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Online Edge Computing Demand Response via
Deadline-Aware V2G Discharging Auctions

Fei Wang, Lei Jiao, Konglin Zhu, Lin Zhang

Abstract—Distributed edge computing systems that participate in Emergency Demand Response (EDR) programs can adjust
workload across heterogenous edges to reduce total energy consumption. Unfortunately, this approach may not always reduce
sufficient energy as required by EDR. In this paper, we propose to leverage Electrical Vehicles (EVs) and Vehicle-to-Grid (V2G)
techniques to provide energy to the edge system, and design an auction mechanism to incentivize EVs to discharge energy for the
edges. Yet, we face critical challenges, such as the uncertainty of EV bid arrivals, the restriction of discharging deadlines, and the
desire to achieve required economic efficiency. To overcome such challenges, we design a novel online approach, E3DR, of multiple
algorithms that decompose our original NP-hard social cost minimization problem into two subproblems, solve the first subproblem via
reformulation, the primal-dual optimization theory, and a careful payment design, and solve the second subproblem via standard
solvers. We have rigorously proved that our approach finishes in polynomial time, achieves truthfulness and individual rationality
economically, and leads to a parameterized competitive ratio for the long-term social cost. Through extensive evaluations using
real-world data traces, we have validated the superior practical performance of our approach compared to existing algorithms.

Index Terms—Demand response, edge computing, EV, V2G, auction, online optimization.
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1 INTRODUCTION

EDGE computing has micro data centers or servers, re-
ferred to as “edges”, located at metro centers, enterprise

premises, cellular base stations, or WiFi access points [1], [2],
providing low latency, high bandwidth, and data locality to
end users, and is well-situated for Emergency Demand Re-
sponse (EDR) programs. This is due to the massive number
of edges, consuming significant energy from the electricity
grid, and the wide distribution and the vast heterogeneity
of edges, flexible in managing computing workloads. In a
typical EDR program, during peak hours when the electric-
ity grid is under stress, it sends energy reduction goals to
the distributed edge system; in response, to help maintain
the availability, stability, security of the electricity grid [3],
[4], the edge system moves its workload, if not dropping
any, across heterogeneous edges to save the total energy
consumption [5], [6] and receives (monetary) rewards from
the grid. However, due to intrinsic physical limitations of
edges, only moving workload around may not be able to
reduce sufficient energy to meet the EDR goals.

One solution to address this issue is to supply the
edge system with additional power from third-party sources
during EDR, so that the edges can further reduce electricity
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Fig. 1: System scenario

consumption from the grid. Thanks to Electrical Vehicles
(EVs) and Vehicle-to-Grid (V2G) techniques [7], [8], EVs can
transfer energy to the edges, often via a local microgrid. That
is, EVs discharge their batteries through dedicated devices
and interfaces in charging stations, for example, and such
energy flows to the microgrid which further connects to the
distributed edge computing system. Therefore, the edges
take energy from both the electricity grid and the EVs. Fig.
1 illustrates this scenario, where the edge system receives
energy from the EVs E, F and H and migrates workload
from the edge A to the edges B and C to reduce the total
energy need from the electricity grid during EDR.

Even though feasible, the problem here is actually how to
incentivize EVs to discharge energy for the edges. One may
just let EVs sell energy at some price. Due to dynamic and
uncertain edge energy demand and EV supply during EDR,
it is often tricky and hard for such a direct pricing strategy to
achieve the overall market efficiency; it is less ideal also due
to possible overpricing and underpricing. In this paper, we
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take a different angle—auctions, where the edge system acts
as the auctioneer and purchases energy from the EVs which
act as bidders. Auctions enable market agility based on real-
time demand-supply, reduce the chance of mispricing, and
match bids to buyers that value them most.

However, we confront critical challenges when design-
ing auction mechanisms for this scenario. First, this is in-
trinsically an online problem where EV bid arrivals and the
edge computing workload are unpredictable as time goes.
Although the energy reduction goals for future time slots
can be observed beforehand as in a typical EDR program,
making joint control decisions of buying bids and adjusting
workload across edges irrevocably on the fly to minimize
and balance the cost of bids and the system overhead (e.g.,
inter-edge delay) in the long run is not easy. Second, each
EV bid can be often characterized by a deadline as EV
energy needs to be discharged before the EV leaves. While
accommodating the deadline of each EV, one also needs
to determine how much energy should be discharged for
each time slot, which is not straightforward as it will impact
the energy provisioning and thus the decision of buying
future EV bids before those bids actually arrive. Third, for an
auction, we need to achieve the desired economic properties
of truthfulness (i.e., every bid maximizes its utility only if
not cheating on its bidding price) and individual rationality
(i.e., every bid achieves a non-negative utility), where utility
is defined as the difference between the payment received
from the auctioneer and the true bidding price. This requires
to carefully design the payment (unnecessarily equal to the
bidding price), especially for our scenario where the utility
also depends on when discharging is scheduled.

Existing research have limitations and are insufficient
compared to our work in this paper. None of those on edge
computing demand response have considered utilizing EVs
as energy sources [9], [10], [11], [12]. Those on EVs have
considered EV charging scheduling or the interactions be-
tween EVs and the electriciy grid, but have not studied edge
computing in this context [13], [14], [15], [16], [17]; and to
the best of our knowledge, their solution approaches never
consider deadlines or deadline violations when designing
dynamic auctions with provable performance guarantees.

In this paper, we firstly formulate the social cost mini-
mization problem as a non-convex mixed-integer program
spanning the time horizon. Our optimization objective cap-
tures the cost of the EV bids and the performance overhead
of edge workload migration; to reflect the deadline of each
bid, we also add a penalty term in the form of an arbitrary
non-decreasing function if the deadline is violated, which is
general and can capture both hard and soft deadlines. Our
problem also consists of constraints of respecting charging
station and bid energy capacity, preserving edge computing
workload, and meeting EDR energy reduction goals. Our
problem is NP-hard even in an offline setting, not to mention
that we aim to solve it online in polynomial time.

Afterwards, we design a novel online algorithmic ap-
proach E3DR. Our approach decomposes the original prob-
lem into a subproblem of bid selection and EV discharging
and a subproblem of edge workload migration, respectively.
For the former subproblem, we reformulate it as a sched-
ule selection problem, where a bid corresponds to a set
of schedules and each schedule corresponds to a concrete

arrangement of discharging the bid’s energy across time
slots. For this reformulated problem, we design a primal-
dual-based online algorithm to overcome the intractability,
in which we carefully maintain feasible dual solutions, make
tight the dual constraints, and set the corresponding primal
solutions to satisfy the optimality conditions, all in an online
manner in response to each bid arrival. Despite we may
have an exponential number of variables for the schedule
selection problem, we show a dual oracle that can identify
a polynomial number of dual constraints to take into ac-
count and calculate the payment using the dual solutions
in polynomial time. For the latter subproblem, due to the
decomposition, we are able to just apply standard convex
optimization solvers to solve it in each individual time slot
taking the outputs of the former subproblem as inputs. We
highlight that we have also formally proved multiple perfor-
mance guarantees for our algorithms, including polynomial-
time complexity, correctness, competitive ratio, truthfulness,
and individual rationality, which are non-trivial.

Finally, we conduct extensive evaluations using real-
world data to simulate edge distribution [18], edge hetero-
geneity [9], [19], EDR events [20], EV energy [14], [21], etc.,
with a varying number of EV bids dynamically arriving in a
one-week period. We observe multiple results, among which
are the following: (1) E3DR saves up to 50% social cost
compared to approaches that use no auctions, and up to
40% social cost compared to approaches that randomly or
greedily select bids in terms of EV energy price or discharg-
ing deadlines, and up to 30% social cost compared to other
scheduling approaches; (2) E3DR achieves truthfulness and
individual rationality as desired; (3) E3DR’s social cost is
empirically less than 2 times the offline optimal social cost
at hindsight; (4) E3DR executes fast and finishes within 25
seconds as the total number of bids reaches 350 in one week.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present our system model and for-
mulate the social cost minimization problem. For the quick
reference, we summarize all our major notations in Table 1.

2.1 System Modeling
Edge System: We consider an edge computing system

that consists of a set [K] = {1, ..., K} of distributed and
heterogeneous “edges” (e.g., micro data centers or servers)
of different energy efficiencies. All such edges are connected
to one another via wireline backhaul networks. We consider
consecutive time slots [T ] = {1, ..., T}. For k, j 2 [K] and
t 2 [T ], we use rkj to represent the propagation or network
delay from edge k to edge j, use hkj to represent the
amount of energy that can be saved by migrating a single-
unit workload from edge k to edge j, use Wjt to represent
the capacity of edge j at time slot t in terms of the maximum
amount of workload permitted, and use Vkt to represent the
actual amount of workload on edge k at time slot t.

As the EDR signal comes, the edge system must reduce
its consumption of the power-grid energy by a certain
amount, denoted by Rt, 8t as required. The edge system can
achieve this by (1) migrating or consolidating workload to
the edges of better energy efficiency and/or (2) consuming
energy that is discharged from the EVs for compensation.
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TABLE 1: Notations

Inputs Descriptions
[I] Set of bids
[T ] Set of time slots
[K] Set of edges
bi Cost of bid i

Rt Energy reduction demand from the grid at time t

gi Penalty function for bid i

H
Maximal number of simultaneous discharging ses-
sions allowed in the discharging facility

ti Bid i’ arrival time

hkj
Energy reduction by migrating workload from edge
k to edge j

rkj
Propagation delay of migrating workload from edge
k to edge j

Ci Amount of energy the bid i can sell or discharge
si Bid i’s discharging rate
di Bid i’s deadline for discharging
Wjt Maximum workload allowed at edge j at time t

Vkt Workload of edge k at time t

Decisions Descriptions
xi Whether bid i wins or not
yit Whether bid i discharges or not at the time slot t

⌧i
Maximum number of time slots that pass bid i’s soft
deadline

okjt
Amount of workload migrated from edge k to edge
j at time t

pi Payment to bid i

EV Discharging: We consider a charging facility where
EVs can charge/discharge energy, and a set [I] = {1, ..., I}
of EVs. We assume that the facility has the following compo-
nents: (1) the electrical connections and interfaces that allow
EVs to be discharged; (2) the local power lines that can
transfer energy from the EVs to the edge system through
the discharging facility. We denote by H the capacity of the
facility in terms of the maximum number of EVs that are
allowed to discharge simualtaneously at any time. The EVs
that want to discharge and sell energy (through auctions
which will be described next) to the edge system arrive at
the discharging facility dynamically over time.

Auction with Deadlines: To incentivize EVs to sell en-
ergy to the edge system, we design an online auction model.
EVs that sell energy are the bidders, and the edge system
that buys energy from EVs is the auctioneer. Upon arrival,
the EV i, 8i 2 [I] submits a bid Bi = {ti, Ci, si, di, bi, gi(·)}
to the edge system, where ti is the arrival time slot; Ci is
the total amount of energy available for discharging; si is
the discharging rate, i.e., the amount of energy discharged
per single time slot; di is the deadline for completing the
discharging; and bi is the bidding price, i.e., the price at
which the EV i is willing to discharge energy before or
by di. In this paper, to maximize the flexibility, we also
consider that EVs can tolerate a certain level of delay after
the deadline to discharge energy. If any discharging of EV i
occurs after di, then a penalty is incurred:

gi(⌧i) =

⇢
gci

(⌧i), if ⌧i 2 [0, T � di]
+1, otherwise

(1)

where ⌧i is the number of time slots by which the soft
deadline di has been passed, and gci

(·) is a nondecreas-
ing function provided by the EV, with gci

(0) = 0. Then,
di + ⌧i represents the EV i’s time of leaving the facility; and
bi + gi(⌧i) represents the corresponding bidding price for
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Fig. 2: EV discharging scheduling

discharging energy before or by ⌧i + di, i.e., the EV i would
want to charge more money if the discharging deadline is
violated. In this work, we assume one EV issues one bid.

Fig. 2 illustrates an example of EV discharging schedul-
ing. Three EVs as the bids arrive at t1, t2, and t3, respec-
tively, and the first EV is rejected while the second and
the third EVs are accepted. The second EV is scheduled to
discharge energy at t2 and t2 + 4; the third EV is scheduled
to discharge energy t3, t3 + 2, t3 + 3, and t3 + 5.

Control Decisions: As soon as the edge system receives
Bi, 8i 2 [I], it makes the following control decisions in an
online manner: (1) whether or not the bid i wins, denoted by
xi 2 {1, 0}, where xi = 1 if the bid i is accepted (i.e., wins)
and xi = 0 if it is rejected (i.e., loses); (2) the scheduling
of the bid i’s energy discharging, denoted by yit 2 {1, 0},
where yit = 1 if energy is discharged from EV i at time slot
t � ti, and yit = 0 otherwise; (3) ⌧i 2 {1, 2, ..., T � di}, the
number of time slots by which the last discharging operation
of EV i has passed di; (4) the payment pi � 0 made to the
bid i to buy the bid (note that pi is not necessarily bi or
bi + gi(⌧i)). Also, at each time slot t 2 [T ], the edge system
makes the decision of workload migration online in order to
reduce energy, denoted by okjt � 0, referring to the amount
of workload migrated from edge k to edge j at t.

Cost of EVs: The total cost of EVs consists of two parts,
i.e., the cost of the bids with possible penalty, plus the
payments (treated as negative cost) received from the edge
system. Thus, we have

X

i2[I]

(bixi + gi(⌧i) � pi).

Cost of Edges: The total cost of the edge system consists
of two parts as well, i.e., the network delay of migrating
workload among edges, plus the payments made to the EVs.
Thus, we have

X

t2[T ]

X

k2[K]

X

j2[K]

rkjokjt +
X

i2[I]

pi.

2.2 Problem Formulation and Algorithmic Challenges
Social Cost Minimization: The “social cost” is the sum

of the total cost of the EVs and the total cost of the edge sys-
tem. The auctioneer makes the control decisions described
previously by solving the social cost minimization problem
online. We formulate the social cost minimization problem
P as follows. Note that the payments are cancelled; but the
payments cannot be arbitrary, and in fact, we need to design
and calculate the payments carefully in order to satisfy the
desired economic properties described later.

P : min
X

i2[I]

(bixi + gi(⌧i)) +
X

t2[T ]

X

k2[K]

X

j2[K]

rkjokjt

(2)
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s.t. yitt  di + ⌧i, 8i 2 [I], 8t � ti (2a)
X

i2[I]:tit

siyit +
X

k2[K]

X

j2[K]

hkjokjt � Rt, 8t 2 [T ]

(2b)
X

i2[I]:tit

yit  H, 8t 2 [T ] (2c)

X

t2[T ]:tit

siyit  xiCi, 8i 2 [I] (2d)

X

k2[K]

okjt  Wjt, 8t 2 [T ], 8j 2 [K] (2e)

X

j2[K]

okjt  Vkt, 8t 2 [T ], 8k 2 [K] (2f)

xi 2 {0, 1}, yit 2 {0, 1}, ⌧i 2 {1, 2, ..., T � di},

okjt � 0, 8j 2 [K], 8k 2 [K], 8i 2 [I], 8t 2 [T ]
(2g)

The optimization objective (2) minimizes the social cost.
Constraint (2a) ensures that discharging can only be done
after the corresponding EV arrives. Constraint (2b) ensures
that the energy discharged from EVs plus the energy saved
by migrating workload among edges is no less than the
amount of grid energy that is required to be reduced.
Constraint (2c) ensures the number of EVs always respects
the capacity of the facility. Constraint (2d) ensures that the
energy discharged from an EV does not exceed the EV’s
total energy to sell. Constraint (2e) guarantees that amount
of workload migrated to an edge does not exceed that
edge’s capacity. Constraint (2f) guarantees that amount of
workload migrated from an edge does not exceed the total
amount of available workload on that edge. Constraint (2g)
specify the domains of all the control variables.

Algorithmic Challenges: We highlight that it is non-
trivial to solve the social cost minimization problem in an
online setting and to calculate the payments with desired
economic properties. We face three fundamental challenges.

First, as each EV arrives dynamically with a bid, whether
to accept each bid and how to discharge energy from each
accepted bid to span future time slots need to be scheduled
irrevocably on the fly. High-price bids need to be filtered out
to reserve the charging facility’s spots for future bids with
potentially low prices; energy can be discharged from EVs
intermittently and workload can be moved around in the
edge system in real time, in order to reduce the grid energy
consumption of edges by a desired amount that varies as
time goes. These decisions are not straightforward to make.

Second, our problem is in fact NP-hard [22], potentially
non-convex, even in an offline setting. The cost of bids plus
Constraints (2b) and (2d) (while ignoring everything else)
indicates that our problem contains the NP-hard minimum
knapsack problem; so, our problem is also NP-hard. Be-
sides, different EVs can have different penalty functions for
violating soft deadlines, which can be non-linear and/or
non-convex, hard to address in polynomial time. The online
setting where the algorithm needs to respond immediately
as the inputs are revealed dynamically over time can only
escalate the existing hardness for solving this problem.

Third, we need to calculate the payments for each win-
ning bid online and in a way that it can induce “truthful-
ness” (i.e., if a bidder does not use its true valuation of its

bid as its bidding price, then the bidder’s “utility”, defined
as the received payment minus the bidding price, will not be
maximized) and “individual rationality” (i.e., the utility of
every bidder is non-negative regardless of winning or losing
in the auction). Thus, the payment needs to be based on the
solution to the social cost minimization problem; while it
is not easy to obtain the result of each bid (i.e., winning or
losing) online, it is also not easy to design and calculate the
payment to ensure such desired economic properties.

Algorithmic Goal: The goal is to design polynomial-
time online approximation algorithms to produce control
decisions that can lead to a provable competitive ratio
� = P/OPT and achieve both truthfulness and individual
rationality. Here, � � 1; P refers to the value of the objective
function of the problem (2) evaluated with the solution
produced by our online algorithms; and OPT refers to the
value of the objective function of the problem (2) evaluated
with the offline optimal solutions to the problem (2), where
all the inputs over the entire time horizon are assumed
known at once in advance.

3 ONLINE ALGORITHMS DESIGN

In this section, we propose an online approach E3DR to
overcome all the aforementioned challenges while solving
the social cost minimization problem and determining the
payment to each bid.

3.1 Overview
Our approach E3DR is composed of three algorithms:

an online auction mechanism (Algorithm 1) which invokes
the EV discharging scheduling algorithm (Algorithm 2), and
the edge workload migration algorithm (Algorithm 3). We
decompose our original problem P into the subproblems P1

and P2 which are connected by the auxiliary variable ct, 8t.
Based on this, the three algorithms work jointly in an online
manner as follows:

• Running Algorithm 1, the edge system invokes Algo-
rithm 2 to solve P1 upon each EV (or bid) i’s arrival,
decides whether to accept this bid, discharges the
energy from the EV, calculates the payment, finds out
ct for each time slot t � ti, and passes the value of ct

as the input to P2 at t,
• At each time slot t, after receiving the value of ct,

the edge system uses Algorithm 3 to solve the one-
shot instance of P2 at t, and adjusts the workload
distribution across the edges.

Note that the algorithms run at different frequencies. Algo-
rithm 1 invokes Algorithm 2 and responds to each EV ar-
rival; they do not run if there are no EV arrivals. Algorithm
3 runs at every single time slot regardless of EV arrivals.

What motivates us to design the decomposition is es-
sentially the fact that EV-related decisions need to only be
made in a responsive manner, responding to EV arrivals,
while edge workload decisions need to be made in every
time slot as time goes. Accordingly, we introduce auxiliary
variables and decompose the problem into subproblems P1

and P2, respectively. On one hand, P1 turns out to be an
online problem that contains the unconventional constraints
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of soft deadlines requiring to make EV discharging decisions
over consecutive time slots. To overcome this, we firstly
reformulate P1 to an equivalent new problem P3, where we
“expand” the possible discharging decisions and transfer
the problem of making discharging decisions into selecting
the schedule of existing discharging decisions. To further
solve P3, we derive its dual problem D3 and design a
primal-dual-based algorithm, while also embedding our
payment design into it to guarantee the desired economic
properties. On the other hand, P2 can be naturally split into
a series of one-shot problems corresponding to individual
time slots; moreover, each one-shot problem is a linear pro-
gram and can be solved via standard optimization solvers.

The structure of our approach E3DR is shown in Fig. 3.

3.2 Problem Decomposition
We split our original problem P into two subproblems as

follows: P1 for EVs discharging, and P2 for edge workload
migration. To that end, we introduce an auxiliary decision
variable ct, 8t 2 [T ], denoting the total amount of energy
discharged from EVs at time slot t, and an input q, defined
as q = mink2[K],j2[K] {

rkj

hkj

}, where rkj and hkj are as
described earlier.

P1 : min
X

i2[I]

(bixi + gi(⌧i)) �
X

t2[T ]

qct (3)

s.t. yitt  di + ⌧i, 8i 2 [I], 8t � ti (3a)
X

i2[I]:tit

siyit � ct, 8t 2 [T ] (3b)

X

i2[I]:tit

yit  H, 8t 2 [T ] (3c)

X

t2[T ]:tit

siyit  xiCi, 8i 2 [I] (3d)

xi 2 {0, 1}, yit 2 {0, 1}, ⌧i 2 {1, 2, ..., T � di},

ct � 0, 8i 2 [I], 8t 2 [T ] (3e)

P2 : min
X

t2[T ]

X

k2[K]

X

j2[K]

rkjokjt +
X

t2[T ]

qct (4)

s.t.
X

k2[K]

X

j2[K]

hkjokjt + ct � Rt, 8t 2 [T ] (4a)

X

k2[K]

okjt  Wjt, 8j 2 [K], 8t 2 [T ] (4b)

X

j2[K]

okjt  Vkt, 8k 2 [K], 8t 2 [T ] (4c)

okjt � 0, 8j 2 [K], 8k 2 [K], 8t 2 [T ] (4d)
ct � 0, 8t 2 [T ] (4e)

We have split the objective function of P into two com-
ponents, the objective functions of P1 and P2; also, with ct,
we have split (and transformed) Constraints (2a)⇠(2g) into
Constraints (3a)⇠(3e) for P1 and Constraints (4a)⇠(4e) for
P2, respectively.

3.3 Reformulation and Dual Problem
To solve the problem P1 online, we reformulate it as

a “schedule selection” problem, where for each EV i the
schedules are defined as (xi, {yit}8t2[T ], ⌧i) and every single
schedule corresponds to a group of specific values taken by
the decision variables xi, yit, 8t 2 [T ], and ⌧i. That is, select-
ing a schedule means to assign the specific values contained
in this schedule to the decision variables. A schedule is a
concrete decision on whether to accept a given bid and how
to discharge the energy in this bid over time. Thus, solving
the reformulated problem corresponds to solving P1.

The reformulation goes as follows. Let ⇠i be the set of all
feasible schedules for EV i, where every feasible schedule
satisfies Constraints (3a) and (3d). We use l 2 ⇠i to index
a schedule. Then, we use bil to represent bi + gi(⌧i) for the
schedule l, and use T (l) to represent the set of the time slots
when energy is discharged from EV i as specified by the
schedule l. Note that our decision variables now become
xil and ct. While ct has the same definition as described
previously, xil = 1 indicates we select the schedule l for the
EV i and conduct discharging as specified by this schedule
and xil = 0 indicates we do not choose this schedule. We
formulate the schedule selection problem P3 as follows:

P3 : max �
X

i2[I]

X

l2⇠i

bilxil +
X

t2[T ]

qct (5)

s.t.
X

l2⇠i

xil  1, 8i 2 [I] (5a)

X

i2[I]

X

l2⇠i:t2T (l)

sixil � ct, 8t 2 [T ] (5b)

X

i2[I]

X

l2⇠i:t2T (l)

xil  H, 8t 2 [T ] (5c)

xil 2 {0, 1}, 8i 2 [I], l 2 ⇠i (5d)
ct � 0, 8t 2 [T ] (5e)

The optimization objective (5) is the same as (3). Con-
straint (5a) ensures that we select up to one schedule for
each EV. Constraints (5b) and (5c) correspond to (3b) and
(3c), respectively. (5d) and (5e) specify variables’ domains.

We derive the formulation of the Lagrange dual problem
D3 of the problem P3, and this is for designing a primal-
dual-based online algorithm, which will be elaborated next.
To derive this dual, we introduce the non-negative dual
variables µi, mt, and nt for Constraints (5a), (5b), and (5c),
respectively. We also relax xil 2 {0, 1} to xil � 0. The dual
problem of the problem P3 is as follows:

D3 : min
X

i2[I]

µi +
X

t2[T ]

ntH (6)

s.t. µi � �bil +
X

t2T (l)

mtsi �
X

t2T (l)

nt,
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8i 2 [I], 8l 2 ⇠i (6a)
q  mt, 8t 2 [T ] (6b)
µi � 0, mt � 0, nt � 0, 8t 2 [T ], 8i 2 [I] (6c)

3.4 Online Algorithm for EV Discharging
We design a primal-dual-based approach to solve P3 and

D3 online simultaneously. That is, in response to each EV or
bid arrival, we maintain a carefully-designed, feasible solu-
tion for both the primal problem P3 and the dual problem
D3, respectively, and adapt these solutions continuously as
new bids arrive as time goes.

We choose this specific technical path to designing our
online algorithms for multiple reasons. First, we can lever-
age the optimality conditions, i.e., the Karush-Kuhn-Tucker
(KKT) conditions, to determine the values of the discrete
variables to cope with the NP-hardness. According to the
KKT conditions, if we can control the dual variables to
make the inequality (6a) become tight, i.e., an equality, then
we can set the corresponding primal variable xil to a non-
zero value, i.e., 1 in our case. Second, we can exploit the
duality, i.e., the dual problem’s objective function value is
always an upper-bound for the primal problem’s optimal
objective function value, which essentially leads to our
theoretical analysis regarding the bounded gap between the
objective value of our online approximate solution and that
of the offline optimal solution, as elaborated in the next
section. Third, we can also design our payment to ensure
the desired economic properties during this process. We will
formally define such economic properties and prove how
our payment embedded in such a primal-dual approach can
indeed achieve these properties in the next section.

To make (6a) tight, since the dual variable µi is non-
negative, we can set µi as follows:

µi = max(0, max
l2⇠i

(�bil +
X

t2T (l)

mtsi �
X

t2T (l)

nt)). (7)

Next, we set the dual variables mt and nt as follows:

mt = q = mink2[K],j2[J]{
rkj

hkj

}, (8)

nt = L(
U

L
)

zt

H max
i2[I]{si} . (9)

In nt, we have introduced some new notations: zt, U , and L,
which are not variables but inputs or quantities that need to
be maintained as follows. zt represents the total amount of
energy discharged from all EVs at the time slot t, as dictated
by our algorithms. zi

t
is the value of the variable zt after

processing the bid i. That is, as the bid i arrives, we have
zt = zi�1

t ; then, we update zt = zi

t
after generating the

scheduling decision for the bid or EV i. Having this, we just
use the value of zt to calculate or update the value of nt, as
specified in the manuscript. We initialize z0

t
= 0, 8t 2 [T ]; if

the bid i wins, we set zi

t
= zi�1

t +si, 8t 2 T (l), where l is the
corresponding schedule being selected; otherwise, we set
zi

t
= zi�1

t , 8t 2 T . We also set U and L to be the maximum
and the minimum value of nt: U =

mini2[I]{bi}mini2[I]{si}
H maxi2[I]{Ci}

and L =
mini2[I]{bi}

HT
. Here, we highlight we are not setting

mt and nt arbitrarily; instead, we are setting them this way
in order to serve our theoretical analysis as elaborated later.

Algorithm 1 Online Auction Mechanism

Input: {bi}, {Ci}, {si}, {di}, {Rt}, H
1: Compute mt, 8t 2 [T ] based on (8);
2: Initialize xi = 0, pi = 0, yit = 0, xil = 0, zt = 0, µi = 0,

nt = 0, ct = 0,  t = 0, q = mt, 8i 2 [I], 8l 2 ⇠i,
8t 2 [T ];

3: for i = 1, 2, ..., I do

4: Invoke Algorithm 2 to obtain xi, {yit}, pi, {nt}, {zt},
{ t}, {ct};

5: if xi == 1 then

6: Accept bid i;
7: Discharge EV i following {yit}t�ti

;
8: Pay pi to EV i;
9: else

10: Reject bid i;
11: end if

12: end for

We then design our Algorithms 1 and 2. Algorithm 1 ex-
hibits the overall auction process, which invokes Algorithm
2 to handle each EV or bid as it arrives. In Algorithm 2,
we firstly find out the set £ of the feasible time slots for
discharging in Lines 1-6, where  t is the total number of
EVs that have so far been decided to discharge energy at
the time slot t in the facility. In Lines 7-13, we construct our
first schedule l0, whose discharging completion time is twi

.
Here, Lines 9-13 correspond to Equation (7), where Lines 10-
12 consider the case of passing the deadline. Then, in Lines
14-28, we iteratively construct the schedules l1, l2, l3, ..., and
these schedules are the best schedules whose discharging
completion time are the (wi + 1)-th time slot in £, the
(wi + 2)-th time slot in £, the (wi + 3)-th time slot in £,
..., respectively. We always keep the number of time slots of
a charging schedule to be wi. In Lines 21-25, to generate the
best schedule whose discharging completion time is tc, we
only need to find out the specific time slot t in {t1, t2, ..., twi

}
that has the smallest &(t) value and replace that time slot by
tc. This way, we are able to divide the total Cwi

|£| schedules
according to different completion times and figure out the
best schedule for each different completion time. In Line 29,
we obtain the “best of the best” schedule overall. In Lines 30-
37, based on the best schedule we find, we set the values of
all of our primal and dual variables, determine the payment,
and update the status of the facility as we have decided to
accept the current bid. We highlight that we only set the
primal variables to 1 if the condition in Line 30 is satisfied;
this aligns with the primal-dual theory and is also required
for our payment calculation in Line 33, which will be useful
when we prove the economic properties later.

3.5 Online Algorithm for Edge Workload Migration

We solve P2 at each t by taking the output ct from
Algorithm 2 as the input. This is to decide the amount of
workload that needs to be migrated across heterogeneous
edges. P2 at t is only a standard linear program and can
be solved optimally by existing optimization solvers in
polynomial time [4].
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Algorithm 2 EV Discharging Scheduling Algorithm

Input: bi, Ci, si di, {Rt}, {mt}, {nt}, {zt}, { t}, q, H
Output: xi, {yit}, pi, {nt}, {zt}, { t}, {ct}

1: £ = ;, j = 1;
2: for t = ti, ti + 1, ti + 2, ..., T do

3: if zi�1
t + si  Rt and  t  H then

4: £ = £ [ {t};
5: end if

6: end for

7: wi = min{Ci

si

, |£|};
8: Let l0 be the set of the first wi slots {t1, t2, ..., twi

} in £;
9: &(t) = mtsi � nt, 8t 2 {t1, t2, ..., twi

};
10: if twi

> di then

11: &(twi
) = &(twi

) � gi(twi
� di);

12: end if

13: P0 =
P

t2T (l0)
&(t);

14: while wi + j  |£| do

15: lj = lj�1;
16: Let tc be the (wi + j)-th time slot in £;
17: &(t) = mtsi � nt, 8t 2 {t1, t2, ..., twi

} [ {tc};
18: if tc > di then

19: &(tc) = &(tc) � gi(tc � di);
20: end if

21: tm = arg mint2{t1,...,twi�1} &(t);
22: if &(twi

) > &(tm) then

23: tm = twi
;

24: end if

25: twi
= tc;

26: Pj =
P

t2T (lj)
&(t);

27: j = j + 1;
28: end while

29: ĵ = arg maxj{Pj}, P̂ = P
ĵ
, l̂ = l

ĵ
;

30: if �bi + P̂ > 0 then

31: xi = 1, yit = 1, x
il̂

= 1, 8t 2 T (l̂);
32: µi = �bi + P̂ ;
33: pi =

P
t2T (l̂) mtsi �

P
t2T (l̂) nt;

34: zi

t
= zi�1

t + si,  t =  t + 1, 8t 2 T (l̂);
35: ct = zi

t
, 8t 2 T (l̂);

36: nt = L( L

U
)

z
i
t

H max
i2[I]{si} , 8t 2 T (l̂);

37: end if

38: return xi, {yit}, pi, {nt}, {zt}, { t}, {ct}

Algorithm 3 Edge Workload Migration Algorithm

Input: {ct}, {Rt}, {rkj}, {hkj}, {Wjt}, {Vkt}, q
Output: {okjt}

1: for t = 1, 2, ..., T do

2: Solve the one-shot instance of P2 at t using a solver
(e.g., the interior-point method);

3: end for

4: return okjt

4 THEORETICAL ANALYSIS

In this section, we formally prove that our proposed
E3DR approach terminates in polynomial time, achieves the
desired economic properties of truthfulness and individual
rationality, and has a gauranteed competitive ratio regard-
ing the long-term social cost.

4.1 Correctness and Polynomial-Time Complexity
Theorem 1. Algorithm 1 terminates in polynomial time and
returns a feasible solution for the problems P3 and D3.

Proof. Correctness: In Algorithm 2 invoked by Algorithm 1,
Lines 3 and 34 make the solution satisfy (5c). Lines 34-35
ensure that the right-hand side of (5b) equals its left-hand
side. For the specific schedule l̂ being chosen, Line 31 sets xil

to 1, satisfying (5a). (5d)-(5e) are naturally satisfied. Thus, it
is feasible for P3. Also, in Algorithm 2, Lines 32 and 36 set
µi and nt according to Equations (7) and (9), respectively,
together with Equation (8), make the dual solution satisfy
(6a)-(6c), thus feasible for D3.

Complexity: We first consider the key steps in Algorithm
2. Lines 2-6 take O(T ). Line 9 takes O(T ). Lines 14-28 have
O(T ) iterations, where in each iteration Line 17 takes O(T ).
Thus, overall, Algorithm 2 takes O(T 2). Then, Algorithm 1
invokes Algorithm 2 as each bid arrives for a total number
of I bids, and thus takes O(IT 2).

Theorem 2. Our approach E3DR (i.e., Algorithms 1-3) termi-
nates in polynomial time and returns a feasible solution for the
problem P .

Proof. Based on Theorem 1, Algorithm 1 that invokes Algo-
rithm 2 terminates in polynomial time; Algorithm 3 solves a
linear program and also terminates in polynomial time.

On feasibility, we have a feasible solution for P3 based on
Theorem 1, and due to the reformulation as stated in Section
3.3, we also have a feasible solution for P1; given that, we
solve P2 while respecting all of its constraints and thus also
have a feasible solution for it. Joining all of these together,
we have a feasible solution for the original problem P .

4.2 Truthfulness and Individual Rationality
We define utility, based on which we further define the

economic properties of truthfulness and individual ratio-
nality. Then, we prove that our approach in this paper
indeed achieves these economic properties. We highlight
that the two economic properties are important and desired:
truthfulness ensures that there is no motivation for a bidder
to lie about its bidding price in an auction, and individual
rationality ensures that there is no loss for a bidder regard-
less of the auction outcome.

Definition 1. Utility: The utility of the bid i is

ui =

⇢
pi � (vi + g

0

i
(⌧i)), if xi = 1

0, otherwise

where pi is the payment received; vi is the true valuation of
the bid i by the bidder for the energy of the EV i discharged
before the deadline di; and g

0

i
(⌧i) is the true penalty or additional

valuation of the bid i given by the bidder for the energy of the EV
i discharged after di, as described earlier.

Definition 2. Truthfulness: Bidding the true valuation maxi-
mizes the utility of a bid, i.e., for all bi and gi(⌧i) where bi +
gi(⌧i) 6= vi + g

0

i
(⌧i), we have ui(vi + g

0

i
(⌧i)) � ui(bi + gi(⌧i)).

Definition 3. Individually Rationality: A bid always has non-
negative utility, regardless of the auction outcome [23], i.e., for
the bid i, we always have ui � 0.
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In the following, we firstly give Lemma 1 and prove that
our approach meets the conditions required in this lemma
and thus achieves truthfulness. We then present Theorem 3
based on Lemma 1 to further state that our approach also
achieves individual rationality.

Lemma 1. According to the Myerson theorem [24], an auction
is truthful if and only if (1) the auction outcome is monotone, i.e.,
for 8i, j, if bil  bjl, then xj = 1 implies xi = 1, given all the
other inputs do not change; and (2) the winning bid is paid with
the critical payment [25], i.e., if the bid i wins the auction with
the cost b⇤

il
, and receives the payment p⇤

i
, then it will also win if it

bids bil < p⇤
i
; if it bids bil � p⇤

i
, then it will lose in the auction.

Our approach satisfies both requirements.

Proof. Monotonicity: Following (7) and Algorithm 1, we
have

µi = max(0, max
l2⇠i

(�bil +
X

t2T (l)

mtsi �
X

t2T (l)

nt)), 8i.

That is, if bil  bjl and all the other inputs remain the same,
then we have µi � µj . On the other hand, according to
Algorithm 1, if xj = 1, then we have µj > 0. Consequently,
we have µi > 0 and accordingly xi = 1.

Critical Payment: Suppose the bid i wins the auction
when bidding b⇤

il
, and the payment is p⇤

i
. From Lines 30-

31 in Algorithm 2, we have the following: if �bi + P̂ =
�b⇤

il
+ p⇤

i
> 0, then xi = 1; if �bi + P̂  0, then xi = 0. So,

if bil < p⇤
i
, then we also have xi = 1. If bil � p⇤

i
, then we

have xi = 0.

Theorem 3. Our approach E3DR achieves both truthfulness and
individual rationality.

Proof. As our approach satisfies Lemma 1, it is truthful. So,
we focus on proving individual rationality.

Based on the definition of utility, if a bid i does not win
in the auction, then ui = 0; if a bid i wins in the auction,
then we have xi = 1 and

ui = pi � (vi + g
0

i
(⌧i))

� pi � (bi + gi(⌧i)) (10)

=
X

t2T (l̂)

mtsi �
X

t2T (l̂)

nt � gi(⌧i) � bi (11)

= µi (12)
> 0.

We reach (10) due to truthfulness. We further reach (11) due
to how we calculate the payment pi in Line 33 of Algorithm
2. Finally, note that, because xi = 1, we can directly reach
(12) from (11), based on (7). As shown, the utility is always
non-negative for any bid i.

4.3 Competitive Ratio
In this part of the analysis, we focus on the “competitive

ratio”, which is an important performance metric for online
algorithms. The competitive ratio of E3DR for our original
problem P is defined as the largest ratio of the social cost
(i.e., the value of the objective function of the problem P )
incurred by the online approach E3DR (i.e., Algorithms 1-3)
over the offline optimal social cost (i.e., the optimal objective
value of P ), over all possible inputs for P . We recap that

E3DR does not solve P directly, but solves P1 ⇠P3 and D3

online to compose the solution for P .
To prove the competitive ratio, we take the following

roadmap. We introduce and recap some important notations
first. We use the notations P , P1, P2, and P3 to represent
both the problems and the corresponding objective values
of these problems evaluated with the solutions produced by
our proposed algorithmic approach. Analogously, we also
use D, D1, and D3 to represent the dual problems of the
problems P , P1, and P3, respectively, and also represent
the objective values of these dual problems correspondingly.
Therefore, our goal here is to prove P  �D, and then due
to D  OPT , i.e., the weak duality, we will automatically
have P  �OPT , where OPT denotes the optimal objective
value of the problem P and � will denote the competitive
ratio for solving the problem P . To elaborate it, we will show
the following:

P = P1 + P2

 1

↵
D1 + �

X
t2[T ]

mtRt

 �(D1 +
X

t2[T ]
mtRt)

 �D

 �OPT.

First, by Lemmas 2 and 3, and Theorem 4, we point out
that Algorithm 2 is ↵-competitive with regards to the
problem P3 (and thus the problem P1). That is, we prove
P3 � 1

↵
D3 and find out ↵; this also means P1  1

↵
D1, due to

P3 = �P1 and D3 = �D1. Second, by Lemma 4, we prove
P2  �

P
t2[T ] mtRt and find out �. Finally, by Theorem

5, we exhibit that E3DR is �-competitive with regards to
the problem P . we show D = �

P
i2[I] µi �

P
t2[T ] ntH +P

t2[T ] mtRt �
P

j2K

P
t2[T ] zjtWjt �

P
k2K

P
t2[T ] 'ktVkt,

D1 = �
P

i2[I] µi �
P

t2[T ] ntH . We can then let mt =

min
k2[K],j2[J]

{ rkj

hkj

}, nt = L(U

L
)

zt

H max
i2[I]

{si} , 'kt = 0, zjt = 0.

Afterwards, we have D1 +
P

t2T
mtRt  D, prove 1

↵
D1 +

�
P

t2[T ] mtRt  �D, and find out �.

Lemma 2. If Algorithm 2 guarantees P i

3 � P i�1
3 � 1

↵
(Di

3 �
Di�1

3 ), 8i, where ↵ � 1, then Algorithm 2 is ↵-competitive for
P3.

Proof. We have

P I

3 = P I

3 � P 0
3 =

X

i

(P i

3 � P i�1
3 ),

based on

P i

3 � P i�1
3 � 1

↵
(Di

3 � Di�1
3 ).

Adding up each inequality, we can find
X

i

(P i

3 � P i�1
3 ) � 1

↵

X

i

(Di

3 � Di�1
3 ) =

1

↵
(DI

3 � D0
3) =

1

↵
DI

3 .

According to weak duality [26], DI

3 � OPT3; therefore, we
have P I

3 � 1
↵
OPT3. Thus, the algorithm is ↵-competitive.



9

Assumption 1. The Usage-Cost Relation, with ↵ > 1, is defined
as

ni�1
t (zi

t
�zi�1

t ) � 1

↵
(H max

i2[I]
{si})(ni

t
�ni�1

t ), 8i 2 [I], 8t 2 T (l).

The Differential Usage-Cost Relation, with ↵ � 1, is defined as

ntdzt � 1

↵
(H max

i2[I]
{si})dnt, 8i 2 [I], 8t 2 T (l).

We believe the Differential Usage-Cost Relation can hold
reasonably in reality. If we rearrange the terms in the Differ-
ential Usage-Cost Relation, we have dnt

dzt

 ↵ · nt

H maxi2[I] si

.
That is, given ↵ > 1, what we essentially assume here is that
the derivative of nt is upper-bounded at any t—a common
assumption made in lots of real-world situations. We will
prove if the Differential Usage-Cost Relation holds, then the
Usage-Cost Relation holds for the same ↵ later.

Lemma 3. If the Usage-Cost Relation holds, then Algorithm 2
guarantees P i

3 � P i�1
3 � 1

↵
(Di

3 � Di�1
3 ), 8i.

Proof. When the bid i is rejected, P i

3 �P i�1
3 = Di

3 �Di�1
3 =

0. Next, we assume the bid i wins, and suppose l is the best
schedule for it. After processing this bid i, the increment of
the primal objective function (5) is

P i

3 � P i�1
3 = �bil +

X

t2T (l)

q(ci

t
� ci�1

t )

= µi �
X

t2T (l)

mtsi +
X

t2T (l)

ni�1
t +

X

t2T (l)

q(ci

t
� ci�1

t ).

Since the left-hand side of Constraint (6a) equals the
right-hand side when the bid i is accepted with the schedule
l, the second equation is valid. Due to si = ci

t
�ci�1

t , we have

P i

3 � P i�1
3 = µi +

X

t2T (l)

ni�1
t .

The dual objective value increases as

Di

3 � Di�1
3 = µi +

X

t2T (l)

H(ni

t
� ni�1

t ).

According to Assumption 1, i.e.,

ni�1
t (zi

t
� zi�1

t ) � 1

↵
(H max

i2[I]
{si})(ni

t
� ni�1

t )

and zi

t
= ci

t
, then we have

ni�1
t si � 1

↵
H max

i2[I]
{si}(ni

t
� ni�1

t ).

Obviously,

ni�1
t � 1

↵

H max
i2[I]

{si}

si

(ni

t
� ni�1

t ) � 1

↵
H(ni

t
� ni�1

t ).

In addition, when we add up Usage-Cost Relation over all
t 2 T (l), we obtain

X

t2T (l)

ni�1
t �

X

t2T (l)

1

↵
H(ni

t
� ni�1

t ),

P i

3 � P i�1
3 � µi +

1

↵
(Di

3 � Di�1
3 � µi).

Due to µi � 0 and ↵ � 1, we have

P i

3 � P i�1
3 � 1

↵
(Di

3 � Di�1
3 ).

Theorem 4. Algorithm 2 is ↵-competitive for P3, with ↵ = lnU

L

satisfying the Differential Usage-Cost Relation.

Proof. The deferential of nt is

dnt = L(
U

L
)

zt

H max
i2[I]

{si}
ln(

U

L
)

1

H max
i2[I]

{si}
dzt.

The Differential Usage-Cost Relation is

L(
U

L
)

zt

H max
i2[I]

{si}
dzt �

H max
i2[I]

{si}

↵
(L)(

U

L
)

zt

H max
i2[I]

{si}
ln(

U

L
)

1

H max
i2[I]

{si}
dzt

) ↵ � ln(
U

L
).

As a result, the lemma holds for ↵ = lnU

L
.

Lemma 2 points out that if the increment of the pri-
mal objective value can be used as an upper bound for a
constant times the increment of the dual objective value,
then the competitive ratio for P3 can be found accordingly.
Suppose P i

3 and Di

3 denote the objective value of the primal
problem P3 and the dual problem D3, respectively, after
Algorithm 2 has dealt with EV i’s bid. We also introduce
and define the “Usage-Cost Relation” and the “Differential
Usage-Cost Relation”, respectively. The latter ensures the
former, due to the following. An EV’s discharging rate is
often much lower than the station capacity in the real world,
i.e., si ⌧ H maxi2[I] si. Then we have dzt = zi

t
� zi�1

t = si.
Based on differential calculus, we can further have dnt =
n

0

t
(zt)dzt = nt(zi

t
)�nt(z

i�1
t ) = ni

t
�ni�1

t , where ni

t
denotes

the equipment cost after processing the EV i’s bid, and
nt = ni�1

t when the bid i is submitted.

Lemma 4. We have P2  �
P

t2[T ] mtRt with � = rmaxhmax
rminhmin

,
where

rmax = max
k2[K],j2[J]

{rkj}, rmin = min
k2[K],j2[J]

{rkj},

hmax = max
k2[K],j2[J]

{hkj}, hmin = min
k2[K],j2[J]

{hkj}.

Proof. We derive the dual problem of the problem P2:

max
X

t2[T ]

mtRt �
X

j2K

X

t2[T ]

zjtWjt �
X

k2K

X

t2[T ]

'ktVkt

+
X

t2[T ]

qtct �
X

t2[T ]

mtct (13)

s.t. hkjmt  rkj + 'kt + zjt, 8k 2 [K], 8j 2 [K],

8t 2 [T ] (13a)
'kt � 0, zjt � 0, mt � 0, 8k 2 [K], 8j 2 [K],

8t 2 [T ]. (13b)
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We can let mt = q = min
k2[K],j2[J]

{ rkj

hkj

}, 'kt = 0, zjt = 0.

Suppose there is a � such that
X

t2[T ]

X

k2[K]

X

j2[K]

rkjokjt +
X

t2[T ]

qct  �
X

t2[T ]

mtRt.

Then, � = max
P

t2[T ]

P
k2[K]

P
j2[K] rkjokjt+

P
t2[T ] qctP

t2[T ] mtRt

. Thus,
we can do the following:
P

t2[T ]

P
k2[K]

P
j2[K] rkjokjt +

P
t2[T ] qctP

t2[T ] mtRt



P
t2[T ]

P
k2[K]

P
j2[K] rkjokjt + min

t2[T ]
{mt}

P
t2[T ] ct

min
t2[T ]

{mt}
P

t2[T ] Rt



max
k2[K],j2[K]

{rkj}

min
k2[K],j2[K]

{hkj}
P

t2[T ](Rt � ct) + min
t2[T ]

{mt}
P

t2[T ] ct

min
t2[T ]

{mt}
P

t2[T ] Rt


max

k2[K],j2[K]
{rkj} max

k2[K],j2[K]
{hkj}

min
k2[K],j2[K]

{rkj} min
k2[K],j2[K]

{hkj}
,

where we let � = rmaxhmax
rminhmin

.

Theorem 5. Our approach E3DR is �-competitive for P , with

� = � +
� � 1

↵

"� 1
,

where " =
max
t2[T ]

{mtRt}

max
t2[T ]

{mtRt}� min
t2[T ]

{nt}
min

t2[T ]
{Rt}

max
i2[I]

{si}

.

Proof. Suppose there is a � such that

P =
X

i2I

X

l2⇠i

bilxil +
X

t2[T ]

X

k2[K]

X

j2[K]

rkjokjt

=
X

i2I

X

l2⇠i

bilxil �
X

t2T

qct +
X

t2T

qct

+
X

t2[T ]

X

k2[K]

X

j2[K]

rkjokjt

 1

↵
(�

X

i2[I]

µi �
X

t2[T ]

ntH) + �
X

t2T

mtRt

 �(�
X

i2[I]

µi �
X

t2[T ]

ntH +
X

t2T

mtRt)

 �D  �OPT.

In contrast to reformulating the problem P1 as done in
our paper, we can now actually reformulate the problem P
in a similar fashion as follows:

min
X

i2[I]

X

l2⇠i

bilxil +
X

t2[T ]

X

k2[K]

X

j2[K]

rkjokjt (14)

s.t.
X

l2⇠i

xil  1, 8i 2 [I] (14a)

X

i2[I]

X

l2⇠i:t2T (l)

sixil +
X

k2[K]

X

j2[K]

hkjokjt � Rt,

8t 2 [T ]
(14b)

X

i2[I]

X

l2⇠i:t2T (l)

xil  H, 8t 2 [T ] (14c)

X

k2[K]

okjt  Wjt, 8t 2 [T ], 8j 2 [K] (14d)

X

j2[K]

okjt  Vkt, 8t 2 [T ], 8k 2 [K] (14e)

xil 2 {0, 1}, okjt � 0, ⌧i � 0,

8j 2 [K], 8k 2 [K], 8i 2 [I], 8t 2 [T ] (14f)

For the above problem, we can derive the dual problem
D, which requires the non-negative dual variables µi, mt,
nt, zkt and 'kt for Constraints (14a), (14b), (14c), (14d) and
(14e), respectively. We also relax xil 2 {0, 1} to xil � 0. The
dual problem denoted as D is as follows:

max �
X

i2[I]

µi �
X

t2[T ]

ntH +
X

t2[T ]

mtRt

�
X

j2K

X

t2[T ]

zjtWjt �
X

k2K

X

t2[T ]

'ktVkt (15)

s.t. µi � �bil +
X

t2T (l)

m(t)si �
X

t2T (l)

nt, 8i 2 [I], 8l 2 ⇠i

(15a)
hkjmt  rkj + 'kt + zjt

8k 2 [K], 8j 2 [K], 8t 2 [T ] (15b)
µi � 0, mt � 0, nt � 0,'kt � 0, zjt � 0,

8k 2 [K], 8j 2 [K], 8t 2 [T ], 8t 2 [T ], 8i 2 [I] (15c)

We can let mt = min
k2[K],j2[J]

{ rkj

hkj

}, nt = L(U

L
)

zt

H max
i2[I]

{si} ,

'kt = 0, zjt = 0. Then, we have 0  �
P

i2[I] µi �P
t2[T ] ntH +

P
t2T

mtRt  D. So, this theorem holds for

� = max(
1
↵
(�

P
i2[I] µi �

P
t2[T ] ntH) + �

P
t2T

mtRt

�
P

i2[I] µi �
P

t2[T ] ntH +
P

t2T
mtRt

),

where mt = min
k2[K],j2[J]

{ rkj

hkj

}, nt = L(U

L
)

zt

H max
i2[I]

{si} .

We let � =
P

t2T
mtRtP

i2[I] µi+
P

t2[T ] ntH
,

� = max(
� 1

↵
+ ��

�1 + �
)

F (z) =
� 1

↵
+ ��

�1 + �
= � +

� � 1
↵

�� 1
.

When � takes the minimum value, the value of � takes the
maximum value.

� =

P
t2T

mtRtP
i2[I] µi +

P
t2[T ] ntH

=

P
t2T

mtRtP
i2[Î](�bil +

P
t2[T ] mtsi �

P
t2[T ] nt) +

P
t2[T ] ntH

�
P

t2T
mtRt

� min
i2[I]

(bi) +
P

t2[T ] ntH +
P

i2[Î]

P
t2T

(mtsi � nt)

�
P

t2T
mtRt

min
i2[I]

{�bi} +
P

t2[T ] ntH +
P

t2T
(mtRt � nt

min
t2[T ]

{Rt}

max
i2[I]

{si} )
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Fig. 4: Energy reduction dissection Fig. 5: Social cost dissection Fig. 6: Social cost comparison

Fig. 7: Social cost vs. facility capacity Fig. 8: Social cost vs. penalty function Fig. 9: Passenger counts

Fig. 10: Social cost vs. edge capacity Fig. 11: Social cost vs. deadline Fig. 12: Discharging dissection

�
T max

t2[T ]
{mtRt}

T max
t2[T ]

{mtRt} � T min
t2[T ]

{nt}
min
t2[T ]

{Rt}

max
i2[I]

{si}

=

max
t2[T ]

{mtRt}

max
t2[T ]

{mtRt} � min
t2[T ]

{nt}
min
t2[T ]

{Rt}

maxi2[I]{si}

= "

where Î represents the set of winning bids, because of the
value of nt, � min

i2[I]
{bi} +

P
t2[T ] ntH < 0, " > 1. Therefore

this theorem holds for

� = � +
� � 1

↵

"� 1
.

5 EXPERIMENTAL EVALUATION

5.1 Experiment Settings

Edge System: We choose 40 underground stations in
London and envisage that an edge is located at each of
such stations. The geographical distance between two sta-
tions is used to approximate the propagation delay between
the edges [18]. The dynamic passenger numbers at each
station are available, and we use such data to represent
the workload of the corresponding edge. The maximum
workload allowed at each edge is randomly generated in

[400, 500]. The energy reduction by migrating workload
across different edges changes randomly in [0, 2] kWh [27].

Demand Response: We consider real-world EDR events
of PJM, a regional transmission organization, on Jan. 4,
2014 [20]. The EDR lasted for a total of 168 hours, where
we consider one hour as one time slot. In EDR events, it
is reported that 25% of the edge system peak IT power
consumption is a reasonable reduction, not negatively im-
pacting the participants [19]. The idle and the peak power
of an edge could be 8 kWh and 24 kWh, respectively [9].
Therefore, the maximum energy reduction goal is set to 240
kWh and the minimum energy reduction goal is set to 150
kWh based on the real EDR events. The energy reduction
goal sent to the edge system from the electricity grid at each
time slot is set to be within the range of [150, 240] kWh
based on the real EDR events.

EV Bidding: We set 70 ⇠ 350 EV bidders [28] [29], each
with a single bid. We set the charging facility’s capacity
as 100, which is the maximum number of simultaneous
discharging sessions allowed at any time. We generate the
bid arrival sequence randomly over [0, 168]. The electricity
that can be discharged from each EV varies randomly within
the range of [2, 8] kWh [14] per time slot (but is a fixed value
for every given EV). The price of the energy contained in EV
bids is set randomly within the range [0.018, 0.078] $/kWh
[14]. The battery capacity of each EV is assumed to be 40
kWh, and the amount of discharging energy of each EV is
set to be within [0, 40] kWh [21]. Each EV’s discharging
deadline is randomly generated between its arrival time
and the end of the time horizon under consideration. We
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consider a linear penalty function unless explicitly specified.
Algorithms for Comparison: We implement and com-

pare our approach, E3DR, against the following approaches:
(1) the online approach that uses no EVs or auctions for
edge computing demand response; (2) the online random
approach which randomly chooses the EV bids; (3) the
online greedy approach which chooses the EV bids with
the lowest unit energy price; (4) the online algorithm RTL
[30], which schedules an EV according to the optimal sum
of the deadline violation penalty, the energy cost and the
edge network delay, without considering auctions; and (5)
the offline optimal approach that solves the problem P via
the Gurobi [31] solver, assuming inputs over the entire time
horizon are known at once.

5.2 Evaluation Results
Energy Reduction and Social Cost Dissection: Fig. 4

displays the time-varying energy reduction goals from the
grid, and how such energy reduction is fulfilled in terms
of EV energy discharging and edge computing workload
adjustment in each time slot. Introducing EVs helps a lot,
while adjusting the edge workload can often achieve limited
energy reduction. Fig. 5 shows the social cost in real time,
and how much the EV cost and the edge system cost occu-
pies, respectively, in the social cost in each time slot. Upon
the arrival of each bid, our algorithms immediately compute
the auction outcome and the edge network’s workload
allocation. Thus, the EV cost increases as the bid wins.

Social Cost of Different Approaches: Fig. 6 demon-
strates the social cost of our proposed online approach
compared to three different other algorithms as the number
of bids increases. This figure shows that our approach E3DR
saves 20% ⇠ 50% social cost, performs better than other
methods, and is also close to the offline optimum. We also
see that the more bids the system has, the less the social
cost becomes, because there exists more room for leveraging
various bids to optimize the social cost of the entire system.

Impact of Discharging Capacity on Social Cost: Fig.
7 exhibits the social cost of our proposed online approach
compared to three other algorithms as the facility capacity
(i.e., the allowed maximal number of discharging sessions
per time slot) changes. The social cost decreases as the
facility capacity increases, because the system can accept
more bids simultaneously. We highlight that, as the facility
capacity exceeds 12, the social cost sees only minor decre-
ments. This is because the capacity has become ‘too large’,
greater than the number of bids that arrive per time slot; so,
continuing to increase the capacity has no significant impact
on social cost. This figure also confirms our approach E3DR
performs consistently better than the other methods.

Impact of Penalty Function on Social Cost: Fig. 8 ex-
hibits how the social cost varies when five different penalty
functions are applied:

p
x, x, 1.5x, 2x and x2. As the penalty

of the deadline violation becomes more significant, the EV
bids are more likely to be rejected by our approach, resulting
in the increased social cost. Yet, our approach remains
always better than others for different deadline-violation
penalty functions.

Impact of Edge Capacity on Social Cost: Fig. 9 displays
the number of passengers arriving at each time slot, and Fig.

10 exhibits the social cost of our proposed online approach
compared to three other algorithms as edge capacities in-
crease. Because of the larger capacity, the edge system can
move more workload around in order to further reduce the
social cost.

Impact of Deadline on Social Cost: Fig. 11 exhibits the
social cost of our proposed online approach compared to
three other algorithms as the deadline of the bids increases.
The random and the greedy approaches are not very much
impacted by the deadline. As the deadline becomes later,
the EV bids are more likely to be accepted by our approach,
resulting in the decreased social cost.

Discharging Operations: Fig. 12 exhibits how the dis-
charging operations spread over time slots as dictated by
our algorithm for different penalty functions. Here, we
pick up one bid randomly, and change the weight of the
penalty function for that bid. As shown in the Fig. 13, as the
deadline-violation penalty becomes more significant, the EV
can only violate the deadline for a fewer number of time
slots; also, in this case, the EV can only discharge energy in
a more restrictive (and collective) manner across time slots.

Truthfulness: Fig. 14 confirms the truthfulness of our
approach. As an example, in this figure, we consider one
bid drawn from our EV bids. We can observe that, when
bidding the true cost, the utility is maximized. We also see
that, the bidding price actually impact the auction outcome,
and bidding any price which is lower than the true cost
can always win the auction—this actually verifies the mono-
tonicity required in our lemma as described previously.

Individual Rationality: Fig. 15 depicts the EVs’ total
payment received and their total bidding cost at different
time slots. Seventy random bids are selected for 10 con-
secutive time slots. In fact, for every single bid, we have
exactly the same observation—the payment is no less than
the bidding cost. Besides, Fig. 14 has also visualized that the
utility is indeed non-negative. These phenomena all confirm
the individual rationality of our approach.

Impact of Discharging Deadline on Payment: Fig. 16
illustrates how the payment is impacted by the discharging
deadline of the bids. Here, we pick up two bids of different
bidding cost bi for this figure. Both bids receive more
payments as the deadlines extend; the second bid, which
is originally rejected by the auction, even becomes accepted.
With deadlines extended, the edge computing system can
arrange discharging schedules for EVs more flexibly and
thus tend to leverage more bids in the EDR programs.

Empirical Competitive Ratio: Fig. 17 further evaluates
the empirical competitive ratio. We see that a smaller value
of U/L leads to a better competitive ratio, and the number
of bids does not obviously influence the competitive ratio.
Here are some explanations: according to Theorem 4, ↵
decreases as U/L decreases, leading to a better competitive
ratio; also, ↵ and � have nothing to do with the number of
bids according to Theorems 4 and 5.

Algorithms Execution Time: Fig. 18 shows the running
time of our proposed approach on a computer with an
Intel(R) Core(TM) i5 CPU of 2.9 GHz and 8 GB memory. Our
approach consumes up to about 20 seconds for 350 EVs for
the time horizon of 168 hours. Therefore, our approach runs
fast and its execution time is acceptable.
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Fig. 13: Deadline violations Fig. 14: Truthfulness Fig. 15: Individual rationality

Fig. 16: Payment vs. deadline Fig. 17: Empirical competitive ratio Fig. 18: Algorithms running time

6 RELATED WORK

Demand response for edge computing has gained re-
cent attention. Chen et al. [9] propose an online auction
mechanism that incentivizes edges to participate in EDR.
Song et al. [10] design an online task scheduling algorithm
selecting clusters to dispatch workload to meet the energy
reduction targets. Song et al. [32] propose a reverse auction
involving local generators to guarantee target EDR power
reduction and VCG to ensure truthful auction. Chen et al.
[11] design an online auction mechanism for performing
power EDR and computing EDR altogether for the edge. Cui
et al. [12] develop a two-phase game-theoretical algorithm
to solve the mobile edge computing EDR problem. Zhou et
al. [33] design efficient online auctions for scheduling cloud
computing jobs with completion deadlines. None of these
papers have considered leveraging EVs as energy sources,
nor deadlines of bids when designing auctions in EDR.

Meanwhile, there exist many studies on online mecha-
nisms for EVs. Li et al. [13] propose a randomized auction
framework that adopts the smoothed analysis mechanism to
incentivize EVs to participate in EDR. Yuan et al. [14] design
a novel polynomial-time online algorithm and an auction
mechanism to incentivize EVs with remaining energy to
sell their energy to satisfy EVs charging demand. Zhong
et al. [15] propose a mechanism that can stimulate energy
interaction between EVs and grids via V2G technologies.
Yi et al. [16] devise an online mechanism that formulates
the EV charging scheduling problem with both the charging
cost and the EV’s dissatisfaction in consideration. Guo et al.
[17] present an online linear program to handle the online
variability of charging rates in each control period. This
branch of works are often not for edge computing, and only
consider EV charging or the interaction between EVs and
the grid; also, none of them have considered the deadlines.

Our work in this paper differs significantly from previ-
ous research in multiple aspects. First, we introduce EVs
to power edge computing systems, which enhances the
flexibility of energy sources and is environmentally friendly,
and incorporate this new energy source in EDR of edge

computing. Second, we formulate the auction of dynamic
EV discharging over time with arbitrary bid arrivals, dead-
lines, and penalty of deadline violations, rather than a
simple single-round auction, for realistic EDR scenarios.
Third, to the best of our knowledge, our proposed algo-
rithmic approach is different from all the aforementioned
research, featuring the problem decomposition for respon-
sive scheduling and time-based scheduling, the primal-
dual maintenance, the payment calculation, and the various
performance guarantees.

7 CONCLUSION AND FUTURE WORK

EVs and V2G techniques provide new opportunities for
realizing edge computing demand response, but have been
largely ignored. In this paper, we propose to utilize EVs
to power the distributed edge computing system via V2G
when it is requested to reduce its energy consumption from
the electricity grid in demand response programs. We model
and formulate an online optimization problem, focusing on
incentivizing EVs to sell their battery energy to the edges
via auctions. We design novel decomposition and primal-
dual-based algorithms to solve this problem while address-
ing unpredictable EV arrivals, energy discharge deadlines,
and desired economic efficiency. We have proved multiple
theoretical performance guarantees and also conducted ex-
tensive evaluations to exhibit the practical effectiveness and
superiority of our proposed approach compared to others.

For future work, we plan to further explore edge system
operations beyond workload migration combined with EV
energy provisioning in the edge demand response scenario.
For example, allowing partially dropping workload or dy-
namically turning on/off the edges can bring new chal-
lenges and flexibilities when jointly considered with EVs.
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