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1 Introduction

Given a pair of atom-free Borel probability measures y and v on R, the monotone rearrangement theorem
asserts that the function y = y(x) defined implicitly by

X y(x)

I dy = f dv

—00 —00
is measure preserving, i.e.,

u(y %(&)) = v(&) forany Borel set & c R.

In particular, y is unique u almost everywhere and can be made to be monotone, or, equivalently, the
derivative of a convex function.

When R is replaced by R", however, before Brenier’s discovery [1], a proper generalization of the
monotone rearrangement theorem was myth, and only after the work of McCann, in [12], was the myth
made real. Precisely, he proved that if y vanishes on every Lipschitz (n — 1)-dimensional surface,! then a
convex potential u : R" — R U {+0c0} exists whose gradient map Vu = Vu(x) is unique y almost everywhere
and pushes u forward to v, i.e.,

In honor of David Jerison for his 70th birthday.

1 McCann actually assumes that p vanishes on all (Borel) sets of Hausdorff dimension n — 1. This guarantees that the set of
nondifferentiability points of a convex function are p-negligible. However, this assumption can be weakened. Since convex
functions are differentiable outside of a countable union of Lipschitz hypersurfaces [14], McCann’s theorem holds assuming that
J vanishes on every Lipschitz (n — 1)-dimensional surface.
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u(Vu)y(&)) = v(&) for any Borel set & ¢ R™.

(Brenier’s theorem guaranteed the same conclusion as McCann’s theorem, but under some restrictive
technical conditions on y and v.)

The first general regularity result on these Brenier-McCann maps was proved by Caffarelli in [4]:
provided that u and v are absolutely continuous with respect to n-dimensional Lebesgue measure #",
their respective densities f and g vanish outside of and are bounded away from zero and infinity on open
bounded sets X and Y, respectively, and Y is convex, he showed that u is strictly convex in X (see, e.g., the
proof of [7, Theorem 4.6.2]). This result opened the door to the development of a regularity theory for
mappings with convex potentials based on the regularity theory for strictly convex solutions to the Monge-
Ampére equation [2]; indeed,

f .
g(Vu)

Unfortunately, Caffarelli’s boundedness assumptions on the domains X and Y are restrictive, since
many probability densities, especially those found in applications, are supported on all of R™: Gaussian
densities, for example. Motivated by this, in [5], Cordero-Erausquin and Figalli showed that, in several
situations of interest, one can ensure the regularity of monotone measure-preserving maps even if the
measures under consideration have unbounded supports. However, missing from their collection is the
situation where Y is an arbitrary convex domain. Lifting this restriction is a main goal of this article.

(Vu)sf = g is formally, at least, equivalent to det D%u =

1.1 Results

Our main theorem is an extension of Caffarelli’s theorem, on the strict convexity of u, in two ways. First, we
allow X and Y to be unbounded. Second, we permit X and Y to carrying certain invariant measures that we
call locally doubling measures (qualitatively, our notion replaces balls in the classical notion of a doubling
measure with ellipsoids, in order to account for the affine invariance of our setting).

Definition 1.1. A nonnegative measure A is locally doubling (on ellipsoids) if the following holds: for every
ball 8, there is a constant C > 1 such that

AE) < CA(%S)

for all ellipsoids & ¢ B with center (of mass) in spt(1). Here, %8 is the dilation of & with respect to its center
by 1/2.

This notion of doubling was introduced by Jhaveri and Savin in [11].2 That said, the first consideration
of measures with a “doubling-like” property in the world of solutions to Monge-Ampeére equations can be
traced back to the work of Jerison [9] and then Caffarelli [3]. In particular, in [3], Caffarelli showed that
Alexandrov solutions to

detD% =p,

where the measure p is doubling on a specific collection of convex sets called sections?, share the same
geometric properties as Alexandrov solutions to Monge-Ampeére equations with right-hand sides compar-
able to Lebesgue measure [2].

We now state our main theorem.

2 This family of measures is strictly larger than the family of measures locally comparable to Lebesgue measure on their
supports. (See [11] for examples of locally doubling measures not comparable to Lebesgue measure on their supports.)
3 These are sets of the form {v < ¢} for any affine function €.
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Theorem 1.2. Let u and v be two locally doubling probability measures on R" that vanish on Lipschitz
(n - 1)-dimensional surfaces and are concentrated on two open sets X and Y, respectively, and suppose
that Y is convex. Then any convex potential u associated to the Brenier-McCann map pushing u forward to v is
strictly convex in X.

Remark 1.3. It is well known that Y needs to be convex. When Y is not convex, u can fail to be strictly
convex and Vu can behave rather poorly. If we consider Pogorelov’s counterexample to the strict
convexity of solutions to the Monge-Ampére equation in three dimensions, we see that Y needs to be
convex in order to guarantee the strict convexity of potentials of Brenier-McCann maps. In particular, let
u(x', x3) = |X'I*3(1 + x3), let Q, = {|xj| < r/2 for i = 1, 2, 3} be the cube with side length r > 0 and centered
at the origin inR3, and let ¥ = Vu(Q,). If r « 1, then f = det®D?u is analytic and positive in Q,, and Vu is the
Brenier-McCann map pushing forward u = (f /|Ifll zq,))L?|_Qr tov = 1/ L3(Y)L3|_Y.Theset Y is open
but not convex, and u = 0 along {x’ = 0}. Moreover, as demonstrated in, for instance, [4,10], Vu easily fails
to be continuous when Y is not convex.

Remark 1.4. While the target measure v need not vanishes on all Lipschitz (n — 1)-dimensional surfaces in
order to invoke McCann’s theorem (which asks this only of the source measure y), it must in order to ensure
that our main theorem holds. If y = 4?| @, is the uniform measure on Q, the unit cube centered at the
origin in R? and v = #1_Q, n {x, = 0} is the 1-dimensional Hausdorff measure restricted to the central
horizontal axis of Q;, then the Brenier-McCann map pushing p forward to v is the projection map
(3, %) — x. Up to a constant, this map’s convex potential is %xlz, which is not strictly convex. With respect
our proof of Theorem 1.2, asking this of both y and v guarantees the validity of the mass balance formula in
Lemma 2.1 (see also Remark 2.2), our main tool.

Remark 1.5. A simple case to which Theorem 1.2 applies, but the corresponding results in [4, 5] do not, is
when u = g 23| {|xn| <1} x R2and v = g£%| _R? x {|x;| < 1}, and g is the standard Gaussian density on R3
appropriately normalized to make y and v probability measures.

With our main theorem in hand, our second and third theorems further extend the known regularity
theory for monotone measure-preserving maps, completing the story started by Cordero-Erausquin and
Figalli in [5] on monotone transports between unbounded domains.

Theorem 1.6. Let yu and v be two locally doubling probability measures on R" that vanish on Lipschitz
(n — 1)-dimensional surfaces and are concentrated on two open sets X and Y, respectively, and suppose
that Y is convex. Then the Brenier-McCann map Vu pushing u forward to v is a homeomorphism from X onto a
full measure subset of Y. Moreover, for every A € X, a constant a > O exists such that Vu € C%%(A).
Furthermore, Vu(X) = Y whenever X is convex.

Theorem 1.7. Let f and g be two functions on R" that define locally doubling probability measures concen-
trated on two open sets X and Y , respectively, and suppose that Y is convex. Assume that f and g are bounded
away from zero and infinity on compact subsets of X and Y, respectively. Then for every & € X, a constant
€ > 0 exists such that any convex potential u associated to the Brenier-McCann map pushing f forward to g is
W2L+¢(g), Also, Vu is locally a C¥*B-diffeomorphism from X onto its image provided f and g are locally C*#
in X and Y, respectively.

Remark 1.8. We note that the proof of the Theorem 1.7, given the strict convexity of u (provided by Theorem
1.2), is classical. Indeed, it suffices to localize classical regularity results for the Monge-Ampére equation.
We refer the reader to [7, Section 4.6.1] for more details.
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1.2 Structure

This remainder of this article is structured as follows.

In Section 2, we prove Theorem 1.2. Our proof is self-contained apart from some facts in convex
analysis; we provide explicit references to these used but unproved facts. We remark that our proof is
inspired by the proof of the Alexandrov maximum principle in [11] (and, of course, Caffarelli’s original proof
of the strict convexity of potential functions of optimal transports/solutions to Monge-Ampére equations). If
the reader is familiar with [5] or [4], then they might consider directing their attention to Case 2. Case 2b is
completely novel. Case 2a illustrates our argument in the setting of [4], which builds on the work of [2] and
is the foundation for Case 2b.

Section 3 is dedicated to the proof of Theorem 1.6. Our proof here is similarly self-contained (and an
adaptation of Caffarelli’s argument of the same result in [2], but, of course, using the line of reasoning
developed to prove Theorem 1.2). The Holder regularity of Vu is a consequence of appropriately localizing
the arguments of [11].

2 Proof of Theorem 1.2

Before we begin, it will be convenient to replace the potential u by the following lower-semicontinuous
extension of u outside of X:*

u(x) = sup {u(z) +p-(x - 2)}.
zeX
pedu(z)

Observe that u|y = u|x. For notational simplicity, we shall not distinguish u from u; so when we write u in
what follows, we mean u.

We shall denote the domain of u by dom(u), namely, dom(u) = {u < +00}. Note that dom(u) is convex.
We recall that convex functions are locally Lipschitz inside their domain [7, Appendix A.4]. Furthermore,
we shall denote the convex hull of a set A by conv(A).

Let ¢ define a supporting plane to the graph of u at a point in X. Precisely,

ex) =u(z) + p (x — z) forsome (z,p) € X x R"
and ¢ < u. Note that
Z={u=¢={u<t}
is closed, as u is lower-semicontinuous,
2, X c dom(u),
and, because Y is convex,
(R cu(X) cY and L"(Y\ou(X))=O0. 2.1

(A proof of (2.1) can be found in [5].)

Recall that an exposed point X of £ ¢ R" is one for which there exists a hyperplane IT ¢ R" tangent to X
at X such that IT n £ = {x}. Also, remember that optimal/monotone transports balance mass, in the fol-
lowing way.

4 Here, 0u(z) is called the subdifferential of u at z and is defined as follows:
uz) ={p eR": u(x) >u(z) + p (x - z) forall x € X}.

Moreover, for a set & ¢ R", we define ou(&) = Uzegdu(z).
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Lemma 2.1. (Mass balance formula) Letu : R" — R U {+00} be convex and such that (Vu)yu = v where u and
v are two Borel measures that vanish on all Lipschitz (n — 1)-dimensional surfaces. Then for all Borel
sets & c R",

U(E) = V(Ru(E)).

Remark 2.2. The mass balance formula was originally proved for measures that are absolutely continuous
with respect to Lebesgue measure [13, Lemma 4.6]. However, with respect to absolute continuity, the proof
only relies on the measures in question not giving mass to the set of nondifferentiable points of a convex
function. As observed in Section 1, such points are contained in a countable union of Lipschitz (n — 1)-dimen-
sional surfaces. So the set of nondifferentiable points of a convex function is negligible both for y and v under
our assumption.

Finally, recall that if a nonnegative measure is locally doubling (on ellipsoids), then it is locally
doubling on all bounded convex domains [11, Corollary 2.5]. After this preliminary discussion, we can
now prove our main theorem.

Proof of Theorem 1.2. Proving that u is strictly convex in X corresponds to proving that for any supporting
plane ¢ to (the graph of) u at a point in X, the set £ = {u = ¢} is a singleton. Assuming that Z is not a
singleton, we will show that £ both has and does not have exposed points, which cannot be; thus, Z is a
singleton, as desired.

Case 1. X has no exposed points. If £ has no exposed points, then ¥ > Re for some unit vector e. In
turn, ou(R"™) c et [7, Lemma A.25]. But this is impossible given (2.1):

0 < Z"(u(X)NY) < " uRM nY) < (et nY)=0.
Case 2. T has an exposed point £ in X. Up to a translation and a rotation, we can assume that
£=0eX, Zc{x<0}, and XIn{x=0}={0kL

Since X is open and X N X is nonempty by construction, there is a point x;;; € £ N X and a ball centered at
this point completely contained in X. Thus, up to a shearing transformation x — x — nx withn - e; = 0, and
a dilation, we may assume that

Xt = —€; and By(-e) e X
for some d > 0. Finally, up to subtracting € from u, we can assume that
¢£=0.

Case 2a: O ¢ int(dom(u)) N X. As our exposed point O and all of the points in B4(—e;) belong
to int(dom(u)), which is convex (and, by definition, open), the convex hull of the union of 8,(-e;) and
{0} is contained in int(dom(u)). So there exists an open, bounded set U e int(dom(u)) containing
conv(By(—e;) U {0}). Moreover, we know that

ou(U) c conv(Vu(U)) =Y c Bg nY

for some R > 0 [7, Lemma A.22]. Let u* be the Legendre transform of u, namely,

u*(q) = sup{q - x — u(x)} (2.2)
xeR"
and define
Q = u(Y) > U.

Recalling that ou and ou* are inverses of each other [7, Section A.4.2], we deduce that (Vu)yp =y, where
p=u_Q and y:=v[ Y.
In particular, if we let ¢ : R" - R U {+00} be defined by
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P(x) = sup fu@ +p-(x -2},
ze
pedu(z)
then, by construction, ¢ and u agree on Q, ¢ is (globally) Lipschitz,
0pR") = 0p(Q) =Y,

and O € Q is an exposed point for {¢p = 0} = {¢p < O}.
Now, let ¢ (x) = ¢p(x) — €(x + 1) and define

So={p=0n{q=>-1 and S.:={¢, <0}
Also, let y, be defined by
Y, = (Id — €ey)yy.

Notice that, by construction, S, is compact, Sg € {q < 0}, 0, —e; € Sp, and S, — Sy in the Hausdorff sense
as € — 0; in particular, there exists O > 0 such that

S. c Bp forall € « 1.
Also, if a; > 0 is such that I, = {x; = a.} is a supporting plane to S, we see that
a—>0 ase—0
and

£ = 1$,(0)] < maxl| < (1 + ap)e.

Let A, be the John transformation (affine map) that normalizes S, [6]:
Aex = Lx = Xe),

where x; is the center of mass of S, and £, : R" — R" is a symmetric and positive definite linear transfor-
mation. Set

. A .
.00 = w and &, = ALSy).
Then
By c 8, c By
and

1=|¢,(0)| < max|¢,| <1+a. with O = AL0).
Se
Recall that affine transformations preserve the ratio of the distances between parallel planes; therefore,
letting IT_; = {xq = -1}, Iy = {x = O}, and II; := AL fori = -1, 0, £, we have that

dist(fly, [,)  dist(lo, ) ac
dist(fl;, I1,)  dist(Il_, II,)) 1+ a,

In turn,

ag
1+ ag

dist(0;, 3S;) < dist(flo, 1) < dist(f1_y, 1) < diam(8y)a, < 2n3/%a,,

and considering the cone generated by S, over (0, J)s((")g)), we find that

€

r, oy . 1
K, = conv(Brn U {a—"el}] C P(Se) with 1, = 27
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(For more details on this inclusion, see, e.g., [7, Theorem 2.8].) So if we let
e = (Ayp and  j. = (€L
then (V(;Bg)#ﬁg = ¥., and, by the mass balance formula,
(K < 70B(30) = u(3e) < p.(B,012).
On the other hand, since S, ¢ 85 and S, > B, for € < 1, we see that
[Aw) — ALl2)| = %lw —z| forall w,z e R"

In turn, for e <« 1,

Qe = ALQ) > ALBa(-€1) > Ba(AL-e1).
Therefore, if we define

Sea= {dist(~,638) > i},
2D
then there exists a dimensional constant C, > 0 and a point Z; such that
ABa(—e) N Seq > B 4 (Za).
Also, by, for example, [7, Corollary A.23],
0P(Se.a) € Beo.
Thus, forall € <« 1,
B (810) < i (Bawr(E0) < Cli (B0, Co)) = Chp(8.4.Go)),

where fi, = (A)uu, the number k € N is such that 2n’/2 < 2’<£

(2.3)

(2.4)

, and C, is the doubling constant for u in

B,pr32. (The last equality holds since Ji, and g, agree on Q..) Moreover, by using the mass balance formula

again, we deduce that

7(8.4,G0) < A(ALBA-e0) 1 Se.) = TOGALBa(-eD) 1 Se.a)) < 7o(Ber)

(2.5)

for all € < 1. Consequently, combining the three chains of inequalities (2.3), (2.4), and (2.5), we have that

AKe) < Clii(Bep)-

Now, let t,e; € K, form =1,..., M be a sequence of points chosen® so that

%7(,,, C K\ K1 with Ky, = conv(B," u {tmel}) and Ko = B,.

M
By construction, {%V(m} is a disjoint family, and
m=1
M= M(a;) - co as a; — O.

Hence, since e LK) ¢ Y, we find that

(2.6)

(2.7)

5 A possible way to construct such a sequence is to choose t, = 5". To ensure that t,e; € K. for any m = 1,..., M, one

needs M < 108m-logas
log5



8 =—— Alessio Figalli and Yash Jhaveri DE GRUYTER

M M
- . (1 .
Mi(Br) < Y 0K <Gy Y, yg(gwm) < Cy(Ko),
m=1 m=1

with C, denoting the doubling constant for y in B,&, which is the same as the doubling constant for v in
Bog; since Y is convex, y inherits its doubling property from v. All in all, considering the aforementioned
chain of inequalities and (2.6) and denoting by j € N the smallest number such that % < 2r,, we see that

0 < Mj(By,) < CiCi(Be2) < CiC)7(B1),
or, equivalently,
M < Ciei
But this is impossible for small €, concluding the proof.
Case 2b: 0 € d(dom(u)) N X. In this subcase, let u(x) == u(x) — (4 + 1) and define
So=2n{q>-1} and S;:={u. <0}
Like before, for all € < 1,
S: ¢ Bp
for some D > 0. Here, however, as 0 € d(dom(u)), we have that

1

0i(Se) > conv(By, UR'er)  with 1, = —.

The function i, is defined in an analogous fashion to how (;5s was defined in Case 2a (but replacing ¢ by u)

and, again, S; := A(S,) with A, denoting the John map associated to S, whose linear part is £,. In turn,
arguing as we did in Case 2a, where again k ¢ N is such that 2n3/2 < Zk% and C, is the doubling constant
for p in B,4,3/2, but in the original variables, we deduce that

W(eLAKD) < Clu(eLe(Be9))

for all € « 1 (cf. (2.6)). Here, instead, v; = (Id — €e;)yv and
K = conv(B,n u {r—"el}).
£

|Le(e)] = |AL0) — A(-ey)| < 2n3/2,

Now notice that

Moreover, we claim there exists an N > 2n3/2 > 0 such that

leLl < N forall € « 1.

Indeed, if not, then we can find a sequence of points z, € S, and slopes p. € du.(z.) N span(Sy)* such that
[pe] — oo. In particular, in the limit, we find a point zy € Sg such that du(zy) N span(Sp)* contains a
sequence of slopes {p;}jey with |p;| = j. But as p; € span(So)*, we see that p; -(x — zo) =p; - x = pj -(x - 2)
for any z € Sy. Hence, p; € du(z) for all z € Sy and j € N. However, this is impossible; Sy N int(dom(u)) is
nonempty, and on this set, u is locally Lipschitz, proving the claim.

Therefore,

eL(K,) c By and SLE(B%) C Beow.
And so, arguing exactly like we did in Case 2a, we find that
M < creir,

where C, is the doubling constant for v in B¢pa ¢ and M = M(e) — oo ase — 0 is the analogous count for
this case’s K. (cf. (2.7)). But, again, this is impossible.
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Case 3. X has an exposed point X in R"\ X. In this case, up to a translation, a dilation, a rotation, and
subtracting ¢ from u, we can assume that

£=0, Zc{q<0}, €¢=0, and Sp=2n{x=-1} e R"\X.
Like before, let u.(x) = u(x) — €(x; + 1) and define
Se={u. <0} and v :=(Id — gepyv.
Again, S, — Sgas e — 0, so
diam(S,) < 2diam(S,) and S, € R"\X
for all € « 1. For these small positive &, then,
0 = u(Se) = ve(ue(Se))s

where the second equality follows from the mass balance formula. (Recall that u vanishes on R"\X.)
Moreover, as VY is convex,

u(S,) C spt(v,) = Y — ce;

(cf. (2.1)). Thus, any open subset of ou.(S,) must be in the interior of the support of v;. In turn, considering
the cone generated by dS; over (0, u.(0)), for 0 < € <« 1, we find that

u:(0)l

0 = v:(3u(Se) 2 v(B,,) >0 with r, = Fam(Sy"

(Again, for more details on this inclusion, see, e.g., [7, Theorem 2.8].) This is a contradiction and concludes
the proof. O

3 Proof of Theorem 1.6

Again, we replace u by its lower-semicontinuous extension outside of X, exactly as we did at the beginning
of Section 2. We split the proof into three parts.

Part 1. u is continuously differentiable inside X. We follow the argument used to prove [2, Corollary 1].
Assume for the sake of a contradiction that the result is false. Up to a translation, let 0 € X be a point at
which u has two distinct supporting planes. After a rotation, dilation, and subtracting off an affine function
from u, we may assume that

u(-sey)

u(x) > max{x, 0}, u(0)=0, and -0 ass—0.

Now consider the function u, defined by

Us(x) == u(x) - 70q + 20) with 7:= w.

Note that 7 — 0 as 0 — 0. If
So = {uys < 0},
then, by the strict convexity of u provided by Theorem 1.2, we see that
Sy € Bp € X n int(dom(u))

for some D > 0 and for all 0 « 1; also, for these small positive o,
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ue(Sy) Cc BrNY

for some R > 0. Moreover, if I1_, := { = —a} and II, := {} = b} denote the two parallel planes that tangen-
tially sandwich S,, we see that

210
a>o and b<1 ,

provided o > O is small enough to guarantee that 7 < 1. Furthermore,

max|ug| = |ug(0)| = 210,
S

o

and

ist(IL.. II 2
dist(Tlp, Ilp) b b T .0 as 00— 0,
a

= < <
dist(Il_4, 1) a+b 1-71

where Iy == {x = 0}.
Now, set

U(A,'%)

and S, = ALSy),
210

ly(x) =
where A, is the John map that normalizes S,. Arguing as we did in the proof of Theorem 1.2, we find the
same contradiction as we did in Case 2 when 7 sufficiently small; the only difference is that we consider a
slightly different chain of inequalities:

oK) < TS = 1o(So) < Gl 531) - cyvg(aag(gsa)) < Ci(B))

(cf. (2.6)), where i, and V; are defined so that (Vii,)ufi, = V; and

L +n(-1) . 1
Ky=conv|B, U{L—" ‘e with r, = ——.
o ( I { o7 l}] n 27’13/2

This proves that u is differentiable.
By [7, Lemma A.24], for example, we know that differentiable convex functions are continuously
differentiable. So we conclude that u is continuously differentiable in X.

Part 2. Vu(X) = Y when X is convex. Because Vu is continuous in X, its image V' = Vu(X) is an open set of
full v-measure contained inside Y. Also, as the assumptions on y and v are symmetric, the optimal
transport map Vv from v to y is continuous, and X' := Vv(Y) is an open set of full y-measure contained
inside X. Hence, by recalling that Vu and Vv are inverses of each other [8, Corollary 2.5.13], we conclude
that X' = X and Y’ = Y, as desired.

Part 3. Vu is locally Holder continuous inside X. Thanks to the strict convexity and C! regularity of u, we can
localize the arguments of the proof of [11, Theorem 1.1] to obtain the local Holder continuity of u inside X.

More precisely, if u* denotes the Legendre transform of u (2.2), as in [11], one can show that u* satisfies a
weak form of Alexandrov’s maximum principle [11, Lemma 3.2], from which one deduces the engulfing
property for the sections of u* [11, Lemma 3.3]. Iteratively applying this engulfing property, one obtains a
polynomial strict convexity bound for u*. This bound implies the local Holder continuity of u inside X [11,
Proof of Theorem 1.1]. We leave the details of this adaptation to the interested reader.
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