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In this paper we classify all semisimple pivotal tensor cate-
gories with the same fusion rules as Rep(SO(4)), or one of 
the associated truncations. We show that such categories are 
explicitly classified by two non-zero complex numbers. Fur-
thermore we show these tensor categories are always braided, 
and aside from a small number of degenerate cases, there exist 
exactly 8 braidings.
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1. Introduction

In this note we continue the program to classify tensor categories with fusion rules the 
same as Rep(G) for G a semisimple Lie group (or of the associated fusion categories). The 
classification is currently known for the majority of the classical Lie groups. The known 
results are for: SU(2) [10], SU(N) [12], O(N) and Sp(N) [16], and SO(N) (N �= 4) 
[6]. The latter three results apply to ribbon categories, while the first two do not require 
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any assumption of braiding and provide a classification for pivotal tensor categories. Our 
technique for SO(4)-type categories also does not require a braiding assumption.

The standard technique for these classification problems is to identify the endomor-
phism algebras of tensor powers of the “vector representation” in an arbitrary tensor 
category with the same fusion rules of Rep(G), and to show that this algebra must agree 
with the known examples coming from quantum groups. In the case of SU(N) this gives 
well-known quotients of the Hecke algebras [18], and in the O(N) and SO(N) cases we 
find quotients of BMW algebras [5]. For SO(N) with N �= 4 the endomorphism algebras 
also afford representations of the BMW algebra, but the image of the BMW algebra does 
not generate the endomorphism algebra for SO(2n) for n > 2.

The gap at SO(4) is due to the fact that the tensor square of the vector representation 
splits into four simples, rather than three (as is the case for every other SO(N) with 
N ≥ 3). This means that a braid element on X⊗2 need not satisfy the cubic BMW skein 
relation, which was required for the method of [6].

There is another important distinction between SO(4) and SO(2n) with n > 2, which 
is that the root system for SO(4) is not irreducible (its root system is the product 
A1 ×A1). As we shall see, this manifests in categorifications of SO(4) fusion rules being 
described by two independent parameters q1, q2, rather than a single parameter q.

In this paper we close this gap by studying a known SO(4)-type category and identi-
fying the monoidal subcategory whose objects are tensor powers of the vector represen-
tation. This subcategory is essentially a planar algebra, and we describe it by generators 
and relations in a planar algebraic way, although we do not use that language. The pla-
nar algebras we describe can be seen as natural extensions of the Fuss-Catalan planar 
algebras [2]. We then show that the corresponding subcategory of any category with 
SO(4)-type fusion rules must have the same presentation. We then obtain the classifica-
tion of tensor categories with SO(4) fusion rules from standard reconstruction arguments.

We say a tensor category has SO(4) fusion rules if its Grothiendieck ring is isomorphic 
to K(Rep(SO(4))), or isomorphic to the Grothendieck ring of one of the associated fusion 
categories. We label these fusion rings by Kn1,n2 where ni ∈ N ∪{∞} (see Definition 2.2
for a precise definition). The fusion graph of Kn1,n2 for the vector representation is given 
by (shown here with n1 = 5 and n2 = 8):
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For any non-zero complex numbers q1 and q2, there exists a category Cq1,q2 , defined 
in Definition 2.1. For any n1 and n2 there exist q1 and q2 so that Cq1,q2 has fusion rules 
Kn1,n2 . The classification of all categories with these fusion rules is given in our main 
theorem.

Theorem 1.1. Let C be a semisimple pivotal tensor category with K(C) = Kn1,n2 where 
n1, n2 ∈ N≥2 ∪∞. We have the following:

1. If n1 = n2 = 3, then C is a Tambara-Yamagami fusion category with G = Z2 × Z2. 
There are exactly four of these categories up to monoidal equivalence [17, Theo-
rem 4.1]. Two of these categories are equivalent to Cζ8,ζ8 and Cζ5

8 ,ζ8
, the other two 

are non-equivalent to any Cq1,q2 . There are exactly 8 braidings on each of these cate-
gories [14, Theorem 1.2].

2. If either n1 or n2 is not equal to 3, then the category C is monoidally equivalent to 
Cq1,q2 where q1, q2 ∈ C×, with the order of q2

i equal to ni + 1 (or possibly q2
i = 1 if 

ni = ∞). Further we have the monoidal equivalences

Cq1,q2 � Cq2,q1 � Cq1,q−1
2

� Cq−1
1 ,q2

� C−q1,−q2 .

3. The category Cq1,q2 is braided, and the possible braidings on these categories are pa-
rameterized by the set

{(s1, s2) : s2
1 = −q±1

1 and s2
2 = −q±1

2 }/{(s1, s2) = (−s1,−s2)}.

When both n1, n2 > 2, these eight braidings are all distinct. If either n1 or n2 are 
equal to 2, then four of these braidings are distinct. If both n1 and n2 are equal to 2, 
then two of these braidings are distinct.

Constructions of these categories are given in Definition 2.1.

Remark 1.2. The above classification is up to equivalences which preserve the distin-
guished object X corresponding to the vector representation of SO(4) in the categories 
Cq1,q2 . The equivalences given in Theorem 1.1 are all the possible equivalences which 
preserve X. There can exist additional equivalences between the categories Cq1,q2 which 
don’t preserve X.

An illustrating example is seen in the case when q2
2 is a root of unity of even order 

n2 + 1 such that [n2]q2 = −1. For these parameters, we have that Cq1,q2 is monoidally 
equivalent to Cq1,−q2 but the equivalence does not fix the distinguished object X.

This paper is outlined as follows.
In Section 2 we define the categories Cq1,q2 which are examples of categories with 

SO(4) fusion rules. We define what it means to give a based semisimple presentation of 
a pivotal tensor category, and give such a presentation for the categories Cq1,q2 .
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In Section 3 we use techniques inspired by the theory of planar algebras [3,13] to 
classify arbitrary pivotal tensor categories with SO(4) fusion rules. The presentation 
we describe is exactly the same as the category Cq1,q2 , hence reconstruction techniques 
allow us to deduce that the arbitrary pivotal tensor category must be Cq1,q2 . Our meth-
ods to describe the arbitrary presentation rely heavily on the SO(4) fusion rules for 
objects appearing in the tensor square, and the tensor cube, of the “vector represen-
tation”. By working in the idempotent basis, we are able to use these fusion rules to 
pin down a large number of relations in our arbitrary category. The hard part of the 
argument is determining the Fourier transformation of our generators. By playing off 
the standard algebra multiplication in End(X ⊗X) against the special convolution al-
gebra structure, we are able to fully pin down the Fourier transform, and finish our 
presentation.

We conclude the paper with Section 4, where we classify all the braidings on the 
monoidal categories Cq1,q2 . The key idea to classify these braidings is to consider the 
adjoint subcategory Cad

q1,q2 , which we know is equivalent to a product of SO(3) type 
categories. The braidings on the SO(3) type categories are fully classified [16], and we 
can leverage this information up via some technical computations to classify all braidings 
on the full category Cq1,q2 .

Acknowledgments

The second author was supported by NSF grant DMS 2245935 and a AMS-Simons 
Travel Grant. Both authors would like to thank the referee for many useful suggestions, 
and Hans Wenzl for useful conversations.

2. Preliminaries

We refer the reader to [8] for the basics on tensor categories. For us a tensor category 
is a C-linear, abelian, monoidal, and rigid category with simple unit.

2.1. Tensor categories with SO(4) fusion rules

In this subsection we present a family of pivotal tensor categories with SO(4) fusion 
rules. We build these categories using Deligne products of SU(2) categories.

Categories with SU(2) fusion rules (and their truncations) are known as type A cat-
egories. In the generic case there are infinitely many simples up to isomorphism, labeled 
1 = X0, X1, X2, . . . The fusion graph for multiplication by X1 is

In the fusion case there are finitely many isomorphism types of simples 1, X1, X2, . . . ,
Xn−1 and the fusion graph for multiplication by X1 is the truncated graph
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Fusion categories with these fusion rules are known as An categories.
Type A and An categories are classified up to monoidal equivalence [10] by the di-

mension of the object X1, which can be expressed as

dim(X1) = [2]q = q + q−1 (1)

where q is a non-zero complex number which is either ±1 or not a root of unity in the 
generic case, and is a root of unity in the fusion case. These categories are spherical 
(see [8, Section 4.7]) and there is a unique choice of spherical structure such that X1 is 
symmetrically self-dual. We denote a type A or An category with parameter q by Aq. 
Note that Aq = Aq−1 .

The categories Aq are all braided. Type A and An categories are classified up to 
braided equivalence (which fixes the distinguished object X1), by the two eigenvalues of 
the braiding σX1,X1 . These eigenvalues are s and −s−3 where s is a solution to either 
s2 = −q or s2 = −q−1. Hence there are four distinct braidings on each of the monoidal 
categories Aq, which are defined by

= s + s−1 .

With the categories Aq in hand, we can define the categories Cq1,q2 which appear in our 
main theorem.

Definition 2.1. Let Cq1,q2 denote the sub-tensor category of Aq1 � Aq2 generated by X :=
X1 � Y1 (we use X1, resp. Y1, to denote the generating object of Aq1 , resp. Aq2).

Note that we can only refer to the object X1 � Y1 when both Aq1 and Aq2 are non-
trivial.

The categories Cq1,q2 inherit 16 braidings from the four braidings on each of Aq1 and 
Aq2 . These are parameterized by solutions to s2

1 = −q±1
1 and s2

2 = −q±1
2 . The braided 

categories corresponding to the solutions (s1, s2) and (−s1, −s2) are braided equivalent. 
Hence we get 8 distinct braidings on the categories Cq1,q2 .

Definition 2.2. For n1, n2 ∈ N≥2 ∪ {∞} we define the fusion ring Kn1,n2 by

Kn1,n2 := K(Cq1,q2)

where each qi is a non-zero complex number such that q2 has order ni + 1.
We say a category has SO(4) type fusion rules if its Grothendieck ring is isomorphic 

to Kn1,n2 for some n1, n2 ∈ N≥2 ∪ {∞}.
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For convenience let us label the simple elements of these fusion rings. The simple 
elements of Kn1,n2 are those Xi �Yj with 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1 and i + j ∈ 2 Z. 
In this notation, the distinguished object X is X1 � Y1.

From the fusion graphs we see that all the fusion rings are Z2-graded (since 1 only 
appears in even powers of X). The adjoint subcategories (see [8, Section 4.14]) have 
fusion rules of SO(3) × SO(3) type, an important fact we will use later.

2.2. Presentations for semisimple tensor categories

We recall some basic facts regarding presentations of semisimple spherical tensor cat-
egories, before providing a presentation of the categories Cq1,q2 .

Definition 2.3. A based tensor category will be a pair (C, X) where X is a chosen tensor 
generator of a spherical tensor category C.

The An categories are conventionally based by picking a simple object corresponding 
to the vector representation of SU(2). Likewise, we consider any SO(4)-category based 
by a simple object X corresponding to the vector rep of SO(4).

A based presentation of a (small) spherical based tensor category (C, X) is a set of 
morphisms F between tensor powers of X, and a set of relations R satisfied in C such 
that

C ∼= C(F )/R

where C(F ) is the free (based, strictly pivotal and strict monoidal) spherical C-linear 
monoidal category (possibly not abelian and with non-simple unit) generated by one 
object and the morphisms F , R is the smallest tensor ideal of C(F ) containing R, and 
the notation C denotes the Cauchy completion (additive and idempotent completion [1, 
Theorem 1]) of a category C.

For instance, an An category has a based presentation with no generators and the 
relations

= [2]q and f (n) = 0

where q2 is a primitive n +1-st root of 1 and f (n) denotes the n-th Jones-Wenzl projection. 
Note that here we have chosen a spherical structure which makes the generating object 
symmetrically self-dual (this differs from the standard quantum group convention, where 
the other spherical structure is chosen. For the quantum group convention, we have that 
the closed loop has value −[2]q). This allows us to draw unorientated strands.

Given a spherical monoidal category C, let N (C) denote the monoidal ideal of negligible 
morphisms in C [9, Section 2]. Under various assumptions on the category C, the quotient 
C / N (C) is semisimple (however in our set-up we only require the result of Lemma 2.5
below).
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Definition 2.4. A based semisimple presentation of a based semisimple spherical tensor 
category (C, X) is a set of morphisms F between tensor powers of X and a set of relations 
R satisfied in C such that

C′ = C(F )/R.

has simple unit, and

C ∼= C′ /N (C′).

A based semisimple presentation generally contains less information than a presen-
tation (since we do not need to provide relations for the negligible ideal). For example, 
an An category has a based semisimple presentation with no generators and the single 
relation

= [2]q

where q2 is a primitive (n + 1)-st root of 1. This is a based semisimple presentation. 
Indeed, the unit is simple, as every closed diagram of cups and caps can be evaluated 
to a scalar by popping closed loops, and the quotient by negligibles is shown to be 
equivalent to an An category in [15, Chapter 12: Sections 6-8]. The relation f (n) = 0 is 
not necessary since the element f (n) gets sent to 0 when we quotient by negligibles.

The condition that C(F )/R (or equivalently C(F )/R) has a simple tensor unit is often 
summarized as “having enough relations to evaluate closed diagrams”. The following well-
known fact states that having enough relations to evaluate closed diagrams is a sufficient 
condition to produce a based semisimple presentation.

Lemma 2.5. [4, Proposition 3.5] Suppose a based semisimple spherical tensor category 
(C, X) is generated by morphisms F between tensor powers of X and satisfies relations 
R such that C(F )/R has a simple tensor unit. Then (F, R) is a based semisimple pre-
sentation for C.

Classification outline

We can outline our argument for classifying SO(4)-type categories:

Step 1. Provide a based semisimple presentation for the categories Cq1,q2 (the presen-
tation depends on q1, q2).

Step 2. Given a semisimple pivotal tensor category D with SO(4)-type fusion rules, 
find parameters q1, q2 and morphisms in D which satisfy the relations for Cq1,q2 from 
Step 1.
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Step 3. Conclude that D ∼= Cq1,q2 , as follows. Let C′ = C(F )/R where (F, R) is the 
based semisimple presentation of Cq1,q2 from Step 1. Observe that Step 2 provides a 
tensor functor

Φ : C′ → D.

The kernel of Φ is a tensor ideal of C′, which must be contained in N (C′) since N (C′)
is the unique maximal tensor ideal of C′. Let Im(Φ) denote the image of Φ, a C-linear 
monoidal subcategory of D. If X⊗i and X⊗j are any objects of C′, then we may also 
consider them objects of Cq1,q2 and D (through mild abuse of notation), and the previous 
two sentences give inequalities

dim HomCq1,q2
(X⊗i, X⊗j) ≤ dim HomIm(Φ)(X⊗i, X⊗j) ≤ dim HomD(X⊗i, X⊗j).

On the other hand,

dim HomD(X⊗i, X⊗j) = dim HomCq1,q2
(X⊗i, X⊗j)

since D and Cq1,q2 have the same fusion rules. Hence both inequalities above are equalities 
and in particular Im(Φ) � D. Since D is semisimple, all negligible morphisms are zero 
[7, Proposition 5.7] so the kernel of Φ must be equal to N (C′). In conclusion, this shows 
D ∼= C′ /N (C′) ∼= Cq1,q2 .

Based semisimple presentation for Cq1,q2

With the above ansatz in mind, let’s give a based semisimple presentation for the 
categories Cq1,q2 . To reduce clutter, we abbreviate the quantum numbers

[n]q1 by [n]1, and [n]q2 by [n]2.

Given a morphism f ∈ End(X⊗2), we let ρ(f) denote the Fourier transform, or one-click 
rotation of f :

The second equality (which is equivalent to ρ2(f) = f) follows from the facts that we 
assume our categories are strictly pivotal, every object is self-dual and X2 is multiplicity-
free. Our presentation for Cq1,q2 will use two generators P and Q in End(X⊗2). They 
are defined by

P = 1
f (2) � and Q = 1 � f (2), (2)
[2]2 [2]1



D. Copeland, C. Edie-Michell / Journal of Algebra 619 (2023) 323–346 331
where f (2) := − 1
[2]i denotes the second Jones-Wenzl projection in the respective 

factors. With these definitions, P is the projection with image X2 � 1 ⊂ X⊗2 and Q is 
the projection with image 1 � Y2 ⊂ X⊗2.

Lemma 2.6. The morphisms P and Q generate Cq1,q2 as a spherical tensor category.

Proof. This has been proved in greater generality using planar algebra language by Liu 
[13, Corollary 3.2]. We provide a proof in our case for the reader’s convenience. We will 
show that the simpler morphisms g = � and h = � generate Cq1,q2 . Since P
and Q are related to g and h by the equations

P = 1
[2]2

(
g − 1

[2]1
�

)
and Q = 1

[2]1

(
h− 1

[2]2
�

)
,

the result will follow.
To show that g and h generate, it suffices to check they generate all the morphisms 

in the full tensor subcategory of Cq1,q2 with objects 1, X, X⊗2, X⊗3, . . . (since X ten-
sor generates Cq1,q2). Furthermore, Cq1,q2 is Z2-graded, so by Frobenius reciprocity it’s 
enough to show that g and h generate the endomorphism algebras End(X⊗k). We have

End(X⊗k) ∼= EndAq1
(X⊗k

1 ) ⊗C EndAq2
(Y ⊗k

1 ).

The subalgebra EndAq1
(X⊗k

1 ) � idk is generated (as an algebra) by the cup/cap elements 
g1, g2, . . . , gk−1 where

gi = idi−1 ⊗g ⊗ idk−i−1 .

Similarly, idk � EndAq2
(Y ⊗k

1 ) is generated (as an algebra) by the corresponding hi’s. 
Hence g and h generate End(X⊗k) (as a Hom space in a spherical tensor category). �

Now that we know P and Q generate Cq1,q2 , we can give a based semisimple presen-
tation with two generators. By choosing spherical structures on the categories Aq1 and 
Aq2 , we can ensure that Cq1,q2 is generated by a symmetrically self-dual object.

Proposition 2.7. For q1, q2 non-zero complex numbers, the pivotal category Cq1,q2 is tensor 
generated by the symmetrically self-dual object X = X1 �Y1, and has a based semisimple 
presentation with two generators P, Q ∈ End(X⊗2) and the following relations:

(a) = [2]1[2]2
(b) P 2 = P, Q2 = Q and PQ = QP = 0
(c) Fourier equation:

ρ(P ) = −1 + 1
2 + [2]1

Q.
[2]1[2]2 [2]2 [2]2
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(d) Bubble popping:

(e) Triangle popping:

Furthermore, for (s1, s2) solutions to s2
1 = −q±1

1 and s2
2 = −q±1

2 , we have a braiding on 
Cq1,q2 defined by

= s1s2 +
q1s

2
1

q2
1+1 + q2s

2
2

q2
2+1 + 1

s1s2
+

(
q2
2 + 1

)
s1

q2s2
P +

(
q2
1 + 1

)
s2

q1s1
Q.

Remark 2.8. This presentation is closely related to the Fuss-Catalan algebras of [2].

Remark 2.9. Note that the Fourier equation (c) implies

ρ(Q) = −1 + 1
2 + [2]2

P.
[2]1[2]2 [2]1 [2]1
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Proof. By Lemma 2.6, the morphisms P and Q generate the category. Checking that 
they satisfy the given relations we leave as an exercise in type A skein theory. We provide 
an example for a triangle popping relation, using type A skein theory in the respective 
factors:

We must check that we have enough relations to describe the category Cq1,q2 . By 
Lemma 2.5, it suffices to show that we can use the provided relations to evaluate any 
closed planar diagram made from P ’s and Q’s to a scalar. We can represent such a 
diagram as a planar 4-valent graph with vertices labeled by P , Q, ρ(P ) or ρ(Q).

The following standard argument implies any planar 4-valent graph must contain 
either a loop, bigon, triangle. Suppose not, then as the graph is planar, 4-valent, and 
does not contain a loop, bigon, or triangle, then we respectively get

V − E + F = 1, 4V = 2E, and 4F ≤ 2E.
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These three equations are incompatible, so the graph must contain a loop, bigon, or 
triangle.

We prove by induction on the number of vertices that the diagram can be reduced 
to a scalar using the relations. If there are no vertices, then relation (a) reduces any 
diagram (made of cups/caps) to a scalar. For the inductive step, note that if the graph 
contains any self-loops then the bubble popping relations allow one to reduce the number 
of vertices. If there are no self-loops, then the graph must contain a bigon or a triangle. 
The relations (b) and (c) imply that any diagram with a bigon can be reduced to a 
sum of diagrams with fewer vertices. Finally, any triangle can be reduced in a similar 
way using the triangle popping relations and relation (c) (possibly after applying a 2 or 
4-click rotation to the triangle).

The braidings described in the final statement come from the known braidings on 
Aq1 � Aq2 , which are inherited from the well-known braidings on the factors. Checking 
our formula for the braiding is another skein theory exercise. �
3. Monoidal classification

In this section we classify pivotal categories C with K(C) ∼= Kn1,n2 . We may identify 
the Grothendieck ring of C with that of Cq1,q2 thus use the symbols Xa � Yb to denote 
simple objects in C.

The subcategories tensor generated by X2 � 1 and 1 � Y2 have SO(3)-type fusion 
rules. A result of Etingof and Ostrik ([9], Thms. A.1, A.3 and Remark A.4) states that 
(apart from the case where the fusion rules are K(Vec(Z2)) any pivotal category with 
SO(3) type fusion rules is monoidally equivalent to Rep(SO(3)q) ∼= Aad

q where q is not a 
root of unity or q2 = 1 (if there are infinitely many simples) or q is an appropriate root 
of unity in the fusion case. This allows us to prove the following.

Lemma 3.1. We have that

〈X2 � 1〉 ∼= Aad
q1 and 〈1 � Y2〉 ∼= Aad

q2

where

• In the K∞,∞ case, q1 is either not a root of unity or q2
1 = 1, and similarly q2 is 

either not a root of unity or q2
2 = 1.

• In the Kn1,n2 case, q2
1 is a primitive (n1 + 1)-st root of 1 and q2

2 is a primitive 
(n2 + 1)-st root of 1.

• In the Kn1,∞ case, q2
1 a primitive (n1 + 1)-st root of unity, and q2 is not a root of 1 

(or q2
2 = 1).

In particular we have

dim(X1 � 1) = [3]1 and dim(1 � Y1) = [3]2 (3)
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Proof. From the fusion rules of C, we have that 〈X2 � 1〉 has SO(3)-type fusion rules. 
This gives the result immediately, apart from the special case where K(〈X2 � 1〉) ∼=
K(Vec(Z2)). In this case we can either have that 〈X2 � 1〉 � Vec(Z2) � Aq1 where q2

1 is 
a primitive fourth root of unity, or that 〈X2 � 1〉 � Vecω(Z2) where ω is the non-trivial 
element of H3(Z2, C×). The latter case is non-equivalent to any Aq1 , hence we have to 
show that it can’t occur in our setting. To do this, note that (X1 � Y1) ⊗ (X1 � Y1) is 
an associative algebra object in C (as it is of the form X ⊗X∗). The restriction of this 
algebra object to 〈X2 � 1〉 � Vecω(Z2) gives the algebra object 1�1 ⊕ X2�1. However 
the category Vecω(Z2) has no algebra objects of this form [8, Example 7.8.3. (4)]. Thus 
〈X2 � 1〉 � Vec(Z2) � Aq1 . The argument for the subcategory 〈1 � Y2〉 is identical. �

Since Aad
qi � Aad

−qi , q1 and q2 are only determined up to sign. The following lemma 
fixes our choice of q1.

Lemma 3.2. By possibly replacing q1 with −q1 and/or modifying the spherical structure, 
we may assume X = X1 � Y1 is symmetrically self-dual and

dim(X) = [2]1[2]2.

Proof. By changing the pivotal structure by an element of Hom(Z2 → C×) we can 
assume that X is symmetrically self-dual. Indeed, X has odd degree with respect to the 
Z2-grading, and so changing the spherical structure negates the second Frobenius-Schur 
indicator of X.

The fusion rules for C dictate

X⊗2 ∼= 1 ⊕X2 � 1 ⊕ 1 � Y2 ⊕X2 � Y2. (4)

Taking dimensions we find

dim(X)2 = 1 + [3]1 + [3]2 + [3]1[3]2.

Hence

dim(X) = ±[2]1[2]2.

By possibly replacing q1 with −q1 we can ensure that dim(X) = [2]1[2]2. �
Remark 3.3. We note some small degenerate cases, which will allows us to restrict q1 and 
q2 (and hence n1 and n2). If either of n1 or n2 is equal to 2 (corresponding to q2

1 or q2
2

having order 3), then Kn1,n2 has either type A or type An fusion rules. The classification 
is already known in these cases [10] and the results of Theorem 1.1 part 2 hold. Hence 
we can assume both q2

1 and q2
2 have orders larger than three. In practical terms, this 

means we can assume that [3]i �= 0.
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If both n1 and n2 are equal to 3 (corresponding to q2
1 and q2

2 having order 4), then 
Kn1,n2 is a Tambara-Yamagami fusion ring with group G = Z2 × Z2, which is another 
case where a classification is known [17] and the results of Theorem 1.1 part 1 also hold. 
Hence, for convenience, we may assume that one of q2

i has order strictly greater than four. 
However, the techniques of the section work without this assumption, see Remark 3.16
below. Without loss of generality we assume the order of q2

2 is strictly greater than four. 
Hence we can assume [3]2 �= 1.

3.1. Planar calculations

We now wish to obtain a based semisimple presentation for the category C. To do this 
we first need to find generators. Using the fusion rule Eq. (4) we can define morphisms 
P and Q:

Definition 3.4. Let P and Q in EndC(X⊗2) denote the minimal idempotents with images 
isomorphic to X2 � 1 and 1 � Y2, respectively. Let R denote the minimal idempotent 
whose image is isomorphic to X2 � Y2.

Lemma 3.5. The set {P, Q, , } forms a basis for EndC(X⊗2).

Proof. The set {P, Q, R, 1
[2]1[2]2 } is a complete set of minimal idempotents for 

End(X⊗2), which has dimension 4. So this is a basis for End(X⊗2). Since

P + Q + R + 1
[2]1[2]2

= , (5)

we see that {P, Q, , } is also a basis. �
Our goal will be to show that P and Q generate a category with the same based 

semisimple presentation as Cq1,q2 . As discussed in Section 2, this will show that C is 
monoidally equivalent to Cq1,q2 .

Note that relation (a) is true from our choice of normalization and (b) follows from 
the fact P and Q are orthogonal idempotents. We show the rest of the relations hold in 
a series of lemmas.

Lemma 3.6. The bubble popping relations are satisfied in C.

Proof. If we cap off P or Q on the top or bottom, we must get 0 since P and Q are 
projections onto nontrivial objects of C. Capping the sides of P or Q must result in a 
scalar times the identity of X, and taking traces yields the result. �
Lemma 3.7. The triangle popping relations are satisfied in C.
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Proof. The relations that include both P and Q follow from the fusion rules. For instance, 
HomC(P ⊗P, Q) = 0, so the triangle with two P ′s and a Q is 0. Let us prove the triangle 
relation involving three P ’s. By the fusion rules, HomC(P ⊗X⊗2, P ) is 2-dimensional if 
n1 > 3, and 1-dimensional if n1 = 3. In either case we claim the space is spanned by the 
following diagrams:

Indeed, by turning the lower right strand upwards to obtain corresponding morphisms 
in EndC(P ⊗X), it is seen that the first diagram corresponds to an idempotent whose 
image is isomorphic to P ⊗X, and the second diagram corresponds to a scalar multiple 
of an idempotent whose image is isomorphic to X. When n1 > 3, we have P ⊗X � X, 
so the diagrams are linearly independent.

Therefore the triangle with 3 P’s is a linear combination of these two diagrams. By 
precomposing with idX⊗2 ⊗P and idX⊗2 ⊗ , the coefficients are determined and give 
the triangle popping relation.

The case of a triangle with three Q’s is very similar. �
The trickiest relation to prove is the Fourier transform equation (c). In order to do 

this we need to study the convolution algebra of EndC(X⊗2).

Definition 3.8. The convolution algebra is the vector space EndC(X⊗2) with multiplica-
tion x � y defined as follows:

Note that we have x � y = ρ(ρ(x)ρ(y)) (this uses the assumption that C is strictly 
pivotal, which we make without loss of generality).

Before deriving the Fourier relation (c), we compute the structure coefficients of the 
convolution algebra of EndC(X⊗2) in the {P, Q, , } basis. The convolution of anything 

with or is easy to figure out, so it suffices to compute P � P , P � Q and Q � Q. 
Recall that the minimal idempotent R has the expression

R = − 1 − P −Q,
[2]1[2]2
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by Equation (5).

Lemma 3.9. We have the following relations in C:

P � P = [3]1
[2]21[2]22

+ [3]1 − 1
[2]1[2]2

P

Q � Q = [3]2
[2]21[2]22

+ [3]2 − 1
[2]1[2]2

Q

P � Q = 1
[2]1[2]2

R = 1
[2]1[2]2

(
− 1

[2]1[2]2
− P −Q

)
.

Proof. Consider the diagram for P � P . This morphism factors through P ⊗ P , which 
is an idempotent whose image does not contain 1 � Y2 or X2 � Y2 (by the fusion rules). 
Thus P � P is annihilated by Q and R, so P � P is contained in the span of and 
P . The coefficients are determined by applying caps to the bottom and side (and using 
dim(P ) = [3]1 and dim(X) = [2]1[2]2).

The equation for Q �Q is verified similarly. To derive the equation for P �Q, note that 
P ⊗Q is a minimal idempotent of EndC(X⊗4) whose image is a simple object isomorphic 
to X2�Y2. Since X2�Y2 appears with multiplicity 1 in X⊗X and P �Q factors through 
P ⊗Q, we see that P �Q is a scalar multiple of R. The scalar is computed by taking the 
trace and using a bubble popping relation. �
Remark 3.10. The above lemma shows that the structure constants of the convolution 
algebra in the P, Q, , basis depend only on q1 and q2.

Now that we know the multiplication structure on the convolution algebra, it is routine 
to compute the minimal idempotents.

Lemma 3.11. A complete set of minimal idempotents for the convolution algebra 
(EndC(X ⊗X), �) is given by

{
1

[2]1[2]2
,

−1
[2]1[2]2

+ 1
[2]22

+ [2]1
[2]2

Q,

−1
[2]1[2]2

+ 1
[2]21

+ [2]2
[2]1

P,

1
[2]1[2]2

+ (1 − 1
[2]21

− 1
[2]22

) − [2]2
[2]1

P − [2]1
[2]2

Q

}
.

Proof. Using the structure constants given in the previous lemma, we check directly 
that these elements are mutually orthogonal idempotents. Since EndC(X ⊗ X) is 4-
dimensional, they form a complete set of minimal idempotents. �
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In the following lemma, we observe that the Fourier transform sends minimal idem-
potents (with respect to composition) to minimal idempotents (with respect to convolu-
tion), and use this to pin down the Fourier transform of P (and hence Q) to one of two 
possibilities.

Lemma 3.12. We have two possibilities for the Fourier transform of P . Either

ρ(P ) = −1
[2]1[2]2

+ 1
[2]22

+ [2]1
[2]2

Q

or

ρ(P ) = −1
[2]1[2]2

+ 1
[2]21

+ [2]2
[2]1

P

with the latter case only occurring when q1 = ±q±1
2 .

Proof. The Fourier transform ρ intertwines the standard product and convolution prod-
uct in EndC(X ⊗ X), so ρ(P ) must be a minimal idempotent with respect to the 
convolution product. Hence it must belong to the set listed in the previous lemma. 
A simple computation shows that

ρ

(
1

[2]1[2]2

)
= 1

[2]1[2]2

in the space EndC(X ⊗X). Since ρ is an involution and P is distinct from 1
[2]1[2]2 , this 

rules out one of the possibilities for ρ(P ). Thus

ρ(P ) ∈ { −1
[2]1[2]2

+ 1
[2]22

+ [2]1
[2]2

Q,

−1
[2]1[2]2

+ 1
[2]21

+ [2]2
[2]1

P,

1
[2]1[2]2

+ (1 − 1
[2]21

− 1
[2]22

) − [2]2
[2]1

P − [2]1
[2]2

Q}.

We want to rule out the third listed solution. Indeed, if ρ(P ) was equal to that solution 
then taking traces gives

[3]1 = [3]1[3]2,

which implies [3]2 = 1 or [3]1 = 0, a contradiction to Remark 3.3.
In a similar fashion, if ρ(P ) was equal to the second solution, then taking traces shows 

[3]1 = [3]2. This can only happen if q1 = ±q±1
2 . �
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Remark 3.13. When n1 = n2 = 3, the third listed solution is possible, but does not 
produce a new category. More precisely, if we rewrite the presentation for Cq1,q2 in terms 
of generators P ′ = Q and Q′ = R, then P ′ and Q′ satisfy the same relations as P and 
Q, except ρ(P ′) is given by the third listed solution above.

Finally, by considering fusion of depth three objects, we can deduce the Fourier trans-
form equation (c):

Lemma 3.14. In C we have the equation

ρ(P ) = −1
[2]1[2]2

+ 1
[2]22

+ [2]1
[2]2

Q.

Proof. It suffices to prove that the second solution for ρ(P ) and ρ(Q) in the previous 
lemma is not possible. So assume for contradiction that

ρ(P ) = −1
[2]1[2]2

+ 1
[2]21

+ [2]2
[2]1

P

To find a contradiction, consider (Q ⊗ idX)(idX ⊗P )(Q ⊗ idX). Note that Q ⊗ idX is a 
sum of two minimal idempotents, one a projection onto a simple isomorphic to X and 
the other a projection onto a simple isomorphic to X1 �Y3. Since X1 �Y3 does not occur 
in the image of idX �P , we have that (Q ⊗ idX)(idX ⊗P )(Q ⊗ idX) must be a scalar 
times the projection onto X. Taking traces, this proves that

On the other hand, we have:

In the second equality we used our assumption about ρ(P ) and also the triangle 
popping relation to remove a triangle with two Q’s and a P . As in the proof of Lemma 3.7, 
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the two diagrams on the right side of the last equation are linearly independent unless 
n2 = 3. Hence the two expressions for (Q ⊗ idX)(idX ⊗P )(Q ⊗ idX) can only be equal if 
n2 = 3. However by Remark 3.3 we assume n2 > 3. �
Remark 3.15. We remark that there do exist categories satisfying the relations of Propo-
sition 2.7, except with the different Fourier transformation

(c′) ρ(P ) = −1
[2]1[2]2

+ 1
[2]21

+ [2]2
[2]1

P, ρ(Q) = −1
[2]1[2]2

+ 1
[2]22

+ [2]1
[2]2

Q

This category is constructed as follows.
If q1 = ±q±1

2 , then the category Cq1,q2 has an order two monoidal auto-equivalence, 
which is the restriction of the swap auto-equivalence on Aq1 �Aq2 . This auto-equivalence 
exchanges the minimal idempotents P and Q. We claim that the subcategory of the 
crossed product [11, Section 3.3] Cq1,q2 �Z2 generated by the object X in the non-trivial 
grading gives the desired category. We leave the proof of this fact to an interested reader.

Note that this subcategory of Cq1,q2 �Z2 does not have SO(4)-type fusion rules (except 
when n1 = n2 = 3, see the remark below). This differing of fusion rules can first be seen 
in the third tensor power of X, which explains why we have to consider 3 box relations 
in order to prove Lemma 3.14.

Remark 3.16. We remark on the case n1 = n2 = 3. In this case the fusion rules were 
previously categorified by [17]. There are four categories, parametrized by a choice of 
bicharacter of Z2 × Z2, and a choice of sign. The quantum group construction uses q1
and q2 primitive eighth roots of unity, and different choices for q1 and q2 yield only two 
inequivalent categories, which are Cζ8,ζ8 and Cζ5

8 ,ζ8
where ζ8 = e2πi/8. By comparing the 

braidings with those of the TY-categories [14], we see these two categories account for 
the two TY-categories with bicharacter χc (in the notation of [17], Section 4).

The other two TY-categories (with bicharacter χ1 in the notation of [17], Section 4), 
are obtained by applying the construction in the previous remark to Cζ8,ζ8 and Cζ5

8 ,ζ8
. 

They have a based semisimple presentation obtained by replacing the Fourier equation 
(c) with the different equation (c′) above.

The only places where the arguments in this section break down for n2 = n1 = 3 are 
Lemmas 3.12 and 3.14, where two possibilities for ρ(P ) were excluded. When n1 = n2 =
3, neither of these possibilities cannot be excluded. As mentioned above, the possibility 
excluded in Lemma 3.14 corresponds to the TY categories not obtained as Cq1,q2 . On 
the other hand, it can be checked that the possibility excluded in Lemma 3.12 is also 
possible, and provides an alternate presentation for Cq1,q2 (see Remark 3.13). Thus the 
classification technique of this section works for n1 = n2 = 3 as well.1

1 We thank the referee for suggesting this.



342 D. Copeland, C. Edie-Michell / Journal of Algebra 619 (2023) 323–346
Putting everything together, we have found morphisms P and Q in C which satisfy 
the relations of the based semisimple presentation for Cq1,q2 . As explained in the prelim-
inaries, the fact that C and Cq1,q2 have the same fusion rules implies C is equivalent to 
Cq1,q2 as a pivotal tensor category.

4. Classification of braidings

In this section we classify all braidings on the fixed monoidal category Cq1,q2 . We will 
show that the eight braidings given in Definition 2.1 and described in Proposition 2.7
are the only braidings on Cq1,q2 .

We begin by considering the two distinguished subcategories Aad
q1 and Aad

q2 . As these 
subcategories are equivalent to SO(3) type categories, we know that if the order of q2

i is 
greater than 4 and not equal to 6, then their braidings are classified by a choice of q±1

1
and q±1

2 [16].2
The next lemma shows that the braidings on these subcategories determine the 

braiding on their product (which as explained at the start of Section 3 is the adjoint 
subcategory of Cq1,q2).

Lemma 4.1. Let C and D be semisimple tensor categories, with universal grading groups 
[8, Definition 4.14.2] U(C) and U(D). Then braidings on C � D are determined by braid-
ings on C and D, together with a bicharacter

a : U(C) × U(D) → C .

Proof. First we show how a braiding on C � D gives rise to braidings on C and D and 
a bicharacter. Clearly the braiding on the product gives braidings on the factors. Now 
suppose X is an object of C and Y an object of D. Then the braiding

c1�Y,X�1, : 1 � Y ⊗X � 1 → X � 1 ⊗ 1 � Y

describes a morphism aX,Y ∈ EndC �D(X �Y ). The naturality of the braiding on C � D
implies aX,Y is an automorphism of the identity functor of C � D. If we fix one of the 
factors (say fix an object X in C) then the hexagon identity for the braiding implies 
aX,− is identified with a monoidal isomorphism of the identity functor of D. In other 
words, the morphisms aX,Y for X fixed are described by a character of U(D). The same 

2 In the case that the order of q2
i is either equal to 6, or less than or equal to 4, we have that ni ∈ {3, 5}. 

The results of [16] do not apply, and there exist additional Tannakian braidings on the categories Aad
qi

. 
These Tannakian braidings come from the categories Rep(Z2) and Rep(S3) respectively. We can repeat 
the analysis of this section for these special cases. We find that these Tannakian braidings cannot lift to 
braidings of the categories Cq1,q2 . Furthermore, in the case of n1 = 3, we have that only two of the braidings 
on the subcategory Aad

q1
� Aad

q2
lift to the category Cq1,q2 . However in this case each of these two braidings 

on Aad
q1

� Aad
q2

has four extensions to Cq1,q2 . Hence these special cases are still covered by Theorem 1.1
(albeit via a non-natural bijection). We leave the details to a motivated reader.
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considerations hold when fixing an object Y of D, and the conclusion is that aX,Y may 
be identified with a bicharacter of U(C) × U(D).

Now we show that braidings cX1,X2 on C and dY1,Y2 on D together with a bicharacter 
a uniquely determine a braiding on C � D. Suppose X1, X2 are in C and Y1, Y2 are in D. 
Then the braiding in C � D on (X1 � Y1) ⊗ (X2 � Y2) factors as

(cX1,X2 � dY1,Y2) ◦ (1 ⊗ aX2,Y1 ⊗ 1)

which shows how the braiding on the product is completely determined by c, d and a. �
Corollary 4.2. There exist four distinct braidings on the subcategory

Cad
q1,q2 = Aad

q1 � Aad
q2 .

These are parameterized by the four choices of q±1
1 and q±1

2 .

Proof. The universal grading group of Aad
q is trivial, so by the previous lemma the 

braiding on Cad
q1,q2 is determined by the braidings on the factors. By the classification 

of braidings on SO(3) type categories by Tuba and Wenzl [16] there are exactly two 
braidings on Aad

q , parametrized by the choice of q or q−1. �
Let us fix one of these four possible braidings. As the monoidal category Cq1,q2 is 

determined up to q1 → q−1
1 and q2 → q−1

2 , we can freely choose q1 and q2 so that this 
braiding corresponds to the choice q+1

1 and q+1
2 in the above lemma. In particular using 

[16, Lemma 8.4] we see the twists of P and Q are q4
1 and q4

2 respectively. As R ∼= P ⊗Q

we can use Corollary 4.2 to see the twist of R is (q1q2)4. Summarizing, we have the 
following twists in Cq1,q2 :

θ1 = 1, θP = q4
1 , θQ = q4

2 , and θR = (q1q2)4.

With these twists in hand, it is straightforward to determine all possible braidings on 
Cq1,q2 compatible with the fixed braiding on Cad

q1,q2 .

Lemma 4.3. There exist two braidings on Cq1,q2 which restrict to a fixed braiding on Cad
q1,q2 .

Proof. For this proof it is more convenient to work in the idempotent basis of 
EndCq1,q2

(X ⊗X). The braiding on Cq1,q2 is determined by

= α1
1

[2]1[2]2
+ αPP + αQQ + αRR,

where α1, αP , αQ, αR ∈ C. As we know the twists on 1, P, Q, and R we can use the 
balancing equation [8, Equation 8.32] to find
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1 = θ2
Xα2

1, q4
1 = θ2

Xα2
P , q4

2 = θ2
Xα2

Q, and (q1q2)4 = θ2
Xα2

R.

This allows us to determine αP , αQ and αR in terms of α1, up to sign. For some 
εP , εQ, εR ∈ {−1, 1} we have

αP = εP q
2
1α1, αQ = εQq

2
2α1, and αR = εR(q1q2)2α1.

To determine α1 and the three signs, we use that the inverse of the braiding is equal to 
its Fourier transform [15, Theorem 2.5], as follows. Using Eq. (5), we have

= αR +
(
α1 − αR

[2]1[2]2

)
+ (αQ − αR)P + (αQ − αR)Q.

Applying the Fourier transform and using the Fourier relations for P and Q we find

ρ

( )
=

(
α1 − αP − αQ + αR

[2]1[2]2

)
+
(
αR + αP − αR

[2]22
+ αQ − αR

[2]21

)

+ (αQ − αR)[2]2
[2]1

P + (αP − αR)[2]1
[2]2

Q.

On the other hand,

( )−1

= α−1
1

1
[2]1[2]2

+ α−1
P P + α−1

Q Q + α−1
R R

= α−1
R + α−1

1 − α−1
R

[2]1[2]2
+ (α−1

P − α−1
R )P + (α−1

Q − α−1
R )Q.

Now the equality ρ 
( )

=
( )−1

produces 4 equations:

α−1
R = 1

[2]1[2]2
(α1 − αP − αQ + αR)

α−1
1 − α−1

R

[2]1[2]2
= αP

[2]22
+ αQ

[2]21
+ αR

(
1 − 1

[2]21
− 1

[2]22

)

α−1
P − α−1

R = [2]2
[2]1

(αQ − αR)

α−1
Q − α−1

R = [2]1
[2]2

(αP − αR).

The last two equations yield

[2]21(2 − εP εR(q2
2 + q−2

2 )) = [2]22(2 − εQεR(q2
1 + q−2

1 )).
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Solving this equation shows four cases:

εP = εQ = −εR for all q1 and q2,

εP = εQ = εR for q1 = ±q±1
2 ,

εP = −εQ = εR for q2
1 = −1, or q4

2 = −1,

εP = −εQ = −εR for q4
1 = −1, or q2

2 = −1.

Immediately we can disregard the latter two cases, due to Remark 3.3. In the second 
case we can use the third equation to find

α2
1 =

{
±1 if q2 = ±q−1

1

∓q−6
1 if q2 = ±q1.

However we can now consider the first equation which tells us that either q4
2 = −1 or q2 is 

a primitive 6-th root of unity, both of which have already been dealt with in Remark 3.3.
Finally we have the first case. Again we use the third equation to find

α2
1 = 1

q3
1q

3
2
.

Comparing this to the first equation shows that εP = −1. Hence we have two possible 
solutions for the braiding, corresponding to the two square roots of α2

1 = 1
q3
1q

3
2
. These 

two braidings exist as they are realized in Proposition 2.7. �
Putting everything together, we have classified all braidings on the categories Cq1,q2 . 

This completes the proof of part 2 of Theorem 1.1.
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