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Abstract
We show that if a massive body is put in a quantum superposition of spatially separated states,
the mere presence of a black hole in the vicinity of the body will eventually destroy the coherence
of the superposition. This occurs because, in effect, the gravitational field of the body radiates soft
gravitons into the black hole, allowing the black hole to acquire “which path” information about
the superposition. A similar effect occurs for quantum superpositions of electrically charged bodies.
We provide estimates of the decoherence time for such quantum superpositions. We believe that the
fact that a black hole will eventually decohere any quantum superposition may be of fundamental

significance for our understanding of the nature of black holes in a quantum theory of gravity.
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Black holes have long been known to be destroyers of quantum coherence. If one member
of an entangled pair of particles falls into a black hole, all that will remain is the particle
that stayed outside the black hole, which will be in a mixed state. Much more generally, if
matter of any kind falls into a black hole, it will, in effect, eventually emerge as Hawking
radiation and be in a highly mixed state. While it may be debated as to whether the quantum
coherence is lost forever in this process (see, e.g., [1, 2]), there is a general consensus that
the state outside the black hole is highly mixed at least up to the “Page time” in black hole
evaporation.

The purpose of this essay is to show that black holes are even more insidious destroyers
of quantum coherence than has been previously known. If one puts any quantum matter in
a spatial superposition, the mere presence of a black hole in the vicinity of the matter will
eventually destroy the coherence of this superposition. This happens because the long-range
(i.e., electromagnetic and gravitational) fields associated with the quantum matter affect the
quantum state of these fields on the black hole horizon. In effect, the black hole thereby
acquires “which path” information about the quantum superposition. As we shall show, this
inflicts a fundamental rate of decoherence even on stationary superpositions outside its event
horizon. This is sufficient to decohere any quantum superposition over a sufficiently long
period of time.

To understand how this works, it is useful to first consider a quantum superposition in flat
spacetime and see how decoherence can be avoided, following the analysis given in Ref. [3].
For simplicity and definiteness, we consider an electrically charged body and the decoherence
effects of the electromagnetic field, but an exactly similar analysis will apply for a massive
body in the gravitational case. Below, we will refer to the charged body as a “particle”
although it need not be an elementary particle, e.g. it could be an atom or a nanoparticle.
Suppose an experimenter, Alice, sends a particle of charge ¢ with spin initially in the positive
z-direction through a Stern-Gerlach apparatus oriented in the z-direction, so that the state
of her particle after the process is in a superposition state of the following form:

1
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Here |A;) and | A5) are spatially separated wavepackets with separation d, with |1) and |]) be-
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ing eigenstates of the z-spin. We wish to know whether the coherence of this superposition is



preserved at a later time. In order to make this into a well defined experimental /observational
question, Alice can put the particle through a reversing Stern-Gerlach apparatus at some
later time and measure the z-spin. If the coherence of the superposition Eq. (1) has been
maintained, the spin will always be found to be in the positive x-direction, whereas if any
coherence has been lost the spin will sometimes be found to be in the negative z-direction.
We assume that there are no external influences whatsoever on Alice’s particle. It might
then seem obvious that coherence must be maintained. However, this is not necessarily the
case because, since the particle is charged, an electromagnetic field is present and it is part
of the system. Heuristically, the state of the total system after passage through the initial
Stern-Gerlach apparatus is actually of the following form:
1
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where |t¢1) and [¢5) formally correspond to the states of the electromagnetic field for the
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charge-current sources determined by |.A4;) and |.As), respectively. Since |11) and [¢,) clearly
are distinguishable electromagnetic fields, it might seem that Alice’s particle is already de-
cohered at the outset. However, this decoherence is a “false decoherence” in the sense of
Ref. [4]. If Alice recombines her particle slowly enough so as to avoid radiating, she will be
able to fully restore the coherence of her particle.

In order to give a precise description of the true decoherence of Alice’s particle associated
with the electromagnetic field, it is necessary to separate the electromagnetic field into a
“Coulomb part” (which is not an independent degree of freedom and should cause only a false
decoherence of Alice’s particle) and a “radiation part” (which corresponds to the true degrees
of freedom of the electromagnetic field that should be responsible for a true decoherence,
observable by Alice). In general, this distinction is not possible to make in a meaningful way
at any finite time. However, the situation improves considerably if we go to asymptotically
late times. At asymptotically late times, the electromagnetic field naturally decomposes
into a radiation field that propagates to null infinity and a Coulomb field that follows Alice’s
particle to timelike infinity. The asymptotic Coulomb field is completely determined by the
asymptotic state of Alice’s particle and does not represent an independent degree of freedom.

Thus, at asymptotically late times, the state of the total system is of the following form:
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Here |15 A1)+ and |]; As),, represent the asymptotically late-time states of the components of
Alice’s particle and |Wy) ., and |¥y) ,, represent the quantum states of the electromagnetic
radiation at future null infinity .# . If Alice has recombined her particle at some finite time,
then |A;) = |A2). Thus, the decoherence of Alice’s superposition will be determined by the

orthogonality of the radiation states
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In the absence of any external influences, Alice can ensure that the coherence of her particle is
maintained (i.e. 2 & 0) if she recombines her particle in such a way that negligible entangling
radiation is emitted. As estimated in Ref. [5], this will be possible if the recombination is

done over a time span T such that
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In other words, if Eq. (5) holds, Alice can ensure that [¥;) . ~ |¥3) ;. ~[0) ,4, s0 Z = 0.
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Thus, in Minkowski spacetime, Alice can, in principle, maintain the quantum coherence of
her spatial superposition by recombining the components of the superposition slowly enough.

We now consider how this situation changes if there is a black hole in the vicinity of Alice.
First, Alice must ensure that her lab does not fall into the black hole. One way of doing
this would be for Alice to orbit the black hole. However, this may result in some unwanted
emission of radiation. Therefore it would be better to equip Alice with a rocket engine that
keeps her lab stationary. She must then also apply some force to her particle (e.g., via a
uniform electric field) to keep it stationary. There also may be other effects in her lab due to
the spacetime curvature associated with the black hole. However, Alice can take the effects
of the gravitational field of the black hole on her lab into account in such a way that they
will not will not result in the decoherence of her particle. Therefore, we shall ignore these
effects. However, as we shall now explain, the black hole itself will acquire “which path”
information about Alice’s particle, which will result in decoherence.

With regard to the decoherence of Alice’s particle, the key difference arising when a black
hole is present is that electromagnetic radiation can now propagate through the black hole

horizon as well as to null infinity. Thus, when a black hole is present, the asymptotically
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late-time state of Alice’s particle and the electromagnetic field is now
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where |¥y) ., and |Wy) . are as before and |®4) ,,, and |®3) ., are the corresponding states
of the electromagnetic field on the event horizon, J#*, of the black hole. The decoherence

of Alice’s particle in the presence of a black hole is now given by
P =1—[(U1|¥3) yv (P1]P2) |- (7)

As in Minkowski spacetime, if Alice recombines her particle adiabatically, she can ensure
that there is negligible radiation to infinity, so |¥y) ,. ~ |¥s) .4 = |0) 4, in which case any

decoherence will be entirely due to radiation propagating into the black hole
Den =1 — [(P1]P2) s+ | - (8)

It might be thought that, by performing her recombination adiabatically, Alice also can
ensure that no radiation enters the black hole. However, this is not the case.

To see this, we first consider a classical point charge outside of a Schwarzschild black hole.
The explicit solution for a static point charge outside of a Schwarzschild black hole has long
been known [6-8]. On the horizon, the electric field of a static point charge is purely radial,
i.e. the only nonvanishing component of the electric field on the horizon is E, = cF,fn®,
where n® denotes the affinely parametrized null normal to the horizon and ¢* is the unique
past-directed radial null vector satisfying ¢“n, = 1. Electromagnetic radiation on the horizon
is described by the pullback, E4, of the electric field E, = cF,n’ to the horizon, where
capital Latin indices denote angular components on the horizon. Since EF4 = 0 for a static
point charge, there is no radiation through the horizon, as would be expected. However,
suppose we now quasi-statically move the point charge to a new location. After the charge
has reached its new location, the electric field will again be radial, but E, on the horizon
will be different from what it was initially. However, it follows from Maxwell’s equations at
the horizon that

DAE, = —OvE, (9)

where D, denotes the covariant derivative on the 2-sphere cross-sections of the horizon,

angular indices are raised and lowered with the metric, ¢gap, on the cross-section, and V'
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is an affine parameter such that n® = (9/0V)*. Therefore, we must have E4 # 0 on the
horizon as the charge is being moved and, indeed, [ E4dV is constrained by initial and
final values of E,, independently of how the charge is moved between its initial and final
positions. Thus, there is necessarily some radiation that crosses the horizon of the black hole
due to the displacement of the charge. We can make the total energy flux of this radiation
through the horizon arbitrarily small by moving the charge very slowly, but, as we will now
show, we cannot make the “total photon flux” of this radiation small by moving the charge
quasi-statically.

In order to analyze quantum aspects of the radiation, we need to give a precise specifica-
tion of the quantum state of electromagnetic radiation on the horizon of a black hole. For
an unperturbed Schwarzschild black hole formed by gravitational collapse, the state of the
electromagnetic field on the horizon of the black hole is described by the Unruh vacuum.
However, we will be concerned here only with low frequency phenomena (w < 1), in which
case the Unruh and Hartle-Hawking vacua near the horizon are essentially indistinguishable.
For the electromagnetic field in a gauge where A,n* = 0 on the horizon, the “free data”
of the electromagnetic field on the horizon is the pull-back, Ay, of the vector potential. In
the Fock space associated with the Hartle-Hawking vacuum, a “particle” corresponds to a
solution that is purely positive frequency with respect to affine parameter on the horizon.
The inner product on the one-particle Hilbert space is given by [9]

2¢0C © wdw _—
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where 7, is the Schwarzschild radius of the black hole and A4 is the Fourier transform of A4
with respect to affine parameter V. Eq. (10) corresponds to a Klein-Gordon type of inner
product on the positive frequency part of A4. Now suppose that the black hole is perturbed
by a classical charge-current source of the quantum electromagnetic field. The quantum
state of the electromagnetic field will then be described by the coherent state (relative to the
unperturbed vacuum) associated with the classical retarded solution. The expected number

of “horizon photons” in this electromagnetic state at the horizon is given by
(N) = 1 Aall5+ (11)

where A4 is the classical retarded solution and the norm of A4 is defined by the inner product

Eq. (10).



Let us apply this result to the electromagnetic field of a point charge that starts at a point
x outside the black hole, is moved to another point z’ outside of the black hole and remains
at 2’ forever. We have already seen in this case that [ E4dV # 0. Since E4 = —cdy Ay,
this means that A4 does not return to its initial value at the end of the process. This is
closely analogous to the memory effect that occurs at null infinity [10, 11]. The fact that
A4 does not return to its initial value implies that its Fourier transform diverges as 1/w as
w — 0. It then follows immediately from Eq. (10) that ||A4l|%. = oo. Thus, if one moves
a point charge from z to 2’ and leaves the particle at a2’ forever, no matter how quickly or
slowly the charge is moved, an infinite number of “soft horizon photons” will be radiated
into the black hole. This is closely analogous to the infrared divergences at null infinity that
arise in scattering theory in quantum electrodynamics [12]. Note that the infinite number of
“soft photons” carry negligible energy, and by moving the charge quasi-statically, the total
electromagnetic energy radiated into the black hole can be made to be arbitrarily small.

The case of more relevance for us is one in which the point charge is moved from x to 2/,
is held at 2’ for a long proper time 7', and then is returned to x. In that case, A4 returns
to its initial value at late times, so there is no infrared divergence in the sense that (N) is
finite. Nevertheless, the following estimates show that (N} is very large when T is very large.
The radial electric field of a point charge located a distance b from the black hole is roughly
E, ~ q/eob* [6-8]. The change in the radial electric field when the charge is moved from
to o is therefore roughly AE, ~ qd/eyb®, where d is the distance between x and 2’ and we
have assumed that d < b. Taking account of the fact that the 2-spheres on the horizon are
of radius 2GM/c?, it then follows from Eq. (9) that the change in the vector potential, A4,
on the horizon when the particle is moved from x to 2’ is
G*M? qd

c® €0 b3 )

AAy ~

(12)

Eventually, when the particle is moved back to x, the change in A4 will be equal and opposite
to Eq. (12). But if the charge is held at point 2’ for a very long time T', the contribution
of A4 to the norm defined by Eq. (10) will be dominated by the low-frequency contribution
arising from the time interval over which Eq. (12) holds. We obtain

G4M4q2d2

NY = [[AL4l2,, ~ S8 T4
(N) = Aallps ~ S5

InV (13)



where V' is the affine time on the horizon corresponding to the proper time T along the
particle trajectory. However, the relation between affine time, V', and Killing time, v, on the
horizon of a black hole is given by V = exp(xv/c), where k = ¢ /4G M is the surface gravity
of the black hole. Furthermore, the Killing time is related to the proper time of the particle
by the redshift factor. We shall assume that Alice’s lab is not extremely close to the black
hole and neglect the departure of the redshift factor from 1. We then obtain

G3 M3q2 d2
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Thus, the number of “soft photons” radiated into the black hole in the above process grows
linearly with the time, T', that the point charge spends at point x’.

We now have all of the ingredients needed to analyze Alice’s coherence experiment, under
the assumption that Alice splits and recombines her particle slowly enough that negligible
radiation is emitted to infinity. Although our results hold much more generally, it is easiest
to consider the case where, after passing through the Stern-Gerlach apparatus, the first
component of Alice’s particle remains at position x and the second component of her particle
moves to position z’. After these components stay at x and 2/, respectively, for a time T,
they are recombined in such a way that the first component continues to remain at x and
the second component moves from z’ to z. In that case, no radiation is emitted by the first
component, so in Eq. (6), we have |®;) ., =(0) .. However, our above analysis applies to
the second component, which moves from x to 2/, stays at 2’ for a time 7', and then returns
to . Thus, |®s) . will be a state with expected number of photons given by Eq. (14). If
(N) 2 1, then |®,) ., will be nearly orthogonal to [®1) ,,+ = |0)_,+. This means that—due

entirely to the presence of a black hole—Alice’s particle will decohere in a time
eohcbbb
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Thus, if our Sun were a black hole and if one separated an electron into two components one

Tp (15)

meter apart in a laboratory experiment on Earth, it would not be possible to maintain the
coherence of the electron for more than 10% years. On the other hand, if this experiment

were done at b = 6GM/c?, then Tp ~ 5minutes.
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A closely parallel analysis can be given for the case of a gravitating particle. In the
gravitational case, the electric part of the Weyl tensor E,, = c>C,upqnn® plays a role closely
analogous to the role played by the electric field F, in the electromagnetic case. For a
static point mass outside a Schwarzschild black hole the only non-vanishing component of
the electric part of the Weyl tensor on the horizon is E,, = c?C,uel*n’n?. Gravitational
radiation on the horizon is described by the pullback, E g, of E,,, which vanishes for a static
point mass. However, the process of moving the particle quasi-statically to a new location

will involve a change in F,,.. The (once-contracted) Bianchi identity on the horizon yields
DABap = ~0vE;p,  D'Boa=-0vE, (17)

which implies

DADPEp = 02 E,, (18)

in close analogy with Eq. (9). Thus, if a point mass is moved quasi-statically, there necessarily
will be radiation through the horizon. To determine the number of gravitons emitted, we
treat the quantum gravitational field at the level of linearized perturbation theory about the
black hole background. For a metric perturbation kg, in a gauge where hpyn® = 0 = ¢*Phap
on the horizon, the “free data” on the horizon is hap. As in the electromagnetic case,
a “particle” in the Fock space associated to the Hartle-Hawking vacuum is a solution with
positive frequency with respect to affine parameter V. The inner product on the one-particle
Hilbert space is given by a direct analog of Eq. (10) with A4 replaced by hap. Finally, Eap
is given in terms of hap by Eap = —5c%0%hap.

The analysis of the decoherence of a quantum superposition of a body of mass m in the
presence of a black hole now proceeds in exact parallel with the electromagnetic case. The
only significant difference is that, for the same reason as in the analysis of Ref. [5], it is now
the effective mass quadrupole md? of the superposition that enters, rather than the effective
electrostatic dipole gd that entered the electromagnetic analysis. We find that a black hole

will decohere a quantum superposition of a massive body in a time

hcloblo
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Thus, if the Sun were a black hole and the Earth occupied a quantum state with its center of
mass spatially superposed by a separation on the order of its own radius, this superposition
would decohere due to the presence of the black hole in about 10 us. Of course, it would not
be easy to put the Earth into such a quantum superposition.

In summary, we have found that black holes, in effect, gather information about quantum
superpositions of spatially separated components by means of the long range fields sourced
by the matter comprising these components. Eventually, a black hole will decohere any
quantum superposition. Although this may not be of practical importance for any presently
contemplated experiments, it may be of fundamental significance for our understanding of

the nature of black holes in a quantum theory of gravity.

Acknowledgements

D.L.D. acknowledges his support as a Fannie and John Hertz Foundation Fellow holding
the Barbara Ann Canavan Fellowship, and as an Eckhardt Graduate Scholar in the Physical
Sciences Division at the University of Chicago. This research was supported in part by NSF
grant 21-05878 to the University of Chicago.

[1] W.G. Unruh and R.M. Wald, Information Loss, Rept. Prog. Phys. 80 (2017) 092002
[arXiv:1703.02140].

[2] D. Marolf, The Black Hole information problem: past, present, and future,
Rept. Prog. Phys. 80 (2017) 092001 [arXiv:1703.02143].

[3] D.L. Danielson, G. Satishchandran and R.M. Wald, Gravitationally mediated entanglement:
Newtonian field versus gravitons, Phys. Rev. D 105 (2022) 086001 [arXiv:2112.10798].

[4] W.G. Unruh, False loss of coherence, arXiv:1110.2199.

[5] A. Belenchia, R.M. Wald, F. Giacomini, E. Castro-Ruiz, v. Brukner and M. Aspelmeyer,
Quantum Superposition of Massive Objects and the Quantization of Gravity,
Phys. Rev. D 98 (2018) 126009 [arXiv:1807.07015].

[6] E.T. Copson and E.T. Whittaker, On electrostatics in a gravitational field,
Proceedings of the Royal Society of London. Series A 118 (1928) 184.

10



[7] J.M. Cohen and R.M. Wald, Point charge in the vicinity of a schwarzschild black hole,
Journal of Mathematical Physics 12 (1971) 1845.

[8] B. Linet, Electrostatics and magnetostatics in the schwarzschild metric, Journal of Physics
A, General Physics 9 (1976) 1081.

[9] B.S. Kay and R.M. Wald, Theorems on the Uniqueness and Thermal Properties of
Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon,
Phys. Rept. 207 (1991) 49.

[10] L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory,
Class. Quant. Grav. 30 (2013) 195009 [arXiv:1307.5098].

[11] G. Satishchandran and R.M. Wald, Asymptotic behavior of massless fields and the memory
effect, Phys. Rev. D 99 (2019) 084007 [arXiv:1901.05942].

[12] K. Prabhu, G. Satishchandran and R.M. Wald, Infrared Finite Scattering Theory in

Quantum Field Theory and Quantum Gravity, arXiv:2203.14334.

11



	Black Holes Decohere Quantum Superpositions
	Abstract
	 Acknowledgements
	 References


