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Reasoning the Trust of Humans in Robots through 
Physiological Biometrics in Human-Robot 

Collaborative Contexts 

Abstract—With the rapid recent growth of automation and 
artificial intelligence, human-robot collaboration (HRC) is playing 
a significant role across a variety of fields. Trust between humans 
and robots is an important element to enable the efficiency and 
success of HRC. The lack of trust of humans in robots can have 
critical consequences, especially in real-world applications in 
which humans must adapt to unfamiliar situations. In this work, 
we develop a novel and effective approach for robots to actively 
reason and respond to dynamic human emotions and trust levels 
during shared tasks. We implement a real-world validation 
experiment in the context of human-robot object hand-over, which 
shows the robot’s ability to correctly identify and predict the 
human’s trust levels in real-time and assist the human accordingly 
in human-robot collaborative tasks. Future work on how to improve 
the performance of the proposed approach is also discussed. 

Keywords—Robotics, human-robot interaction, trust, computer 
vision, Extreme Learning Machine 

I. INTRODUCTION 
In a world facing many human struggles, robots who are 

stronger, speedier, and smarter hold the key to breaking through 
many centuries-old roadblocks. With the rapid recent growth of 
automation and artificial intelligence, human-robot collaboration 
(HRC) is playing a large role across a variety of fields [1-3]. In 
the present day, robots have made their way into a variety of 
vastly differing but equally significant fields. For instance, their 
superior strength and durability are utilized in the areas of labor-
intensive manufacturing and product assembly. Human-robot 
hand overs, which are used to optimize the robot’s strength and 
precision and the human’s flexibility and knowledge, play a key 
role in this collaboration [4]. Other fields involving robots 
require them to be more intelligent or have increased computing 
power. These areas often involve high-risk situations, such as 
advanced surgeries, search and rescue missions, military defense, 
and assistant care for the injured, disabled, and elderly [5-7].  

In many of these areas, robots are still seen as tools to be 
manipulated rather than teammates for humans to work 
alongside [8]. However, advancements are being made to allow 
robots to take more of an autonomous, teammate-like role in 
HRC situations [9, 10]. For example, in the 2015 disaster relief 
project TRADR, robots utilized semi-autonomous navigation 
along with data gathering abilities, making use of their strengths 
to contribute independently to the mission [6]. Moreover, 
another research work about teaching-learning-collaboration in 
intelligent manufacturing allowed robots to learn from human 

demonstrations and natural language inputs similar to a human 
collaborator [11].  

However, despite various advances in robotics and 
technology, effective HRC will not occur simply by inserting 
robots into human teams. In order to facilitate highly functioning 
human-robot partnerships, trust must be forged between each 
teammate. The establishment of the trust is especially important 
in high-risk tasks, such as rescue missions and medical 
procedures, where a human’s lack of trust in the robot may result 
in a life-threatening mistake [12-14].  

Several studies have been conducted to model the trust of 
humans in robots in recent years. Researchers have defined 
various metrics with which to quantify trust and developed 
models to classify trust [15-17]. However, while these studies 
identify factors that affect trust between humans and robots, 
methods to assess human-robot trust with higher accuracy and 
approaches to increase human trust in robots are still being 
developed. This should be addressed in order to increase the 
effectiveness of HRC as well as to have quantitative measures 
with which to compare different approaches.   

A set of universal facial expressions mapping to emotions 
are established and recognized over some studies. These 
findings have been reproduced in numerous studies originating 
from different cultures around the world, yielding strong 
evidence for seven universal facial expressions: happiness, 
sadness, anger, surprise, fear, contempt, and disgust [18]. Using 
human facial features to detect or predict emotion, however, is a 
more difficult task due to the variations present from one face to 
another as well as the ability to accurately detect facial features 
in relatively low-quality images. Several studies have set out to 
accomplish this task using a variety of different approaches and 
algorithms. Said et al. trained a face-sensitive convolutional 
neural network in 2020 which reached a facial detection 
accuracy of around 93% and emotion recognition accuracy of 
around 95% [19]. Liu et al. applied a convolutional neural 
network to emotion color transfer, their model reaching an 
average classification accuracy of 73.17% [20].  

However, throughout the various recent studies that attempt 
to use facial expression to predict and classify emotion, most are 
done through traditional machine learning methods such as 
convolutional neural networks and do not exhibit very high 
accuracy, especially in the case of prediction using non-
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standardized input. To this end, we develop an Extreme 
Learning Machine (ELM)-based model, which has many 
advantages compared with traditional machine learning 
approaches, for robots to actively reason and respond to 
changing human emotions and trust levels during shared tasks. 

II. METHODOLOGY 

A. Data Collection 
1800 sample images of human facial expressions were 

collected for training and testing of the personalized machine 
learning model. The collection of these physiological biometrics 
samples was conducted in Python through the OpenCV package 
[21, 22], which was used to capture 1800 photos of the subject’s 
face. The photos were distributed evenly among 6 subsets of 
emotions: neutral, happy, angry, fear, surprise, and sadness. 
Photos of contempt, disgust, and anger were collectively 
grouped as “anger,” as there was no noticeable difference in the 
photos for all three emotions.  

After collecting these samples, the photos were processed 
using the DLib Facial Landmark Point Detection library [23, 
24]. 68 facial landmarks were labeled in each photo and indexed 
from 0 through 67, as shown in Fig. 5. These labels consist of 
the (x,y) coordinates of each landmark and are used in the facial 
feature calculations in the following section.   

B. Data Processing 
10 features were defined as inputs to the ELM model. Each 

feature is derived from the facial landmark map and describes a 
distance, ratio, or angle between different landmarks. In addition 
to the 4 features defined by previous studies [25, 26], 6 more 
features were defined to improve the accuracy of the current 
machine learning model. The features are defined as follows:  

• Eye Aspect Ratio (EAR): 

𝐸𝐸𝐸𝐸𝐸𝐸 =  |𝑃𝑃37.𝑦𝑦−𝑃𝑃41.𝑦𝑦|+|𝑃𝑃38.𝑦𝑦−𝑃𝑃40.𝑦𝑦|
2∗|𝑃𝑃36.𝑥𝑥−𝑃𝑃39.𝑥𝑥|

   (1) 

 
Fig. 1. Eye aspect ratio. 

As shown in Fig. 1, EAR represents the aspect ratio of the 
eye, which is calculated using the average length of the eye 
divided by the width. This value is greater in expressions of 
surprise and fear and smaller in anger or sadness.   

• Mouth Aspect Ratio (MAR): 

𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑃𝑃66.𝑦𝑦−𝑃𝑃62.𝑦𝑦
𝑃𝑃54.𝑥𝑥−𝑃𝑃48.𝑥𝑥 

    (2) 

 
Fig. 2. Mouth aspect ratio. 

As shown in Fig. 2, MAR represents the aspect ratio of the 
mouth, which is calculated by dividing the length of the mouth 
by the width. This value is higher in expressions of surprise or 
happiness and smaller in anger and sadness.  

• Pupil circularity: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  4∗𝜋𝜋∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2

             (3) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑃𝑃36,𝑃𝑃37) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃37,𝑃𝑃38) +
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃38,𝑃𝑃39) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃39,𝑃𝑃40) + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃40,𝑃𝑃41) +
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃41,𝑃𝑃36)       

 
Fig. 3. Pupil circularity. 

As presented in Fig. 3, pupil circularity measures the size of 
the pupil. Like EAR, this value is higher when the eyes are 
wider, such as in surprise or fear.  

• MAR over EAR (MOE): 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝐸𝐸𝐸𝐸𝐸𝐸

                         (4) 

MOE is the ratio of MAR to EAR. As the MAR of an 
individual increases, EAR is expected to decrease. Thus, this 
ratio captures small changes in these two values.  

• Eyebrow Angle (EBA): 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃19,𝑃𝑃20)
𝑃𝑃20.𝑥𝑥−𝑃𝑃19.𝑥𝑥

, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃23,𝑃𝑃24)
𝑃𝑃24.𝑥𝑥−𝑃𝑃23.𝑥𝑥

)   (5) 

 
Fig. 4. Eyebrow angle. 

As shown in Fig. 4, EBA measures the secant of the angle of 
the front of the eyebrows. A person’s eyebrows are typically 
more angled when angry, and they are more flat when happy or 
relaxed.  

• Chin Aspect Ratio (CAR): 

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃0,𝑃𝑃8)
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃0,𝑃𝑃16)

            (6) 

 
Fig. 5. Chin aspect ratio. 

As presented in Fig. 5, CAR measures the distance between 
the upper cheek and the chin. This value typically increases 
when expressing surprise.  
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• Eyebrow to Nose (ETN): 

𝐸𝐸𝐸𝐸𝐸𝐸 = (|𝑃𝑃21 − 𝑃𝑃27| + |𝑃𝑃22 − 𝑃𝑃27|)/2  (7) 

 
Fig. 6. Eyebrow to nose. 

As shown in Fig. 6, ETN is the distance from the front of the 
eyebrow to the nose bridge. This distance increases when the 
eyebrows are lifted, such as when a person is happy, and it 
decreases when the eyebrows are furrowed from anger.  

• Left Mouth Corner Ratio (LMCR): 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  −1 ∗ (𝑃𝑃60.𝑦𝑦−𝑃𝑃48.𝑦𝑦)
(𝑃𝑃60.𝑥𝑥−𝑃𝑃48.𝑥𝑥)

           (8) 

• Right Mouth Corner Ratio (RMCR): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  −1 ∗ (𝑃𝑃54.𝑦𝑦−𝑃𝑃64.𝑦𝑦)
(𝑃𝑃54.𝑥𝑥−𝑃𝑃64.𝑥𝑥)

             (9) 

 
Fig. 7. Left and right mouth corner ratio. 

As presented in Fig. 7, LMCR and RMCR measure the angle 
of the corners of the mouth. This feature is angled upwards when 
an individual is happy and downward when they are sad. A -1 is 
applied to each quotient because the y-axis is inverted, so lower 
y-axis values represent higher points on the face.  

• Tip of Eyebrow (TOE): 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴((𝑃𝑃21.𝑦𝑦 − 𝑃𝑃17.𝑦𝑦), (𝑃𝑃26.𝑦𝑦 − 𝑃𝑃22.𝑦𝑦))  (10) 

 
Fig. 8. Tip of eyebrow. 

As shown in Fig. 8, TOE measures the y-coordinate of the 
front of the eyebrow versus the back. If the front is higher than 
usual, this shows happiness, and if it is lower, it shows anger, 
similar to ETN.  

After the 10 features were calculated for each sample, the 
data were then normalized so that each value falls between 0 and 
1. Normalization was achieved using Eq. (11):  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀−𝑀𝑀𝑀𝑀𝑀𝑀

                       (11) 

The data was then split using an 80:20 ratio into a training 
subset and a testing subset.  

C. Trust Reasoning via Extreme Learning Machine 
The Extreme Learning Machine is the machine learning 

model employed to predict human emotion and trust levels using 
the 10 input features. ELM is a single hidden layer feedforward 
neural network that is lightweight and has a very fast computing 
time, which is advantageous for real-time training and prediction 
[27-29]. Other advantages of ELM compared to traditional 
machine learning models is that it has greater generalization 
performance and is relatively simple to implement [30].  

The structure of ELM is shown in Fig. 9: 

 
Fig. 9. Diagram of the Extreme Learning Machine. 

In our work, the input layer consists of 10 nodes representing 
the 10 features calculated in the previous section. In the 
initialization phase, the ELM randomly assigns weights to each 
input layer node, generating the hidden layer nodes. Each node 
in the hidden layer is a combination of the input layer nodes, 
with the weight of each node stochastically generated using a 
continuous probability distribution. The mapping from the n-
dimensional input layer to the L-dimensional hidden layer H is 
defined by Eq. (12):  

ℎ(𝑥𝑥) = [𝑔𝑔(𝑎𝑎1, 𝑏𝑏1, 𝑥𝑥),𝑔𝑔(𝑎𝑎2, 𝑏𝑏2, 𝑥𝑥), … ,𝑔𝑔(𝑎𝑎𝐿𝐿 , 𝑏𝑏𝐿𝐿 , 𝑥𝑥)]   (12) 
 
where {(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖)}𝑖𝑖=1𝐿𝐿  represent the randomly generated weights 
with a representing the input weight vector and b the hidden 
node bias. Increasing the number of hidden layer nodes 
generally increases the accuracy of the ELM.  

The goal of the ELM is to calculate the correct weights to 
map the hidden layer nodes to the final output, pictured on the 
right of Figure 2. In other words, these weights serve as the 
activation function mappings of the input facial features to their 
respective emotion labels. In the training phase, these weights 
are calculated and stored in the 𝛽𝛽 matrix.  

The output T of the ELM is described in Eq. (13): 

 𝑇𝑇 = ∑ 𝛽𝛽𝑖𝑖 ∗ 𝑔𝑔𝑖𝑖(𝑎𝑎𝑖𝑖 ,∗ 𝑥𝑥𝑘𝑘 + 𝑏𝑏𝑖𝑖) = ℎ(𝑥𝑥) ∗ 𝛽𝛽𝐿𝐿
𝑖𝑖=1  (13) 

Each hidden layer node, 𝑔𝑔𝑖𝑖(𝑎𝑎𝑖𝑖 ,∗ 𝑥𝑥𝑘𝑘 + 𝑏𝑏𝑖𝑖), is multiplied by 
its corresponding calculated weight from the 𝛽𝛽  matrix to 
calculate the output T. In the context of the current project, T 
takes a discrete value between 0 and 5 denoting the 6 labels of 
human emotion.  

In order to choose the prediction that is most likely to be 
accurate, the ELM minimizes the approximation error and the 
norm of the output weights using the minimization function in 
Eq. (14):  
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min(𝛽𝛽) ‖𝛽𝛽‖𝜇𝜇
𝜎𝜎1 + 𝐶𝐶‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖𝑣𝑣

𝜎𝜎2               (14) 

where H𝛽𝛽 is the output of the ELM, H is the hidden layer matrix 

 𝐻𝐻 = �
ℎ(𝑥𝑥1)
⋮

ℎ(𝑥𝑥𝑁𝑁)
� =  �

𝑔𝑔(𝑎𝑎1, 𝑏𝑏1, 𝑥𝑥1) ⋯ 𝑔𝑔(𝑎𝑎𝐿𝐿 , 𝑏𝑏𝐿𝐿 , 𝑥𝑥1)
⋮ ⋮ ⋮

𝑔𝑔(𝑎𝑎1, 𝑏𝑏1, 𝑥𝑥𝑁𝑁) ⋯ 𝑔𝑔(𝑎𝑎𝐿𝐿 , 𝑏𝑏𝐿𝐿 , 𝑥𝑥𝑁𝑁
�   (15) 

where N is the number of input features, and T is the learning 
target matrix 

T = �
𝑡𝑡1𝑇𝑇
⋮
𝑡𝑡𝑁𝑁𝑇𝑇
� = �

𝑡𝑡11 ⋯ 𝑡𝑡1𝑚𝑚
⋮ ⋮ ⋮
𝑡𝑡𝑁𝑁1 ⋯ 𝑡𝑡𝑁𝑁𝑁𝑁

�                 (16) 

The optimal 𝛽𝛽 matrix is calculated using Eq. (17):   

𝛽𝛽 = (𝐼𝐼
𝐶𝐶

+ 𝐻𝐻𝑇𝑇𝐻𝐻)−1𝐻𝐻𝑇𝑇𝑇𝑇                      (17) 

where I is the L-dimensional identity matrix.  

 The resulting 𝛽𝛽 matrix is used in the testing phase to select 
the output with the highest likelihood based on the input 
features. In other words, the 𝛽𝛽  matrix uses the input facial 
landmark data to select the emotion which is most likely being 
expressed. Based on the predicted emotion, the outputs are then 
grouped into three levels of trust: trust, low trust, and no trust. 
This emotion-trust mapping is depicted in Table I.  

TABLE I.  MAPPING OF EMOTION TO TRUST LEVELS 

Emotion Trust level 
Neutral Trust 
Happy Trust 

Surprised Low trust 

Sad Low trust 

Angry No trust 

Fearful No trust 

III. RESULTS AND ANALYSIS 

A. Experiment Setup 
After training and tuning the ELM model to achieve high 

accuracy, the model was tested in a real-time experiment. The 
experiment setup, shown in Fig. 10, included a webcam to 
continuously capture frames of the participant’s face, the Franka 
Emika Panda collaborative robot with 7 degrees of freedom 
[31], a ThinkStation P520, and the human-robot collaborative 
task. In our experiment, the task was for the human to hand an 
object to the robot, which would receive it in varying ways 
depending on the human’s facial expression and trust levels. The 
facial expressions captured by the webcam were used by the 
ELM to predict the trust level of the participant in each frame, 
and the collaborative robot moved in response to this prediction. 
The trust level prediction and robotic arm movement planning 
were all computed on the ThinkStation. Depending on the trust 
level predicted, the robot performed one of three actions, which 
are shown in Table II. If the human shows an expression of trust, 
the robot will continue to work at a relatively efficient pace. 
However, if the human shows low trust, such as a surprised 
expression, it will slow down and try to gently gain the human’s 
trust. Lastly, if the human shows signs of no trust, the robot will 

back away completely until the human shows trust again. Each 
scenario was tested multiple times, and the robot’s responses 
were recorded.  

TABLE II.  MAPPING OF TRUST LEVELS TO ROBOT MOVEMENTS 

Trust level Robot movement 

Trust Move to the human and pick the object at a normal pace. 

Low trust Move to the human and pick the object at a slower pace.  

No trust Back away and do not attempt to pick the object from the 
human.  

 
Fig. 10. Experimental setup. 

B. ELM Parameter Tuning 
The ELM was trained using n = 1,440 samples, L = 500 

hidden units, rectified linear activation function, and a 
regularization factor C = 1. The regularization parameter C 
determines how much the ELM should generalize from the 
training to the testing subsets. A very high value for C will cause 
the ELM to accurately learn and predict the correct output for 
the training set, but it will fail to generalize the results to the 
testing set. A very low value of C will overgeneralize the 
predictions, and the accuracy of the ELM will be low overall. 
Thus, as shown in Fig. 11, comparing the training and testing 
accuracy (Y-axis) for a range of C values (X-axis), a value of 1 
was chosen for the ELM. This value makes sure that the ELM is 
able to achieve high accuracy but does not overgeneralize when 
making predictions.  

 
Fig. 11. Training and testing accuracies vs regularization factor C. 

C. Offline Testing 
The overall testing accuracy of the ELM in predicting human 

trust levels is approximately 91%. The average running time was 
0.6 seconds, exhibiting the ELM’s fast learning pace. The ELM 
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is able to predict the correct corresponding trust level when 
given a human facial expression input with high accuracy. In the 
training phase, the ELM consistently reached an accuracy of 
approximately 86% when predicting human emotion from the 
six established labels. However, since multiple emotions map to 
the same level of trust as defined in Table I, the overall accuracy 
for trust prediction is higher. This is partially because 
similarities exist between the emotions which map onto the same 
trust level, so they are more likely to be mislabeled as the 
corresponding emotion. For example, the emotions happy and 
neutral are more likely to be mislabeled as each other while they 
are rarely labeled as anger or fear since they share few 
similarities. By grouping similar emotions together, the ELM 
output is less precise but more accurate, and thus it is able to 
meet the goal of this project. 

D. Application in Real-World Human-Robot Collaboration 
The trained ELM model is validated in an online HRC task, 

where it predicts the trust level of its human collaborator in real-
time. First, the robot assesses the human’s emotional state and 
trust level. In the example in Fig. 12, the human is happy. The 
robot correctly predicts that trust is being displayed and reaches 
out to receive the object that the human is handing off. In a real-
world situation such as smart manufacturing, this process would 
repeat as many times as needed. The robot would continuously 
assess the human’s trust level and follow up with the appropriate 
actions. In a scenario like Fig. 12, the robot will continue to work 
at a relatively efficient pace, matching the human collaborator’s 
high level of energy and trust. Online testing of the ELM showed 
that it is a promising method that can be extremely helpful in an 
online HRC situation.  

 
 

 
 

 
Fig. 12. Robot response to trust facial expression. 

The robot can also detect and react to situations with low or 
no trust, as shown in Fig. 13. human emotions cannot always be 
positive, and the robot must learn this in order for effective 

collaboration to take place. In Fig. 13, the human is angry. The 
robot correctly predicts that no trust is being shown, and it backs 
away to give the human time to calm down and recollect their 
emotions. Only when the human shows a low trust or trust 
expression, such as the one in Fig. 12, will the robot resume the 
collaborative task. This validation exemplifies the robot’s ability 
to understand and react to human emotion by choosing the best 
course of action to accommodate their human collaborator’s needs. 

 

 

Fig. 13. Robot response to no trust facial expression.  

IV. CONCLUSIONS AND FUTURE WORK 
To achieve safe and efficient human-robot collaboration, we 

have developed and tested a novel and effective model for robots 
to actively reason and respond to changing human emotions and 
trust levels during shared tasks. An extreme learning machine 
was used to enable the robot to predict human emotion and trust 
levels with over 90% accuracy. Using this model, the robot is 
able to correctly recognize and accommodate humans during 
collaborative tasks in real-time. We have implemented a real-
world validation experiment in the context of human-robot 
object hand-over, which showed the robot’s ability to correctly 
identify and predict the human’s trust levels in real-time and 
assist the human accordingly in human-robot collaborative tasks. 
One area for future research is to develop methods to improve 
the online application of this ELM model. Although the ELM 
itself is very fast, the calculations of each facial landmark on the 
face, as well as applying the defined features to compute all the 
input nodes to the ELM, took numerous seconds to process one 
frame. Thus, there was a lag between the time of the input facial 
expression and the actual movement of the robot. In a real-world 
application, this calculation time would have to be further 
shortened to facilitate more effective HRC. Overall, the proposed 
approach to trust prediction shows an efficient and accurate 
solution to improve effectiveness in human-robot collaboration. 
Further research will be conducted to improve calculation 
speeds as well as further generalization of facial expressions in 
order to build a more accurate and precise model for HRC.  
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