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1. Introduction

In this note we continue the program to classify tensor categories with fusion rules the
same as Rep(G) for G a semisimple Lie group (or of the associated fusion categories). The
classification is currently known for the majority of the classical Lie groups. The known
results are for: SU(2) [10], SU(N) [12], O(N) and Sp(N) [16], and SO(N) (N # 4)
[6]. The latter three results apply to ribbon categories, while the first two do not require
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any assumption of braiding and provide a classification for pivotal tensor categories. Our
technique for SO(4)-type categories also does not require a braiding assumption.

The standard technique for these classification problems is to identify the endomor-
phism algebras of tensor powers of the “vector representation” in an arbitrary tensor
category with the same fusion rules of Rep(G), and to show that this algebra must agree
with the known examples coming from quantum groups. In the case of SU(N) this gives
well-known quotients of the Hecke algebras [18], and in the O(N) and SO(N) cases we
find quotients of BMW algebras [5]. For SO(N) with N # 4 the endomorphism algebras
also afford representations of the BMW algebra, but the image of the BMW algebra does
not generate the endomorphism algebra for SO(2n) for n > 2.

The gap at SO(4) is due to the fact that the tensor square of the vector representation
splits into four simples, rather than three (as is the case for every other SO(N) with
N > 3). This means that a braid element on X ®2 peed not satisfy the cubic BMW skein
relation, which was required for the method of [6].

There is another important distinction between SO(4) and SO(2n) with n > 2, which
is that the root system for SO(4) is not irreducible (its root system is the product
A; x Ay). As we shall see, this manifests in categorifications of SO(4) fusion rules being
described by two independent parameters q1, g2, rather than a single parameter q.

In this paper we close this gap by studying a known SO(4)-type category and identi-
fying the monoidal subcategory whose objects are tensor powers of the vector represen-
tation. This subcategory is essentially a planar algebra, and we describe it by generators
and relations in a planar algebraic way, although we do not use that language. The pla-
nar algebras we describe can be seen as natural extensions of the Fuss-Catalan planar
algebras [2]. We then show that the corresponding subcategory of any category with
SO(4)-type fusion rules must have the same presentation. We then obtain the classifica-
tion of tensor categories with SO(4) fusion rules from standard reconstruction arguments.

We say a tensor category has SO(4) fusion rules if its Grothiendieck ring is isomorphic
to K(Rep(SO(4))), or isomorphic to the Grothendieck ring of one of the associated fusion
categories. We label these fusion rings by K, », where n; € NU{oo} (see Definition 2.2
for a precise definition). The fusion graph of K, », for the vector representation is given
by (shown here with n; =5 and ny = 8):

1
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For any non-zero complex numbers ¢; and g2, there exists a category Cg, 4,, defined
in Definition 2.1. For any n; and ny there exist ¢; and ¢o so that Cg4, 4, has fusion rules
Ky, n,- The classification of all categories with these fusion rules is given in our main
theorem.

Theorem 1.1. Let C be a semisimple pivotal tensor category with K(C) = K, n, where
n1,n2 € N>o Uoo. We have the following:

1. If ny = ny = 3, then C is a Tambara- Yamagami fusion category with G = Zo X Zs.
There are exactly four of these categories up to monoidal equivalence [17, Theo-
rem 4.1]. Two of these categories are equivalent to C¢y ¢y and Ces ¢y, the other two
are non-equivalent to any Cq, 4,. There are exactly 8 braidings on each of these cate-
gories [1/, Theorem 1.2].

2. If either n1 or ng is not equal to 3, then the category C is monoidally equivalent to
Cyr.qo Where q1,q2 € C*, with the order of ¢? equal to n; + 1 (or possibly ¢ = 1 if
n; = 00). Further we have the monoidal equivalences

Cairqo ~ Caoiqr qu,q;1 ~C Lgs = Cogi,—go-

a
3. The category Cq, q, 5 braided, and the possible braidings on these categories are pa-
rameterized by the set

{(s1,0) : 87 = =g and 55 =—q3'}/{(s1,52) = (—s1,—52)}.

When both ni,ne > 2, these eight braidings are all distinct. If either ny or ny are
equal to 2, then four of these braidings are distinct. If both ni and ns are equal to 2,
then two of these braidings are distinct.

Constructions of these categories are given in Definition 2.1.

Remark 1.2. The above classification is up to equivalences which preserve the distin-
guished object X corresponding to the vector representation of SO(4) in the categories
Cq1,q.- The equivalences given in Theorem 1.1 are all the possible equivalences which
preserve X. There can exist additional equivalences between the categories C, 4, Which
don’t preserve X.

An illustrating example is seen in the case when ¢35 is a root of unity of even order
ny + 1 such that [ns]g, = —1. For these parameters, we have that Cg, 4, is monoidally
equivalent to Cq,, 4, but the equivalence does not fix the distinguished object X.

This paper is outlined as follows.

In Section 2 we define the categories Cg4, 4, Which are examples of categories with
SO(4) fusion rules. We define what it means to give a based semisimple presentation of
a pivotal tensor category, and give such a presentation for the categories Cq, g, -
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In Section 3 we use techniques inspired by the theory of planar algebras [3,13] to
classify arbitrary pivotal tensor categories with SO(4) fusion rules. The presentation
we describe is exactly the same as the category Cq, 4., hence reconstruction techniques
allow us to deduce that the arbitrary pivotal tensor category must be Cy, 4,. Our meth-
ods to describe the arbitrary presentation rely heavily on the SO(4) fusion rules for
objects appearing in the tensor square, and the tensor cube, of the “vector represen-
tation”. By working in the idempotent basis, we are able to use these fusion rules to
pin down a large number of relations in our arbitrary category. The hard part of the
argument is determining the Fourier transformation of our generators. By playing off
the standard algebra multiplication in End(X ® X) against the special convolution al-
gebra structure, we are able to fully pin down the Fourier transform, and finish our
presentation.

We conclude the paper with Section 4, where we classify all the braidings on the
monoidal categories Cg4, 4,. The key idea to classify these braidings is to consider the

adjoint subcategory C2¢,  which we know is equivalent to a product of SO(3) type

q1,92’
categories. The braidings on the SO(3) type categories are fully classified [16], and we
can leverage this information up via some technical computations to classify all braidings

on the full category Cy, ¢,
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2. Preliminaries

We refer the reader to [8] for the basics on tensor categories. For us a tensor category
is a C-linear, abelian, monoidal, and rigid category with simple unit.

2.1. Tensor categories with SO(4) fusion rules

In this subsection we present a family of pivotal tensor categories with SO(4) fusion
rules. We build these categories using Deligne products of SU(2) categories.

Categories with SU(2) fusion rules (and their truncations) are known as type A cat-
egories. In the generic case there are infinitely many simples up to isomorphism, labeled
1 = Xy, X1, Xs,... The fusion graph for multiplication by X; is

In the fusion case there are finitely many isomorphism types of simples 1, X7, Xo, ...,
X, —1 and the fusion graph for multiplication by X; is the truncated graph
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- . . ¢ s . .

1 X Xua

Fusion categories with these fusion rules are known as A,, categories.
Type A and A, categories are classified up to monoidal equivalence [10] by the di-
mension of the object X7, which can be expressed as

dim(X,) =2, =q+q! (1)

where ¢ is a non-zero complex number which is either +1 or not a root of unity in the
generic case, and is a root of unity in the fusion case. These categories are spherical
(see [8, Section 4.7]) and there is a unique choice of spherical structure such that X; is
symmetrically self-dual. We denote a type A or A,, category with parameter ¢ by A,.
Note that A, = A;-1.

The categories A, are all braided. Type A and A, categories are classified up to
braided equivalence (which fixes the distinguished object X), by the two eigenvalues of
the braiding ox, x,. These eigenvalues are s and —s—® where s is a solution to either
s2 = —q or s2 = —¢~'. Hence there are four distinct braidings on each of the monoidal
categories Ay, which are defined by

N — -1\
K—s||—|—5 ~

With the categories A, in hand, we can define the categories Cy, 4, which appear in our
main theorem.

Definition 2.1. Let Cy, 4, denote the sub-tensor category of A, XA, generated by X :=
X1 Y7 (we use Xi, resp. Y7, to denote the generating object of A, , resp. A, ).

Note that we can only refer to the object X; MY; when both 4, and A,, are non-
trivial.

The categories C, 4, inherit 16 braidings from the four braidings on each of A, and
Agy,. These are parameterized by solutions to 52 = qul and s3 = quil. The braided
categories corresponding to the solutions (s1, s2) and (—s1, —s2) are braided equivalent.
Hence we get 8 distinct braidings on the categories Cy, 4, -

Definition 2.2. For n1,ns € N>o U {oo} we define the fusion ring K,,, ,, by
Kﬂ177l2 = K(Cflh%)
where each ¢; is a non-zero complex number such that ¢2 has order n; + 1.

We say a category has SO(4) type fusion rules if its Grothendieck ring is isomorphic
to Ky, n, for some nq,ng € Nxg U {oc0}.
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For convenience let us label the simple elements of these fusion rings. The simple
elements of K, », are those X; XY; with0 <i<n; —1,0<j<ny—landi+j€2Z.
In this notation, the distinguished object X is X; K Y;.

From the fusion graphs we see that all the fusion rings are Zs-graded (since 1 only
appears in even powers of X). The adjoint subcategories (see [8, Section 4.14]) have
fusion rules of SO(3) x SO(3) type, an important fact we will use later.

2.2. Presentations for semisimple tensor categories

We recall some basic facts regarding presentations of semisimple spherical tensor cat-
egories, before providing a presentation of the categories Cq, 4.

Definition 2.3. A based tensor category will be a pair (C, X) where X is a chosen tensor
generator of a spherical tensor category C.

The A, categories are conventionally based by picking a simple object corresponding
to the vector representation of SU(2). Likewise, we consider any SO(4)-category based
by a simple object X corresponding to the vector rep of SO(4).

A based presentation of a (small) spherical based tensor category (C,X) is a set of
morphisms F between tensor powers of X, and a set of relations R satisfied in C such
that

C=C(F)/R

where C(F) is the free (based, strictly pivotal and strict monoidal) spherical C-linear
monoidal category (possibly not abelian and with non-simple unit) generated by one
object and the morphisms F', R is the smallest tensor ideal of C(F) containing R, and
the notation C denotes the Cauchy completion (additive and idempotent completion [1,
Theorem 1]) of a category C.

For instance, an A, category has a based presentation with no generators and the

O =[2], and =0

where ¢2 is a primitive n+1-st root of 1 and f(™ denotes the n-th Jones-Wenzl projection.

relations

Note that here we have chosen a spherical structure which makes the generating object
symmetrically self-dual (this differs from the standard quantum group convention, where
the other spherical structure is chosen. For the quantum group convention, we have that
the closed loop has value —[2],). This allows us to draw unorientated strands.

Given a spherical monoidal category C, let N'(C) denote the monoidal ideal of negligible
morphisms in C [9, Section 2]. Under various assumptions on the category C, the quotient
C /N(C) is semisimple (however in our set-up we only require the result of Lemma 2.5
below).
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Definition 2.4. A based semisimple presentation of a based semisimple spherical tensor
category (C, X) is a set of morphisms F' between tensor powers of X and a set of relations
R satisfied in C such that

C' =C(F)/R.
has simple unit, and
c=C'/N(C).
A based semisimple presentation generally contains less information than a presen-

tation (since we do not need to provide relations for the negligible ideal). For example,
an A, category has a based semisimple presentation with no generators and the single

O=mn

where ¢? is a primitive (n + 1)-st root of 1. This is a based semisimple presentation.

relation

Indeed, the unit is simple, as every closed diagram of cups and caps can be evaluated
to a scalar by popping closed loops, and the quotient by negligibles is shown to be
equivalent to an A, category in [15, Chapter 12: Sections 6-8]. The relation f(™ =0 is
not necessary since the element f(™) gets sent to 0 when we quotient by negligibles.
The condition that C(F)/R (or equivalently C(F')/R) has a simple tensor unit is often
summarized as “having enough relations to evaluate closed diagrams”. The following well-
known fact states that having enough relations to evaluate closed diagrams is a sufficient

condition to produce a based semisimple presentation.

Lemma 2.5. [4, Proposition 3.5] Suppose a based semisimple spherical tensor category
(C, X) is generated by morphisms F between tensor powers of X and satisfies relations
R such that C(F)/R has a simple tensor unit. Then (F,R) is a based semisimple pre-
sentation for C.

Classification outline
We can outline our argument for classifying SO(4)-type categories:

Step 1. Provide a based semisimple presentation for the categories Cy, 4, (the presen-
tation depends on ¢1, ¢2).

Step 2. Given a semisimple pivotal tensor category D with SO(4)-type fusion rules,
find parameters g1, g2 and morphisms in D which satisfy the relations for Cy, 4, from
Step 1.
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Step 3. Conclude that D 2 C,, ,,, as follows. Let C' = C(F)/R where (F,R) is the
based semisimple presentation of C,, 4, from Step 1. Observe that Step 2 provides a
tensor functor

d:C' - D.

The kernel of @ is a tensor ideal of C’, which must be contained in N (C') since N (C")
is the unique maximal tensor ideal of C’. Let Im(®) denote the image of ®, a C-linear
monoidal subcategory of D. If X®¥ and X®/ are any objects of C’, then we may also
consider them objects of Cy, 4, and D (through mild abuse of notation), and the previous
two sentences give inequalities

dim Home X%, X®7) < dim Homyy,(g) (X®*, X®7) < dim Homp (X®*, X®7).

q1,492 (

On the other hand,

dim Homp (X ®%, X®7) = dim Hom¢ X® X®9)

q1,492 (

since D and Cg, 4, have the same fusion rules. Hence both inequalities above are equalities
and in particular Im(®) ~ D. Since D is semisimple, all negligible morphisms are zero
[7, Proposition 5. 7] so the kernel of ® must be equal to N(C’). In conclusion, this shows

D=C"N(C') = Cyy 05
Based semisimple presentation for Cq, 4,

With the above ansatz in mind, let’s give a based semisimple presentation for the
categories Cq, ¢,- To reduce clutter, we abbreviate the quantum numbers

[n]q, by [nl1, and [n]g, by [n]s.

Given a morphism f € End(X®2), we let p(f) denote the Fourier transform, or one-click
rotation of f:

The second equality (which is equivalent to p?(f) = f) follows from the facts that we
assume our categories are strictly pivotal, every object is self-dual and X? is multiplicity-
free. Our presentation for Cy, 4, will use two generators P and @ in End(X®?). They
are defined by

1
P:—f(2)®XandQ—

[2]2 x‘g f(2 (2)

2h
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where f(2) = | |— ﬁx denotes the second Jones-Wenzl projection in the respective
factors. With these definitions, P is the projection with image X, X1 C X®? and Q is
the projection with image 1 XY, C X®2,

Lemma 2.6. The morphisms P and Q) generate Cq, 4, as a spherical tensor category.

Proof. This has been proved in greater generality using planar algebra language by Liu
[13, Corollary 3.2]. We provide a proof in our case for the reader’s convenience. We will
show that the simpler morphisms g = | |X x and h = x M| | generate Cy, 4, Since P
and @ are related to g and h by the equations

p_ﬁ(g_ﬁXxx) andQ-ﬁ(b—ﬁugx>,

the result will follow.

To show that g and h generate, it suffices to check they generate all the morphisms
in the full tensor subcategory of Cy, 4, With objects 1, X, X®2 X®3 .. (since X ten-
sor generates Cg, 4,). Furthermore, Cy, 4, is Zo-graded, so by Frobenius reciprocity it’s
enough to show that g and h generate the endomorphism algebras End(X®*). We have

End(X®%) = Endy, (X£*) ®c Enda,, (Y;2).

The subalgebra End4,, (X ®F)Ridy, is generated (as an algebra) by the cup/cap elements
91,92, - - -, gk—1 Where

gi = idz’—l ®g ® idk—z’—l .

Similarly, idy X End4,, (V2*) is generated (as an algebra) by the corresponding hy’s.
Hence g and h generate End(X®*) (as a Hom space in a spherical tensor category). O

Now that we know P and () generate C4, 4,, We can give a based semisimple presen-
tation with two generators. By choosing spherical structures on the categories A,, and
Ag,, we can ensure that Cg, 4, is generated by a symmetrically self-dual object.

Proposition 2.7. For g1, g2 non-zero complex numbers, the pivotal category Cq, 4, is tensor
generated by the symmetrically self-dual object X = X1 X Y7, and has a based semisimple
presentation with two generators P,Q € End(X®?) and the following relations:

@ (O =220
(b)) PP=PQ*=Q and PQ=QP =0
(¢) Fourier equation:

-1 1
]

PP) = s e
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(d) Bubble popping:

(e) Triangle popping:

Furthermore, for (s1,s2) solutions to s3 = fqlil and s3 = quil, we have a braiding on
Cqy,qo defined by

lhsf qzsg
+EETL, (@+1)s (¢ +1)s
NS — gi+l ' g3+l v, @ 1 q1 2
K 5152| |+ 5152 N q252 P q151

Remark 2.8. This presentation is closely related to the Fuss-Catalan algebras of [2].

Remark 2.9. Note that the Fourier equation (c) implies

! 1o, 2
Q= gl I+ et
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Proof. By Lemma 2.6, the morphisms P and @ generate the category. Checking that
they satisfy the given relations we leave as an exercise in type A skein theory. We provide
an example for a triangle popping relation, using type A skein theory in the respective
factors:

We must check that we have enough relations to describe the category Cg, .4, By
Lemma 2.5, it suffices to show that we can use the provided relations to evaluate any
closed planar diagram made from P’s and Q’s to a scalar. We can represent such a
diagram as a planar 4-valent graph with vertices labeled by P, Q, p(P) or p(Q).

The following standard argument implies any planar 4-valent graph must contain
either a loop, bigon, triangle. Suppose not, then as the graph is planar, 4-valent, and
does not contain a loop, bigon, or triangle, then we respectively get

V—-E+F=1, 4V =2E, and 4F <2E.
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These three equations are incompatible, so the graph must contain a loop, bigon, or
triangle.

We prove by induction on the number of vertices that the diagram can be reduced
to a scalar using the relations. If there are no vertices, then relation (a) reduces any
diagram (made of cups/caps) to a scalar. For the inductive step, note that if the graph
contains any self-loops then the bubble popping relations allow one to reduce the number
of vertices. If there are no self-loops, then the graph must contain a bigon or a triangle.
The relations (b) and (c) imply that any diagram with a bigon can be reduced to a
sum of diagrams with fewer vertices. Finally, any triangle can be reduced in a similar
way using the triangle popping relations and relation (c¢) (possibly after applying a 2 or
4-click rotation to the triangle).

The braidings described in the final statement come from the known braidings on
Ag, WAy, which are inherited from the well-known braidings on the factors. Checking
our formula for the braiding is another skein theory exercise. O

3. Monoidal classification

In this section we classify pivotal categories C with K(C) = K, n,. We may identify
the Grothendieck ring of C with that of Cy, 4, thus use the symbols X, XY} to denote
simple objects in C.

The subcategories tensor generated by X3 X 1 and 1 X Y> have SO(3)-type fusion
rules. A result of Etingof and Ostrik ([9], Thms. A.1, A.3 and Remark A.4) states that
(apart from the case where the fusion rules are K (Vec(Z2)) any pivotal category with
SO(3) type fusion rules is monoidally equivalent to Rep(SO(3),) = ,Azd where ¢ is not a
root of unity or g2 = 1 (if there are infinitely many simples) or ¢ is an appropriate root
of unity in the fusion case. This allows us to prove the following.

Lemma 3.1. We have that
(X2 ®1) = A and (1K Ys) = A
where

o In the Koo oo case, qi is either mot a root of unity or ¢ = 1, and similarly g is
either not a root of unity or q3 = 1.

o In the Ky, n, case, ¢i is a primitive (ny + 1)-st oot of 1 and ¢3 is a primitive
(ng + 1)-st root of 1.

o Inthe Ky, ~ case, g3 a primitive (ny + 1)-st root of unity, and q2 is not a root of 1
(or g3 =1).

In particular we have

dim(X; X 1) = [3]; and dim(1 X Y7) = [3]2 (3)
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Proof. From the fusion rules of C, we have that (X, X 1) has SO(3)-type fusion rules.
This gives the result immediately, apart from the special case where K((Xs X 1)) =
K (Vec(Z2)). In this case we can either have that (X K1) ~ Vec(Zz) ~ A,, where ¢7 is
a primitive fourth root of unity, or that (Xs X 1) ~ Vec*(Zs) where w is the non-trivial
element of H3(Z2,C*). The latter case is non-equivalent to any A,,, hence we have to
show that it can’t occur in our setting. To do this, note that (X; XY;) ® (X; ¥ Y7) is
an associative algebra object in C (as it is of the form X ® X*). The restriction of this
algebra object to (Xo X 1) ~ Vec”(Zs) gives the algebra object 1X1 & XX 1. However
the category Vec”(Z3) has no algebra objects of this form [8, Example 7.8.3. (4)]. Thus
(X2 W 1) ~ Vec(Zsy) ~ Ay, . The argument for the subcategory (1 K Y5) is identical. O

Since .Aff ~ Ai%zw q1 and g9 are only determined up to sign. The following lemma

fixes our choice of ¢;.

Lemma 3.2. By possibly replacing g1 with —q1 and/or modifying the spherical structure,
we may assume X = X1 WY is symmetrically self-dual and

dim(X) = [2]1[2]:.

Proof. By changing the pivotal structure by an element of Hom(Zy — C*) we can
assume that X is symmetrically self-dual. Indeed, X has odd degree with respect to the
Zs-grading, and so changing the spherical structure negates the second Frobenius-Schur
indicator of X.

The fusion rules for C dictate

X210 X,K101KY: @ X, K Ya. (4)
Taking dimensions we find
dim(X)? =1+ [3]1 + [3]2 + [3]1[3]2.
Hence
dim(X) = +[2)1[2]>
By possibly replacing g1 with —¢; we can ensure that dim(X) = [2]1[2]2. O

Remark 3.3. We note some small degenerate cases, which will allows us to restrict ¢; and
¢2 (and hence n; and ny). If either of ny or ny is equal to 2 (corresponding to g2 or ¢2
having order 3), then K, », has either type A or type A,, fusion rules. The classification
is already known in these cases [10] and the results of Theorem 1.1 part 2 hold. Hence
we can assume both ¢ and g5 have orders larger than three. In practical terms, this
means we can assume that [3]; # 0.
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If both n; and ny are equal to 3 (corresponding to ¢7 and ¢3 having order 4), then
Ky, n, is a Tambara-Yamagami fusion ring with group G = Zs x Z,, which is another
case where a classification is known [17] and the results of Theorem 1.1 part 1 also hold.
Hence, for convenience, we may assume that one of g7 has order strictly greater than four.
However, the techniques of the section work without this assumption, see Remark 3.16
below. Without loss of generality we assume the order of ¢2 is strictly greater than four.
Hence we can assume [3]2 # 1.

3.1. Planar calculations

We now wish to obtain a based semisimple presentation for the category C. To do this
we first need to find generators. Using the fusion rule Eq. (4) we can define morphisms
P and Q:

Definition 3.4. Let P and Q in End¢(X®?) denote the minimal idempotents with images
isomorphic to Xo X 1 and 1 X Y5, respectively. Let R denote the minimal idempotent
whose image is isomorphic to X5 X Y5.

Lemma 3.5. The set {P,Q, | |, X} forms a basis for Endc(X®?).

Proof. The set {P,Q, R 1[2] ,\} is a complete set of minimal idempotents for
End(X®?2), which has dlmensmn 4. So this is a basis for End(X®?). Since

1 o
P+Q+R+m,\f| | (5)

we see that {P,Q, | |7 X} is also a basis. O

Our goal will be to show that P and @ generate a category with the same based
semisimple presentation as Cg 4,. As discussed in Section 2, this will show that C is
monoidally equivalent to Cg, g, -

Note that relation (a) is true from our choice of normalization and (b) follows from
the fact P and @ are orthogonal idempotents. We show the rest of the relations hold in
a series of lemmas.

Lemma 3.6. The bubble popping relations are satisfied in C.
Proof. If we cap off P or Q on the top or bottom, we must get 0 since P and @ are
projections onto nontrivial objects of C. Capping the sides of P or () must result in a

scalar times the identity of X, and taking traces yields the result. O

Lemma 3.7. The triangle popping relations are satisfied in C.
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Proof. The relations that include both P and @ follow from the fusion rules. For instance,
Home (P ® P, Q) = 0, so the triangle with two P’s and a @ is 0. Let us prove the triangle
relation involving three P’s. By the fusion rules, Home(P @ X®2, P) is 2-dimensional if
n1 > 3, and 1-dimensional if n; = 3. In either case we claim the space is spanned by the
following diagrams:

Indeed, by turning the lower right strand upwards to obtain corresponding morphisms
in End¢(P ® X), it is seen that the first diagram corresponds to an idempotent whose
image is isomorphic to P ® X, and the second diagram corresponds to a scalar multiple
of an idempotent whose image is isomorphic to X. When n; > 3, we have P® X 2 X,
so the diagrams are linearly independent.

Therefore the triangle with 3 P’s is a linear combination of these two diagrams. By
precomposing with idye2: @ P and id x> ®x, the coefficients are determined and give
the triangle popping relation.

The case of a triangle with three @’s is very similar. 0O

The trickiest relation to prove is the Fourier transform equation (c). In order to do
this we need to study the convolution algebra of Ende(X®?).

Definition 3.8. The convolution algebra is the vector space Ende(X®?) with multiplica-
tion x x y defined as follows:

Note that we have z xy = p(p(z)p(y)) (this uses the assumption that C is strictly
pivotal, which we make without loss of generality).

Before deriving the Fourier relation (c), we compute the structure coefficients of the
convolution algebra of Ende (X®?) in the {P, Q, x, | |} basis. The convolution of anything
with x or | | is easy to figure out, so it suffices to compute P x P, P x @ and @ x Q.
Recall that the minimal idempotent R has the expression

1
=

“mEe @
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by Equation (5).

Lemma 3.9. We have the following relations in C:

Lp— Blhi o [Bh-1
PP =mpep~t s
O — Bl2 v [Bl2—1
Q= GEpEnt @@, Y

1 v
P*memem%(”pumﬂpQ)

Proof. Consider the diagram for P x P. This morphism factors through P ® P, which
is an idempotent whose image does not contain 1 X Y5 or Xo X Y5 (by the fusion rules).
Thus P + P is annihilated by @ and R, so P x P is contained in the span of x and
P. The coefficients are determined by applying caps to the bottom and side (and using
dim(P) = [3]; and dim(X) = [2]1[2]2).

The equation for Qx @ is verified similarly. To derive the equation for P* (), note that
P®Q is a minimal idempotent of Ende (X ®*) whose image is a simple object isomorphic
to Xo Y5, Since X, XY5 appears with multiplicity 1 in X ® X and P+ (@ factors through
P®Q, we see that P (@ is a scalar multiple of R. The scalar is computed by taking the
trace and using a bubble popping relation. O

Remark 3.10. The above lemma shows that the structure constants of the convolution
algebra in the P, Q,| |7 x basis depend only on ¢; and gs.

Now that we know the multiplication structure on the convolution algebra, it is routine
to compute the minimal idempotents.

Lemma 3.11. A complete set of minimal idempotents for the convolution algebra
(Ende(X ® X),*) is given by

-1 1 2]y

e |t et @,
-1 1o, 2k
e et @

Lyl G 2y, 2k
s PO A B [%Q}

Proof. Using the structure constants given in the previous lemma, we check directly
that these elements are mutually orthogonal idempotents. Since Ende(X @ X) is 4-
dimensional, they form a complete set of minimal idempotents. O
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In the following lemma, we observe that the Fourier transform sends minimal idem-
potents (with respect to composition) to minimal idempotents (with respect to convolu-
tion), and use this to pin down the Fourier transform of P (and hence @) to one of two
possibilities.

Lemma 3.12. We have two possibilities for the Fourier transform of P. Fither

_ —1 1 o [2]1
P = gl 1T et 2@

or

v 22
=

-1 1
| 211

PP)= s e

with the latter case only occurring when q; = :i:qu.

Proof. The Fourier transform p intertwines the standard product and convolution prod-
uct in Ende(X ® X), so p(P) must be a minimal idempotent with respect to the
convolution product. Hence it must belong to the set listed in the previous lemma.
A simple computation shows that

(@mR) ~ ma!|

in the space End¢ (X ® X). Since p is an involution and P is distinct from LR~ this
rules out one of the possibilities for p(P). Thus

1 Lo P2
/P gl 1t et @, @
2k R T
1 bt o R, 2
s T e

We want to rule out the third listed solution. Indeed, if p(P) was equal to that solution
then taking traces gives

[3]1 = [3]1[3]2,

which implies [3]2 = 1 or [3]; = 0, a contradiction to Remark 3.3.
In a similar fashion, if p(P) was equal to the second solution, then taking traces shows
[3]; = [3]. This can only happen if ¢; = +¢i'. O
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Remark 3.13. When n; = ns = 3, the third listed solution is possible, but does not
produce a new category. More precisely, if we rewrite the presentation for C,, 4, in terms
of generators P’ = Q and Q' = R, then P’ and @’ satisfy the same relations as P and
Q, except p(P’) is given by the third listed solution above.

Finally, by considering fusion of depth three objects, we can deduce the Fourier trans-
form equation (c):

Lemma 3.14. In C we have the equation

=+ Bhg,

-1 1
| [2]2

2]1[2]2 * @

Proof. It suffices to prove that the second solution for p(P) and p(Q) in the previous

p(P) =

lemma is not possible. So assume for contradiction that

—1 N 1o, 2

PP =GR T RE T ),

To find a contradiction, consider (Q ® idx)(idx ®P)(Q ® idx ). Note that Q ® idx is a
sum of two minimal idempotents, one a projection onto a simple isomorphic to X and
the other a projection onto a simple isomorphic to X; X Y3. Since X7 X Y3 does not occur
in the image of idx KP, we have that (Q ® idx)(idx ® P)(Q ® idx) must be a scalar
times the projection onto X. Taking traces, this proves that

X1 -
P] [2]1]2]2
-]

On the other hand, we have:

o 1
B W © 2h[2L

In the second equality we used our assumption about p(P) and also the triangle

popping relation to remove a triangle with two @’s and a P. As in the proof of Lemma 3.7,
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the two diagrams on the right side of the last equation are linearly independent unless
ng = 3. Hence the two expressions for (Q ® idx)(idx ®P)(Q ® idx) can only be equal if
ny = 3. However by Remark 3.3 we assume no > 3. O

Remark 3.15. We remark that there do exist categories satisfying the relations of Propo-
sition 2.7, except with the different Fourier transformation

() p(P)=

-1 1o, [2e -1 1o, 2k
g et e Qe et e
This category is constructed as follows.

If ¢ = j:qzil7 then the category Cqy, 4, has an order two monoidal auto-equivalence,
which is the restriction of the swap auto-equivalence on A,, X.4,,. This auto-equivalence
exchanges the minimal idempotents P and Q. We claim that the subcategory of the
crossed product [11, Section 3.3] Cy, 4, X Z2 generated by the object X in the non-trivial
grading gives the desired category. We leave the proof of this fact to an interested reader.

Note that this subcategory of Cy, 4, XZ2 does not have SO(4)-type fusion rules (except
when n; = ny = 3, see the remark below). This differing of fusion rules can first be seen
in the third tensor power of X, which explains why we have to consider 3 box relations
in order to prove Lemma 3.14.

Remark 3.16. We remark on the case ny = ny = 3. In this case the fusion rules were
previously categorified by [17]. There are four categories, parametrized by a choice of
bicharacter of Zs X Zo, and a choice of sign. The quantum group construction uses ¢;
and g9 primitive eighth roots of unity, and different choices for ¢; and gs yield only two
inequivalent categories, which are C¢, ¢, and CCé,Cs where (g = €2™/8. By comparing the
braidings with those of the TY-categories [14], we see these two categories account for
the two TY-categories with bicharacter x. (in the notation of [17], Section 4).

The other two TY-categories (with bicharacter x; in the notation of [17], Section 4),
are obtained by applying the construction in the previous remark to C¢y ¢y and Ceg ¢
They have a based semisimple presentation obtained by replacing the Fourier equation
(c) with the different equation (¢’) above.

The only places where the arguments in this section break down for ny = ny = 3 are
Lemmas 3.12 and 3.14, where two possibilities for p(P) were excluded. When ny = ng =
3, neither of these possibilities cannot be excluded. As mentioned above, the possibility
excluded in Lemma 3.14 corresponds to the TY categories not obtained as Cg4, 4,- On
the other hand, it can be checked that the possibility excluded in Lemma 3.12 is also
possible, and provides an alternate presentation for Cg, 4, (see Remark 3.13). Thus the
classification technique of this section works for n; = ny = 3 as well.!

1 We thank the referee for suggesting this.
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Putting everything together, we have found morphisms P and @ in C which satisfy
the relations of the based semisimple presentation for Cg, 4,. As explained in the prelim-
inaries, the fact that C and Cg, 4, have the same fusion rules implies C is equivalent to
Cq..,qo as a pivotal tensor category.

4. Classification of braidings

In this section we classify all braidings on the fixed monoidal category Cy, 4,. We will
show that the eight braidings given in Definition 2.1 and described in Proposition 2.7
are the only braidings on Cg, 4, .

We begin by considering the two distinguished subcategories .AZ? and .AZS. As these
subcategories are equivalent to SO(3) type categories, we know that if the order of ¢? is
greater than 4 and not equal to 6, then their braidings are classified by a choice of qlil
and ¢! [16].7

The next lemma shows that the braidings on these subcategories determine the
braiding on their product (which as explained at the start of Section 3 is the adjoint
subcategory of Cq, 4,)-

Lemma 4.1. Let C and D be semisimple tensor categories, with universal grading groups
[8, Definition 4.14.2] U(C) and U(D). Then braidings on CRD are determined by braid-
ings on C and D, together with a bicharacter

a:UC)xUMD)—C.

Proof. First we show how a braiding on C XD gives rise to braidings on C and D and
a bicharacter. Clearly the braiding on the product gives braidings on the factors. Now
suppose X is an object of C and Y an object of D. Then the braiding

Gryx:,  IRY 9 XK1 5 XK101KY

describes a morphism ax y € Endegp(X KY'). The naturality of the braiding on C XD
implies ax y is an automorphism of the identity functor of CXD. If we fix one of the
factors (say fix an object X in C) then the hexagon identity for the braiding implies
ax,— is identified with a monoidal isomorphism of the identity functor of D. In other
words, the morphisms ax y for X fixed are described by a character of U (D). The same

2 In the case that the order of q? is either equal to 6, or less than or equal to 4, we have that n; € {3,5}.
The results of [16] do not apply, and there exist additional Tannakian braidings on the categories .Af;:i.
These Tannakian braidings come from the categories Rep(Zs) and Rep(Ss) respectively. We can repeat
the analysis of this section for these special cases. We find that these Tannakian braidings cannot lift to
braidings of the categories Cq, ,q,. Furthermore, in the case of n; = 3, we have that only two of the braidings
on the subcategory Agf X Ag'j lift to the category Cq,,q,. However in this case each of these two braidings
on .Agld @Agzd has four extensions to Cq, 4,. Hence these special cases are still covered by Theorem 1.1
(albeit via a non-natural bijection). We leave the details to a motivated reader.
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considerations hold when fixing an object Y of D, and the conclusion is that ax y may
be identified with a bicharacter of U(C) x U(D).

Now we show that braidings cx, x, on C and dy, y, on D together with a bicharacter
a uniquely determine a braiding on C X D. Suppose X1, X5 are in C and Y7, Y5> are in D.
Then the braiding in CKD on (X; XY]) ® (X3 K Y3) factors as

(CX1,X2 X le,Yz) o (1 ®ax,,y, ® 1)
which shows how the braiding on the product is completely determined by ¢,d and a. O

Corollary 4.2. There exist four distinct braidings on the subcategory

Coty, = Al AL

q1,92

These are parameterized by the four choices of qfﬂ and qéd.

Proof. The universal grading group of .Agd is trivial, so by the previous lemma the
braiding on Cgti is determined by the braidings on the factors. By the classification
of braidings on SO(3) type categories by Tuba and Wenzl [16] there are exactly two

braidings on Agd, parametrized by the choice of g or ¢7'. O

Let us fix one of these four possible braidings. As the monoidal category Cg, 4, is
determined up to ¢1 — ¢; Land ¢o — a5 1 we can freely choose ¢1 and g2 so that this
braiding corresponds to the choice qfl and q; ! in the above lemma. In particular using
[16, Lemma 8.4] we see the twists of P and @ are ¢f and g3 respectively. As R~ P ® Q
we can use Corollary 4.2 to see the twist of R is (q1¢2)*. Summarizing, we have the
following twists in Cq, g,:

01 =1, 0p = qi, 0o =q¢5, and Or= (qiq2)".

With these twists in hand, it is straightforward to determine all possible braidings on

Cq. ¢, compatible with the fixed braiding on C;ﬂq2.

Lemma 4.3. There exist two braidings on Cy, 4, which restrict to a fized braiding on Cgl’%qg.

Proof. For this proof it is more convenient to work in the idempotent basis of
Endc X ® X). The braiding on Cq, 4, is determined by

41,492 (

1
N gy P R
/\ AT ar +aoQ + agR,

where oq,ap,ag,ar € C. As we know the twists on 1, P,Q, and R we can use the
balancing equation [8, Equation 8.32] to find
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L=0%0i, q1=0%ap, g =0%05 and (q1g2)" =0%0f

This allows us to determine ap,aqg and ap in terms of aq, up to sign. For some
ep,€Q,€r € {—1,1} we have

2 2 2
ap = €pqioq, ag = ey, and ap = €r(qig2) 0q.

To determine «; and the three signs, we use that the inverse of the braiding is equal to
its Fourier transform [15, Theorem 2.5], as follows. Using Eq. (5), we have

\/\ =ag| |+ <ﬁ)x+(aQ_aR)P+(aQ_aR>Q-

Applying the Fourier transform and using the Fourier relations for P and @ we find

. a1 —ap —ag +agr ap — QR aQ — QR \ v
p(X)‘< 2 2] )"*(‘“” 2 TR )“
(ag —ar)2s , . (ap —ar)2:

2, T Rk

+ Q.

On the other hand,

-1
1
AN | 4 -1 -1 -1
<K) “ [2}1[2]z“+ap PragQ+agR

-1 -1
a;t —« _ _ _ _
ﬁx +(ap! —ag' )P+ (an —agh)Q.

(2]1[2]2
Now the equality p (X) = (X)l produces 4 equations:
1 1
ap = 200 (1 —ap —ag + ag)
o' —ap _ap 0 (1 1
mee = o oo (175 p)
ap' —ag' = %(QQ — ag)
aél — al_%l = ﬂl(ap —ag)

The last two equations yield

[213(2 — eper(al + a2 %)) = [213(2 — eqer(di +a177%)).
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Solving this equation shows four cases:

€p = €Q = —€R for all ¢; and g2,

€p = €Q = €R for q; Zi‘Iéd,

€p = —€Q = €R for q% =—1,or q% = -1,
€p = —€Q = —€R for ¢} = —1, or ¢2 = —1.

Immediately we can disregard the latter two cases, due to Remark 3.3. In the second
case we can use the third equation to find

E if g = +q; "
a3 = s )
Fq if g2 = +q1.
However we can now consider the first equation which tells us that either g3 = —1 or g9 is

a primitive 6-th root of unity, both of which have already been dealt with in Remark 3.3.
Finally we have the first case. Again we use the third equation to find

1
2
o) = —=.
Y did
Comparing this to the first equation shows that ep = —1. Hence we have two possible
solutions for the braiding, corresponding to the two square roots of o = —i—. These

afa3”
two braidings exist as they are realized in Proposition 2.7. O

Putting everything together, we have classified all braidings on the categories Cy, 4,
This completes the proof of part 2 of Theorem 1.1.
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