one more generatorΩ↔ (4Λ2, 𝜒0) , (2Λ1 +Λ2, 1)↦ (2Λ1 + 2Λ2 + 2Λ3, 𝜒0)↦ (Λ2 + 2Λ3, 1)↦ (2Λ1 + 2Λ2 + 2Λ3, 𝜒2)
in the braided auto-equivalence group, which would form a group isomorphic to 𝑆4.
Thus EqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)) is either isomorphic to 𝐷4 or 𝑆4.
Finally for the case C(𝔰𝔩5, 5)0Rep(ℤ5) we have that the group of braided fusion sym-

metries is 𝑆6. We have that the generators
(Λ1 +Λ2 +Λ3 +Λ4, 𝜒𝑖)↦ (Λ1 +Λ2 +Λ3 +Λ4, 𝜒𝑖+1)

and
(Λ1 +Λ2 +Λ3 +Λ4, 𝜒𝑖)↦ (Λ1 +Λ2 +Λ3 +Λ4, 𝜒−𝑖)

form a 𝐷5 subgroup of EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5)), and that any braided auto-equivalence
which fixesΩmust be in this subgroup. Analysing the subgroup structure between 𝐷5
and 𝑆6 shows that at most there can be one more generatorΩ↦ (Λ1 +Λ2 +Λ3 +Λ4, 𝜒1)↦ (Λ1 +Λ2 +Λ3 +Λ4, 𝜒0),
(Λ1 +Λ2 +Λ3 +Λ4, 𝜒2)↦ (Λ1 +Λ2 +Λ3 +Λ4, 𝜒3)↦ (Λ1 +Λ2 +Λ3 +Λ4, 𝜒4)

in the braided auto-equivalence group, which would form a group isomorphic to 𝐴5.
Thus EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5)) is either isomorphic to 𝐷5 or 𝐴5. □

To finish off the proof of the main theorem of this section, we need to deal with the
remaining four cases. These can be dealt with easily by a level-rank duality argument.

Proposition 4.9. We have the following braided equivalences:

C(𝔰𝔩16, 2)0Rep(ℤ4) ≃ (C(𝔰𝔩2, 16)0Rep(ℤ2))rev⊠Vec(ℤ2,{1, 𝑒2𝜋𝑖 34 }) ,
C(𝔰𝔩16, 2)0Rep(ℤ2)≃ (C(𝔰𝔩2, 16)0Rep(ℤ2))rev⊠Vec(ℤ8,{1, 𝑒2𝜋𝑖 1516 , 𝑒2𝜋𝑖 34 , 𝑒2𝜋𝑖 716 , 1, 𝑒2𝜋𝑖 716 , 𝑒2𝜋𝑖 34 , 𝑒2𝜋𝑖 1516 }) ,
C(𝔰𝔩9, 3)0Rep(ℤ3) ≃ (C(𝔰𝔩3, 9)0Rep(ℤ3))rev⊠Vec(ℤ3,{1, 𝑒2𝜋𝑖 13 , 𝑒2𝜋𝑖 13 }) , and
C(𝔰𝔩8, 4)0Rep(ℤ4) ≃ (C(𝔰𝔩4, 8)0Rep(ℤ4))rev⊠Vec(ℤ2,{1, 𝑒2𝜋𝑖 34 }) .
Proof. Let us do the computation for C(𝔰𝔩16, 2)0Rep(ℤ4), as the other cases follow in a
similar fashion.
FromLemma 2.20we know that C(𝔰𝔩16, 2)0Rep(ℤ4) has a subcategory braided equiva-

lent to (C(𝔰𝔩16, 2)ad)Rep(ℤ2). Via level-rank duality [54], we have a braided equivalence
C(𝔰𝔩16, 2)ad → (C(𝔰𝔩2, 16)ad)rev.

Thus together we have a braided subcategory of C(𝔰𝔩16, 2)0Rep(ℤ4) equivalent to((C(𝔰𝔩2, 16)ad)rev)Rep(ℤ2). Taking the reverse braiding on the category commutes with
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taking the de-equivariantisation (as Rep(ℤ2)rev = Rep(ℤ2)), thus we have a subcate-
gory braided equivalent to (C(𝔰𝔩2, 16)0Rep(ℤ2))rev. As (C(𝔰𝔩2, 16)0Rep(ℤ2))rev is modular,
Mugers theorem [49, Theorem 4.2] gives us that the category C(𝔰𝔩16, 2)0Rep(ℤ4) factors
as

C(𝔰𝔩16, 2)0Rep(ℤ4) ≃ (C(𝔰𝔩2, 16)0Rep(ℤ2))rev⊠D,
where D is a modular category with global dimension 2. To identify D we study the
object ([2Λ2], 1) ∈ C(𝔰𝔩16, 2)0Rep(ℤ4). The twist of this object is 𝑒2𝜋𝑖 34 , and the or-
der of the object is 2. Thus ([2Λ2], 1) generates a modular subcategory equivalent toVec(ℤ2, 𝑒2𝜋𝑖 34 ). As the category C(𝔰𝔩2, 16)0Rep(ℤ2) has no non-trivial invertible objects,
we must have that ([2Λ2], 1) generates D, which completes the claim. □

Corollary 4.10. We haveEqBr(C(𝔰𝔩16, 2)0Rep(ℤ4)) = EqBr(C(𝔰𝔩2, 16)0Rep(ℤ2)),EqBr(C(𝔰𝔩16, 2)0Rep(ℤ2)) = EqBr(C(𝔰𝔩2, 16)0Rep(ℤ2))× ℤ2,EqBr(C(𝔰𝔩9, 3)0Rep(ℤ3)) = EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3))× ℤ2, andEqBr(C(𝔰𝔩8, 4)0Rep(ℤ4)) = EqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)).
Proof. We use the canonical embeddingEqBr(C)× EqBr(D)→ EqBr(C⊠D).
By analysing the fusion rings and twists of the Deligne products from Proposition 4.9,
we see that this embedding is an isomorphism. □

5. Realisation of the exceptionals

In the previous section we identified a finite list of the categories C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚)
whichmayhave an exceptional braided auto-equivalence, and furthermore, gave upper
bounds for the number of such auto-equivalences that may exist. In this section, our
goal is to construct all the exceptional braided auto-equivalences of these finite number
of categories. That is, we want to compute the braided auto-equivalence groups of the
categories

C(𝔰𝔩2, 16)0Rep(ℤ2), C(𝔰𝔩3, 9)0Rep(ℤ3),
C(𝔰𝔩4, 8)0Rep(ℤ4), and C(𝔰𝔩5, 5)0Rep(ℤ5).

While it is not immediate from the above list, there are two situations in play here.
The first is for the category C(𝔰𝔩2, 16)0Rep(ℤ2), where the exceptional auto-equivalences
come from the coincidence of categories

C(𝔰𝔬8, 3) ≃ (C(𝔰𝔩2, 16)0Rep(ℤ2))rev⊠ C(𝔰𝔬8, 1).
The 𝑆3 worth of braided exceptional auto-equivalences of C(𝔰𝔩2, 16)0Rep(ℤ2) is then nat-
urally seen due to the triality of the Dynkin diagram 𝐷4. This connection was initially
discovered in [47].

Lemma 5.1 ([47, Theorem 4.3]). We haveEqBr(C(𝔰𝔩2, 16)0Rep(ℤ2)) = 𝑆3.
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The far more interesting situation occurs with the other three categories. Studying
the dimensions of these three examples, one notices that they are all defined over small
quadratic fields. For C(𝔰𝔩3, 9)0Rep(ℤ3) the dimensions live inℚ[√3], for C(𝔰𝔩4, 8)0Rep(ℤ4)
the dimensions live in ℚ[√3], and for C(𝔰𝔩5, 5)0Rep(ℤ5) the dimensions live in ℚ[√5].
Such behaviour with the dimensions does not hold for general C(𝔰𝔩𝑟+1, 𝑘)0Rep(ℤ𝑚), and
suggests that these dimensions may have something to do with the potential excep-
tional auto-equivalences of these categories.
A large class of categories with objects living in quadratic fields is the quadratic cat-

egories, where the simple objects consist of the group of invertibles, and an object 𝜌,
along with the orbit of 𝜌 under the action of the invertibles. The natural suspicion to
draw is that the three categories C(𝔰𝔩3, 9)0Rep(ℤ3), C(𝔰𝔩4, 8)0Rep(ℤ4), and C(𝔰𝔩5, 5)0Rep(ℤ5)
should in some way be connected to quadratic categories. The naive guess, that these
three categories are quadratic categories on the nose, is immediately thwarted by fact
that the dimensions in these examples take on more than two values. Further, qua-
dratic categories are almost never modular, whereas our three examples are. However,
this lack of modularity suggests the next place to look for a connection.
Taking the Drinfeld centre of a quadratic category gives a modular category whose

dimensions lie in the same field as the quadratic category. While in the quadratic cate-
gory, the dimensions of the simples can only have two possible values, the dimensions
of the simples in the centre can be any integer combination of 1 and the dimension of
the non-invertible of the quadratic. This provides strong evidence that the three cate-
gories C(𝔰𝔩3, 9)0Rep(ℤ3), C(𝔰𝔩4, 8)0Rep(ℤ4), and C(𝔰𝔩5, 5)0Rep(ℤ5) may be related to Drin-
feld centres of quadratic categories.
Now thatwe have an idea ofwhat to look for, we canmake educated guesses as to the

identity of the quadratic categories. For example, the dimensions of C(𝔰𝔩3, 9)0Rep(ℤ3)
are 1, 7 + 4√3, 8 + 4√3, and 3 + 2√3 (6 times).
If C(𝔰𝔩3, 9)0Rep(ℤ3)were theDrinfeld centre of a quadratic category, then a natural guess
for the dimension of the non-invertible would be 3+ 2√3, as all the above dimensions
can be constructed as integer combinations of 1 and 3 + 2√3. There is a known qua-
dratic category with an object of this dimension, which is a near-group category with
group of invertibles ℤ3 = {𝟏, 𝑔, 𝑔2}, and a single non-invertible with fusion𝜌⊗ 𝜌 ≅ 𝟏⊕ 𝑔⊕ 𝑔2⊕6𝜌.
The global dimension of this category is 24 + 12√3, so the global dimension of its
Drinfeld centre is 1008 + 576√3. Whereas the global dimension of C(𝔰𝔩3, 9)0Rep(ℤ3)
is 336 + 192√3. These global dimensions are off by a factor of three, which suggests
a ℤ3 factor is involved. From all this we conjecture that there is a quadratic category
C3,9,3 with fusion as above such that

Z(C3,9,3) ≃ C(𝔰𝔩3, 9)0Rep(ℤ3)⊠Vec(ℤ3,{1, 𝑒2𝑖𝜋 13 , 𝑒2𝑖𝜋 13 }).
Using similar reasoning we conjecture the existence of a fusion category C4,8,4 with

invertibles ℤ2 × ℤ2 = {𝟏, 𝑒,𝑚, 𝑒𝑚} and non-invertibles {𝜌,𝑚𝜌} with fusion𝜌⊗ 𝜌 ≅ 𝟏⊕ 𝑒⊕ 6𝜌⊕ 4𝑚𝜌,
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such that

Z(C4,8,4) ≃ C(𝔰𝔩4, 8)0Rep(ℤ4)⊠Vec(ℤ2 × ℤ2,{1, 𝑒2𝑖𝜋 34 ,−1, 𝑒2𝑖𝜋 34 }),
and a fusion category C5,5,5 with invertibles ℤ2 ×ℤ2 = {𝟏, 𝑒,𝑚, 𝑒𝑚} and non-invertibles{𝜌, 𝑒𝜌,𝑚𝜌, 𝑒𝑚𝜌} with fusion𝜌⊗ 𝜌 ≅ 𝟏⊕ 𝜌⊕ 𝑒𝜌⊕𝑚𝜌⊕ 𝑒𝑚𝜌,
such that

Z(C5,5,5) ≃ C(𝔰𝔩5, 5)0Rep(ℤ5)⊠Vec(ℤ2 × ℤ2,{1,−1,−1,−1}).
We make all this precise with Theorem 5.2.

Theorem 5.2. There exist unitary fusion categories C3,9,3, C4,8,3, and C5,5,5 with combi-
natorics as above, such that

Z(C3,9,3) ≃ C(𝔰𝔩3, 9)0Rep(ℤ3)⊠Vec(ℤ3,{1, 𝑒2𝑖𝜋 13 , 𝑒2𝑖𝜋 13 }),
Z(C4,8,4) ≃ C(𝔰𝔩4, 8)0Rep(ℤ4)⊠Vec(ℤ2 × ℤ2,{1, 𝑒2𝑖𝜋 34 ,−1, 𝑒2𝑖𝜋 34 }), and

Z(C5,5,5) ≃ C(𝔰𝔩5, 5)0Rep(ℤ5)⊠Vec(ℤ2 × ℤ2,{1,−1,−1,−1}).
Proof. Let us begin with the case C(𝔰𝔩3, 9)0Rep(ℤ3). It is well known that there is a
conformal inclusion 𝑆𝑈(3)9 ⊂ (𝐸6)1 which induces a commutative algebra object𝐴 ∈ C(𝔰𝔩3, 9). The category Mod(C(𝔰𝔩3, 9), 𝐴) is then a unitary fusion category, as
described in [8, Figure 4]. The category Mod(C(𝔰𝔩3, 9), 𝐴) is ℤ3-graded. Let C3,9,3 be
the trivially graded subcategory of this grading.
By [3, Corollary 4.8] we have that

Z(Mod(C(𝔰𝔩3, 9), 𝐴)) ≃ C(𝔰𝔩3, 9)⊠ (Mod(C(𝔰𝔩3, 9), 𝐴)0)rev.
For this particular case, we have thatMod(C(𝔰𝔩3, 9), 𝐴)0 ≃ C(𝔢6, 1) ≃ Vec(ℤ3,{1, 𝑒2𝑖𝜋 23 , 𝑒2𝑖𝜋 23 }).
Now the results of [31] allow us to compute the Drinfeld centre of the subcategory

C3,9,3 in terms of the Drinfeld centre ofMod(C(𝔰𝔩3, 9), 𝐴). This gives that
Z(C3,9,3) ≃ C(𝔰𝔩3, 9)0Rep(ℤ3)⊠Vec(ℤ3,{1, 𝑒2𝑖𝜋 13 , 𝑒2𝑖𝜋 13 })

as desired.
The case of C(𝔰𝔩4, 8)0Rep(ℤ4) is almost identical, except now we use the conformal

inclusion 𝑆𝑈(4)8 ⊂ 𝑆𝑝𝑖𝑛(20)1. The structure of the associated algebra object, and
category of modules, can be found in [10, Section 2.6].
The case of C(𝔰𝔩5, 5)0Rep(ℤ5) should follow in the samemanner, where nowwe work

with the conformal inclusion 𝑆𝑈(5)5 ⊂ 𝑆𝑝𝑖𝑛(24)1. However, the author was unable
to find a suitable description of the category of modules in this case. Instead we have
[64, Theorem3.2] which proves the precise statement in this case. They show that C5,5,5
is the even part of the 3ℤ2×ℤ2 subfactor. □

With these alternate identifications of the categories C(𝔰𝔩3, 9)0Rep(ℤ3),
C(𝔰𝔩4, 8)0Rep(ℤ4), and C(𝔰𝔩5, 5)0Rep(ℤ5) identified, we now have the tools to construct
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their exceptional braided auto-equivalences, and hence determine their braided auto-
equivalence groups. We are able to complete this for the cases C(𝔰𝔩3, 9)0Rep(ℤ3) and
C(𝔰𝔩5, 5)0Rep(ℤ5) in this paper. Let us begin with C(𝔰𝔩3, 9)0Rep(ℤ3).
Lemma 5.3. We have EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) = 𝑆4.
Proof. From Theorem 4.2 we have that EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) is either 𝐷3 or 𝑆4. By
analysing the fusion rings and twists of

Z(C3,9,3) ≃ C(𝔰𝔩3, 9)0Rep(ℤ3)⊠Vec(ℤ3,{1, 𝑒2𝑖𝜋 13 , 𝑒2𝑖𝜋 13 }),
we see that EqBr(Z(C3,9,3)) = EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3))× ℤ2.
It is proven in [37, Section 10.6] that Out(C3,9,3) = 𝐷4. From [45] we have an embed-
ding Out(C3,9,3)→ EqBr(Z(C3,9,3)).
Thus EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) × ℤ2 has a subgroup isomorphic to 𝐷4. This is only pos-
sible if EqBr(C(𝔰𝔩3, 9)0Rep(ℤ3)) = 𝑆4. □

We now deal with the case of C(𝔰𝔩5, 5)0Rep(ℤ5). This case has been examined in the
literature previously [32, 64].

Lemma 5.4. We have EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5)) = 𝐴5.
Proof. From Theorem 4.2 we have that EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5)) is either 𝐷5 or 𝐴5. By
analysing the fusion rings and twists of

Z(C5,5,5) ≃ C(𝔰𝔩5, 5)0Rep(ℤ5)⊠Vec(ℤ2 × ℤ2,{1,−1,−1,−1}),
we see that EqBr(Z(C5,5,5)) = EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5))× 𝑆3.
It is proven in [38, Theorem 9.4] that Out(C5,5,5) = 𝐴4. Thus EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5))×𝑆3 has a subgroup isomorphic to 𝐴4. This is only possible if EqBr(C(𝔰𝔩5, 5)0Rep(ℤ5)) =𝐴5. □

Unfortunately we are unable to use the quadratic category C4,8,4 to construct the ex-
ceptional braided auto-equivalence of C(𝔰𝔩4, 8)0Rep(ℤ4). This is because an explicit con-
struction of the quadratic category C4,8,4 has yet to be given. One way to construct this
category is via the Cuntz algebra method, where it will be realised as endomorphisms
on the 𝐶∗-algebra 𝑂12 ⋊ ℤ2. The large multiplicity spaces of the quadratic category
C4,8,4 mean that this method required solving for roughly 1700 complex variables in20000 polynomial equations. This makes the problem too complex, even for modern
computer algebra programs.
Instead we construct the exceptional braided auto-equivalence of C(𝔰𝔩4, 8)0Rep(ℤ4)

using a coincidence of categories to connect it to 𝔰𝔬8, similar to the C(𝔰𝔩2, 16)0Rep(ℤ2)
case. Recall that 𝔰𝔩4 is isomorphic to 𝔰𝔬6. Hence the category C(𝔰𝔩4, 8) can be viewed as
C(𝔰𝔬6, 8). Now level-rank dualitywill give a (non-trivial) connection between C(𝔰𝔬6, 8)
and C(𝔰𝔬8, 6). Via this connection we can pull back the triality of 𝔰𝔬8 in order to obtain
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an order 3 auto-equivalence of C(𝔰𝔩4, 8)0Rep(ℤ4), which forcesEqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)) =𝑆4.
Let us expand more on this connection between C(𝔰𝔬6, 8) and C(𝔰𝔬8, 6). These cat-

egories have different ranks, so even as abelian categories they are not equivalent.
Thus there are several steps we must take to get some sort of equivalence. First let
C
Vec(𝔰𝔬𝑁 , 𝑘) be the ℤ2-graded subcategory of C(𝔰𝔬𝑁 , 𝑘) generated by the “vector rep-
resentation” Λ1. To get “orthogonal categories”, where level-rank duality applies, we
have to “add in” the determinant representation by taking the ℤ2-equivariantisation
via the 𝐷𝑛 Dynkin diagram symmetry. This gives us the braided equivalence

C
Vec(𝔰𝔬6, 8)ℤ2 ≃ [CVec(𝔰𝔬8, 6)ℤ2]−rev.

Here −rev means to take the reverse braiding, and to negate it on the non-trivial piece
of the grading. However this equivalence doesn’t preserve the determinant representa-
tions, so we can’t de-equivariantise by a singleRep(ℤ2) subcategory to obtain a braided
equivalence. Instead we must de-equivariantise by the maximal Tannakian subcate-
gory. This gives us a braided equivalence
C(𝔰𝔬6, 8)0Rep(ℤ2) = CVec(𝔰𝔬6, 8)⟨8Λ1⟩ ≃ [CVec(𝔰𝔬8, 6)⟨6Λ1⟩]−rev = [C(𝔰𝔬8, 6)0Rep(ℤ2)]−rev.
However triality doesn’t preserve the ⟨8Λ1⟩ subcategory of CVec(𝔰𝔬8, 6), so it won’t

descend to [C(𝔰𝔬8, 6)0Rep(ℤ2)]−rev. Thus we have to take local modules with respect to
the remaining Rep(ℤ2) subcategory to get

C(𝔰𝔬6, 8)0Rep(ℤ4) ≃ [C(𝔰𝔬8, 6)0Rep(ℤ2×ℤ2)]rev.
Triality now preserves the Rep(ℤ2 × ℤ2) subcategory of C(𝔰𝔬8, 6) and hence descends
to give us an order 3 auto-equivalence of C(𝔰𝔬6, 8)0Rep(ℤ4) = C(𝔰𝔩3, 8)0Rep(ℤ4).
To make this all precise we begin with Lemma 5.5, which formalises type𝐷-𝐷 level-

rank duality.

Lemma 5.5. Let 𝑁 and 𝑘 be even integers. We have a braided equivalence
C(𝔰𝔬𝑁 , 𝑘)0⟨𝑘Λ1⟩ ≃ [C(𝔰𝔬𝑘, 𝑁)0⟨𝑁Λ1⟩]−rev.

Proof. Let 𝑋𝑁,𝑘 ≔ (Λ1,+) ∈ CVec(𝔰𝔬𝑁 , 𝑘)ℤ2 ,
and 𝑋𝑘,𝑁 ≔ (Λ1,+) ∈ CVec(𝔰𝔬𝑘, 𝑁)ℤ2 .
From [60] we have that

P𝑋𝑁,𝑘 = BMW(𝑒2𝜋𝑖 12(𝑁+𝑘−2) , 𝑒2𝜋𝑖 𝑁−12(𝑁+𝑘−2) ),
and

P𝑋𝑘,𝑁 = BMW(𝑒2𝜋𝑖 12(𝑁+𝑘−2) , 𝑒2𝜋𝑖 𝑘−12(𝑁+𝑘−2) ),
where BMW(𝑞, 𝑟) is the semi-simplified planar algebra generated by a single crossing
and the Kauffman relation (see [60, Section 7], [18, Definition 2.12]). It is routine to
verify that ↦ −
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gives an isomorphism of planar algebras

P𝑋𝑁,𝑘 → P𝑋𝑘,𝑁 .
Via [34, Theorem A] this induces a braided equivalence

C
Vec(𝔰𝔬𝑁 , 𝑘)ℤ2 → [CVec(𝔰𝔬𝑘, 𝑁)ℤ2]−rev.

Let us define the two groups𝐺𝑁,𝑘 ≔ Inv(CVec(𝔰𝔬𝑁 , 𝑘)ℤ2) = {(𝟏,+), (𝟏,−), (𝑘Λ1,+), and (𝑘Λ1,−)},
and𝐺𝑘,𝑁 ≔ Inv([CVec(𝔰𝔬𝑘, 𝑁)ℤ2]−rev) = {(𝟏,+), (𝟏,−), (𝑁Λ1,+), and (𝑁Λ1,−)}.
The above braided equivalence will preserve the group of invertibles, so we have that
it maps 𝐺𝑁,𝑘 to 𝐺𝑘,𝑁 .
As 𝑘Λ1 and𝑁Λ1 are symmetric objects in their respective categories and have trivial

twist (these facts require both 𝑁 and 𝑘 even), we get thatRep(𝐺𝑁,𝑘) ⊆ 𝑍2(CVec(𝔰𝔬𝑁 , 𝑘)ℤ2),
and Rep(𝐺𝑘,𝑁) ⊆ 𝑍2([CVec(𝔰𝔬𝑘, 𝑁)ℤ2]−rev).
Thus we can de-equivariantise to obtain a braided isomorphism

C
Vec(𝔰𝔬𝑁 , 𝑘)ℤ2Rep(𝐺𝑁,𝑘) → [CVec(𝔰𝔬𝑘, 𝑁)ℤ2]−revRep(𝐺𝑘,𝑁).

From [13, Theorem 4.9] we have that ⟨(𝟏,−)⟩ generates a copy of Rep(ℤ2) ⊆
C
Vec(𝔰𝔬𝑁 , 𝑘)ℤ2 (resp. [CVec(𝔰𝔬𝑘, 𝑁)ℤ2]−rev), and that de-equivaraiantisingCVec(𝔰𝔬𝑁 , 𝑘)ℤ2
(resp. [CVec(𝔰𝔬𝑘, 𝑁)ℤ2]−rev) by this copy of Rep(ℤ2) recovers CVec(𝔰𝔬𝑁 , 𝑘)
(resp. [CVec(𝔰𝔬𝑘, 𝑁)]−rev) up to braided equivalence. As ⟨(𝟏,−)⟩ is normal in 𝐺𝑁,𝑘
and 𝐺𝑘,𝑁 respectively we can use the above fact, along with [48, Proposition 4.12], to
get braided equivalences

C
Vec(𝔰𝔬𝑁 , 𝑘)ℤ2Rep(𝐺𝑁,𝑘) ≃ CVec(𝔰𝔬𝑁 , 𝑘)⟨𝑘Λ1⟩,

and
[CVec(𝔰𝔬𝑘, 𝑁)ℤ2]−revRep(𝐺𝑘,𝑁) ≃ [CVec(𝔰𝔬𝑘, 𝑁)]−rev⟨𝑁Λ1⟩.

As C(𝔰𝔬𝑁 , 𝑘) is modular, and CVec(𝔰𝔬𝑁 , 𝑘) is the adjoint subcategory with respect to aℤ2-grading on C(𝔰𝔬𝑁 , 𝑘), we have that CVec(𝔰𝔬𝑁 , 𝑘) = 𝑍2(C(𝔰𝔬𝑁 , 𝑘),𝐻) for some 𝐻 ⊆Inv(C(𝔰𝔬𝑁 , 𝑘)) (this is a consequence of the isomorphism Inv(C) ≅ U(C) [19, Propo-
sition 4.14.3]). From themodular data of C(𝔰𝔬𝑁 , 𝑘)we can see that 𝑘Λ1 is symmetric in
C
Vec(𝔰𝔬𝑁 , 𝑘), and the invertibles 𝑘Λ𝑁 and 𝑘Λ𝑁−1 do not centralise Λ1 ∈ CVec(𝔰𝔬𝑁 , 𝑘).
Thus 𝐻 = ⟨𝑘Λ1⟩, and so CVec(𝔰𝔬𝑁 , 𝑘) ≃ 𝑍2(C(𝔰𝔬𝑁 , 𝑘), ⟨𝑘Λ1⟩). This implies that

C(𝔰𝔬𝑁 , 𝑘)0⟨𝑘Λ1⟩ = CVec(𝔰𝔬𝑁 , 𝑘)⟨𝑘Λ1⟩.
The same argument works to show that

C(𝔰𝔬𝑘, 𝑁)0⟨𝑁Λ1⟩ = CVec(𝔰𝔬𝑘, 𝑁)⟨𝑁Λ1⟩,
which completes the proof. □

As a corollary we get our desired exceptional braided auto-equivalence.
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Corollary 5.6. We have EqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)) = 𝑆4.
Proof. Via a coincidence of Dynkin diagrams we have

C(𝔰𝔩4, 8) ≃ C(𝔰𝔬6, 8).
Thus Lemma 5.5 gives a braided equivalence

C(𝔰𝔩4, 8)0Rep(ℤ2) ≃ [C(𝔰𝔬8, 6)0Rep(ℤ2)]−rev.
By taking local-modules with respect to the remaining Rep(ℤ2) subcategory we obtain

C(𝔰𝔩4, 8)0Rep(ℤ4) ≃ [C(𝔰𝔬8, 6)0Rep(ℤ2×ℤ2)]−rev = [C(𝔰𝔬8, 6)0Rep(ℤ2×ℤ2)]rev.
The triality of the 𝐷4 Dynkin diagram induces an order 3 braided auto-equivalence of
C(𝔰𝔬8, 6)- rev by [18, Corollary 2.7]. This auto-equivalence preserves the Rep(ℤ2 × ℤ2)
subcategory, and thus descends to [C(𝔰𝔬8, 6)0Rep(ℤ2×ℤ2)]rev. To see that this braided
auto-equivalence is non-trivial, we observe that triality will send2Λ1 → 2Λ3
in C(𝔰𝔬8, 6)- rev, which implies that the induced braided auto-equivalence will map

Fℤ2×ℤ2(2Λ1)↦ Fℤ2×ℤ2(2Λ3)
in [C(𝔰𝔬8, 6)0Rep(ℤ2×ℤ2)]rev. However the two objects 2Λ1 and 2Λ3 are not in the same
orbit under the simple currents of C(𝔰𝔬8, 6)-rev which implies

Fℤ2×ℤ2(2Λ1) ≇ Fℤ2×ℤ2(2Λ3).
Thus the induced braided auto-equivalence of [C(𝔰𝔬8, 6)0Rep(ℤ2×ℤ2)]rev is non-trivial.
Recall fromTheorem4.2 thatEqBr(C(𝔰𝔩4, 8)0Rep(ℤ4)) is either𝐷4 or 𝑆4. Aswe know

there exists an order 3 braided auto-equivalence of C(𝔰𝔩4, 8)0Rep(ℤ4), we can only have
the latter option. □

Appendix A. Coincidences of small dimensions

By Terry Gannon
In this appendix, we prove the following result regarding coincidences of dimen-

sions in the categories C(𝔰𝔩𝑟+1, 𝑘).
Proposition A.1. Let 𝑋 be a simple object of C(𝔰𝔩𝑟+1, 𝑘) such that dim(𝑋) = dim(Λ1 +Λ𝑟). Then either 𝑋 ∈ [Λ1 +Λ𝑟], or

(𝑟, 𝑘) = (8, 3), (8, 15) and 𝑋 ∈ [Λ3], or
(𝑟, 𝑘) = (2, 9), (14, 9) and 𝑋 ∈ [3Λ1], or
(𝑟, 𝑘) = (3, 6), (5, 4) and 𝑋 ∈ [2Λ2], or
(𝑟, 𝑘) = (7, 4), (7, 6) and 𝑋 ∈ [Λ4], or
(𝑟, 𝑘) = (3, 8), (5, 8) and 𝑋 ∈ [4Λ1].

The main technical tool we use to prove this result is Lemma A.2, which allows us
to shuffle around the Dynkin labels of a simple object 𝑋 to decrease its dimension.
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Lemma A.2. Let 𝑋 = ∑𝑟𝑖=0 𝜆𝑖Λ𝑖 be a simple object of C(𝔰𝔩𝑟+1, 𝑘). For any two indices0 ≤ 𝑗, 𝑙 ≤ 𝑟, and integers 0 ≤ 𝑐𝑗 ≤ 𝜆𝑗 and 0 ≤ 𝑐𝑙 ≤ 𝜆𝑙 we have thatdim(𝑋) ≥ min(dim(𝑋 − 𝑐𝑗Λ𝑗 + 𝑐𝑗Λ𝑙), dim(𝑋 + 𝑐𝑙Λ𝑗 − 𝑐𝑙Λ𝑙)),
with equality if and only if 𝑐𝑗 = 0 or 𝑐𝑙 = 0.
Proof. Note that we can write𝑋 = 𝑐𝑙𝑐𝑗 + 𝑐𝑙 (𝑋 − 𝑐𝑗Λ𝑗 + 𝑐𝑗Λ𝑙) + 𝑐𝑗𝑐𝑗 + 𝑐𝑙 (𝑋 + 𝑐𝑙Λ𝑗 − 𝑐𝑙Λ𝑙).
Thus the result follows immediately from Lemma 2.3. □

With this tool we can now prove Proposition A.1.

Proof. Let 𝑋 be a simple object of C(𝔰𝔩𝑟+1, 𝑘) such that dim(𝑋) = dim(Λ1 +Λ𝑟). First
assume that more than three of the labels 𝜆𝑖 are non-zero. Pick two of these non-zero
labels 𝜆𝑗 , 𝜆𝑙. Then Lemma A.2 tells us that either 𝑋 − 𝜆𝑗Λ𝑗 + 𝜆𝑗Λ𝑙 or 𝑋 + 𝜆𝑙Λ𝑗 − 𝜆𝑙Λ𝑙
has dimension less than or equal to 𝑋 . Hence we get an object 𝑋 ′ ∈ C(𝔰𝔩𝑟+1, 𝑘) withdim(𝑋 ′) ≤ dim(Λ1 + Λ𝑟) and with one less non-zero label than 𝑋 . By repeating this
process we can assume that dim(𝑋) ≤ dim(Λ1+Λ𝑟) and 𝑋 has at most three non-zero
labels.
Now suppose 𝑋 has exactly three non-zero labels. By applying a simple current

symmetry we can assume that 𝑋 = 𝜆0Λ0 + 𝜆𝑎Λ𝑎 + 𝜆𝑏Λ𝑏. By applying Lemma A.2 with𝑐0 = 𝜆0 − 1 and 𝑐𝑎 = 𝜆𝑎 − 1 we get thatdim(𝑋) ≥ min(Λ𝑎 + 𝜆𝑏Λ𝑏, (𝜆0 + 𝜆𝑎 − 1)Λ𝑎 + 𝜆𝑏Λ𝑏).
By repeating this process with the 𝜆𝑏 label and applying a simple current symmetry
we get that dim(𝑋) ≥ Λ𝑎′ + Λ𝑏′ for some 0 < 𝑎′ < 𝑏′, with equality if and only if 𝑋 ∈[Λ𝑎′+Λ𝑏′]. By level-rankdualitywehave thatdim(Λ𝑎′+Λ𝑏′) = dim((𝑏′−𝑎′)Λ1+𝑎′Λ2).
By applying Lemma A.2 several times we obtaindim((𝑏′−𝑎′)Λ1+𝑎′Λ2)≥ min(dim(Λ1+Λ2), dim(Λ1+(𝑘−2)Λ2), dim((𝑘−2)Λ1+Λ2))

=min(dim(Λ1+Λ2), dim(Λ1+Λ𝑟)).
Hence all together we havedim(Λ1 +Λ𝑟) ≥ min(dim(Λ1 +Λ2), dim(Λ1 +Λ𝑟))
with equality only if 𝑋 ∈ [Λ𝑎′ +Λ𝑏′].
Using [30, Equation (2.1c)] we compute that

dim(Λ1 +Λ2)dim(Λ1 +Λ𝑟) =
sin( 𝜋(𝑟+1)

(𝑘+𝑟+1))sin( 3𝜋
(𝑘+𝑟+1)) .

This is always ≥ 1, with equality only if 𝑟 = 2 or 𝑘 = 3. Hence if 𝑋 has exactly three
non-zero labels then 𝑟 = 2 or 𝑘 = 3 and 𝑋 ∈ [Λ1 +Λ2]. However in these cases we get
that Λ1 +Λ2 ∈ [Λ1 +Λ𝑟] and so 𝑋 ∈ [Λ1 +Λ𝑟].
Finally suppose 𝑋 has exactly two non-zero labels (if 𝑋 has one non-zero label, then𝑋 = 𝟏). Then we can write 𝑋 = 𝑎Λ𝑏 with 𝑎, 𝑏 ≥ 2. We can assume that 𝑟 ≥ 3 and hence𝑘 ≥ 4 by level-rank duality. By applying Lemma A.2 with 𝑐0 = 𝑘 − 𝑎 − 2 and 𝑐𝑏 = 𝑎 − 2

to get dim(𝑎Λ𝑏) ≥ min(dim(2Λ𝑏), dim((𝑘 − 2)Λ𝑏)) = dim(2Λ𝑏).
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By applying level-rank duality and using the same trick we find that dim(𝑎Λ𝑏) ≥dim(2Λ2). We compute
1 ≥ dim(2Λ2)dim(Λ1 +Λ𝑟) =

sin( 𝜋𝑘+𝑟+1) sin( (𝑟+1)𝜋𝑘+𝑟+1 )2sin( 2𝜋𝑘+𝑟+1)2 sin( 3𝜋𝑘+𝑟+1) ≥ sin( 𝜋𝑘+𝑟+1) sin( 4𝜋𝑘+𝑟+1)2sin( 2𝜋𝑘+𝑟+1)2 sin( 3𝜋𝑘+𝑟+1) ,
as 𝑟 ≥ 3 and 𝑘 ≥ 4. By level-rank duality we can assume that 𝑟+1 ≤ 𝑘. Simple calculus
shows that sin(𝑥) sin2(4𝑥)sin2(4𝑥) sin(3𝑥) > 1 when 𝑥 < 𝜋10 . Hence 𝑟 + 𝑘 + 1 ≤ 10. For these finite
possible cases, we can directly search to find when dim(𝑎Λ𝑏) = dim(Λ1 + Λ𝑟). The
only solutions are (𝑟, 𝑘) = (3, 6), (5, 4) where 𝑋 = 2Λ2.
Finally (by level-rank duality) it suffices to consider 𝑋 = Λ𝑏 for 𝑏 ≤ 𝑟+12 . We have

dim(Λ𝑏)dim(Λ1 +Λ𝑟) =
sin(𝜋(𝑘+1)1+𝑟+𝑘 ) sin(𝜋(𝑘−1)1+𝑟+𝑘 )sin( 𝜋1+𝑟+𝑘)2

𝑏∏𝑗=1 sin(
𝜋(𝑟+2−𝑗)1+𝑟+𝑘 )sin( 𝜋𝑗1+𝑟+𝑘) .

In particular this showsdim(Λ1) < dim(Λ2) < ⋯ < dim(Λ 𝑟+12 ).
Let’s now study when the terms dim(Λ𝑏)dim(Λ1+Λ𝑟) are equal to 1. We will start by studying

the case 𝑏 = 1, and will increase 𝑏 until we can show that this term is always strictly
bigger than 1.
For the case of 𝑏 = 1, we find that dim(Λ1)dim(Λ1+Λ𝑟) = 1 if and only if Λ1 ∈ [Λ1 +Λ𝑟]. With

the 𝑏 = 1 case done, we can now assume 𝑟 ≥ 3.
For the case of 𝑏 = 2, we can use the inequality coming from the concavity ofln ∣ sin(𝑥)∣:

(6) sin(𝑎) sin(𝑏) < sin(𝑎 − 𝑥) sin(𝑏 + 𝑥)
for 0 < 𝑏 < 𝑎 < 𝜋 and 0 < 𝑥 ≤ 𝑎−𝑏2 , to getdim(Λ2)dim(Λ1 +Λ𝑟) < 1.
With the 𝑏 = 2 case done, we can now assume 𝑟 ≥ 5.
For the case of 𝑏 = 3wehave to consider several subcases. If 𝑟 ∈ {5, 6, 7} and 𝑘 > 𝑟+1,

then we get dim(Λ3)dim(Λ1+Λ𝑟) < 1 from sin(𝜋(𝑟+1)/(1+𝑟+𝑘)) < sin(𝜋(𝑟+2)/(1+𝑟+𝑘)) and
the fact that sin(𝑥) sin((𝑟−1)𝑥)sin(2𝑥) sin(3𝑥) is decreasing for 0 < 𝑥 < 𝜋4 . If 𝑟 ∈ {5, 6, 7} and 𝑘 ≤ 𝑟 + 1
then there are just a small number of cases to check. If 𝑟 = 8 then dim(Λ3)dim(Λ1+Λ𝑟) is a strictly
increasing function of 𝑘, which equals 1 at 𝑘 = 15. When 𝑟 ≥ 9, 𝑘 ≥ 4, and 1+𝑟+𝑘 ≥ 19
we can use Equation (6) again to obtaindim(Λ3)dim(Λ1 +Λ𝑟) > 1.
When 𝑟 ≥ 9 and 𝑘 = 3 we getdim(Λ3)dim(Λ1 +Λ𝑟) =

sin( 𝜋1+𝑟+𝑘) sin( 5𝜋1+𝑟+𝑘)sin( 2𝜋1+𝑟+𝑘)2 > 1.
With the 𝑏 = 3 case done we can now assume 𝑟 ≥ 7.
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Finally for the case of 𝑏 = 4we have that when 𝑟 = 7 and 𝑘 ≥ 3, we have dim(Λ4)dim(Λ1+Λ𝑟) >1.
Thus all we have remaining is a finite list of pairs (𝑟, 𝑘) where we could possibly

have dim(Λ𝑏) = dim(Λ1 +Λ𝑟). Searching these pairs and applying level-rank duality
gives the statement of the proposition. □
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