
ar
X

iv
:2

2
0
5
.0

6
2
7
9
v
2
  
[h

ep
-t

h
] 

 2
8
 N

o
v
 2

0
2
2

Black Holes Decohere Quantum Superpositions

Daine L. Danielson,∗ Gautam Satishchandran,† and Robert M. Wald‡

Enrico Fermi Institute and Department of Physics,

The University of Chicago, Chicago, Illinois 60637, USA

(Dated: November 29, 2022)

Abstract

We show that if a massive body is put in a quantum superposition of spatially separated states,

the mere presence of a black hole in the vicinity of the body will eventually destroy the coherence

of the superposition. This occurs because, in effect, the gravitational field of the body radiates soft

gravitons into the black hole, allowing the black hole to acquire “which path” information about

the superposition. A similar effect occurs for quantum superpositions of electrically charged bodies.

We provide estimates of the decoherence time for such quantum superpositions. We believe that the

fact that a black hole will eventually decohere any quantum superposition may be of fundamental

significance for our understanding of the nature of black holes in a quantum theory of gravity.
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Black holes have long been known to be destroyers of quantum coherence. If one member

of an entangled pair of particles falls into a black hole, all that will remain is the particle

that stayed outside the black hole, which will be in a mixed state. Much more generally, if

matter of any kind falls into a black hole, it will, in effect, eventually emerge as Hawking

radiation and be in a highly mixed state. While it may be debated as to whether the quantum

coherence is lost forever in this process (see, e.g., [1, 2]), there is a general consensus that

the state outside the black hole is highly mixed at least up to the “Page time” in black hole

evaporation.

The purpose of this essay is to show that black holes are even more insidious destroyers

of quantum coherence than has been previously known. If one puts any quantum matter in

a spatial superposition, the mere presence of a black hole in the vicinity of the matter will

eventually destroy the coherence of this superposition. This happens because the long-range

(i.e., electromagnetic and gravitational) fields associated with the quantum matter affect the

quantum state of these fields on the black hole horizon. In effect, the black hole thereby

acquires “which path” information about the quantum superposition. As we shall show, this

inflicts a fundamental rate of decoherence even on stationary superpositions outside its event

horizon. This is sufficient to decohere any quantum superposition over a sufficiently long

period of time.

To understand how this works, it is useful to first consider a quantum superposition in flat

spacetime and see how decoherence can be avoided, following the analysis given in Ref. [3].

For simplicity and definiteness, we consider an electrically charged body and the decoherence

effects of the electromagnetic field, but an exactly similar analysis will apply for a massive

body in the gravitational case. Below, we will refer to the charged body as a “particle”

although it need not be an elementary particle, e.g. it could be an atom or a nanoparticle.

Suppose an experimenter, Alice, sends a particle of charge q with spin initially in the positive

x-direction through a Stern-Gerlach apparatus oriented in the z-direction, so that the state

of her particle after the process is in a superposition state of the following form:

1√
2

(

|↑;A1〉+ |↓;A2〉
)

. (1)

Here |A1〉 and |A2〉 are spatially separated wavepackets with separation d, with |↑〉 and |↓〉 be-
ing eigenstates of the z-spin. We wish to know whether the coherence of this superposition is
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preserved at a later time. In order to make this into a well defined experimental/observational

question, Alice can put the particle through a reversing Stern-Gerlach apparatus at some

later time and measure the x-spin. If the coherence of the superposition Eq. (1) has been

maintained, the spin will always be found to be in the positive x-direction, whereas if any

coherence has been lost the spin will sometimes be found to be in the negative x-direction.

We assume that there are no external influences whatsoever on Alice’s particle. It might

then seem obvious that coherence must be maintained. However, this is not necessarily the

case because, since the particle is charged, an electromagnetic field is present and it is part

of the system. Heuristically, the state of the total system after passage through the initial

Stern-Gerlach apparatus is actually of the following form:

1√
2

(

|↑;A1〉 ⊗ |ψ1〉+ |↓;A2〉 ⊗ |ψ2〉
)

(2)

where |ψ1〉 and |ψ2〉 formally correspond to the states of the electromagnetic field for the

charge-current sources determined by |A1〉 and |A2〉, respectively. Since |ψ1〉 and |ψ2〉 clearly
are distinguishable electromagnetic fields, it might seem that Alice’s particle is already de-

cohered at the outset. However, this decoherence is a “false decoherence” in the sense of

Ref. [4]. If Alice recombines her particle slowly enough so as to avoid radiating, she will be

able to fully restore the coherence of her particle.

In order to give a precise description of the true decoherence of Alice’s particle associated

with the electromagnetic field, it is necessary to separate the electromagnetic field into a

“Coulomb part” (which is not an independent degree of freedom and should cause only a false

decoherence of Alice’s particle) and a “radiation part” (which corresponds to the true degrees

of freedom of the electromagnetic field that should be responsible for a true decoherence,

observable by Alice). In general, this distinction is not possible to make in a meaningful way

at any finite time. However, the situation improves considerably if we go to asymptotically

late times. At asymptotically late times, the electromagnetic field naturally decomposes

into a radiation field that propagates to null infinity and a Coulomb field that follows Alice’s

particle to timelike infinity. The asymptotic Coulomb field is completely determined by the

asymptotic state of Alice’s particle and does not represent an independent degree of freedom.

Thus, at asymptotically late times, the state of the total system is of the following form:

1√
2

(

|↑;A1〉i+ ⊗ |Ψ1〉I + + |↓;A2〉i+ ⊗ |Ψ2〉I +

)

. (3)
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Here |↑;A1〉i+ and |↓;A2〉i+ represent the asymptotically late-time states of the components of

Alice’s particle and |Ψ1〉I + and |Ψ2〉I + represent the quantum states of the electromagnetic

radiation at future null infinity I +. If Alice has recombined her particle at some finite time,

then |A1〉 = |A2〉. Thus, the decoherence of Alice’s superposition will be determined by the

orthogonality of the radiation states

D = 1− |〈Ψ1|Ψ2〉I + | . (4)

In the absence of any external influences, Alice can ensure that the coherence of her particle is

maintained (i.e. D ≈ 0) if she recombines her particle in such a way that negligible entangling

radiation is emitted. As estimated in Ref. [5], this will be possible if the recombination is

done over a time span T such that

T ≫ qd√
ǫ0c3~

. (5)

In other words, if Eq. (5) holds, Alice can ensure that |Ψ1〉I + ≈ |Ψ2〉I + ≈ |0〉
I + , so D ≈ 0.

Thus, in Minkowski spacetime, Alice can, in principle, maintain the quantum coherence of

her spatial superposition by recombining the components of the superposition slowly enough.

We now consider how this situation changes if there is a black hole in the vicinity of Alice.

First, Alice must ensure that her lab does not fall into the black hole. One way of doing

this would be for Alice to orbit the black hole. However, this may result in some unwanted

emission of radiation. Therefore it would be better to equip Alice with a rocket engine that

keeps her lab stationary. She must then also apply some force to her particle (e.g., via a

uniform electric field) to keep it stationary. There also may be other effects in her lab due to

the spacetime curvature associated with the black hole. However, Alice can take the effects

of the gravitational field of the black hole on her lab into account in such a way that they

will not will not result in the decoherence of her particle. Therefore, we shall ignore these

effects. However, as we shall now explain, the black hole itself will acquire “which path”

information about Alice’s particle, which will result in decoherence.

With regard to the decoherence of Alice’s particle, the key difference arising when a black

hole is present is that electromagnetic radiation can now propagate through the black hole

horizon as well as to null infinity. Thus, when a black hole is present, the asymptotically
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late-time state of Alice’s particle and the electromagnetic field is now

1√
2

(

|↑;A1〉i+ ⊗ |Ψ1〉I + |Φ1〉H + + |↓;A2〉i+ ⊗ |Ψ2〉I + |Φ2〉H +

)

(6)

where |Ψ1〉I + and |Ψ2〉I + are as before and |Φ1〉H + and |Φ2〉H + are the corresponding states

of the electromagnetic field on the event horizon, H +, of the black hole. The decoherence

of Alice’s particle in the presence of a black hole is now given by

D = 1− |〈Ψ1|Ψ2〉I + 〈Φ1|Φ2〉H + | . (7)

As in Minkowski spacetime, if Alice recombines her particle adiabatically, she can ensure

that there is negligible radiation to infinity, so |Ψ1〉I + ≈ |Ψ2〉I + ≈ |0〉
I + , in which case any

decoherence will be entirely due to radiation propagating into the black hole

DBH = 1− |〈Φ1|Φ2〉H + | . (8)

It might be thought that, by performing her recombination adiabatically, Alice also can

ensure that no radiation enters the black hole. However, this is not the case.

To see this, we first consider a classical point charge outside of a Schwarzschild black hole.

The explicit solution for a static point charge outside of a Schwarzschild black hole has long

been known [6–8]. On the horizon, the electric field of a static point charge is purely radial,

i.e. the only nonvanishing component of the electric field on the horizon is Er = cFabℓ
anb,

where na denotes the affinely parametrized null normal to the horizon and ℓa is the unique

past-directed radial null vector satisfying ℓana = 1. Electromagnetic radiation on the horizon

is described by the pullback, EA, of the electric field Ea = cFabn
b to the horizon, where

capital Latin indices denote angular components on the horizon. Since EA = 0 for a static

point charge, there is no radiation through the horizon, as would be expected. However,

suppose we now quasi-statically move the point charge to a new location. After the charge

has reached its new location, the electric field will again be radial, but Er on the horizon

will be different from what it was initially. However, it follows from Maxwell’s equations at

the horizon that

DAEA = −∂VEr (9)

where DA denotes the covariant derivative on the 2-sphere cross-sections of the horizon,

angular indices are raised and lowered with the metric, qAB, on the cross-section, and V
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is an affine parameter such that na = (∂/∂V )a. Therefore, we must have EA 6= 0 on the

horizon as the charge is being moved and, indeed,
∫

EAdV is constrained by initial and

final values of Er, independently of how the charge is moved between its initial and final

positions. Thus, there is necessarily some radiation that crosses the horizon of the black hole

due to the displacement of the charge. We can make the total energy flux of this radiation

through the horizon arbitrarily small by moving the charge very slowly, but, as we will now

show, we cannot make the “total photon flux” of this radiation small by moving the charge

quasi-statically.

In order to analyze quantum aspects of the radiation, we need to give a precise specifica-

tion of the quantum state of electromagnetic radiation on the horizon of a black hole. For

an unperturbed Schwarzschild black hole formed by gravitational collapse, the state of the

electromagnetic field on the horizon of the black hole is described by the Unruh vacuum.

However, we will be concerned here only with low frequency phenomena (ω ≪ 1), in which

case the Unruh and Hartle-Hawking vacua near the horizon are essentially indistinguishable.

For the electromagnetic field in a gauge where Aan
a = 0 on the horizon, the “free data”

of the electromagnetic field on the horizon is the pull-back, AA, of the vector potential. In

the Fock space associated with the Hartle-Hawking vacuum, a “particle” corresponds to a

solution that is purely positive frequency with respect to affine parameter on the horizon.

The inner product on the one-particle Hilbert space is given by [9]

〈A1,B|A2,C〉H + ≡ 2ǫ0c

~

∫

S2

r2sdΩ

∫ ∞

0

ωdω

2π
qBCÂ1,B(ω, xA)Â2,C(ω, x

A) (10)

where rs is the Schwarzschild radius of the black hole and ÂA is the Fourier transform of AA

with respect to affine parameter V . Eq. (10) corresponds to a Klein-Gordon type of inner

product on the positive frequency part of AA. Now suppose that the black hole is perturbed

by a classical charge-current source of the quantum electromagnetic field. The quantum

state of the electromagnetic field will then be described by the coherent state (relative to the

unperturbed vacuum) associated with the classical retarded solution. The expected number

of “horizon photons” in this electromagnetic state at the horizon is given by

〈N〉 = ‖AA‖2H +, (11)

where AA is the classical retarded solution and the norm of AA is defined by the inner product

Eq. (10).
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Let us apply this result to the electromagnetic field of a point charge that starts at a point

x outside the black hole, is moved to another point x′ outside of the black hole and remains

at x′ forever. We have already seen in this case that
∫

EAdV 6= 0. Since EA = −c∂VAA,

this means that AA does not return to its initial value at the end of the process. This is

closely analogous to the memory effect that occurs at null infinity [10, 11]. The fact that

AA does not return to its initial value implies that its Fourier transform diverges as 1/ω as

ω → 0. It then follows immediately from Eq. (10) that ‖AA‖2H + = ∞. Thus, if one moves

a point charge from x to x′ and leaves the particle at x′ forever, no matter how quickly or

slowly the charge is moved, an infinite number of “soft horizon photons” will be radiated

into the black hole. This is closely analogous to the infrared divergences at null infinity that

arise in scattering theory in quantum electrodynamics [12]. Note that the infinite number of

“soft photons” carry negligible energy, and by moving the charge quasi-statically, the total

electromagnetic energy radiated into the black hole can be made to be arbitrarily small.

The case of more relevance for us is one in which the point charge is moved from x to x′,

is held at x′ for a long proper time T , and then is returned to x. In that case, AA returns

to its initial value at late times, so there is no infrared divergence in the sense that 〈N〉 is
finite. Nevertheless, the following estimates show that 〈N〉 is very large when T is very large.

The radial electric field of a point charge located a distance b from the black hole is roughly

Er ∼ q/ǫ0b
2 [6–8]. The change in the radial electric field when the charge is moved from x

to x′ is therefore roughly ∆Er ∼ qd/ǫ0b
3, where d is the distance between x and x′ and we

have assumed that d ≪ b. Taking account of the fact that the 2-spheres on the horizon are

of radius 2GM/c2, it then follows from Eq. (9) that the change in the vector potential, AA,

on the horizon when the particle is moved from x to x′ is

∆AA ∼ G2M2

c5
qd

ǫ0b3
. (12)

Eventually, when the particle is moved back to x, the change in AA will be equal and opposite

to Eq. (12). But if the charge is held at point x′ for a very long time T , the contribution

of AA to the norm defined by Eq. (10) will be dominated by the low-frequency contribution

arising from the time interval over which Eq. (12) holds. We obtain

〈N〉 = ‖AA‖2H + ∼ G4M4q2d2

~c9ǫ0b6
lnV (13)
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where V is the affine time on the horizon corresponding to the proper time T along the

particle trajectory. However, the relation between affine time, V , and Killing time, v, on the

horizon of a black hole is given by V = exp(κv/c), where κ = c4/4GM is the surface gravity

of the black hole. Furthermore, the Killing time is related to the proper time of the particle

by the redshift factor. We shall assume that Alice’s lab is not extremely close to the black

hole and neglect the departure of the redshift factor from 1. We then obtain

〈N〉 = ‖AA‖2H + ∼ G3M3q2d2

~c6ǫ0b6
T. (14)

Thus, the number of “soft photons” radiated into the black hole in the above process grows

linearly with the time, T , that the point charge spends at point x′.

We now have all of the ingredients needed to analyze Alice’s coherence experiment, under

the assumption that Alice splits and recombines her particle slowly enough that negligible

radiation is emitted to infinity. Although our results hold much more generally, it is easiest

to consider the case where, after passing through the Stern-Gerlach apparatus, the first

component of Alice’s particle remains at position x and the second component of her particle

moves to position x′. After these components stay at x and x′, respectively, for a time T ,

they are recombined in such a way that the first component continues to remain at x and

the second component moves from x′ to x. In that case, no radiation is emitted by the first

component, so in Eq. (6), we have |Φ1〉H + = |0〉
H + . However, our above analysis applies to

the second component, which moves from x to x′, stays at x′ for a time T , and then returns

to x. Thus, |Φ2〉H + will be a state with expected number of photons given by Eq. (14). If

〈N〉 & 1, then |Φ2〉H + will be nearly orthogonal to |Φ1〉H + = |0〉
H + . This means that—due

entirely to the presence of a black hole—Alice’s particle will decohere in a time

TD ∼ ǫ0~c
6b6

G3M3q2d2
(15)

∼ 1043 years

(

b

a.u.

)6

·
(

M⊙

M

)3

·
(

e

q

)2

·
(

m

d

)2

. (16)

Thus, if our Sun were a black hole and if one separated an electron into two components one

meter apart in a laboratory experiment on Earth, it would not be possible to maintain the

coherence of the electron for more than 1043 years. On the other hand, if this experiment

were done at b = 6GM/c2, then TD ∼ 5minutes.
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A closely parallel analysis can be given for the case of a gravitating particle. In the

gravitational case, the electric part of the Weyl tensor Eab = c2Cacbdn
cnd plays a role closely

analogous to the role played by the electric field Ea in the electromagnetic case. For a

static point mass outside a Schwarzschild black hole the only non-vanishing component of

the electric part of the Weyl tensor on the horizon is Err = c2Cacbdℓ
ancℓbnd. Gravitational

radiation on the horizon is described by the pullback, EAB, of Eab, which vanishes for a static

point mass. However, the process of moving the particle quasi-statically to a new location

will involve a change in Err. The (once-contracted) Bianchi identity on the horizon yields

DAEAB = −∂VErB, DAErA = −∂VErr (17)

which implies

DADBEAB = ∂2VErr (18)

in close analogy with Eq. (9). Thus, if a point mass is moved quasi-statically, there necessarily

will be radiation through the horizon. To determine the number of gravitons emitted, we

treat the quantum gravitational field at the level of linearized perturbation theory about the

black hole background. For a metric perturbation hab in a gauge where habn
a = 0 = qABhAB

on the horizon, the “free data” on the horizon is hAB. As in the electromagnetic case,

a “particle” in the Fock space associated to the Hartle-Hawking vacuum is a solution with

positive frequency with respect to affine parameter V . The inner product on the one-particle

Hilbert space is given by a direct analog of Eq. (10) with AA replaced by hAB. Finally, EAB

is given in terms of hAB by EAB = −1

2
c2∂2V hAB.

The analysis of the decoherence of a quantum superposition of a body of mass m in the

presence of a black hole now proceeds in exact parallel with the electromagnetic case. The

only significant difference is that, for the same reason as in the analysis of Ref. [5], it is now

the effective mass quadrupole md2 of the superposition that enters, rather than the effective

electrostatic dipole qd that entered the electromagnetic analysis. We find that a black hole

will decohere a quantum superposition of a massive body in a time

TGR
D ∼ ~c10b10

G6M5m2d4
(19)

∼ 10 µs

(

b

a.u.

)10

·
(

M⊙

M

)5

·
(

MEarth

m

)2

·
(

REarth

d

)4

. (20)
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Thus, if the Sun were a black hole and the Earth occupied a quantum state with its center of

mass spatially superposed by a separation on the order of its own radius, this superposition

would decohere due to the presence of the black hole in about 10 µs. Of course, it would not

be easy to put the Earth into such a quantum superposition.

In summary, we have found that black holes, in effect, gather information about quantum

superpositions of spatially separated components by means of the long range fields sourced

by the matter comprising these components. Eventually, a black hole will decohere any

quantum superposition. Although this may not be of practical importance for any presently

contemplated experiments, it may be of fundamental significance for our understanding of

the nature of black holes in a quantum theory of gravity.
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