
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022 1879

MuSher: An Agile Multipath-TCP Scheduler for
Dual-Band 802.11ad/ac Wireless LANs

Shivang Aggarwal , Student Member, IEEE, Swetank Kumar Saha, Member, IEEE, Imran Khan, Rohan Pathak,

Dimitrios Koutsonikolas , Senior Member, IEEE, and Joerg Widmer , Fellow, IEEE

Abstract— Future WLAN devices will combine both IEEE
802.11ad and 802.11ac interfaces. The former provides
multi-Gbps rates but is susceptible to blockage, whereas the latter
is slower but offers reliable connectivity. A fundamental challenge
is thus how to combine those complementary technologies,
to make the most of the advantages they offer. In this work,
we leverage Multipath TCP (MPTCP) to use both interfaces
simultaneously in order to achieve a higher overall throughput
as well as seamlessly switch to a single interface when the other
one fails. We find that standard MPTCP often performs sub-
optimally and can yield a throughput much lower than that of
single path TCP over the faster of the two interfaces. We analyze
the cause of these performance issues in detail and then design
MuSher, an agile MPTCP scheduler that allows MPTCP to fully
utilize the channel resources available to both interfaces. Our
evaluation in realistic scenarios shows that MuSher can provide
a throughput improvement of 50%/130% under WLAN/Internet
settings respectively, compared to the default MPTCP scheduler.
It further speeds up the recovery of a traffic stream after
disruption by a factor of 8x/75x.

Index Terms— 802.11ad, 802.11ac, multipath TCP.

I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) communication is fast
emerging as the prime candidate technology to provide

multi-Gbps data rates in future wireless networks. The IEEE
802.11ad standard with its 2 GHz-wide channels provides data
rates of up to 6.7 Gbps, a multi-fold increase over legacy WiFi
throughput. Multiple 802.11ad-compliant commercial devices
have been released over the past few years and the technology
is already making its way into smartphones.

Manuscript received 8 February 2021; revised 19 September 2021 and
12 February 2022; accepted 24 February 2022; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor M. Schapira. Date of publica-
tion 18 March 2022; date of current version 18 August 2022. This work
was supported in part by the National Science Foundation under Grant
CNS-1553447 and Grant CNS-1801903 and in part by the Region of Madrid
through TAPIR-CM under Grant S2018/TCS-4496. (Corresponding author:
Shivang Aggarwal.)

Shivang Aggarwal, Imran Khan, and Dimitrios Koutsonikolas are with
the Institute for the Wireless Internet of Things, Northeastern Uni-
versity, Boston, MA 02115 USA (e-mail: aggarwal.sh@northeastern.edu;
khan.i@northeastern.edu; d.koutsonikolas@northeastern.edu).

Swetank Kumar Saha is with the Department of Computer Science and
Engineering, University at Buffalo, The State University of New York,
Buffalo, NY 14260 USA (e-mail: swetankk@buffalo.edu).

Rohan Pathak was with the University at Buffalo, The State University of
New York, Buffalo, NY 14260 USA. He is now with Microsoft, Redmond,
WA 98052 USA (e-mail: ropathak@microsoft.com).

Joerg Widmer is with the IMDEA Networks Institute, Leganés, 28918
Madrid, Spain (e-mail: joerg.widmer@imdea.org).

Digital Object Identifier 10.1109/TNET.2022.3158678

Nonetheless, communication at mmWave frequencies faces
fundamental challenges due to the high propagation and pene-
tration loss, and the use of directional transmission makes links
susceptible to disruption by human blockage and client mobil-
ity. Even if PHY and MAC layer improvements (e.g., [1]–[3])
result in faster beam steering and lower reconnection times
in the future, any realistic indoor scenario is expected to
contain enough dynamism to cause a substantial number of
reconnection events, which will hurt application performance
and result in poor user experience. Further, due to the mmWave
channel characteristics, providing full coverage at 60 GHz is
extremely difficult and realistic deployments are likely to have
some coverage gaps.

In this work, we tackle the challenge of supporting the
multi-Gbps throughput of 60 GHz technology while main-
taining the reliability of legacy WiFi, which is the key
for the wide-spread adoption of 60 GHz WLANs. Using
both 802.11ad and 802.11ac interfaces simultaneously not
only offers reliability by providing a fall-back option in
case 60 GHz connectivity becomes unavailable, but also allows
a client to theoretically obtain the sum of the data rates offered
by the two technologies. Commercial off-the-shelf (COTS)
APs and client devices have 2.4, 5, and 60 GHz interfaces and
thus, a multi-band approach is feasible with existing hardware.

A critical architectural choice is at which layer of the
protocol stack to implement such a solution. We explore
Multipath TCP (MPTCP) [4], a transport layer protocol that
can use the 802.11ad and 802.11ac interfaces simultaneously
to achieve higher throughput when both networks are available
and can seamlessly fall back to 802.11ac in an application-
transparent manner when the 802.11ad network becomes
unavailable. Although standardized only recently, MPTCP
is gaining increasing popularity among smartphone vendors,
telecom providers, and startups [5]–[7].

MPTCP’s design as a transport layer solution decouples
it from both the application layer and the IP and MAC
layers. Solutions that try to achieve a similar functionality
at the MAC layer, such as 802.11ad’s Fast Session Transfer
(FST) [8], would need mechanisms for reordering packets
from different interfaces at the receiver in order to provide an
in-order data stream and be transparent to higher layers. This
would invariably require introducing global sequence numbers
at the MAC layer across all interfaces and maintaining a
queue to perform reordering – an unnecessary duplication of
functionality already provided by the transport layer. Further,

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7190-5478
https://orcid.org/0000-0001-6667-8779
https://orcid.org/0000-0003-0525-0087

1880 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

given that FST is part of the 802.11ad specification, any
modifications to fix such issues would make it non-standard
compliant.

Despite its attractive features, using MPTCP in multi-band
WLANs is far from straightforward. Several recent studies
investigated the performance of MPTCP over WiFi and cel-
lular interfaces and showed that the protocol performs poorly
over heterogeneous paths, due to various interactions among
different components of MPTCP, including packet reordering,
scheduling decisions, and congestion control [9]–[13]. Further,
MPTCP in dual band 5/60 GHz WLANs often yields lower
performance than using the 802.11ad interface alone [14], [15],
and researchers have even argued that the two radios should
never be used simultaneously.

In contrast, to the best of our knowledge, our work is the
first to show that the use of MPTCP is not only viable but
a very promising solution for dual-band 5/60 GHz WLANs.
We begin with an extensive experimental study using COTS
APs and laptops to understand the causes of the observed
performance and uncover the pitfalls of the current MPTCP
implementation in this setting. Our study reveals that MPTCP
can achieve near optimal throughput under baseline, static
scenarios. However, realistic dynamic environments, e.g., with
interference in the 5 GHz band or blockage of the 802.11ad
link, are extremely challenging for the current MPTCP archi-
tecture and result in severe performance degradation. We then
design a novel MPTCP scheduler that addresses the root-cause
of the performance degradation, allowing MPTCP to perform
near-optimally under a wide variety of dynamic use cases.
We make the following contributions:

(1) We develop a comprehensive set of tools to instrument
MPTCP components, like the queues and scheduler, that
help us study the protocol’s performance and understand
the root-cause of various performance issues. We have
made these tools publicly available.1

(2) We conduct an extensive measurement study2 to under-
stand MPTCP performance in dual-band 802.11ad/ac
WLANs with COTS devices under realistic settings.
In contrast to previous works that discourage the simul-
taneous use of the two interfaces, we find that, MPTCP
yields near optimal throughput in static scenarios but
faces a number of challenges in dynamic environments.

(3) We thoroughly analyze the impact of packet scheduling
decisions on MPTCP performance and show experi-
mentally that maintaining a packet assignment ratio
to the two MPTCP subflows equal to the throughput
ratio of the two subflows is the key to achieving good
performance.

(4) We design MuSher, a novel MPTCP scheduler that
addresses the aforementioned challenges via throughput-
ratio based scheduling and a number of additional mech-
anisms.

(5) We implement MuSher in the Linux kernel3 using two
different approaches to obtain throughput estimates:

1https://github.com/swetanksaha/mptcp-tools
2Data available at: http://bit.ly/mptcp-musher-data
3https://github.com/swetanksaha/mptcp-musher

directly at the TCP layer as well as at the IP later. Our
approach does not require access to information from
the wireless interfaces or the device drivers.

(6) We perform an extensive evaluation in realistic WLAN
and Internet settings. We show that MuSher offers
large throughput improvements over the default MPTCP
scheduler and other state-of-the-art schedulers and
reduces significantly the recovery time from link fail-
ures. It also works well in scenarios involving inter-
ference, mobility, multiple MPTCP flows, paths with
heterogeneous delays, and web traffic.

II. MPTCP BACKGROUND

In this section, we provide a brief overview of the main
components of the MPTCP architecture.

On the sender side, an application is exposed to a single
TCP socket and outgoing segments generated by the applica-
tion are placed in the send-queue, on top of the subflow-level
queues. The Packet Scheduler reads segments from this queue
and assigns them to one of the available subflows. Schedulers
are implemented as Loadable Kernel Modules (LKMs). The
default minRTT scheduler in the Linux implementation of
MPTCP chooses the subflow with the smallest round-trip
time (RTT) among the subflows that have free space available
in their congestion window (cwnd). Apart from the send-
queue, a separate, higher priority reinject-queue is maintained
for segments that need to be retransmitted.

The rate at which segments are sent out over the individual
subflows is controlled by the Congestion Control algorithm
through the use of cwnd, similar to single path TCP (SPTCP).
MPTCP allows for both decoupled and coupled congestion
control. The decoupled variant runs an independent instance
of the default Linux congestion control algorithm (typically
Cubic) on each of the subflows while the coupled variants link
the increase of the cwnd among the subflows. Use of coupled
congestion control [16]–[18] is preferred over its counterpart
as it maintains fairness with other competing flows running
over a bottleneck link [16].

On the receiver side, the segments first arrive at the subflow-
level receive queues and are then delivered in-order (at the
subflow-level, but not necessarily globally) to a common
receive buffer (recv-queue) at the MPTCP meta-level. Seg-
ments arriving out-of-order at the meta-level are temporarily
put in an out-of-order queue (ofo-queue) that is shared among
all the subflows of an MPTCP connection. The remaining
space in the shared buffer is advertised to the sender as the
receive window (recv_win).

III. MPTCP PERFORMANCE & PITFALLS

In this section, we study the performance of MPTCP over
dual-band links for a wide range of scenarios to understand
and analyze the root causes of the observed behavior.

A. Methodology

Our setup consists of a Netgear Nighthawk X10 WiFi router
and an Acer Travelmate P446-M laptop. Both devices support
802.11ac and 802.11ad. A high-end desktop is connected to

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

AGGARWAL et al.: MuSher: AGILE MULTIPATH-TCP SCHEDULER FOR DUAL-BAND 802.11ad/ac WIRELESS LANs 1881

TABLE I

THROUGHPUT COMPARISON (MBPS) OF MPTCP CONGESTION
CONTROL ALGORITHMS

the router through a 10G LAN SFP+ interface to gener-
ate/receive MPTCP traffic. While this setup would in theory
allow us to achieve the maximum 802.11ad rate of 4.6 Gbps,
in practice the maximum goodput on the router is limited
to 1.6-1.65 Gbps and 500-550 Mbps, with 802.11ad and
802.11ac, respectively. A similar observation has been made in
other studies using the same hardware, e.g., [14], [19]–[21].

We use MPTCP version v0.94 and make all our mod-
ifications on top of its code base. We make use of the
fullmesh Path Manager, which establishes a subflow for each
interface combination between the sender and receiver and the
default minRTT scheduler. We first evaluate all the available
congestion control algorithms and then use the default Lia
coupled congestion control for the remainder of the paper.
We also disable the two memory optimizations labeled as
Mechanisms 1 and 2 in [9], which were introduced in v0.89 to
reduce memory usage. Although the authors in [9] show
improvements with these mechanisms for a scenario involving
WiFi and 3G interfaces, our measurements in [21] reveal
significant performance issues in the case of 802.11ac/ad
WLANs. A fundamental problem is that the 802.11ad subflow
never exits slow start, which leads to unstable (in addition to
reduced) performance. We have also confirmed experimentally
that these mechanisms do not improve the performance even
under dynamic conditions. Previous works [11], [22] have
also shown that these two mechanisms result in reduced
performance in different heterogeneous environments.

In the rest of the paper, bar graphs show the average
values over multiple runs and the error bars show the standard
deviations.

B. Baseline Performance

We first establish a baseline for MPTCP performance under
static scenarios with ideal channel conditions (where TCP
experiences 0% packet loss over each path). We primarily look
at how close MPTCP throughput is to the sum of throughputs
of the two single path flows (when each of the two interfaces
is used alone).

1) Congestion Control Algorithms: We experiment with
four congestion control algorithms available in the Linux
implementation – Cubic (decoupled), Lia [16], Olia [17], and
Balia [18] – under backlogged traffic. Table I lists MPTCP
throughput along with throughput over each interface when
engaged separately.

For each of the four algorithms, MPTCP can achieve
throughput very close to the expected sum (96%-99%). This
is in sharp contrast to several previous works [9]–[13] that
have shown MPTCP to perform poorly when used with het-
erogeneous interfaces, albeit in the context of WiFi+3G/LTE,

Fig. 1. MPTCP impact on delay and queue length.

and more importantly to recent works [14], [15] arguing that
802.11ad and 802.11ac interfaces should not be used simul-
taneously. Note that the sum throughput achieved by MPTCP
is substantially higher than the throughput over any of the
two interfaces alone. Compared to MUST [14], a state-of-the-
art MAC layer solution that only uses the 802.11ad interface
and switches to 802.11ac in case of blockage, MPTCP would
result in a throughput boost of 31%-36%. We also verified
that it can sustain the provided application data rates under
non-backlogged traffic.

Delay: We use the time packets spend in the MPTCP
meta-level ofo-queue as a measure of application-perceived
delay. This isolates the MPTCP-induced delay due to packet
reordering across subflows from the delay of the individual
subflows which occurs even if we were to use SPTCP for
each subflow. Additionally, the queue length is also a measure
of the amount of reordering induced by MPTCP. Fig. 1a and
1b plot the ofo-queue delay and queue length for each of the
four congestion control algorithms. The 99-th percentile of
the delay and queue length are upper-bounded by 10 ms and
1.5 MB, respectively. In the median case, MPTCP adds only a
5 ms delay over SPTCP. Further, since the queue length in the
median case is well below 500 kB, using MPTCP does not
impose any significant memory requirements on the system
while providing significant throughput gains.

2) Suboptimal Links: In §III-B.1, we considered optimal
links that can individually support the highest throughput pos-
sible with our hardware. We now repeat the measurements over
suboptimal links. For scenarios involving an optimal 802.11ac
link and a suboptimal 802.11ad link, we vary the quality
of the 802.11ad link by changing the client-AP distance.
We consider three cases based on the relationship between the
802.11ad throughput (Thad) and the 802.11ac (Thac) through-
put: Thad>Thac, Thad<Thac, and Thad=Thac. We also
consider a scenario involving an optimal 802.11ad link and
a suboptimal 802.11ac link, denoted as Thad�Thac. Since
it is not possible to drop the quality of the 802.11ac link
by moving the client away from the AP (as that would also
result in a steep drop of the 802.11ad link quality), we instead
fix the 802.11ac channel width to 20 MHz. Note that in all
4 scenarios, the TCP loss rates remain very low over both paths
(0.0002%-0.005%), as the link layer does retries and the rate
adaptation masks losses from the upper layer of the protocol
stack. Fig. 2 shows the single path and MPTCP throughput
with each congestion control algorithm for the four scenarios.
In addition, in all four scenarios, there is external interference
on the WiFi link from the campus WiFi network.

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

1882 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 2. MPTCP throughput with suboptimal links.

Fig. 3. Field trial.

We observe that, although the MPTCP performance
degrades for all congestion control algorithms compared to
the case of optimal links in §III-B, it remains satisfactory in
three out of four scenarios. In the Thad>Thac and Thad=Thac

scenarios, MPTCP with various congestion control algorithms
achieves 83-88% and 80-92% of the expected sum, respec-
tively. Compared to MUST, this translates to a throughput
improvement ranging from 17% (Cubic, Thad>Thac) to 75%
(Olia, Thad=Thac). In the Thad<Thac scenario, MPTCP
performs similar to or slightly worse than SPTCP over the
faster path. Note that, since there is no blockage involved in
this scenario, MUST would still use only 802.11ad, resulting in
very low throughput. In contrast, in the Thad�Thac, MPTCP
achieves only 64-68% of the expected sum and performs worse
than SPTCP over the faster path. Note that this is a very
challenging scenario, involving highly heterogeneous links
and additional time-varying interference further affecting the
slower path. We will revisit the issue of interference in §III-D.
We also observe that the four congestion control algorithms
perform very close to each other in all four scenarios, without
a clear winner across all scenarios. Based on this observation,
in the rest of the paper we use the default Lia algorithm.

3) Field Evaluation: We finally perform a field test of
MPTCP in three realistic indoor locations – conference room,
lab, and lobby – in an academic building. We consider 5 links
of varying quality at each of these locations. While the
802.11ac link SNR at the different locations in a given room
is similar, the 802.11ad links are affected more by distance
and furniture and experience different SNRs. Fig. 3 shows
the single path and MPTCP throughputs for the 15 links
considered in the trial. Under almost all link conditions,
MPTCP throughput is very close to the expected sum. In the
only scenario where this is not the case (lab, link L5), its
average throughput is as high as that of the faster of the two
interfaces, in this case 802.11ac, again satisfying Goal 1 in [16]

Fig. 4. Subflow selection reason.

and outperforming MUST, while also adding reliability by
allowing for smooth switch-over, if needed.

C. Understanding MPTCP Performance

Our measurements in §III-B clearly demonstrate that
MPTCP can provide substantial performance improvements in
scenarios involving a wide variety of link qualities, challenging
the generally accepted consensus that MPTCP should not
be used with heterogeneous interfaces. Thus, a root-cause
analysis is needed to answer why MPTCP works well with the
specific scenario involving 802.11ad and 802.11ac interfaces.
Since our observations in §III-B.1-III-B.2 already indicate that
congestion control does not have an impact on the MPTCP
throughput, we turn our attention to another key MPTCP com-
ponent: the packet-scheduler, responsible for the distribution
of application traffic among the subflows.

1) minRTT Packet Scheduler: We investigate in detail the
packet assignment dynamics of the minRTT scheduler. Ana-
lyzing the scheduler’s decisions over the connection lifetime,
we find that it consistently assigns ∼77% of the packets to the
802.11ad subflow and the remaining 23% to 802.11ac. Further
investigation of the scheduler decision reasons interestingly
shows that for the majority of the time, cwnd is full for one of
the subflows, thereby forcing the selection of the other subflow.
While one might expect the minRTT scheduler to primarily
make decisions based on the comparison of the RTT values of
the two subflows, under backlogged traffic the decisions are
essentially controlled by how and when the space opens up
in a subflow’s cwnd. Our results confirm prior findings that
with a saturated congestion window, the scheduling decision
becomes ACK-clocked [23].

On the other hand, under non-backlogged traffic, RTT
becomes the deciding factor. Fig. 4 plots the CDF of the
fraction of time during which the scheduler makes a decision
based on RTT in each 0.5 s interval for source application
rates of 100, 800, and 1800 Mbps. For the high source rate
of 1800 Mbps, which is close to the overall combined channel
capacity of ∼2100 Mbps, cwnd occupancy is the deciding
factor for at least 80% of the time in each 0.5 s interval. When
the source rate drops to 800 Mbps, a significant portion of
scheduler decisions in each 0.5 s interval are based on subflow
RTT values. Finally, with a low source rate of 100 Mbps,
almost all packet assignment decisions are made based on RTT
values.

2) Impact of Packet Scheduling Decisions: Given that in
case of backlogged traffic, ACK-clocked scheduling decisions

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

AGGARWAL et al.: MuSher: AGILE MULTIPATH-TCP SCHEDULER FOR DUAL-BAND 802.11ad/ac WIRELESS LANs 1883

Fig. 5. Impact of packet scheduling decisions.

result in a certain packet distribution between the two sub-
flows, we now investigate in more detail how the traffic dis-
tribution between the subflows impacts MPTCP performance.
To this end, we design an MPTCP scheduler FixedRatio that
performs packet assignment based on a user-defined ratio.

Fig. 5a plots the MPTCP throughput against the num-
ber of packets assigned to the 802.11ad subflow (Pktsad)
out of every 100 packets. In each case, the remaining
packets (out of 100) are assigned to the 802.11ac sub-
flow (Pktsac=100-Pktsad). The maximum throughput of
∼2.1 Gbps is achieved with Pktsad=77 and performance
worsens as we move away from this value with the worst
throughput being as low as 400 Mbps (Pktsad=5).

We found that the stark difference in performance with
different assignment ratios is a result of the degree to which
packets arrive out-of-order in the end-to-end MPTCP flow due
to the traffic distribution among the subflows. A higher number
of out-of-order packets can cause packets to be buffered in
the receiver’s ofo-queue and in extreme cases can even result
in throttling of the sender because of limited space in the
receiver’s buffer. In fact, in Fig. 5b, which plots the CDF
of the delay experienced by the data bytes in the ofo-queue,
we observe that the Pktsad=77 value indeed yields the
lowest delay. In general, the Pktsad values that result in
high delay are the ones that result in lower throughput and
vice-versa.

We also plot the CDF of the ofo-queue occupancy under
different Pktsad values in Fig. 5c. One might also expect to
see smaller queue lengths (indicating less out-of-ordering) for
packet assignments corresponding to Pktsad values that yield
higher throughputs. However, under extreme Pktsad values
(e.g., 5, 95), the traffic distribution is so skewed towards one
of the subflows that almost all the packets flow through one
of the interfaces, thereby significantly reducing reordering.
As a result, extreme Pktsad values (5, 15, 25, 85, 95),
although sub-optimal throughput-wise, have queue lengths
smaller than the Pktsad=77 case. Excluding the extremes,
other Pktsad values show a general trend of having larger
queues in conjunction with lower throughput.

Throughput-optimal ratio. The reason for Pktsad=77
resulting in optimal throughput is that the underly-
ing packet-distribution ratio imposed by this assignment
Pktsratio=Pktsac/Pktsad=23/77=0.30 is nearly iden-
tical to the ratio of the actual individual throughputs of the two
interfaces Tputratio=Tputac/Tputad=500/1600=0.31.

Assigning packets with this very specific ratio minimizes
the chance of packets arriving out-of-order at the meta-level
MPTCP buffers. Note that although in-order delivery of pack-
ets within a subflow (intra-subflow) is guaranteed because of
SPTCP operation at the subflow level, global in-order delivery
among all subflows (inter-flow) needs to be achieved through
reordering at the meta-level.

Important findings:
• Optimal MPTCP performance is achieved when the

packet-assignment ratio is close to the throughput ratio
of the two subflows.

• The MPTCP throughput vs. packet assignment ratio curve
is unimodal and hence a unique optimal ratio always
exists for given subflow throughputs.

D. Performance Issues

All the measurements in §III-B.1 were limited to scenarios
with stable links for the duration of the experiment. In contrast,
in §III-B.2, we saw that time-varying external interference can
lead to suboptimal MPTCP performance. We now take a closer
look at various challenging scenarios, including scenarios with
varying channel conditions among others, and examine the
causes for the suboptimal performance.

1) Varying Channel Conditions: In realistic WLAN scenar-
ios, link conditions and thereby channel capacity may change
over time for the two interfaces, e.g., due to contention or
mobility. We consider a case where the 802.11ac link experi-
ences contention from nearby competing links. Fig. 6a shows a
timeline of the per-flow throughput of a 180 s MPTCP session.
We start with a static link where 802.11ad and 802.11ac
throughput are at their maximum and we introduce contention
with 300 Mbps TCP cross-traffic at the 30th s for 30 s. The
throughput of the 802.11ac subflow drops by 300 Mbps to
∼250 Mbps, as expected. Surprisingly, the 802.11ad subflow is
also affected negatively during the contention period, with its
throughput dropping below 1200 Mbps and exhibiting much
more variability than in the preceding interval. In fact, the
MPTCP average throughput during the contention period is
∼ 1450(= 1200 + 250) Mbps, which is even less than that
of 802.11ad operating alone (1650 Mbps). Note that 802.11ad
channel capacity is unchanged as the contention exists only
on the 802.11ac link.

A look at Fig. 6b, which plots the TCP congestion control
parameters for the two subflows, explains the unexpected

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

1884 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 6. 802.11ac contention.

performance drop in 802.11ad. During the contention period,
the receiver advertised buffer space (recv_win) reduces
significantly. Recall that the recv_win is maintained at
the meta-level and, although advertised on both subflows,
is actually shared among them. In this particular case, the
sum of cwnd values of the two interfaces of 850(= 350 +
500) MSS exceeds the available receiver buffer space (which
varies between 500 and 1000 MSS) several times during the
contention period. Under such a scenario, the meta-level global
sequence numbers cannot advance, even though cwnd allows
for it, since the meta-level buffers at the receiver are full,
resulting in reduction of throughput on both interfaces. We fur-
ther confirmed this finding by instrumenting the MPTCP
sender to log events where it was unable to send data packets
due to being recv_win limited. We observe similar effects
when 802.11ad link capacity is varied under different scenarios
such as an increase/decrease in the distance between the AP
and the laptop or partial link blockage by persons.

2) Network Scans: For all the results in §III-B we had dis-
abled the periodic channel scans, which are typically initiated
by the network-manager or similar user-space utilities, to avoid
biasing our throughput measurements. However, disabling
periodic channel scans is problematic in any real scenario,
as it prevents the client from finding APs with a better link
quality or performing efficient handovers.

To study the impact of network scans on performance,
we start an 802.11ac scan during an MPTCP session. Fig. 7a
shows the throughput of the 802.11ad and 802.11ac subflows
over 60 s, with the scan initiated at the 30-th s. The 802.11ac
throughput is severely affected during the scan period that
lasts for around 6 s. This is expected, as the radio is unable to
transmit regular data frames during this period. Surprisingly,

Fig. 7. Network scan.

the 802.11ad flow is also impacted negatively during this
period, even though the scan occurs in the 5 GHz band.

Looking at the cwnd values of both subflows during the
802.11ac scan, we find that they are not affected. However,
we observe a 6x increase (Fig. 7b) in the amount of data held
in the ofo-queue at the receiver end. Since the packet scheduler
is not aware of the sudden reduction in 802.11ac channel
capacity during the scan period, it keeps assigning packets to
the 802.11ac subflow even though the interface cannot transmit
them immediately. This is problematic as the receiver’s packet
stream now has gaps (missing in-sequence packets). Since the
MPTCP receiver is responsible for reordering the packets at
the meta-level, these gaps prevent the receiver from delivering
packets to the application until the missing packets arrive
or are retransmitted over the 802.11ad interface. MPTCP
performance drops can be observed with 802.11ad scans as
well but due the much shorter duration of the scan their impact
is less pronounced.

3) 802.11ad Blockage: In case of a blockage event, MPTCP
should be able to switch-over as quickly as possible to using
only the 802.11ac interface, without disruption to the appli-
cation [14]. Additionally, once the 802.11ad link is restored,
MPTCP should ideally resume using both interfaces with as
little delay as possible. To study how MPTCP reacts to sudden
loss of the 802.11ad link, we block the 802.11ad antenna by
hand, causing the link to break. We then remove the blockage
and allow the device to reassociate with the AP.

Switch-over. Fig. 8a shows a timeline of subflow through-
puts along with link status Failed/OK/Retrying as
reported by the 802.11ad driver. A status of OK indicates that
the client has successfully associated with the AP and the
link can support data transfer. The blockage is introduced at

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

AGGARWAL et al.: MuSher: AGILE MULTIPATH-TCP SCHEDULER FOR DUAL-BAND 802.11ad/ac WIRELESS LANs 1885

Fig. 8. 802.11ad blockage.

20 s and the link fails after further 2 s. Once the blockage is
removed, connection at the MAC layer is restored at the 30th

second. During the entire period of 802.11ad disconnection,
MPTCP maintains the 802.11ac subflow throughput without
any disruption to the end-to-end connection seen by the appli-
cation. MPTCP, owing to its design, provides a completely
seamless switch-over to 802.11ac.

Restoring 802.11ad throughput. In Fig. 8b, although the
802.11ad link is restored at the 30th second, MPTCP does
not resume traffic on the 802.11ad subflow for another ∼20 s
until the 49th s. We repeated this experiment multiple times
and found that this extra delay until traffic resumes varies
from 6 s to as much as 60 s. For comparison, we repeated the
same experiment with a UDP flow over the 802.11ad interface
and found that it resumes as soon the driver reports OK
status. On further investigation, we discovered that interaction
between the MPTCP scheduler and TCP congestion-control
of the 802.11ad subflow is responsible for the extra delay.
In a timeout-based loss event (because of blockage), TCP
congestion-control sets the pf flag on the socket, indicating
that it potentially failed. The MPTCP scheduler treats subflows
with the pf flag set as being unavailable and does not schedule
any packets for them. TCP congestion-control, on the other
hand, is waiting for an ACK to unset the pf flag and enter the
TCP_CA_RECOVERY state that can restore the cwnd to the
value before the loss event. Since no packets are being directed
to the 802.11ad subflow, only a subflow-level retransmission
of the 802.11ad subflow can trigger the transmission of an
ACK on the receiver side. However, multiple timeout-based
losses during the blockage period can lead to excessively high
retransmission timeouts, and hence long delays before an ACK
is received after reconnection.

Resuming to non-optimal throughput. We also observed
cases where the 802.11ad subflow resumes with a cwnd and
ssthresh that are half of their pre-loss values. Fig. 8b shows
an example where the 802.11ad flow resumes to 1350 Mbps
instead of 1650 Mbps. This behavior depends on the exact
specifics of the TCP congestion-control state at the time it
enters the recovery state. Nonetheless, it is observed quite
often and has a non-negligible impact on throughput.

Important Findings:
• The default MPTCP scheduler performs sub-optimally

under varying channel conditions and is unable to fully
utilize the available capacities of both interfaces.

• Network scanning during an active MPTCP session on
one of the interfaces can severely degrade performance
of the other interface.

• In the event of 802.11ad blockage, MPTCP can seam-
lessly switch over to 802.11ac but has issues resuming
traffic on the 802.11ad interface once the connectivity is
restored.

IV. MuSher: SYSTEM DESIGN & IMPLEMENTATION

In this section, we present the design of MuSher, an agile
Multipath-TCP Scheduler that improves dual-band MPTCP
performance by addressing the performance issues identified
in §III-D. We chose Linux for our reference implementation,
but our mechanisms can be used on most platforms supporting
MPTCP. For ease of deployment, MuSher is implemented
entirely as an MPTCP scheduler. Given that MPTCP sched-
ulers are modular components implemented as LKMs that
can be loaded/unloaded without requiring kernel reboot, such
a design allows for MuSher to be used without requiring
any changes to the MPTCP source code tree. While MuSher
addresses challenges related to the underlying wireless tech-
nologies, it does not rely on any specific hints from the
wireless interfaces or the device drivers managing them. These
architecture choices prevent MuSher from being tied to any
specific hardware/platform.

We first present MuSher’s solution to the sub-optimal
MPTCP performance under varying link conditions
(§III-D.1) by distributing traffic among the subflows in
a throughput-optimal way, and then discuss two other key
components:

(1) a SCAN component that improves MPTCP performance
by mitigating the negative impact of network scanning
(§III-D.2) through careful management of the subflows.

(2) a BLOCKAGE component that helps MPTCP to quickly
recover to the optimal throughput after an 802.11ad
blockage event (§III-D.3) by addressing the interaction
between MPTCP scheduling and subflow-level conges-
tion control.

A. Reacting to Time-Varying Links

Our findings in §III-C.2 and §III-D.1 indicate that the
underlying reason for the drop in throughput of a subflow,
when channel conditions worsen for the other subflow, is that
meta-level receive buffers are filling up. Assignment of packets
with a ratio very different from the ratio of throughputs

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

1886 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Algorithm 1 MuSher
ω = 0.15 ∗ init_tput, β = 0.1 ∗ init_buffer_size, α = 3, λ = 3
τ1 = 200 ms, τ2 = 100 ms, δ = 10
//All other variables are initialized to 0
while true do

curr_tput_dec+ =(last_tput − GET_CURRENT_TPUTcur_ratio, τ2)
curr_buffer_dec+ =(last_buffer_size − GET_CURRENT_BUFFER_SIZE)
if curr_tput_dec > ω then

tput_threshold_cnt+ =1
if tput_threshold_cnt == α then

cur_ratio = CALLSEARCHRATIOcur_ratio
SET_RATIOcur_ratio
ω = 0.15 ∗ GET_CURRENT_TPUTcur_ratio, τ2
β = 0.1 ∗ GET_CURRENT_BUFFER_SIZE

curr_tput_dec = 0, curr_buffer_dec = 0
else if curr_buffer_dec > β then

buffer_threshold_cnt+ =1
if buffer_threshold_cnt == λ then

cur_ratio = CALLSEARCHRATIOcur_ratio
SET_RATIOcur_ratio
ω = 0.15 ∗ GET_CURRENT_TPUTcur_ratio, τ2
β = 0.1 ∗ GET_CURRENT_BUFFER_SIZE

curr_tput_dec = 0, curr_buffer_dec = 0
else

| tput_threshold_cnt = 0, buffer_threshold_cnt = 0

function CALLSEARCHRATIO cur_ratio
ratio_right = cur_ratio + δ, ratio_left = cur_ratio − δ
tput_right = GET_CURRENT_TPUTratio_right, τ1
tput_left = GET_CURRENT_TPUTratio_left, τ1
if tput_left > tput_right then

return SEARCHRATIOcur_ratio, 0,−δ
else if tput_left < tput_right then

return SEARCHRATIOcur_ratio, 100, δ
else

| return cur_ratio

function SEARCHRATIO(start, stop, step_size)
prev_tput = 0
for ratio = start to stop step step_size do

cur_tput = GET_CURRENT_TPUTratio, τ1
if cur_tput < prev_tput then

return SEARCHRATIOFINEratio − step, prev_tput, step_size/2
prev_tput = cur_tput

return stop

function SEARCHRATIOFINE best_ratio, best_tput, step_size
ratio_right = best_ratio + step_size, ratio_left =
best_ratio − step_size
cur_tput = GET_CURRENT_TPUTratio_right, τ1
if cur_tput > best_tput then

return ratio_right
cur_tput = GET_CURRENT_TPUTratio_left, τ1
if cur_tput > best_tput then

return ratio_left
return best_ratio

achieved over each interface alone results in too many out-
of-order arrivals at the receiver, using up buffer space. Thus,
the scheduling algorithm in MuSher has two design goals:
(a) to automatically trigger the search for a new optimal ratio
when the capacity of either link changes and (b) to quickly
determine the unique throughput-optimal ratio at runtime after
triggering a search. In the following, we first describe how we
address the two design goals in §IV-A.1 and then we discuss
some implementation details in §IV-A.2.

1) Design: The complete algorithm is formally presented
in Algorithm 1.

Triggering ratio search. The triggering mechanism is
described in the while-loop of Algorithm 1. To detect changes
in the link capacity of either interface and trigger the search
for a new optimal ratio, MuSher continuously monitors the
total MPTCP throughput over intervals of τ2 ms (function
GET_CURRENT_TPUT) and the send-queue occupancy (func-
tion GET_CURRENT_BUFFER_SIZE) looking for either of
the following two events: (i) a decrease in total MPTCP

throughput by at least 15% (parameter ω in Algorithm 1)
and (ii) a decrease in send-queue occupancy by at least 10%
(parameter β in Algorithm 1)4 of any of the two subflows,
without a change in throughput. Although (i) can detect
decreases in link capacity of any of the two subflows, it cannot
detect increases if the current packet scheduling ratio keeps
any of the two interfaces non-backlogged. Using (ii), we can
detect such increases as queues are drained faster when the
link capacity of the underlying interface increases. To avoid
unnecessarily triggering a search due to fine-scale channel
fluctuations that can reduce the stability of the algorithm,
we added a hysteresis mechanism; we only trigger a new ratio
search when either of the two events is observed for a certain
number of consecutive intervals of τ2 ms (parameters α and
λ in Algorithm 1). We found that in most cases, the ratio
search does converge to the optimal ratio. We also added a
periodic search trigger (not shown in Algorithm 1) to deal
with rare cases when the ratio search converges to a subop-
timal ratio, e.g., due to the dynamics caused by 802.11ad’s
CSMA/CA protocol in the case of multiple competing MPTCP
flows. We empirically set the periodic search to trigger once
every 3 s.

Finding the optimal ratio. We investigated several
approaches to find the optimal ratio, including binary/ternary
search. We finally chose a design based on two key observa-
tions from our measurements: (i) large changes in throughput
induced by large changes in the assignment ratio (as part
of binary/ternary search) introduce instability in the network
for the flow under consideration and other competing flows,
and (ii) large jumps in the packet assignment ratio typically
require a larger sampling time to obtain accurate throughput
estimates, resulting in an increase in the overall convergence
time. Our approach, (function CALLSEARCHRATIO in Algo-
rithm 1), avoids such large jumps and thus converges more
quickly.

Since the ratio vs. throughput curve is unimodal (§III-C.2),
we can use a simple probing approach to find the maximum of
the throughput curve and thus the optimal ratio. We begin by
probing two ratios adjacent to the current ratio, one slightly
lower and one slightly higher, and proceed our search at a step
δ in the direction where we observe higher throughput. To bal-
ance between two conflicting requirements (convergence time,
which requires a large step δ, and stability, which requires a
small step, as described above), our probing mechanism uses a
step size of 10 to quickly discover a ratio close to the optimal
ratio (function SEARCHRATIO) and then refines the search
with a step size of 5 (function SEARCHRATIOFINE) to finally
discover the optimal ratio.

2) Implementation Details: We now discuss how we choose
an appropriate sampling time to obtain throughput estimates
and two different mechanisms to estimate the throughput at a
given ratio.

Sampling time. An important parameter in Algorithm 1 is
the sampling time (τ1 or τ2), i.e., the time spent at a given

4The occupancy is calculated as the difference of two internal pointers
maintained by MPTCP for each subflow: write_seq, the highest sequence
number written by the application into the send buffer, and snd_una, the
oldest unacknowledged sequence number.

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

AGGARWAL et al.: MuSher: AGILE MULTIPATH-TCP SCHEDULER FOR DUAL-BAND 802.11ad/ac WIRELESS LANs 1887

ratio to estimate the corresponding throughput. It provides a
trade-off between the accuracy of the throughput estimates
and (i) the convergence time of the optimal-ratio search (τ1,
in function CallSearchRatio) or (ii) the response time
to throughput or buffer size changes (τ2, inside the while-
loop). Through extensive experimentation, we set the value
of τ2 to 100 ms. However, we found that it takes longer for
the throughput estimates to converge to a stable value after
changing the ratio. Hence, we empirically set the value of τ1 to
200 ms to achieve the desired balance of convergence time and
accuracy during a search. For instance, with a step_size
of 0.1 for a difference of 0.4 between the optimal and current
ratio, the search would take 800 ms.

Obtaining throughput estimates. In our earlier work [21],
we obtained throughput estimates by monitoring the
bytes transmitted by the network interface using struct
rtnl_link_stats_64 and struct netdev_queue.
However, this method cannot be used when there are multiple
MPTCP clients served by a single server, as it does not
distinguish which bytes are being transmitted to which client.
Hence, in this work, we explore two new methods to derive
throughput estimates:

1) TCP Rate Estimates are obtained by observing the
number of TCP packets acknowledged over a period of time,
given by the delivered member of struct tcp_sock.
An object of struct tcp_sock is maintained for each
TCP connection; hence, we can obtain a separate throughput
estimate for each MPTCP client.

2) IP Rate Estimates are obtained by leveraging the
Linux iptables project [24] typically used for packet
filtering and accounting by network administrators. Once the
accounting is enabled for the relevant set of source and
destination IP addresses, we access the bcnt member of
struct xt_counters, which represents the number of
bytes transferred from a particular source IP address to a
particular destination IP address. struct xt_counters,
which is encapsulated by struct xt_table, contains an
entry for each pair of source and destination IP addresses that
accounting was enabled for. By monitoring this information
over a period of time, we can calculate a throughput estimate.

Note that the iptables project is designed to be a
userspace tool by default. Hence, there is an additional step
required in the userspace of enabling the accounting of bytes
transferred for a particular set of IP addresses. This step is nec-
essary for MuSher to be able to access the appropriate kernel
data structures to calculate the IP rate estimate. In contrast, the
TCP rate estimates are calculated using data structures that the
Linux kernel maintains by default.

B. Managing Network Scans

MuSher arbitrates the network scan requests generated from
the user space and disables the scheduling of packets to the
corresponding subflow for the duration of the network scan.
However, disabling future scheduling alone may not be enough
to prevent packets from being held-up in the TCP queues or
at any of the lower layer buffers. We thus adopt a two-step
approach: (1) stop the assignment of packets to the subflow

about to undertake scanning and (2) wait until the subflow-
level send-queue is empty. MuSher hooks on the scanning
related functions present in the cfg80211 module [25] to
receive notifications about scanning requests and delay a scan
until after steps (1) and (2) are completed. The cfg80211
module is a LKM, and thus, a MuSher compatible version
can be loaded alongside the main MuSher module without
requiring core kernel changes.

Signaling scan operation to the sender. The above
approach works well in the uplink case, when the client,
whose network interface is performing the scan, is the MPTCP
sender. In the downlink case, the client needs to notify the
MPTCP sender to temporary disable all traffic to the subflow
associated with the interface about to perform the scan. To this
end, the MuSher client sends an ACK containing the MPTCP
MP_PRIO option marking the interface as backup. The receipt
of this ACK results in the sender stopping further scheduling
of traffic on the subflow on which the ACK was received. Once
the scan is complete, the client sends another ACK resetting
the subflow back to regular operation.

C. Accelerating Blockage Recovery

Our experiments in §III-D.3 highlighted two major impair-
ments for MPTCP in case of 802.11ad link blockage.
To reduce the delay in resuming traffic over the 802.11ad
subflow, the pf flag that was set upon blockage is reset, which
allows for traffic to be scheduled on the 802.11ad subflow
again. However, this alone is not enough to resume the traffic
flow on the 802.11ad interface. When the 802.11ad link is
blocked, the subflow-level cwnd is cut to 1, with packets in
flight also equal to 1. As a result, the scheduler is unable
to schedule any new packets on the 802.11ad subflow, since
the cwnd is reported as full. To overcome this, MuSher uses
the TCP’s window recovery mechanism to restore the cwnd
to the value just before the loss event. Note that TCP already
maintains this (pre-loss) value as part of its congestion-control
state. Resetting of cwnd also addresses the second issue
observed in §III-D.3, where the restored value is half of what
it was prior to loss.

Detecting interface state. To invoke its quick recovery
mechanisms, MuSher monitors the 802.11ad interface status
maintained in the operstate member of net_device
struct in the kernel. This struct and its members are avail-
able for all network interfaces by default in the kernel
and MuSher does not need direct access to the underlying
hardware-specific device drivers to receive an explicit notifi-
cation of the 802.11ad interface becoming available again.

Signaling active subflow to the sender. The blockage
recovery mechanisms can be initiated locally on the client
in the uplink case but needs the transmission of an explicit
notification to the other end of the MPTCP connection in the
downlink case. MuSher achieves this by sending a zero-byte
TCP_KEEPALIVE packet on the 802.11ad subflow. Receipt
of this packet on the other side triggers the immediate recovery
and resumption of traffic on the subflow.

Note that the mechanisms in §IV-B and §IV-C need to be
initiated on the client side. However, in case of downlink-only

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

1888 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

traffic, the scheduler is not run on the client side, and hence,
the mechanisms will not be triggered. To address this issue,
MuSher uses the Linux’s jprobe functionality to hook on to
the tcp_rcv_established function that TCP runs every
time a data packet is received and processed. This allows
to register a callback function inside our scheduler that runs
even in the absence of any outgoing traffic. We then use the
callback function to implement the solutions described above.
This mechanism does not require any changes to the MPTCP
code base or to any parts of the Linux kernel.

V. MuSher: EVALUATION

In this section, we evaluate MuSher under a wide vari-
ety of scenarios including both stable and dynamic channel
conditions, mobility, multiple MPTCP flows, and different
combinations of link rates and delay settings. We tested
and confirmed that the performance of MuSher with both
throughput estimation methods is similar in all the evalua-
tion scenarios. For brevity, we only show results with both
approaches in scenarios involving multiple MPTCP flows in
§V-E. For all other scenarios, we only show results with the
TCP rate estimates, due to the additional overhead involved in
enabling the IP rate estimates.

A. Ideal Channel Conditions

We begin by comparing the performance of MuSher
under ideal channel conditions (static clients, no interference)
against MPTCP’s default minRTT scheduler and three other
MPTCP schedulers from the literature: BLEST [22], ECF [26],
and Peekaboo [27]. BLEST is a state-of-the-art scheduler
included in the Linux kernel that tries to prevent head-of-
line (HOL) blocking in heterogeneous environments. Similar
to our approach, it disables the two memory optimizations
introduced in [9] and replaces them with a proactive approach.
Instead of penalizing the subflow that causes HOL blocking, it
tries to estimate whether a path will cause HOL-blocking and
dynamically adapts scheduling to prevent it. ECF is another
state-of-the-art scheduler, which takes path heterogeneity into
account. It monitors not only subflow RTT estimates, but also
their congestion windows and the amount of data queued in
the send buffer, and tries to determine whether using a slow
path for the injected traffic will cause faster paths to become
idle. We used the publicly available implementation from [28].
Peekaboo is a recently proposed learning-based scheduler
that leverages an online reinforcement learning mechanism in
combination with a stochastic adjustment strategy to adapt to
the dynamic characteristics of the paths. We used the authors’
publicly available implementation from [27], which integrates
Peekaboo with Multipath QUIC (MPQUIC) [29] instead of
MPTCP. The results are shown in Fig. 9, where we also
include the SPTCP throughput over each interface alone and
the theoretical sum for comparison.

Fig. 9 shows that MuSher and min RTT perform very well
in this static scenario, as expected, both achieving about 97%
of the theoretical sum. ECF and BLEST perform suboptimally
(90% and 85% of the theoretical sum), as they often use only
the faster of the two interfaces (802.11ad). Finally, Peekaboo

Fig. 9. MPTCP throughput comparison with static links.

Fig. 10. Performance comparison under 802.11ac contention.

performs extremely poorly achieving an average throughput
of only 474 Mbps (24% of the theoretical sum), in spite of
the stable channel conditions in this experiment. Note that
in [27], Peekaboo was only evaluated over very low bandwidth
(2-50 Mbps) and very long RTT (40-200 ms) scenarios and
the parameters of the default implementation are most likely
not optimized for the scenarios we consider in this work.
In addition, Peekaboo runs over MPQUIC instead of MPTCP,
and configuration differences between the two protocol imple-
mentations may also contribute to the poor performance.
Exploring the potential of learning-based MPTCP schedulers
in dual-band 802.11ad/ac WLANs is an interesting avenue
for future work. Due to the suboptimal performance of ECF,
BLEST, and Peekaboo even under ideal channel conditions,
in the following we only compare MuSher against minRTT.

B. Varying Channel Conditions

We evaluate MuSher under different channel dynamics in
a typical WLAN, involving static and dynamic contention
on one of the two links, and client mobility, which changes
channel conditions for both interfaces.

1) Static Contention (802.11ac/ad): We evaluate MuSher
for different levels of contending 802.11ac traffic. We create
contention by injecting UDP traffic on a separate link that has
the same 802.11ac hardware configuration as the main link.
We start the cross-traffic at the 5th s of our 60 s run.

Fig. 10 shows the ideal MPTCP throughput (sum of
802.11ad and 802.11ac throughput), actual MPTCP throughput
under the default minRTT scheduler, and MuSher throughput
for different levels of contention (including the case without
contention for reference). In the baseline contention-free sce-
nario, both minRTT and MuSher perform optimally, as we

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

AGGARWAL et al.: MuSher: AGILE MULTIPATH-TCP SCHEDULER FOR DUAL-BAND 802.11ad/ac WIRELESS LANs 1889

TABLE II

DYNAMIC 802.11AC CONTENTION

also saw earlier (Table I). In all cases with contention, the
default scheduler achieves less than the expected sum and
the gap increases with higher contention. For instance, under
100 Mbps of cross-traffic, minRTT achieves ∼170 Mbps less
than expected, whereas contention of 500 Mbps results in
minRTT throughput of only ∼1150 Mbps vs. the expected sum
of 1800 Mbps, a deficit of 650 Mbps. In contrast, MuSher
detects the throughput change and converges to a close to
optimal packet assignment ratio under all scenarios, achieving
throughput close to the ideal sum and outperforming minRTT
in the average case by 160-580 Mbps (a 50% gain in case
of 500 Mbps cross traffic).

We also experimented with contention on the 802.11ad
link. In this case, since we are constraining the faster of the
2 subflows, there is much less reordering at the receiver, thus
making it significantly less challenging for MPTCP to handle.
Hence, both the minRTT scheduler and MuSher perform
similarly, and achieve close to the expected throughput under
different levels of 802.11ad cross-traffic.

2) Dynamic Contention (802.11ac): We next evaluate how
well MuSher reacts to changing cross-traffic. We vary con-
tention levels between 300 Mbps and 500 Mbps over 120 s.
The sequence of contention levels is selected at random but
is kept the same across runs for both minRTT and MuSher
for a fair comparison. We consider different frequencies of
contention level changes ranging from every 1 s to every 20 s.
For each setting, we repeat the resulting 120 s contention
timeline several times and present the average. In addition
to the default minRTT scheduler, we also compare against an
optimal oracle scheduler which always performs throughput-
optimal assignment of packets between the 802.11ad and
802.11ac flows given the current level of contention.

Table II presents the results for four scenarios ranging from
highly dynamic contention changes (every 1 s) to more stable
with changes every 20 s. We observe that MuSher outperforms
minRTT in all cases with average gains over the default
scheduler of up to 360 Mbps in the 20 s case. Even in the
most challenging scenario where contention changes every 1 s,
MuSher provides on average 150 Mbps higher throughput than
minRTT. This improvement can be attributed to continuous
adjustment of traffic distribution by MuSher to the changing
802.11ac channel capacity, whereas minRTT either does not
adapt (1 s case) or adapts too slowly (20 s case). More
importantly, MuSher is able to achieve more than 94% of the
optimal throughput obtained with a perfect scheduler in all
cases, thanks to the low overhead of its triggering mechanisms
and ratio probing strategy.

3) Mobility (802.11ad/ac): We consider three different
mobility scenarios, where the client (i) moves away from the
AP, (ii) moves towards the AP, and (iii) moves laterally to

Fig. 11. Performance comparison under mobility.

the AP. In (i) and (ii), 802.11ad does not require frequent
beam training as the relative angle between the client and AP
does not change, whereas (iii) does require frequent training.
We perform all measurements in a lobby with furniture and
repeat them several times with two different users. For each
run, the user continuously moves over a period of 60 s at
constant walking speed. We intentionally experiment with
the worst case scenarios where mobility is sustained over a
long period of time as opposed to intermittent mobility. This
provides a lower bound on the performance of MuSher.

Fig. 11 compares the performance of minRTT and MuSher.
For case (i) and (ii), MuSher and minRTT provide com-
parable performance with MuSher achieving slightly higher
throughput in case (i). In the lateral mobility case, MuSher
outperforms minRTT by ∼160 Mbps on average. The lateral
case involves more drastic changes in 802.11ad throughput
(as indicated by higher std. dev. of 802.11ad alone) which
makes it challenging for minRTT to adapt. Moreover, MuSher
always performs equally well or better than 802.11ad alone,
providing a gain of 101 Mbps in case (iii) and 368 Mbps in
case (i). It thus satisfies our original design goal for MPTCP to
perform at least as good as SPTCP over the faster of the two
interfaces. Overall, the gains from MuSher are lower under
device mobility compared to the dynamic contention sce-
nario. Mobility represents a much more challenging scenario,
where channel conditions change much faster on both of the
interfaces simultaneously and in a much more unpredictable
fashion compared to the contention case.

C. Network Scans

Fig. 12a shows a timeline of an 802.11ac scan but with
MuSher’s scan management solution applied during the scan
period. We observe (compared to the scan period in Fig. 7a)
that the 802.11ad throughput remains unaffected during the
scan interval. We repeated the measurements several times
with and without the optimization. As can be seen in Fig. 12b,
the MPTCP throughput for the former shows an average
improvement from 700 Mbps to 1650 Mbps (136% gain).

D. 802.11ad Blockage

We test our solution in a setup similar to that in §III-D.3.
Fig. 12c shows a timeline where blockage is introduced at
the 20th s but the connection is already re-established at the
34th s. In contrast to Fig. 8c, where MPTCP resumed traffic
on the 802.11ad subflow after a 20 s delay, here MPTCP

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

1890 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 12. Managing network scans and 802.11ad blockage.

starts using the 802.11ad interface in less than 1 s after link
re-establishment. This is a substantial reduction in delay and
in a dynamic environment, where such blockage events might
occur frequently, MuSher’s gains translate into a significant
improvement of user-experience. Fig. 12d shows that minRTT
on average takes 8 s to recover whereas MuSher can resume
throughput in less than 2 s.

E. MuSher With Multiple MPTCP Flows

So far, we have investigated the performance of MuSher
for a single MPTCP flow. In this section, we explore the
performance of MuSher in two scenarios: 1) two clients
connected to the same server via the same AP, and 2) two
clients, each connected to a different server via a different
AP. As described in §IV, here we evaluate the performance
of MuSher using both the TCP and the IP rate estimates and
compare the performance of the two approaches.

1) Single Access Point, Two Clients: We first look at the
baseline performance when both clients are simultaneously
running downlink MPTCP sessions (leftmost bars in Fig. 13a).
We observe that the dynamics caused by multiple simultaneous
flows make it challenging to always converge to the optimal
packet assignment ratio. Hence, unlike in the single client
scenario, neither the minRTT scheduler nor MuSher give opti-
mal performance; both versions of MuSher and the minRTT
scheduler achieve 91-92% of the expected throughput.

When we add different levels of contending 802.11ac traffic,
we see a sharp drop in performance of the minRTT scheduler
compared to either version of MuSher in Fig. 13a. For all
levels of 802.11ac contention, MuSher outperforms minRTT
by 60-100 Mbps on average, yielding up to a 17% improve-
ment. Irrespective of the level of contending traffic and the
rate estimates used, MuSher can always achieve ∼90% of
the expected throughput. Overall, MuSher is able to handle
dynamic link conditions better than the minRTT scheduler and
assigns packets in a more optimal way to its subflows.

2) Two Access Points With One Client Each: Fig. 13b
shows the performance of MuSher and the minRTT scheduler
under a baseline scenario as well as under different levels of
802.11ac contention. In the baseline scenario, both versions
of MuSher and the minRTT scheduler again perform similarly
well, achieving ∼93-94% of the expected throughput.

When 802.11ac contention is introduced, MuSher slightly
outperforms the minRTT scheduler. MuSher achieves around

Fig. 13. Performance comparison under 802.11 ac contention in scenarios
with multiple MPTCP flows.

20-80 Mbps more than minRTT on average, a gain of up to
12%. In this scenario, the channel dynamics are even stronger
than in the single-AP scenario in §V-E.1, especially on the
802.11ad channel. As was also shown in [30], 802.11ad’s
CSMA/CA protocol can be highly inefficient, leading to large
throughput variations and non-optimal use of the channel by
the multiple clients. This makes it particularly challenging
to make decisions based on throughput estimates to find
the optimal packet assignment ratio. Nonetheless, MuSher
achieves reasonable performance given the 802.11ad MAC
inefficiencies, yielding 85%-90% of the expected throughput
under different levels of 802.11ac contention.

In both multiflow scenarios, MuSher’s performance is very
similar with both rate estimation approaches. Hence, we rec-
ommend using TCP rate estimates, which do not incur the
setup overhead of the IP-based approach, as explained in §IV.

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

AGGARWAL et al.: MuSher: AGILE MULTIPATH-TCP SCHEDULER FOR DUAL-BAND 802.11ad/ac WIRELESS LANs 1891

TABLE III

PERFORMANCE COMPARISON OVER INTERNET PATHS

F. MuSher Over Internet Paths

Until now, we explored MuSher’s performance over a
network where the combined capacity of the 802.11ad (Cad)
and 802.11ac (Cac) wireless interfaces was the bottleneck. If
MuSher runs over the Internet, the bottleneck may well be
on the Internet path from the MPTCP server. Additionally,
Internet paths have longer RTTs which could affect MuSher’s
reactive mechanisms. Since we could not find an ISP that
could provide us an end-point connection of a link rate of
more than few hundred of Mbps, as 1G Ethernet interfaces
are typically the norm, we used the Linux tc command
to control both link rate and delay of the 10G interface to
emulate realistic Internet paths. Specifically, we consider three
link rates: 100 Mbps<Cac<Cad, Cac<1 Gbps<Cad and
Cac<Cad<1.8 Gbps, and three representative RTT values:
10 ms, 30 ms, and 50 ms. Note that the tc induced delay
is added to the common wired path behind the AP. It affects
both the 802.11ad and 802.11ac paths equally and hence does
not create any additional RTT asymmetry between the two.

1) Baseline Performance: Table III compares the through-
put (averaged over 10 runs) for different combinations of link
rates and RTT values.

When the wired link rate is capped at 100 Mbps, both
minRTT and MuSher perform similarly and their throughput is
close to the available link rate. For the 1 Gbps and 1.8 Gbps
case, however, minRTT fails to fully use the available link
rate, having a utilization of less than 40% in the worst case
(1800 Mbps/50 ms). Even in the best case (1000 Mbps/10 ms),
the average throughput is 25% below the capacity. Further-
more, the performance worsens with increasing delays, indi-
cating that minRTT is not a good solution for inter-continental
paths with even larger RTTs. In comparison, MuSher not
only achieves much higher average throughput (130% in
the 1800 Mbps/50 ms case) than minRTT but is also able
to utilize at least 90% of the available link rate under all
configurations. We observed that all 10 minRTT runs suffer
from repeated cuts of the 802.11ad subflow’s cwnd whereas
MuSher runs rarely do. For instance, for the 1800 Mbps/50 ms
configuration, MuSher had the 802.11ad cwnd cut only in
2 runs. This can be attributed to the fact that minRTT always
assigns packets to the 802.11ad subflow (as it typically has
shorter RTT) and only schedules traffic over the 802.11ac
subflow if the 802.11ad send-buffers are full, thereby causing
a loss followed by a cwnd reduction. Further, given that Lia
uses a TCP Reno style cwnd growth function, it takes a long
time for the cwnd to recover to a value that allows to fully
use 802.11ad’s capacity.

TABLE IV

SCAN/BLOCKAGE PERFORMANCE OVER INTERNET PATHS

TABLE V

PERFORMANCE WITH HETEROGENEOUS RTTS

2) Scan and 802.11ad Blockage: Table IV compares the
effectiveness of MuSher’s scan (§IV-B) and blockage recovery
(§IV-C) mechanisms with the default minRTT scheduler under
three link rate/RTT settings.

Scan. While minRTT and MuSher perform similarly in
the 100 Mbps case, minRTT performs extremely poorly in
the 1 Gbps and 1.8 Gbps configurations as it is not scan-
aware. In contrast, MuSher achieves throughput close to the
wired link rate in the 1 Gbps cases as it correctly stops
scheduling traffic over the 802.11ac subflow and 802.11ad
has enough capacity to fully use the available wired link rate.
In the 1.8 Gbps case, the 802.11ad link alone can only provide
1.65 Gbps which MuSher utilizes fully, yielding a 4.1x average
throughput gain compared to minRTT.

Blockage. minRTT takes at least 5 s on average in each
of the three cases to recover after an 802.11ad blockage
event, whereas MuSher’s average recovery time is an order
of magnitude faster and is always below 0.17 s.

G. MuSher With Heterogeneous Delays

Since both 802.11ac and 802.11ad are WLAN technologies,
we typically do not expect to see large delay heterogene-
ity between the two interfaces. In contrast, such conditions
are often observed in MPTCP over cellular+WiFi scenar-
ios. Nonetheless, for the sake of completeness, we perform
additional experiments where we increase the latency for
the 802.11ad and 802.11ac paths so that the RTTs are het-
erogeneous, but leave the bandwidth unchanged. Table V
shows the performance of minRTT and MuSher for different
combinations of RTT values.

In all cases, the average throughput with MuSher is equal
to the sum of 802.11ad (1.6 Gbps) and 802.11ac (600 Mbps)
throughputs. We also analyzed the reverse scenario where
802.11ad delays are higher than 802.11ac and observed similar
results. Hence, throughput ratio based scheduling can provide
optimal throughput even in the case of heterogeneous delays.

Further, to emulate an MPTCP over LTE and WiFi scenario,
we repeat the experiment with the 802.11ad interface throttled
to 100 Mbps (emulating WiFi) and 802.11ac to 20 Mbps
(emulating LTE). The results are presented in Table VI.

Even in this case, we observe that MuSher achieves close to
the sum of the throughputs of the two interfaces. In contrast,
the default minRTT scheduler not only fails to achieve the
sum, but in fact yields lower throughput than that of the fastest

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

1892 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

TABLE VI

EMULATED LTE-WIFI SCENARIO

Fig. 14. Evaluation with web traffic.

interface alone, which agrees with results reported by previous
studies analyzing MPTCP performance over 3G/LTE+WiFi.

H. MuSher With Web Traffic

In this section, we evaluate MuSher with web traffic, which
consists of small bursts of downlink traffic. Due to the small
size of most webpages, TCP may not always exit the slow
start, and hence, the two subflows may not be backlogged.
As such, we do not expect to see a performance improvement
with MuSher. However, we want to ensure that out of order
packet arrivals when MPTCP is used do not affect the packet
delay and hence the responsiveness, which is more important
than throughput for this type of traffic.

Since popular web content servers do not currently support
MPTCP, we downloaded the content of 10 popular websites
and hosted it on our local server. We then used wget on
the laptop to download each website and measure the page
download time. Fig. 14a compares the page download times
with MuSher, minRTT, and SPTCP over each of the two
interfaces.

In the case of web traffic, which consists of small trans-
fer sizes, SPTCP over 802.11ad achieves the shortest page
download times. In other words, the optimal decision in this
case is to send all the traffic over the faster of the two
interfaces. MPTCP schedulers (both minRTT and MuSher)

perform slightly worse here, as they schedule some pack-
ets over 802.11ac, as shown in Fig. 14b, which plots the
packet distribution over the two interfaces with each scheduler.
Further, MuSher performs slightly worse than minRTT for
most websites, as it probes different packet assignment ratios
trying to discover the throughput-optimal ratio, which results
in more packets being sent over the slower 802.11ac interface
compared to minRTT for most websites (Fig. 14b). Overall,
we conclude that, even though MuSher is not optimized for
web traffic, it still achieves satisfactory performance, increas-
ing the page download time by only a few milliseconds.

VI. RELATED WORK

Multipath schedulers. Previously proposed multipath
schedulers target WiFi/cellular or Internet scenarios and they
can be divided into three classes: (i) MPTCP schedulers that
leverage the difference in the subflow RTTs alone [22], [26],
[31]–[33], similar to the default scheduler, or in combination
with other TCP parameters, such as ssthresh, cwnd, selective
ACKs, or receiver buffer size [34]–[39]. In this work, similar
to the results in [23], we show that under backlogged traffic,
scheduling decisions become ACK-clocked and subflow RTTs
have a negligible impact on packet scheduling. (ii) MPTCP
schedulers that try to deal with issues caused by hetero-
geneous paths [22], [26], [27], [33], [39], [40]. Our mea-
surements demonstrated that, in our target case of dual-band
802.11ac/802.11ad WLANs, the default MPTCP scheduler can
work effectively under static scenarios in spite of bandwidth
heterogeneity. Thus, MuSher only targets dynamic scenarios
that involve a drastic change in the wireless capacity of
one of the two paths. (iii) Schedulers that improve MPTCP
performance for specific application use cases [41], [42],
require modifications to applications [43], or are inspired by
MPTCP but not MPTCP compatible [44]–[46], and hence,
are out of scope of this work. For example, DEMS [43]
tries to ensure simultaneous subflow completion via a “two-
way” splitting approach: the two subflows transfer the data in
opposite directions, one from the beginning of an application
layer chunk and the other from the end. As such, its design is
very different from the design of MuSher, which tries to ensure
the optimal packet scheduling ratio between the two subflows.
More importantly, DEMS needs to know the application chunk
boundaries, and hence, it requires changes to applications, thus
violating one of the primary design principles of MPTCP –
being transparent to applications.

Additionally, previous schedulers targeting WiFi/cellular
scenarios take a macroscopic view of the underlying wireless
networks by studying how path heterogeneity affects upper
layer (transport/application) performance. In contrast, MuSher
takes into account the lower layers of the protocol stack,
addressing specific challenges associated with 802.11ad/ac
without requiring explicit information from the lower layers.
The only other work that addresses a challenge related to
the underlying wireless technology is [47], which targets the
specific scenario where a mobile client temporarily moves out
of the WiFi AP’s range and experiences long delays once it
comes back in range. The problem is similar to the first of the
two problems we report in §III-D.3. Nonetheless, in contrast

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

AGGARWAL et al.: MuSher: AGILE MULTIPATH-TCP SCHEDULER FOR DUAL-BAND 802.11ad/ac WIRELESS LANs 1893

to MuSher, [47] requires cross-layer information from the
wireless driver and per-device calibration.

MPTCP performance over Internet and sub-6 GHz
links. A number of works have evaluated different aspects of
MPTCP performance under various scenarios [9]–[13], [44],
[47]–[52]. All these works consider either Internet paths or
scenarios involving WiFi and cellular interfaces, and hence,
their findings are very different from the findings of this
work. For example, many previous works (e.g., [10]–[13],
[44]) show that heterogeneous paths result in significant per-
formance degradation. In contrast, our measurement study
in §III-C.2 shows that MPTCP works well in heterogeneous
802.11ac/802.11ad networks.

Combining mmWave and sub-6 GHz links. Very little
work has been done towards leveraging MPTCP in networks
involving mmWave links. Two recent works [14], [15] briefly
explored the use of MPTCP in dual band 5/60 GHz WLANs
and showed that it often results in lower performance than
using the 802.11ad interface alone. The authors in these works
actually argued that the two radios should never be operated
simultaneously and proposed a cross-layer approach [14] and
the use of MPTCP backup mode [15] to select the best
interface at any given time. Similarly, the work in [53] pro-
poses an application-aware, seamless WiGig/WiFi handover
solution using 802.11ad’s FST. In contrast to all these works,
MuSher combines both the 802.11ad and 802.11ac interfaces
simultaneously instead of using one of them as a backup. The
only work, other than MuSher, that simultaneously utilizes
802.11ac and 802.11ad radios, is Jigsaw [54], a cross-layer
approach for 4K live video streaming, implemented in the
Linux bonding driver. In contrast, this work leverages MPTCP
for a generic solution, transparent to applications.

The work in [55], [56] explored MPTCP performance in 5G
mmWave cellular networks over 28 GHz and LTE interfaces
using simulations, and showed that the protocol performs
better than SPTCP with uncoupled congestion control but
worse with Balia. The work in [57] found, using the same
simulators as in [55], [56], that the cause of the poor per-
formance is the excessive congestion window growth in Slow
Start phase, and proposed a BDP Estimation Based Slow Start
(BESS) algorithm to address this problem. In contrast, to the
best of our knowledge, our work is the first to provide an
extensive experimental study of the performance of MPTCP
over mmWave WLANs links, use 802.11ad and 802.11ac
radios concurrently, and show that MPTCP works well in static
scenarios regardless of the congestion control algorithm.

VII. CONCLUSION

In this paper, we explored the use of MPTCP to improve
performance and reliability in dual-band 802.11ad/ac WLANs.
We showed, in sharp contrast to previous claims, that MPTCP
under ideal static conditions can improve throughput com-
pared to using SPTCP over the faster of the two inter-
faces. However, in dynamic scenarios and for certain network
events (channel contention, network-scan, 802.11ad blockage,
mobility), MPTCP performs sub-optimally. We then designed,
implemented, and evaluated MuSher, a novel MPTCP sched-
uler, to address the underlying causes for the performance

degradation of MPTCP. Our evaluation in a wide range of
scenarios showed that MuSher improves MPTCP throughput
by up to 130% and it can accelerate recovery time from a
link failure by an order of magnitude, compared to the default
minRTT scheduler.

ACKNOWLEDGMENT

The contents of this work are solely the responsibility of
the authors and do not represent the opinions or views of
Microsoft.

REFERENCES

[1] T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer, “Steering
with eyes closed: Mm-wave beam steering without in-band measure-
ment,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015,
pp. 2416–2424.

[2] M. K. Haider and E. W. Knightly, “Mobility resilience and overhead
constrained adaptation in directional 60 GHz WLANs: Protocol design
and system implementation,” in Proc. 17th ACM Int. Symp. Mobile Ad
Hoc Netw. Comput., Jul. 2016, pp. 61–70.

[3] S. Sur, X. Zhang, P. Ramanathan, and R. Chandra, “BeamSpy: Enabling
robust 60 GHz links under blockage,” in Proc. USENIX NSDI, 2016,
pp. 193–206.

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions
for Multipath Operation with Multiple Addresses, document RFC 1546,
2013.

[5] Use Multipath TCP to Create Backup Connections for iOS. [Online].
Available: https://support.apple.com/en-us/HT201373

[6] Commercial Usage of Multipath TCP. Accessed: Feb. 12, 2020.
[Online]. Available: http://blog.multipath-tcp.org/blog/html/2015/12/25/
commercial_usage_of_multipath_tcp.htm

[7] Hybrid Access Solution. Accessed: Aug. 18, 2021. [Online]. Available:
https://www:tessares:net/solutions/hybrid-access-solution/

[8] IEEE 802.11ad, Amendment 3: Enhancements for Very High Throughput
in the 60 GHz Band, Standard IEEE 802.11 Working Group, 2012.

[9] C. Raiciu et al., “How hard can it be? Designing and implementing
a deployable multipath TCP,” in Proc. 9th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2012, pp. 399–412.

[10] Y.-C. Chen, Y.-S. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of MultiPath TCP perfor-
mance over wireless networks,” in Proc. Conf. Internet Meas. Conf.,
Oct. 2013, pp. 455–468.

[11] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path transport over het-
erogeneous wireless networks: Does it really pay off?” in Proc. IEEE
Global Commun. Conf., Dec. 2014, pp. 4807–4813.

[12] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “WiFi, LTE,
or both?: Measuring multi-homed wireless internet performance,” in
Proc. Conf. Internet Meas. Conf., Nov. 2014, pp. 181–194.

[13] S. K. Saha et al., “Multipath TCP in smartphones: Impact on perfor-
mance, energy, and CPU utilization,” in Proc. 15th ACM Int. Symp.
Mobility Manage. Wireless Access, Nov. 2017, pp. 23–31.

[14] S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim, “WiFi-assisted 60 GHz
wireless networks,” in Proc. 23rd Annu. Int. Conf. Mobile Comput.
Netw., Oct. 2017, pp. 28–41.

[15] K. Nguyen, M. G. Kibria, K. Ishizu, and F. Kojima, “Feasibility study
of providing backward compatibility with MPTCP to WiGig/IEEE
802.11ad,” in Proc. IEEE 86th Veh. Technol. Conf. (VTC-Fall),
Sep. 2017, pp. 1–5.

[16] C. Raiciu, M. Handley, and D. Wischik, Coupled Congestion Control
for Multipath Transport Protocols, document RFC 6356, 2011.

[17] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
Pareto-optimal: Performance issues and a possible solution,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[18] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis,
design, and implementation,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 596–609, Feb. 2016.

[19] S. K. Saha et al., “Fast and infuriating: Performance and pitfalls of
60 GHz WLANs based on consumer-grade hardware,” in Proc. 15th
Annu. IEEE Int. Conf. Sens., Commun., Netw. (SECON), Jun. 2018,
pp. 1–9.

[20] H. Assasa, S. Kumar Saha, A. Loch, D. Koutsonikolas, and J. Widmer,
“Medium access and transport protocol aspects in practical 802.11
ad networks,” in Proc. IEEE 19th Int. Symp. World Wireless, Mobile
Multimedia Netw. (WoWMoM), Jun. 2018, pp. 1–11.

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

1894 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

[21] S. K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas, and J. Widmer,
“MuSher: An agile multipath-TCP scheduler for dual-band 802.11ad/AC
wireless LANs,” in Proc. 25th Annu. Int. Conf. Mobile Comput. Netw.,
Oct. 2019, pp. 1–16.

[22] S. Ferlin, O. Alay, O. Mehani, and R. Boreli, “BLEST: Block-
ing estimation-based MPTCP scheduler for heterogeneous networks,”
in Proc. IFIP Netw. Conf. (IFIP Netw.) Workshops, May 2016,
pp. 431–439.

[23] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” in Proc. ACM SIGCOMM
Workshop Capacity Sharing Workshop, Aug. 2014, pp. 27–32.

[24] Iptables. Accessed: Oct. 2, 2021. [Online]. Available:
http://www:netfilter:org/projects/iptables/index:html

[25] cfg80211 Subsystem: Scanning and BSS List Handling. Accessed:
Sep. 15, 2020. [Online]. Available: https://www.kernel.org/doc/html/
v4.12/driver-api/80211/cfg80211.html#scanning-and-bss-list-handling

[26] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An
MPTCP path scheduler to manage heterogeneous paths,” in Proc. 13th
Int. Conf. Emerg. Netw. EXperiments Technol., Nov. 2017, pp. 147–159.

[27] H. Wu, O. Alay, A. Brunstrom, S. Ferlin, and G. Caso, “Peekaboo:
Learning-based multipath scheduling for dynamic heterogeneous envi-
ronments,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2295–2310,
Oct. 2020.

[28] ECF MPTCP Scheduler. Accessed: Jan. 9, 2022. [Online].
Available: https://github.com/multipath-tcp/mptcp/blob/mptcp_trunk/
net/mptcp/mptcp_ecf.c

[29] Q. D. Coninck and O. Bonaventure, “Multipath QUIC: Design and
evaluation,” in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol.,
Nov. 2017, pp. 160–166.

[30] H. Assasa, S. K. Saha, A. Loch, D. Koutsonikolas, and J. Widmer,
“Medium access and transport protocol aspects in practical 802.11ad
networks,” in Proc. IEEE WoWMoM, Jun. 2018, pp. 1–11.

[31] S. H. Baidya and R. Prakash, “Improving the performance of multipath
TCP over heterogeneous paths using slow path adaptation,” in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2014, pp. 3222–3227.

[32] J. Hwang and J. Yoo, “Packet scheduling for multipath TCP,” in Proc.
7th Int. Conf. Ubiquitous Future Netw., Jul. 2015, pp. 177–179.

[33] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and
R. Boreli, “DAPS: Intelligent delay-aware packet scheduling for mul-
tipath transport,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2014,
pp. 1222–1227.

[34] Y. Cao, Q. Liu, G. Luo, and M. Huang, “Receiver-driven multipath data
scheduling strategy for in-order arriving in SCTP-based heterogeneous
wireless networks,” in Proc. IEEE 26th Annu. Int. Symp. Pers., Indoor,
Mobile Radio Commun. (PIMRC), Aug. 2015, pp. 1835–1839.

[35] D. Ni, K. Xue, P. Hong, and S. Shen, “Fine-grained forward prediction
based dynamic packet scheduling mechanism for multipath TCP in lossy
networks,” in Proc. 23rd Int. Conf. Comput. Commun. Netw. (ICCCN),
Aug. 2014, pp. 1–7.

[36] D. Ni, K. Xue, P. Hong, H. Zhang, and H. Lu, “OCPS: Offset
compensation based packet scheduling mechanism for multipath TCP,”
in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 6187–6192.

[37] F. Yang, P. Amer, and N. Ekiz, “A scheduler for multipath TCP,” in
Proc. 22nd Int. Conf. Comput. Commun. Netw. (ICCCN), Jul. 2013,
pp. 1–7.

[38] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath TCP,” in Proc. 28th Int. Conf. Adv.
Inf. Netw. Appl. Workshops, May 2014, pp. 749–752.

[39] T. Shreedhar, N. Mohan, S. K. Kaul, and J. Kangasharju, “QAware: A
cross-layer approach to MPTCP scheduling,” in Proc. IFIP Netw. Conf.
(IFIP Netw.) Workshops, May 2018, pp. 1–9.

[40] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A neural adaptive
multipath scheduler based on deep reinforcement learning,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Apr. 2019, pp. 1648–1656.

[41] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier, and G. Simon,
“Cross-layer scheduler for video streaming over MPTCP,” in Proc. 7th
Int. Conf. Multimedia Syst., May 2016, pp. 1–12.

[42] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan, “MP-DASH: Adaptive
video streaming over preference-aware multipath,” in Proc. 12th Int.
Conf. Emerg. Netw. EXperiments Technol., Dec. 2016, pp. 129–143.

[43] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen, “Accelerating
multipath transport through balanced subflow completion,” in Proc. 23rd
Annu. Int. Conf. Mobile Comput. Netw., Oct. 2017, pp. 141–153.

[44] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen, “An in-depth
understanding of multipath TCP on mobile devices: Measurement and
system design,” in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw.,
Oct. 2016, pp. 189–201.

[45] A. Nikravesh, Y. Guo, X. Zhu, F. Qian, and Z. M. Mao, “MP-H2: A
client-only multipath solution for HTTP/2,” in Proc. 25th Annu. Int.
Conf. Mobile Comput. Netw., Aug. 2019, pp. 1–16.

[46] X. Zhu, J. Sun, X. Zhang, Y. E. Guo, F. Qian, and Z. M. Mao,
“MPBond: Efficient network-level collaboration among personal mobile
devices,” in Proc. 18th Int. Conf. Mobile Syst., Appl., Services, Jun. 2020,
pp. 364–376.

[47] Y.-S. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, and K.-W. Lee,
“Cross-layer path management in multi-path transport protocol for
mobile devices,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
Apr. 2014, pp. 1815–1823.

[48] C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of applying
experimental design to improve multipath TCP,” in Proc. 9th ACM Conf.
Emerg. Netw. Exp. Technol., Dec. 2013, pp. 393–398.

[49] B. Han, F. Qian, S. Hao, and L. Ji, “An anatomy of mobile web
performance over multipath TCP,” in Proc. 11th ACM Conf. Emerg.
Netw. Exp. Technol., Dec. 2015, pp. 1–7.

[50] Q. De Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, “Poster:
Evaluating Android applications with multipath TCP,” in Proc. 21st
Annu. Int. Conf. Mobile Comput. Netw., Sep. 2015, pp. 230–232.

[51] Q. D. Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, “Observing
real smartphone applications over multipath TCP,” IEEE Commun. Mag.,
vol. 54, no. 3, pp. 88–93, Mar. 2016.

[52] Q. D. Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, “A first
analysis of multipath TCP on smartphones,” in Proc. Passive Act. Meas.
Conf. (PAM), 2016, pp. 57–59.

[53] Y.-Y. Li, C.-Y. Li, W.-H. Chen, C.-J. Yeh, and K. Wang, “Enabling
seamless WiGig/WiFi handovers in tri-band wireless systems,” in Proc.
IEEE 25th Int. Conf. Netw. Protocols (ICNP), Oct. 2017, pp. 1–2.

[54] G. Baig et al., “Jigsaw: Robust live 4K video streaming,” in Proc. 25th
Annu. Int. Conf. Mobile Comput. Netw., Aug. 2019, pp. 1–16.

[55] M. Polese, R. Jana, and M. Zorzi, “TCP in 5G mmWave networks:
Link level retransmissions and MP-TCP,” in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), May 2017, pp. 343–348.

[56] M. Polese, R. Jana, and M. Zorzi, “TCP and MP-TCP in 5G mmWave
networks,” IEEE Internet Comput., vol. 21, no. 5, pp. 12–19, Sep. 2017.

[57] Y. Liu, X. Qin, T. Zhu, X. Chen, and G. Wei, “BESS: BDP estimation
based slow start algorithm for MPTCP in mmWave-LTE networks,” in
Proc. IEEE 88th Veh. Technol. Conf. (VTC-Fall), Aug. 2018, pp. 1–5.

Authorized licensed use limited to: Northeastern University. Downloaded on June 20,2023 at 14:26:51 UTC from IEEE Xplore. Restrictions apply.

