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Abstract—With the rapid recent growth of automation and
artificial intelligence, human-robot collaboration (HRC) is playing
a significant role across a variety of fields. Trust between humans
and robots is an important element to enable the efficiency and
success of HRC. The lack of trust of humans in robots can have
critical consequences, especially in real-world applications in
which humans must adapt to unfamiliar situations. In this work,
we develop a novel and effective approach for robots to actively
reason and respond to dynamic human emotions and trust levels
during shared tasks. We implement a real-world validation
experiment in the context of human-robot object hand-over, which
shows the robot’s ability to correctly identify and predict the
human’s trust levels in real-time and assist the human accordingly
in human-robot collaborative tasks. Future work on how to improve
the performance of the proposed approach is also discussed.

Keywords—Robotics, human-robot interaction, trust, computer
vision, Extreme Learning Machine

I. INTRODUCTION

In a world facing many human struggles, robots who are
stronger, speedier, and smarter hold the key to breaking through
many centuries-old roadblocks. With the rapid recent growth of
automation and artificial intelligence, human-robot collaboration
(HRC) is playing a large role across a variety of fields [1-3]. In
the present day, robots have made their way into a variety of
vastly differing but equally significant fields. For instance, their
superior strength and durability are utilized in the areas of labor-
intensive manufacturing and product assembly. Human-robot
hand overs, which are used to optimize the robot’s strength and
precision and the human’s flexibility and knowledge, play a key
role in this collaboration [4]. Other fields involving robots
require them to be more intelligent or have increased computing
power. These areas often involve high-risk situations, such as
advanced surgeries, search and rescue missions, military defense,
and assistant care for the injured, disabled, and elderly [5-7].

In many of these areas, robots are still seen as tools to be
manipulated rather than teammates for humans to work
alongside [8]. However, advancements are being made to allow
robots to take more of an autonomous, teammate-like role in
HRC situations [9, 10]. For example, in the 2015 disaster relief
project TRADR, robots utilized semi-autonomous navigation
along with data gathering abilities, making use of their strengths
to contribute independently to the mission [6]. Moreover,
another research work about teaching-learning-collaboration in
intelligent manufacturing allowed robots to learn from human
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demonstrations and natural language inputs similar to a human
collaborator [11].

However, despite various advances in robotics and
technology, effective HRC will not occur simply by inserting
robots into human teams. In order to facilitate highly functioning
human-robot partnerships, trust must be forged between each
teammate. The establishment of the trust is especially important
in high-risk tasks, such as rescue missions and medical
procedures, where a human’s lack of trust in the robot may result
in a life-threatening mistake [12-14].

Several studies have been conducted to model the trust of
humans in robots in recent years. Researchers have defined
various metrics with which to quantify trust and developed
models to classify trust [15-17]. However, while these studies
identify factors that affect trust between humans and robots,
methods to assess human-robot trust with higher accuracy and
approaches to increase human trust in robots are still being
developed. This should be addressed in order to increase the
effectiveness of HRC as well as to have quantitative measures
with which to compare different approaches.

A set of universal facial expressions mapping to emotions
are established and recognized over some studies. These
findings have been reproduced in numerous studies originating
from different cultures around the world, yielding strong
evidence for seven universal facial expressions: happiness,
sadness, anger, surprise, fear, contempt, and disgust [18]. Using
human facial features to detect or predict emotion, however, is a
more difficult task due to the variations present from one face to
another as well as the ability to accurately detect facial features
in relatively low-quality images. Several studies have set out to
accomplish this task using a variety of different approaches and
algorithms. Said et al. trained a face-sensitive convolutional
neural network in 2020 which reached a facial detection
accuracy of around 93% and emotion recognition accuracy of
around 95% [19]. Liu et al. applied a convolutional neural
network to emotion color transfer, their model reaching an
average classification accuracy of 73.17% [20].

However, throughout the various recent studies that attempt
to use facial expression to predict and classify emotion, most are
done through traditional machine learning methods such as
convolutional neural networks and do not exhibit very high
accuracy, especially in the case of prediction using non-
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standardized input. To this end, we develop an Extreme
Learning Machine (ELM)-based model, which has many
advantages compared with traditional machine learning
approaches, for robots to actively reason and respond to
changing human emotions and trust levels during shared tasks.

II. METHODOLOGY

A. Data Collection

1800 sample images of human facial expressions were
collected for training and testing of the personalized machine
learning model. The collection of these physiological biometrics
samples was conducted in Python through the OpenCV package
[21, 22], which was used to capture 1800 photos of the subject’s
face. The photos were distributed evenly among 6 subsets of
emotions: neutral, happy, angry, fear, surprise, and sadness.
Photos of contempt, disgust, and anger were collectively
grouped as “anger,” as there was no noticeable difference in the
photos for all three emotions.

After collecting these samples, the photos were processed
using the DLib Facial Landmark Point Detection library [23,
24]. 68 facial landmarks were labeled in each photo and indexed
from 0 through 67, as shown in Fig. 5. These labels consist of
the (x,y) coordinates of each landmark and are used in the facial
feature calculations in the following section.

B. Data Processing

10 features were defined as inputs to the ELM model. Each
feature is derived from the facial landmark map and describes a
distance, ratio, or angle between different landmarks. In addition
to the 4 features defined by previous studies [25, 26], 6 more
features were defined to improve the accuracy of the current
machine learning model. The features are defined as follows:

e Eye Aspect Ratio (EAR):

|P37.y—P41.y|+|P38.y—P40.y|
2%|P36.x—P39.x|

Fig. 1.

EAR = (1

Eye aspect ratio.

As shown in Fig. 1, EAR represents the aspect ratio of the
eye, which is calculated using the average length of the eye
divided by the width. This value is greater in expressions of
surprise and fear and smaller in anger or sadness.

e  Mouth Aspect Ratio (MAR):

P66.y—P62.y
P54.x—P48.x

MAR = 2

Fig. 2. Mouth aspect ratio.

As shown in Fig. 2, MAR represents the aspect ratio of the
mouth, which is calculated by dividing the length of the mouth
by the width. This value is higher in expressions of surprise or
happiness and smaller in anger and sadness.

e  Pupil circularity:
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Fig. 3. Pupil circularity.

As presented in Fig. 3, pupil circularity measures the size of
the pupil. Like EAR, this value is higher when the eyes are
wider, such as in surprise or fear.

e MAR over EAR (MOE):
MOE = Y48 “)

EAR

MOE is the ratio of MAR to EAR. As the MAR of an
individual increases, EAR is expected to decrease. Thus, this
ratio captures small changes in these two values.

e Eyebrow Angle (EBA):

EBA = Average(Dist(Pl'B,PZO) Dist(P23,P24)
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Fig. 4. Eyebrow angle.

As shown in Fig. 4, EBA measures the secant of the angle of
the front of the eyebrows. A person’s eyebrows are typically
more angled when angry, and they are more flat when happy or
relaxed.

e  Chin Aspect Ratio (CAR):
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Fig. 5. Chin aspect ratio.

As presented in Fig. 5, CAR measures the distance between
the upper cheek and the chin. This value typically increases
when expressing surprise.

Authorized licensed use limited to: Montclair State University. Downloaded on June 20,2023 at 17:52:11 UTC from IEEE Xplore. Restrictions apply.



e Eyebrow to Nose (ETN):
ETN = (|P21 — P27| + |P22 — P27])/2  (7)
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Fig. 6. Eyebrow to nose.

As shown in Fig. 6, ETN is the distance from the front of the
eyebrow to the nose bridge. This distance increases when the
eyebrows are lifted, such as when a person is happy, and it
decreases when the eyebrows are furrowed from anger.

e Left Mouth Corner Ratio (LMCR):

(P60.y—P48.y)

LMCR = —1 (P60.x—P48.x) ®)
e Right Mouth Corner Ratio (RMCR):
RMCR = —1 » E34y-Pety) )
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Fig. 7. Left and right mouth corner ratio.

As presented in Fig. 7, LMCR and RMCR measure the angle
of the corners of the mouth. This feature is angled upwards when
an individual is happy and downward when they are sad. A -1 is
applied to each quotient because the y-axis is inverted, so lower
y-axis values represent higher points on the face.

e Tip of Eyebrow (TOE):
TOE = Average((P21.y — P17.y),(P26.y — P22.y)) (10)
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Fig. 8. Tip of eyebrow.

As shown in Fig. 8, TOE measures the y-coordinate of the
front of the eyebrow versus the back. If the front is higher than
usual, this shows happiness, and if it is lower, it shows anger,
similar to ETN.

After the 10 features were calculated for each sample, the
data were then normalized so that each value falls between 0 and
1. Normalization was achieved using Eq. (11):

. Sample—Max
Normalized = 222pe—=2%

(11)

The data was then split using an 80:20 ratio into a training
subset and a testing subset.

Min—Max

C. Trust Reasoning via Extreme Learning Machine

The Extreme Learning Machine is the machine learning
model employed to predict human emotion and trust levels using
the 10 input features. ELM is a single hidden layer feedforward
neural network that is lightweight and has a very fast computing
time, which is advantageous for real-time training and prediction
[27-29]. Other advantages of ELM compared to traditional
machine learning models is that it has greater generalization
performance and is relatively simple to implement [30].

The structure of ELM is shown in Fig. 9:
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Fig. 9. Diagram of the Extreme Learning Machine.

In our work, the input layer consists of 10 nodes representing
the 10 features calculated in the previous section. In the
initialization phase, the ELM randomly assigns weights to each
input layer node, generating the hidden layer nodes. Each node
in the hidden layer is a combination of the input layer nodes,
with the weight of each node stochastically generated using a
continuous probability distribution. The mapping from the n-
dimensional input layer to the L-dimensional hidden layer H is
defined by Eq. (12):

h(X) = [g(al,bl,x), g(az,bz,x), "'!g(aL!bL! x)] (12)

where {(a;, b;)}-, represent the randomly generated weights
with a representing the input weight vector and b the hidden
node bias. Increasing the number of hidden layer nodes
generally increases the accuracy of the ELM.

The goal of the ELM is to calculate the correct weights to
map the hidden layer nodes to the final output, pictured on the
right of Figure 2. In other words, these weights serve as the
activation function mappings of the input facial features to their
respective emotion labels. In the training phase, these weights
are calculated and stored in the § matrix.

The output T of the ELM is described in Eq. (13):
T = Yio1 Bi * gi(ay* X + b) = h(x) * B (13)

Each hidden layer node, g;(a;,* x;, + b;), is multiplied by
its corresponding calculated weight from the S matrix to
calculate the output T. In the context of the current project, T
takes a discrete value between 0 and 5 denoting the 6 labels of
human emotion.

In order to choose the prediction that is most likely to be
accurate, the ELM minimizes the approximation error and the
norm of the output weights using the minimization function in
Eq. (14):
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min(B) A1l + ClIIHB = TII5? (14)

where HP is the output of the ELM, H is the hidden layer matrix
h(xl)] [ (a1'b1' X1) g(ay, by, x;)

h(xy) g(al’bpr) g(ay, by, xy

where N is the number of input features, and T is the learning
target matrix

l (15)

t11 tlm
(16)
tN tNl tNm
The optimal f matrix is calculated using Eq. (17):
B =CG+HTH)THTT (17)

where I is the L-dimensional identity matrix.

The resulting § matrix is used in the testing phase to select
the output with the highest likelihood based on the input
features. In other words, the f matrix uses the input facial
landmark data to select the emotion which is most likely being
expressed. Based on the predicted emotion, the outputs are then
grouped into three levels of trust: trust, low trust, and no trust.
This emotion-trust mapping is depicted in Table I.

TABLE L MAPPING OF EMOTION TO TRUST LEVELS
Emotion Trust level
Neutral Trust
Happy Trust
Surprised Low trust
Sad Low trust
Angry No trust
Fearful No trust

III. RESULTS AND ANALYSIS

A. Experiment Setup

After training and tuning the ELM model to achieve high
accuracy, the model was tested in a real-time experiment. The
experiment setup, shown in Fig. 10, included a webcam to
continuously capture frames of the participant’s face, the Franka
Emika Panda collaborative robot with 7 degrees of freedom
[31], a ThinkStation P520, and the human-robot collaborative
task. In our experiment, the task was for the human to hand an
object to the robot, which would receive it in varying ways
depending on the human’s facial expression and trust levels. The
facial expressions captured by the webcam were used by the
ELM to predict the trust level of the participant in each frame,
and the collaborative robot moved in response to this prediction.
The trust level prediction and robotic arm movement planning
were all computed on the ThinkStation. Depending on the trust
level predicted, the robot performed one of three actions, which
are shown in Table II. If the human shows an expression of trust,
the robot will continue to work at a relatively efficient pace.
However, if the human shows low trust, such as a surprised
expression, it will slow down and try to gently gain the human’s
trust. Lastly, if the human shows signs of no trust, the robot will

back away completely until the human shows trust again. Each
scenario was tested multiple times, and the robot’s responses
were recorded.

TABLE II. MAPPING OF TRUST LEVELS TO ROBOT MOVEMENTS
Trust level Robot movement
Trust Move to the human and pick the object at a normal pace.
Low trust Move to the human and pick the object at a slower pace.
No trust Back away and do not attempt to pick the object from the
human.

Camera

A f / %Hobm arm

Hand-over
object 't

Fig. 10. Experimental setup.

B. ELM Parameter Tuning

The ELM was trained using n = 1,440 samples, L = 500
hidden units, rectified linear activation function, and a
regularization factor C = 1. The regularization parameter C
determines how much the ELM should generalize from the
training to the testing subsets. A very high value for C will cause
the ELM to accurately learn and predict the correct output for
the training set, but it will fail to generalize the results to the
testing set. A very low value of C will overgeneralize the
predictions, and the accuracy of the ELM will be low overall.
Thus, as shown in Fig. 11, comparing the training and testing
accuracy (Y-axis) for a range of C values (X-axis), a value of 1
was chosen for the ELM. This value makes sure that the ELM is
able to achieve high accuracy but does not overgeneralize when
making predictions.

0.90

—— train accuracy
test accuracy

0.88 -

0.86 -

0.84 -

0.82

0.80 -

0.78

0.76

0 1 2 3 4 5

Fig. 11. Training and testing accuracies vs regularization factor C.

C. Offline Testing

The overall testing accuracy of the ELM in predicting human
trust levels is approximately 91%. The average running time was
0.6 seconds, exhibiting the ELM’s fast learning pace. The ELM
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is able to predict the correct corresponding trust level when
given a human facial expression input with high accuracy. In the
training phase, the ELM consistently reached an accuracy of
approximately 86% when predicting human emotion from the
six established labels. However, since multiple emotions map to
the same level of trust as defined in Table I, the overall accuracy
for trust prediction is higher. This is partially because
similarities exist between the emotions which map onto the same
trust level, so they are more likely to be mislabeled as the
corresponding emotion. For example, the emotions happy and
neutral are more likely to be mislabeled as each other while they
are rarcly labeled as anger or fear since they share few
similarities. By grouping similar emotions together, the ELM
output is less precise but more accurate, and thus it is able to
meet the goal of this project.

D. Application in Real-World Human-Robot Collaboration

The trained ELM model is validated in an online HRC task,
where it predicts the trust level of its human collaborator in real-
time. First, the robot assesses the human’s emotional state and
trust level. In the example in Fig. 12, the human is happy. The
robot correctly predicts that trust is being displayed and reaches
out to receive the object that the human is handing off. In a real-
world situation such as smart manufacturing, this process would
repeat as many times as needed. The robot would continuously
assess the human’s trust level and follow up with the appropriate
actions. In a scenario like Fig. 12, the robot will continue to work
at a relatively efficient pace, matching the human collaborator’s
high level of energy and trust. Online testing of the ELM showed
that it is a promising method that can be extremely helpful in an
online HRC situation.

T——

Fig. 12. Robot response to trust facial expression.

The robot can also detect and react to situations with low or
no trust, as shown in Fig. 13. human emotions cannot always be
positive, and the robot must learn this in order for effective

collaboration to take place. In Fig. 13, the human is angry. The
robot correctly predicts that no trust is being shown, and it backs
away to give the human time to calm down and recollect their
emotions. Only when the human shows a low trust or trust
expression, such as the one in Fig. 12, will the robot resume the
collaborative task. This validation exemplifies the robot’s ability
to understand and react to human emotion by choosing the best
course of action to accommodate their human collaborator’s needs.

Fig. 13. Robot response to no trust facial expression.

IV. CONCLUSIONS AND FUTURE WORK

To achieve safe and efficient human-robot collaboration, we
have developed and tested a novel and effective model for robots
to actively reason and respond to changing human emotions and
trust levels during shared tasks. An extreme learning machine
was used to enable the robot to predict human emotion and trust
levels with over 90% accuracy. Using this model, the robot is
able to correctly recognize and accommodate humans during
collaborative tasks in real-time. We have implemented a real-
world validation experiment in the context of human-robot
object hand-over, which showed the robot’s ability to correctly
identify and predict the human’s trust levels in real-time and
assist the human accordingly in human-robot collaborative tasks.
One area for future research is to develop methods to improve
the online application of this ELM model. Although the ELM
itself is very fast, the calculations of each facial landmark on the
face, as well as applying the defined features to compute all the
input nodes to the ELM, took numerous seconds to process one
frame. Thus, there was a lag between the time of the input facial
expression and the actual movement of the robot. In a real-world
application, this calculation time would have to be further
shortened to facilitate more effective HRC. Overall, the proposed
approach to trust prediction shows an efficient and accurate
solution to improve effectiveness in human-robot collaboration.
Further research will be conducted to improve calculation
speeds as well as further generalization of facial expressions in
order to build a more accurate and precise model for HRC.
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