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Abstract

We present a federated learning framework that is designed to robustly deliver good predictive
performance across individual clients with heterogeneous data. The proposed approach hinges upon
a superquantile-based learning objective that captures the tail statistics of the error distribution over
heterogeneous clients. We present a stochastic training algorithm that interleaves differentially private
client filtering with federated averaging steps. We prove finite time convergence guarantees for the
algorithm: O(1/

√
T ) in the nonconvex case in T communication rounds and O(exp(−T/κ3/2) + κ/T ) in

the strongly convex case with local condition number κ. Experimental results on benchmark datasets for
federated learning demonstrate that our approach is competitive with classical ones in terms of average
error and outperforms them in terms of tail statistics of the error.

1 Introduction
Federated learning is a distributed machine learning framework where many clients (e.g. mobile devices)
collaboratively train a model under the orchestration of a central server (e.g. service provider) while keeping
the training data private and local to the client throughout the training process [67, 50]. It has found
widespread adoption across industry [9, 75] for applications ranging from smart device apps [102, 42] to
healthcare [11, 46].

A key feature of federated learning is the statistical heterogeneity, i.e., client data distributions are not
identically distributed [50, 62]. In typical cross-device federated learning scenarios, each client corresponds
to a user. The diversity in the data they generate reflects the diversity in their unique personal, cultural,
regional, and geographical characteristics.

This data heterogeneity in federated learning manifests itself as a train-test distributional shift. Indeed,
the usual approach minimizes the prediction error of the model on average over the population of clients
available for training [67] while at test time, the same model is deployed on individual clients. This approach
can fail on clients whose data distribution is far from most of the population or who may have less data
than most of the population. It is highly desirable, therefore, to have a federated learning method that can
robustly deliver good predictive performance across a wide variety of natural distribution shifts posed by
individual clients.

We present in this paper a robust approach to federated learning that guarantees a minimum level
of predictive performance to all clients, even in situations where the population is heterogeneous. The
method we develop addresses these issues by minimizing a learning objective based on the notion of a
superquantile [84, 87], a risk measure that captures the tail behavior of a random variable.

Training models with a learning objective involving the superquantile raises challenges. The superquantile
is a non-smooth functional with sophisticated properties. Furthermore, the superquantile function can be
seen as a kind of nonlinear expectation that we would like to blend well with averaging mechanisms. We show
how to address the former by leveraging the dual formulation and the latter by leveraging the tail-domain
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Figure 1: Schematic summary of the ∆-FL framework. Left: The server maintains multiple models wθj , one for
each tail threshold θj . Middle: During training, selected clients participate in training each model wθj . Individual
updates are securely aggregated to update the server model. Right: Each test user is allowed to select their tail
threshold θ, and are served the corresponding model wθ.

viewpoint. As a result, we can obtain an algorithm that can be implemented in a similar way to FedAvg [67]
yet offers important benefits to heterogeneous populations.

The approach we propose, ∆-FL, allows one to control higher percentiles of the distribution of errors over
the heterogeneous population of clients. We show in the experiments that our approach is more efficient
than a direct approach, simply seeking to minimize the worst error over the population of clients. Compared
to FedAvg, ∆-FL delivers improved prediction to tail clients or data-poor clients. Our algorithm relies on
differentially private quantile computation to filter out clients on which to run federated averaging steps. We
present finite-time theoretical convergence guarantees for our algorithm when used to train additive models
or deep networks and prove bounds on the privacy and utility of the algorithm.

1.1 Contributions
We make the following concrete contributions in this work.

The ∆-FL Framework. The usual objective of federated learning, which we call the vanilla FL objective is

min
w∈Rd

1

n

n∑
i=1

Fi(w) +
λ

2
‖w‖2 , (1)

where Fi(w) = Eξ∼qi [f(w; ξ)] is the expected loss on client i under its data distribution qi for i = 1, . . . , n,
and λ is a regularization parameter [67]. Minimizing the average loss can lead to poor performance on clients
whose distribution p is far from the population training distribution ptrain = (1/n)

∑n
i=1 qi. Our goal is to

improve the performance on such tail clients.
To this end, we directly minimize the average loss across tail clients whose loss is above a certain tail

threshold. We formalize this through the notion of a risk measure known as the superquantile, a tail
summary statistic of random variables [84]. The (1− θ)-superquantile is defined for a continuous random
variable Z and θ ∈ (0, 1) as Sθ(Z) = E[Z |Z > Qθ(Z)], where Qθ(Z) is the (1− θ)-quantile of Z. A similar
interpretation holds for discrete distributions; the formal definition of the superquantile for this case is given
in Section 3.3.

Instead of minimizing the average loss as in (1), the proposed framework ∆-FL minimizes the tail loss
across clients, as measured by the superquantile. Concretely, at a tail threshold θ ∈ (0, 1), we minimize

Fθ(w) := Sθ
(
F1(w), . . . , Fn(w)

)
+
λ

2
‖w‖2 , (2)

where Sθ(a1, . . . , an) is the (1 − θ)-superquantile of the empirical distribution (1/n)
∑n
i=1 δai . Thus, the

objective (2) measures the tail statistics of the per-client loss distribution.
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By a duality argument, we show that the superquantile objective (2) promotes distributional robustness.
If we have a test client who is unseen during training and whose distribution pπ =

∑n
i=1 πiqi can be written

as a mixture of the training distributions q1, . . . , qn, then the ∆-FL objective can be written as

Fθ(w) = max
πi≤1/(θn)

Eξ∼pπ [f(w; ξ)] +
λ

2
‖w‖2 .

In other words, we minimize the worst-case loss over all mixture distributions with a constraint πi ≤ 1/(θn)
on the mixture weights; see Section 4.1 for details.

Optimization Algorithms. To design a federated optimization algorithm to optimize the ∆-FL objective,
the nonsmoothness of the superquantile a 7→ Sθ(a1, . . . , an) might lead to potential difficulties in optimization.
Fortunately, we can derive an expression for the subgradient of the ∆-FL objective (2): when θn is an integer,
we have

n∑
i=1

π?i Fi(w) + λw ∈ ∂Fθ(w) , where π?i =
I(Fi(w) ≥ Qθ)∑n
j=1 I(Fj(w) ≥ Qθ)

,

and Qθ = Qθ(F1(w), . . . , Fn(w)) is the (1− θ)-quantile of the losses evaluated at w. In other words, averaging
the gradients of the losses that are larger than the quantile Qθ gives a valid subgradient of the objective (2).

Using this expression, we design a federated optimization algorithm that interleaves federated averaging
with differentially private quantile estimation. Specifically, the local updates w+

i from the subsample of m
selected clients i ∈ S are aggregated to update the global model with the following two steps:
• estimate Q̂θ ≈ Qθ(Fi(w) : i ∈ S) using the distributed discrete Gaussian mechanism [49] and hierarchical

histograms [21], and
• aggregate the updates from the tail clients where Fi(w) ≥ Q̂θ to find the new global model w+ as

w+ =
1

|Sθ|
∑
i∈Sθ

w+
i , where Sθ = {i : Fi(w) ≥ Q̂θ} .

Similar to FedAvg, this aggregation rule enjoys a simplification in the case of a single local update per-client
with a learning rate γ. Specifically, under the assumption of full client participation (i.e., m = n), if the local
update w − w+

i = γ∇
(
Fi(w) + (λ/2)‖w‖2

)
is a single gradient step and Q̂θ = Qθ(F1(w), . . . , Fn(w)) is the

exact quantile of the per-client losses, the aggregated update is simply a subgradient step w−w+ = γ∇Fθ(w)
where we denote the subgradient as ∇Fθ(w) ∈ ∂Fθ(w).

Convergence Analysis. Apart from the nonsmoothness of the superquantile, the convergence analysis
also has to overcome the difficulty that we cannot obtain unbiased minibatch subgradient estimators for
the superquantile objective. Given m i.i.d. copies Z1, . . . , Zm of a random variable Z, the empirical mean
Z̄m = (1/m)

∑m
i=1 Zi is an unbiased estimate of the population mean, i.e., E[Z̄m] = E[Z]. This is no longer

true for the superquantile, i.e., E[Sθ(Z1, . . . , Zm)] 6= Sθ(Z). As a result, we cannot access unbiased stochastic
gradients in the learning setting, where m is the minibatch size. Moreover, it is not reasonable to assume in
federated learning that we have access to all the clients due to a diurnal availability pattern of clients [50].
We overcome this issue by actually minimizing the expected minibatch superquantile instead. It is defined as

F θ(w) := E(i1,...,im)∼Um
[
Sθ
(
Fi1(w), . . . , Fim(w)

)]
,

where Um is the uniform distribution over all subsets of {1, . . . , n} of batch size m. We can build an unbiased
subgradient estimator for this objective by sampling a minibatch (i1, . . . , im) ∼ Um. This is a uniform close
surrogate of the original objective [61, Prop. 1]

|Fθ(w)− F θ(w)| ≤ O
(

maxi=1,...,n |Fi(w)|√
θm

)
.

Assuming that each Fi is G-Lipschitz and L-smooth, we establish a rate of
√
LG2/T in the nonconvex

(and nonsmooth) case where λ = 0. If, additionally, each Fi is convex and λ > 0, the problem is strongly
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convex and we establish a rate of exp(−T/κ3/2) +G2/(λT ) in this case where κ = 1 + L/λ is the per-client
condition number.

Privacy and Utility Analysis. The standard algorithms to compute quantiles with differential privacy are
based on the exponential mechanism and require a trusted central aggregator [92]. Since this is not usually
the case in federated learning, we estimate the cumulative distribution using the hierarchical histogram
method and combine it with the distributed discrete Gaussian mechanism [49] in order to simulate a central
aggregation using a cryptographic primitive known as secure aggregation [8]. The hierarchical histogram
method, also known as tree aggregation, is a classical approach to answer range queries under differential
privacy [43, 32, 16, 93, 21].

Privacy guarantees are obtained by adding noise to the per-client computations, resulting in a degradation
of utility (i.e., the performance relative to the non-private case). This leads to a tradeoff between privacy
and utility. For a hierarchical histogram of b bins, we prove a (1/2)ε2-concentrated differential privacy [12]
guarantee given a per-client noise of scale log b/(ε

√
n) and a quantile error of log2 b/(εn) up to constants and

log factors.

Experiments. We perform numerical experiments using neural networks and linear models on tasks including
image classification and sentiment analysis based on public datasets. The experiments demonstrate the
superior performance of ∆-FL over state-of-the-art baselines on the upper quantiles of the error on test clients,
with particular improvements on data-poor clients, while being competitive on the mean error. A deeper
analysis reveals that ∆-FL helps improve performance on data-poor clients.

We numerically study the privacy-utility tradeoff of the differentially private quantile estimation algorithm
described above and the ∆-FL algorithm with end-to-end differential privacy guarantees. We find that ∆-FL
outperforms FedAvg on the tail error across a wide range of privacy budgets while exhibiting a comparable
privacy-utility tradeoff to FedAvg on the mean error.

1.2 Outline
We start with Section 2 to describe the related work. Section 3 describes the general setup, recalls the
FedAvg algorithm, and formally defines the superquantile as a tail summary of a random variable. Section 4
presents a federated optimization algorithm for ∆-FL. We analyze its convergence in the convex and
non-convex cases, as well as its differential privacy properties in Section 5. We discuss an extension
to other risk measures and relations to fair allocation in Section 6. Section 7 presents experimental
results, comparing the proposed approach to existing ones. Detailed proofs and additional details can
be found in the supplement, while the code and the scripts to reproduce the experiments can be found
at https://github.com/krishnap25/simplicial-fl.

An early version of this work was presented at IEEE CISS [58]. This paper extends and improves upon
it in several respects. First, we give an improved and tighter convergence analysis in both the convex
and general nonconvex cases. Second, we augment our algorithm with differential privacy and analyze its
privacy and utility. Finally, we conduct an expanded numerical study, including (a) comparing with baselines
such as Tilted-ERM [65] that were published after our paper [58], (b) an empirical comparison to model
personalization, and, (c) a study of the privacy-utility tradeoff of ∆-FL under differential privacy.

Notation. The norm ‖·‖ denote the Euclidean norm ‖·‖2 in Rd. We use ∆n−1 =
{
π ∈ Rn+ :

∑n
i=1 πi = 1

}
to denote the probability simplex in Rn.

2 Related Work
Federated learning was introduced by [67] to handle distributed on-client learning [50, 62, 38]. A plethora of
recent extensions have also been proposed [103, 89, 69, 100, 70, 91, 48, 90, 20]. Our approach to addressing
the statistical heterogeneity by proposing a new objective is broadly applicable in these settings.

Distributionally robust optimization [5], which aims to train models that perform uniformly well across all
subgroups instead of just on average, has witnessed a flurry of recent research [59, 29, 55]. This approach is

4
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closely related to the risk measures studied in economics and finance [2, 83, 4, 37]. The recent works [56, 60, 22]
study optimization algorithms for risk measures. More broadly, risk measures have been successfully utilized
in problems ranging from bandits [88, 15], reinforcement learning [17, 96, 18], and fairness in machine
learning [101, 82]. The federated learning method here is based on the superquantile [84], a popular risk
measure. We propose a stochastic optimization algorithm adapted to the federated setting and prove its
convergence.

Addressing statistical heterogeneity in federated learning has led to two lines of work. The first includes
algorithmic advances to alleviate the effect of heterogeneity on convergence rates while still minimizing the
classical expectation-based objective function of empirical risk minimization. These techniques include the
use of proximal terms [63], control variates [51] or augmenting the server updates [97, 80]; we refer to the
recent survey [98] for details. More generally, the framework of local SGD has been used to study federated
optimization algorithms [95, 104, 41, 26, 66, 52, 53]. Compared to these works, which study federated
optimization algorithms in the smooth case, we tackle in our analysis the added challenge of nonsmoothness
of the superquantile-based objective in both the general nonconvex and strongly convex cases.

The second line of work addressing heterogeneity involves designing new objective functions by modeling
statistical heterogeneity and designing optimization algorithms. The AFL framework to minimize the worst-
case error across all training clients and associated generalization bounds were given in [71]. The concurrent
work of [64] proposes the q-FFL framework whose objective is inspired by fair resource allocation to minimize
the Lp norm of the per-client losses. Several related works were also published following the initial presentation
of this work [57]. A federated optimization algorithm for AFL was proposed and its convergence was analyzed
in [24]. Distributional robustness to affine shifts in the data was considered in [81] along with convergence
guarantees. Finally, a classical risk measure, namely the entropic risk measure, was considered in [65]. We
note that no convergence guarantees are currently known for the stochastic optimization algorithms of [64].
Furthermore, it is unclear if any of these algorithms can be implemented with differential privacy.

Differential privacy was introduced in [31, 30] to formalize the loss of privacy of an individual user in
releasing population-level aggregates. DP-FedAvg [68], a differentially private variant of FedAvg, is also
implemented in industrial systems [79]. Recent contributions in this direction include differential privacy
mechanism compatible with secure aggregation [49, 1] and improving privacy-utility tradeoffs of federated
learning with personalization [47, 7].

3 Problem Setup
We begin this section by recalling the standard setup of federated learning in Section 3.1. We then describe
the standard approach to federated learning and its associated optimization, FedAvg [67] in Section 3.2. We
then define the superquantile in Section 3.3.

3.1 Federated Learning Setup
Federated learning consists of heterogeneous clients who collaboratively train a machine learning model under
the orchestration of a central server. The model is then deployed to all clients, including those not seen
during training.

Let the vector w ∈ Rd denote the d model parameters. We assume that each client has a distribution
q over some data space such that the data on the client is sampled i.i.d. from q. The loss incurred by the
model w ∈ Rd on this client is F (w; q) := Eξ∼q[f(w; ξ)], where f(w; ξ) is the chosen loss function, such as the
logistic loss, on input-output pair ξ under the model w. The expectation above is assumed to be well-defined
and finite. For a given distribution q, smaller values of F (·; q) denote a better fit of the model to the data.

There are n clients available for training. We number these clients as 1, . . . , n and denote the distribution
on training client i by qi. We denote the loss on client i by Fi(w) := F (w; qi).

The goal of federated learning is to train a model w so that it achieves good performance when deployed
on each test client, including those unseen during training. Owing to the statistical heterogeneity of federated
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learning, the distribution p of a specific test client could be different from the average distribution (1/n)
∑n
i=1 qi

that the model is trained on.
Each federated learning method is characterized by an objective function and the federated optimization

algorithm used to minimize it. It is not possible to achieve good performance on each client simultaneously
with a single model w, as it would be a difficult multiobjective optimization problem. The usual approach is
to combine the per-client losses into a scalar and minimize this objective. The choice of the objective function
and optimization algorithm is primarily determined by the three key aspects of federated learning [50, 62]:
(1) Communication Bottleneck : The repeated exchange of massive models between the server and clients

over resource-limited wireless networks makes communication a critical bottleneck. Therefore, training
algorithms should be able to trade off more local computation for a lower communication cost.

(2) Statistical Heterogeneity : The training distribution qi and a specific test distribution p are likely to be
different from each other. Therefore, a model which works well on average over all test clients might not
work well on each individual test client.

(3) Privacy : The data on each client is highly privacy-sensitive. Federated learning is designed to protect
data privacy since no user data is transferred to a data center. This privacy is enhanced by secure
aggregation of model parameters, which refers to aggregating client updates such that no client update is
directly revealed to any other client or the server. This is achieved by cryptographic protocols based on
secure multiparty communication [8].

3.2 Federated Learning and the FedAvg algorithm
Analogous to the classical expectation-based objective function in the empirical risk minimization approach,
the standard objective in federated learning is to minimize the average loss on the training clients

min
w∈Rd

1

n

n∑
i=1

Fi(w) +
λ

2
‖w‖2 , (3)

where λ ≥ 0 is a regularization parameter. We will call this objective the vanilla FL objective.
The de facto standard training algorithm is FedAvg [67]. Each round of the algorithm consists of the

following steps:
(a) The server samples a set S of m clients from [n] and broadcasts the current model w(t) to these clients.
(b) Staring from w

(t)
i,0 = w(t), each client i ∈ S makes τ local gradient descent steps with a learning rate γ:

w
(t)
i,k+1 = w

(t)
i,k − γ∇Fi(w

(t)
i,k) .

In practice, one could also use local stochastic gradient steps, but we restrict ourselves to local full
gradient steps for simplicity.

(c) The models from the selected clients are sent to the server and aggregated to update the server model

w(t+1) =
1

m

∑
i∈S

w
(t)
k,τ .

FedAvg addresses the communication bottleneck by using τ > 1 local computation steps as opposed to
τ = 1 local steps in minibatch SGD. It also securely performs the averaging step (c) to enhance data privacy.
However, the vanilla FL objective places a limit on how well statistical heterogeneity can be addressed. By
minimizing the average training loss, the resulting model w can sacrifice performance on “difficult” clients to
perform well on average. In other words, it is not guaranteed to perform well on individual test clients, whose
distribution p might be quite different from the average training distribution (1/n)

∑n
i=1 qi. Our goal in this

work is to design an objective function, different from the vanilla FL objective (3) to better handle statistical
heterogeneity and the associated train-test mismatch. We also design a federated optimization algorithm
similar to FedAvg to optimize it.
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3.3 Summarizing the Tail Behavior with the Superquantile
In this work, we consider clients with heterogeneous local data distributions q1, . . . , qn. This data heterogeneity
manifests itself as a spread over the losses F1(w), . . . , Fn(w) for any w. In particular, some clients might
suffer large losses due to their distributions being far from the average population distribution. Our goal is to
improve the loss (and hence, predictive performance) on such tail clients whose loss is worse than average.
In other words, we are concerned with the right tail statistics of the empirical distribution over the losses
F1(w), . . . , Fn(w).

A natural summary of the right tail of a random variable Z is its high quantiles. Recall that the
(1− θ)-quantile Qθ(Z) of a real-valued random variable Z is defined as

Qθ(Z) := inf {η ∈ R : P(Z > η) ≤ θ} .

Unfortunately, the quantile function of discrete random variables such as the empirical loss distribution is
piecewise constant and is not amenable to gradient-based optimization. A better-behaved tail summary in
this regard is the superquantile, also known as the conditional value at risk (CVaR) [83, 84].

The superquantile Sθ(Z) of a random variable Z is defined as the average of all quantiles greater than the
(1− θ)-quantile:

Sθ(Z) =
1

θ

∫ θ

0

Qα(Z) dα . (4)

For continuous random variables, we have the equivalence Sθ(Z) = E[Z |Z > Qθ(Z)] of the superquantile as
the tail mean, as illustrated in Figure 2. Owing to this interpretation, we refer to the parameter θ as the tail
threshold.

Central to our development is the dual expression of the superquantile [36]:

Sθ(a1, . . . , an) = max
π∈Pθ

π>a ,

where Pθ = {π ∈ ∆n−1 : πi ≤ (θn)−1 for all i} .
(5)

Here, Sθ(a1, . . . , an) denotes the (1− θ)-superquantile of the empirical measure (1/n)
∑n
i=1 δai and ∆n−1 is

the probability simplex in Rn. The discrete superquantile is thus the support function of the polytope Pθ,
which is illustrated in Figure 2. Not only is the discrete superquantile a continuous function of its inputs
(unlike the quantile function), but it is also convex as it is the maximum of a family of linear functions in the
expression (5).

4 Handling Heterogeneity with ∆-FL
In this section, we introduce the ∆-FL framework in Section 4.1 and propose an algorithm to optimize in the
federated setting in Section 4.2.

4.1 The ∆-FL Framework
The ∆-FL framework aims to improve the performance of the tail clients by minimizing the superquantile of
the loss distribution. Given a discretization {θ1, . . . , θr} of (0, 1], ∆-FL maintains r models w1, . . . , wr, one
for each tail threshold θj . We allow each test client to select the best model w ∈ {w1, . . . , wr}, according to
its local data. Recall the schematic in Figure 1 for an illustration.

For a given tail threshold θ, we propose to minimize the (1− θ)-superquantile of the distributions of losses:

min
w∈Rd

[
Fθ(w) := Sθ

(
F1(w), . . . , Fn(w)

)
+
λ

2
‖w‖2

]
. (6)

The objective (6) focuses on poor-performing clients — specifically those with performance worse than
the (1 − θ)-quantile of the distribution of losses (F1(w), . . . , Fn(w)). In contrast, the vanilla FL objective
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E[Z]

Qθ(Z)

Sθ(Z) = E[Z |Z > Qθ(Z)]
0 1

1

1

Figure 2: Left: (1−θ)-quantile Qθ(Z) and superquantile Sθ(Z) of a continuous r.v. Z. Right: The set of feasible
mixture weights π = (π1, π2, π3) ∈ Pθ in the dual formulation (5) is given by the intersection of the box constraints
0 ≤ πi ≤ (3θ)−1 for i = 1, 2, 3, with the simplex constraint π1 + π2 + π3 = 1.

optimizes (1/n)
∑n
i=1 Fi(w) + λ/2‖w‖2, which is limθ→1 Fθ(w); this equally weights all clients involved in

training. At the other extreme θ → 0, we recover the worst-case loss over all clients.

Distributionally Robust Interpretation. We have the following dual characterization of ∆-FL as a
distributionally robust learning objective, as a consequence of the dual representation (5) of the superquantile.

Property 1. The ∆-FL objective (6) can also be written as

Fθ(w) = max
π∈Pθ

n∑
i=1

πiFi(w) ,

where, Pθ :=
{
π ∈ ∆n−1 : πi ≤ (nθ)−1 for all i ∈ [n]

}
.

(7)

This reformulation shows that ∆-FL can be interpreted as a distributionally robust variant of the vanilla
FL objective: since

∑n
i=1 πiFi(w) = F (w; pπ) is loss of w on the mixture pπ =

∑n
i=1 πiqi of the training

distributions q1, . . . , qn, we get that ∆-FL aims to minimize the worst-case loss over all mixtures pπ subject
to the constraint that πi ≤ (nθ)−1.

This formulation also reveals two important properties of the ∆-FL objective. First, we note that the
objective Fθ, as a max function. is convex whenever the losses Fi are convex. Second, it is a non-smooth
function, with the non-smoothness stemming from the maximum over the polytope Pθ (cf. Figure 2). These
two properties will play important role in the convergence analysis of our federated algorithm in Section 5.1.

4.2 Federated Optimization for ∆-FL
We now propose a federated optimization algorithm for the ∆-FL objective (6). While there could be
many approaches to optimizing (6), we consider algorithms similar to FedAvg for their ability to avoid
communication bottlenecks and preserve the privacy of user data. Owing to the tail mean interpretation
of the superquantile (Figure 2), a natural algorithm to minimize it first evaluates the loss on all the clients
and only performs gradient updates on those clients in the tail above the (1− θ)-quantile. However, since a
practical algorithm cannot assume that all the clients are available at a given time, we perform the same
operation on a subsample of clients.

The optimization algorithm for the ∆-FL objective (6) is given in Algorithm 1. It has the following four
steps:
(a) Model Broadcast (line 2): The server samples a set S of m clients from [n] and sends the current model

w(t).
(b) Quantile Computation and Reweighting (lines 3 and 5): Selected clients i ∈ S and the server collaborate

to estimate the (1− θ)-quantile of the losses Fi(w(t)) with differential privacy. The clients then update

8



Algorithm 1 The ∆-FL Algorithm

Input: Initial iterate w(0), number of communication rounds T , number of clients per round m, number of
local updates τ , local step size γ

1: for t = 0, 1, . . . , T − 1 do
2: Sample m clients from [n] without replacement in S
3: Estimate the (1− θ)-quantile of Fi(w(t)) for i ∈ S with distributed differential privacy (Algorithm 2);

call this Q(t)

4: for each selected client i ∈ S in parallel do
5: Set π̃(t)

i = I
(
Fi(w

(t)) ≥ Q(t)
)

6: Initialize w(t)
k,0 = w(t)

7: for k = 0, . . . , τ − 1 do
8: w

(t)
i,k+1 = (1− γλ)w

(t)
i,k − γ∇Fi(w

(t)
i,k)

9: w(t+1) =
∑
i∈S π̃

(t)
i w

(t)
i,τ/

∑
i∈S π̃

(t)
i

10: return wT

their weights to be zero if their loss is smaller than the estimated quantile and leave them unchanged
otherwise. This ensures that model updates are only aggregated from the tail clients; cf. Figure 2.

(c) Local Updates (loop of line 7): Staring from w
(t)
k,0 = w(t), each client i ∈ S makes τ local gradient or

stochastic gradient descent steps with a learning rate γ.
(d) Update Aggregation (line 9): The models from the selected clients are sent to the server and aggregated

to update the server model, with weights from line 5).
Compared to FedAvg, ∆-FL has the additional step of computing the quantile and new weights π̃(t)

i for each
selected client i ∈ S in lines 3 and 5. Let us consider ∆-FL in relation to the three key aspects of federated
learning we introduced in Section 3.1.
(1) Communication Bottleneck : Identical to FedAvg, ∆-FL algorithm performs multiple computation rounds

per communication round.
(2) Statistical Heterogeneity : The ∆-FL objective is designed to optimize the tail mean of the per-client loss

distribution as formalized by the superquantile. The vanilla FL objective, in contrast, is oblivious to
performance disparities across clients.

(3) Privacy : Identical to FedAvg, ∆-FL does not require any data transfer, and the aggregation of line 9 can
be securely performed using secure multiparty communication. The extra step of quantile computation
is also performed with distributed differential privacy, as we describe next.

Quantile Estimation with Distributed Differential Privacy. The naïve way to compute the quantile
of the per-client losses in line 3 of Algorithm 1 is to have the clients send their losses to the server. To
avoid the privacy risk of leakage of information about the clients to the server, we compute the quantile
with distributed differential privacy [49] using the discrete Gaussian mechanism [14]. The key idea behind
differential privacy [30, 33] is to ensure that the addition or removal of the data from one client does not lead
to a substantial change in the output of an algorithm. A significant difference in the output would give a
privacy adversary enough signal to learn about the client who was added or removed.

Distributed differential privacy simulates a trusted central aggregator by using a secure summation
oracle [8], which enables the computation of summations

∑
i∈S vi where vi ∈ Rd is a privacy-sensitive vector

residing with client i. Practical implementations of such algorithms are based on cryptographic techniques
such as secure multiparty computation [35], which requires each component of the vectors vi to be discretized
to the ring ZM of integers modulo M . We abstract out the details of the secure summation oracle and only
require that it returns the sum

(∑
i∈S xv

)
mod M without revealing any further information to a privacy

adversary.
We assume that the losses are bounded as Fi(w) ∈ [0, B] for each i ∈ S, and that we are given b bin edges

0 ≤ l0 < l1 < · · · < lb = B. We aim to construct a hierarchical histogram h that maintains the number

9



Algorithm 2 Quantile Computation with Distributed Differential Privacy

Input: Ring size M , set S of m = |S| clients where each client i has a scalar `i ∈ [0, B], target quantile
1− θ ∈ (0, 1), discretization l0, l1, . . . , lb of [0, B], variance proxy σ2, scaling factor c ∈ Z+

1: Each client i computes a hierarchical histogram xi(r, j) = I
(
l2r(j−1)+1 ≤ Fi(w) < l2rj

)
for j = 1, . . . , b/2r

and r = 0, . . . , log2 b− 1
2: Each client i samples ξi(r, j) ∼ NZ(0, σ2) i.i.d. and sets x̃i(r, j) =

(
cxi(r, j) + ξi(r, j)

)
mod M for each

r, j
3: Compute s = (

∑
i∈S x̃i) mod M securely

4: Set hierarchical histogram ĥ = s/c and define for j ∈ [b] its cumulative sum Ĥ(j) =
∑

(r,o)∈Pj ĥ(r, o)

using a maximal dyadic partition Pj of [1, j]

5: return Quantile estimate lj∗θ (ĥ) corresponding to index j∗θ (ĥ); cf. Eq. (8)

of clients not only in every single bin but also in groups of bins organized as a binary tree. Concretely,
h(r, j) maintains the number of clients whose losses lie between the bin edges l2r(j−1)+1 and l2rj for index
j = 1, . . . , b/2r and level r = 0, . . . , log2 b− 1. The lower levels r = 0 and r = 1 correspond respectively to
individual bins and pairs of bins, while the topmost level r = log2 b− 1 refers to two groups: the first b/2 bins
and the last b/2 bins. We skip the topmost level in the tree because the count at this node is the publicly
known number m = |S| of clients. The hierarchical histogram method, also known as tree aggregation, is a
classical technique to answer range queries and in cumulative distribution estimation [43, 32, 16, 93].

Our algorithm is given in Algorithm 2. Each client i first computes its local hierarchical histogram xi as

xi(r, j) = I
(
l2r(j−1)+1 ≤ Fi(w) < l2rj

)
,

such that the overall hierarchical histogram can be obtained as h =
∑
i∈S xi. To enforce differential privacy,

each client then adds random discrete Gaussian noise ξi ∼ NZ(0, σ2I) with scale parameter σ2 and of
appropriate dimension. These noisy x̃i’s are summed up using a secure summation oracle so that the server
receives an approximate hierarchical histogram ĥ which approximates the true histogram h =

∑
i∈S xi. With

slight abuse of notation, we still refer to ĥ as a hierarchical histogram, although it could have negative entries
and could be inconsistent, i.e., the count ĥ(r, j) at a node might not equal the sum ĥ(r−1, 2j−1)+ ĥ(r−1, 2j)
of counts at its children nodes.

The final step is to define and return an appropriate notion of a (1 − θ)-quantile of the approximate
histogram ĥ. A non-negative hierarchical histogram h can be viewed as a random variable Z with (scaled)
cumulative distribution function H(j) = mP

(
Z ≤ lj

)
= h(0, 1)+ . . .+h(0, j), from which we can estimate the

quantile. We can obtain a greater utility under differential privacy by expressing the cumulative distribution
function H(j) of this random variable Z by using nodes higher up in the tree. Concretely, using a maximal
dyadic partition Pj of the range [1, j], we have H(j) =

∑
(r,o)∈Pj h(r, o) from summing up |Pj | ≤ log2 b terms.

For instance, the dyadic partition for j = 15 is P15 = [1, 8] ∪ [9, 12] ∪ [13, 14] ∪ [15], where the counts of each
range on the right side can be obtained from an intermediate node in the hierarchical histogram h.

With this definition of the cumulative mass H(j), we define (1− θ)-quantile of the hierarchical histogram
h as the quantile function of this induced random variable Z:

Qθ(H) := Qθ(Z) = min
j∈[b]

{
lj : H(j) > (1− θ)m

}
.

Similarly, for approximate hierarchical histograms ĥ that are inconsistent and allow for negative values, we
define the cumulative function Ĥ(j) =

∑
(r,o)∈Pj ĥ(r, o) from a maximal dyadic partition Pj of [1, j]. As an

estimate of the quantile, we return the bin edge lj such that the estimated cumulative mass Ĥ(j) is as close

We assume for simplicity that b is a power of 2 so that log2 b is an integer.
See Appendix B for a formal definition.
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Algorithm 3 The ∆-FL Algorithm with Exact Reweighting
Input: Same as Algorithm 1
1: for t = 0, 1, . . . , T − 1 do
2: Sample m clients from [n] without replacement in S
3: Compute π(t) = arg maxπ∈Pθ,S

∑
i∈S πiFi(w

(t))
4: for each selected client i ∈ S in parallel do
5: Initialize w(t)

i,0 = w(t)

6: for k = 0, . . . , τ − 1 do
7: w

(t)
i,k+1 = (1− γλ)w

(t)
i,k − γ∇Fi(w

(t)
i,k)

8: w(t+1) =
∑
i∈S π

(t)
i w

(t)
i,τ

9: return wT

to 1− θ as possible:

Qθ(ĥ) := lj∗θ (ĥ) where j∗θ (ĥ) = arg min
j∈[b]

∣∣Ĥ(j)− (1− θ)m
∣∣ . (8)

5 Theoretical Analysis
In this section, we analyze the convergence analysis of ∆-FL (Section 5.1) and study the differential privacy
properties of the quantile computation (Section 5.2).

5.1 Convergence Analysis
We study the convergence of Algorithm 1 with respect to the objective (6) in two cases: (i) the general
non-convex case, and (ii) when each Fi(w) is convex.

Assumptions. We make some assumptions on the per-client losses Fi, which are assumed to hold throughout
this section. For each client i ∈ [n], the objective Fi is
(a) B-bounded, i.e., 0 ≤ Fi(w) ≤ B for all w ∈ Rd,
(b) G-Lipschitz, i.e., |Fi(w)− Fi(w′)| ≤ G ‖w − w′‖ for all w,w′ ∈ Rd, and,
(c) L-smooth, i.e., Fi is continuously differentiable and its gradient ∇Fi is L-Lipschitz.
Equivalent Algorithm. Algorithm 1 is not amenable to theoretical analysis as it is stated because the
quantile function of discrete random variables computed in line 3 is piecewise constant and discontinuous.
To overcome this obstacle, we introduce a near-equivalent algorithm in Algorithm 3, which replaces the
reweighting step of Algorithm 1 (lines 3 and 5) with the ideal reweighting suggested by the dual representation
of (7).

Let us start with the case of S = [n]. Our first observation shows that the weights π(t) that attain the
maximum over π in the objective (7) can be used to construct a subgradient of Fθ in the general nonconvex
case — this will eventually allow us to derive convergence guarantees.

Property 2. Fix a w ∈ Rd and let π? ∈ arg maxπ∈Pθ
∑n
i=1 πiFi(w). Then, we have,

n∑
i=1

π?i Fi(w) + λw ∈ ∂Fθ(w) ,

where ∂Fθ(w) denotes the regular subdifferential of Fθ.

Proof. Let hθ(a) := maxπ∈Pθ π
>a denote the support function of the polytope Pθ, and let gn(w) =

(F1(w), . . . , Fn(w)) denote the concatenation of the losses into a vector. Then, Fθ(w) = hθ◦gn(w)+(λ/2)‖w‖2.

11



Since hθ is convex, we get that its (convex) subdifferential [e.g., 44, Cor. 4.4.4] is

∂hθ(a) = arg max
π∈Pθ

π>a .

Since gn is smooth and hθ is convex with full domain, we obtain the regular subdifferential of hθ ◦ gn by the
chain rule [86, Thm. 10.6] as

∂(hθ ◦ gn) = ∇gn(w)∂hθ
(
gn(w)

)
,

where ∇gn(w) ∈ Rd×n is the transpose of the Jacobian matrix of gn. We can handle the regularization by
absorbing it into the superquantile by defining F̃i(w) = Fi(w) + (λ/2)‖w‖2.

Algorithm 3 extends this intuition to the setting where only a subsample S ⊂ [n] of clients are available
in each round. We define the counterpart of the constraint set Pθ from (7) defined on a subset S ⊂ [n] of m
clients as:

Pθ,S =

{
π ∈ ∆|S|−1 : πi ≤

1

θm
, for i ∈ S

}
, (9)

where we denote (πi)i∈S ∈ R|S| by π with slight abuse of notation. With this notation, Algorithm 3 computes
the new weights of the clients as

π(t) = arg max
π∈Pθ,S

∑
i∈S

πiFi(w
(t)) .

We now analyze how close Algorithm 3 is to Algorithm 1. Let Z(w) be a discrete random variable which
takes the value Fi(w) with probability 1/n for i = 1, . . . , n, and let Qθ(Z(w)) denote its (1− θ)-quantile. The
weights π̂ ∈ ∆n−1 considered in Algorithm 1 (assuming that Q(t) is the exact quantile of {Fi(w(t)) : i ∈ S})
are given by a hard-thresholding based on whether Fi(w) is larger than its (1− θ)-quantile:

π̃i = I
(
Fi(w) ≥ Qθ(Z(w))

)
, and, π̂i =

π̃i∑n
i′=1 π̃i′

. (10)

The objective defined by these weights is F̂θ(w) =
∑n
i=1 π̂iFi(w) + (λ/2)‖w‖2. The next proposition shows

that F̂θ(w) = Fθ(w) under certain conditions, or is a close approximation, in general.

Proposition 3. Assume F1(w) < · · · < Fn(w) and let i? = dθne. Then, we have,
(a) π? = arg maxπ∈Pθ

∑n
i=1 πiFi(w) is unique,

(b) Qθ(Z(w)) = Fi?(w),
(c) if θn is an integer, then π̂ = π? so that F̂θ(w) = Fθ(w), and,
(d) if θn is not an integer, then

0 ≤ Fθ(w)− F̂θ(w) ≤ B

θn
.

Proof. We assume w.l.o.g. that λ = 0. We apply the property that the superquantile is a tail mean (cf.
Figure 2) for discrete random variables [84, Proposition 8] to get

Fθ(w) =
1

θn

n∑
i=i?+1

Fi(w) +

(
1− bθnc

θn

)
Fi?(w) .

Comparing with dual representation (7), this gives a closed-form expression for π?, which is unique because
Fi?−1(w) < Fi?(w) < Fi?+1(w). For (b), note that Qθ(Z(w)) = inf{η ∈ R : P(Z(w) > η) ≤ θ} equals Fi?(w)
by definition of i?. Therefore, if θn is an integer, π? coincides exactly with π̂. When θn is not an integer, we
have

F̂θ(w) =
1

n− i? + 1

n∑
i=i?

Fi(w) .

The bound on F̂θ(w)− Fθ(w) follows from elementary manipulations together with 0 ≤ Fi(w) ≤ B.
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In our context where we sample m clients per round, Theorem 3 holds for each round. In particular,
part (c) of Theorem 3 states that when θm is an integer, the weights π? computed as an exact argmax in
Algorithm 3 are identical to the weights π̂ in Algorithm 1 where line 5 exactly computes the quantile of the
per-client losses. We record another consequence of Theorem 3, namely, that the reweighting π(t) is sparse.

Remark 1. Theorem 3 shows that ∆-FL’s reweighting π(t) (line 3 of Algorithm 3) is sparse. That is, π(t)
i is

non-zero only for exactly dθme clients with the largest losses.

Bias due to Partial Participation. Note that the dual representation (7) is the maximum over all
distributions in Pθ, but Algorithm 3 and Algorithm 1 only maximize the weights over a set S of m clients in
each round (line 3). Therefore, the updates performed by Algorithm 3 are not unbiased. To formalize this,
define the objective

F θ(w) := ES∼Um [Fθ,S(w)] , where Fθ,S(w) = max
π∈Pθ,S

∑
i∈S

πiFi(w) +
λ

2
‖w‖2

is the analogue of (7) defined on a sample S ⊂ [n] of clients, and Um is the uniform distribution over subsets
of [n] of size m. In each step, Algorithm 3 approximates the subgradients of Fθ,S . Indeed, Theorem 2 gives∑

i∈S
π

(t)
i Fi(w

(t)) + λw(t) ∈ ∂Fθ,S(w(t)) . (11)

In expectation, Algorithm 3 therefore takes subgradient steps for F θ — this introduces a bias when compared
to the original Fθ that we would like to optimize. Fortunately, this bias can be bounded as [61, Prop. 1]

sup
w∈Rd

∣∣F θ(w)− Fθ(w)
∣∣ ≤ B√

θm
. (12)

Our analysis strategy will be to study the convergence (near-stationarity or near-optimality) in terms of the
objective F θ which Algorithm 3 actually minimizes, and then translate that to a convergence result on the
original objective Fθ using the bound (12).

Convergence: Nonconvex Case. We start with the convergence analysis in the nonconvex case with no
regularization (i.e., λ = 0). Since F θ is nonsmooth and nonconvex, we state the convergence guarantee in
terms of the Moreau envelope of F θ [44] following the idea of [28, 23]. Given a parameter µ > 0, we define
the Moreau envelope of F θ as

Φ
µ

θ (w) = inf
z∈Rd

{
F θ(z) +

µ

2
‖w − z‖2

}
. (13)

The Moreau envelope satisfies several remarkable properties for µ > L [28, Lemma 4.3]. First, it is well-defined,
and the infimum on the right-hand side admits a unique minimizer, called the proximal point of w, and denoted
proxF θ/µ(w). Second, the Moreau envelope is continuously differentiable with ∇Φ

µ

θ (w) = µ(w−proxF θ/µ(w)).

Finally, the stationary points of Φ
µ

θ and F θ coincide. Interestingly, the bound
∥∥∥∇Φ

µ

θ (w)
∥∥∥ ≤ ε directly implies

a near-stationarity on F θ, and hence the original Fθ, in the following variational sense: the proximal point
z = proxF θ/µ(w) satisfies [28, Sec. 4.1]:
(a) z is close to w; that is, ‖z − w‖ ≤ ε/µ,
(b) z is nearly stationary on F θ; that is dist

(
0, ∂F θ(z)

)
≤ ε, where ∂F θ refers to the regular subdifferential,

and,
(c) F θ is uniformly close to Fθ as per (12).
Thus, we state the convergence guarantee of our algorithm in the nonsmooth nonconvex case in terms of Φ

µ

θ

(although it never appears in the algorithm).
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Theorem 4. Let the number of rounds T be fixed and set µ = 2L. Denote ∆F0 = Fθ(w
(0)) − inf F θ. Let

ŵ denote a uniformly random sample from the sequence
(
w(0), . . . , w(T−1)

)
produced by Algorithm 3. Then,

there exists a learning rate γ depending on the number of rounds T and problem parameters τ, L,G,∆F0 such
that

E
∥∥∥∇Φ

µ

θ (ŵ)
∥∥∥2

≤
√

∆0LG2

T
+ (1− τ−1)1/3

(
∆0LG

T

)2/3

+
∆0L

T
.

Proof Sketch. Let z(t) = proxF θ/µ(w(t)) be the proximal point of w(t). We expand out the recursion

w(t+1) = w(t) − γ∑i∈S π
(t)
i

∑τ−1
k=0∇Fi(w

(t)
i,k) to get

Φ
µ

θ (w(t+1)) ≤ F θ(z(t)) +
µ

2

∥∥∥z(t) − w(t+1)
∥∥∥2

= F θ(z
(t)) +

µ

2

∥∥∥z(t) − w(t)
∥∥∥2

+ µγ

〈
z(t) − w(t),

∑
i∈S

π
(t)
i

τ−1∑
k=0

∇Fi(w(t)
i,k)

〉

+
µγ2

2

∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

∇Fi(w(t)
i,k)

∥∥∥∥∥
2

= Φ
µ

θ (w(t)) + T1 + T2 .

The term T1 which carries a O(γ)-coefficient controls the convergence rate while T2 carries a O(γ2)-coefficient
and is a noise term. The latter can be controlled by making the learning rate small. We can handle the first
term T1 by leveraging a property of Fθ,S known as weak convexity, meaning that adding a quadratic makes it
convex. In particular, Fθ,S + (L/2)‖·‖2 is convex, so that

T ′1 := µτγ

〈
z(t) − w(t),

∑
i∈S

π
(t)
i ∇Fi(w(t))

〉

≤ µτγ
(
Fθ,S(z(t))− Fθ,S(w(t)) +

L

2

∥∥∥z(t) − w(t)
∥∥∥2
)
,

where we used (11) to construct a subgradient of Fθ,S . This term T ′1 is the result of a single step with learning
rate τγ rather than τ local steps with learning rate γ. The difference T ′1 −T1 is the effect of the drift induced
by multiple local steps, which we will handle later. We take an expectation with respect to the sampling S of
clients (i.e., conditioned on F (t) = σ(w(t)), the σ-algebra generated by w(t)). Since z(t) is independent of S
(i.e., z(t) is F (t)-measurable), we get F θ on the right-hand side. Next, we use that z(t) minimizes the strongly
convex right hand side of (13) to get

Et[T ′1 ] ≤ −µτγ(µ− L)
∥∥∥z(t) − w(t)

∥∥∥2

= −τγ(µ− L)

µ

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2

.

Next, we bound the effect of the drift using the Cauchy-Schwarz inequality and the smoothness of Fi’s as

Et |T1 − T ′1 | = µγ Et

∣∣∣∣∣
〈
z(t) − w(t),

∑
i∈S

π
(t)
i

τ−1∑
k=0

(
∇Fi(w(t)

i,k)−∇Fi(w(t))
)〉∣∣∣∣∣

≤ µτγ(µ− L)

2
‖z(t) − w(t)‖2 +

µγL2

2(µ− L)
Et

[∑
i∈S

π
(t)
i

τ−1∑
k=0

‖w(t)
i,k − w(t)‖2

]

≤ τγ(µ− L)

2µ

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2

+O(γ3) ,

where we bound the client drift d(t) = Et
[∑

i∈S π
(t)
i

∑τ−1
k=0‖w

(t)
i,k − w(t)‖2

]
= O(γ2) using standard techniques.

We plug in µ = 2L to get a bound on T ′1 in terms of
∥∥∥∇Φ

µ

θ (w(t))
∥∥∥2

. A standard argument to handle the noise
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term T2 ≤ O(γ2) and telescoping the resulting inequality over t = 0, . . . , T − 1 completes the proof. The full
details are given in Appendix A.2.

Convergence: Convex Case. We consider the convergence of function values in the case where each Fi
is convex. Owing to the non-smoothness of Fθ and F θ, we consider the following smoothed version of the
objective in (7) and the corresponding modification to Algorithm 3. First, define the Kullback-Leibler (KL)
divergence between π ∈ ∆|S|−1 and the uniform distribution (1/|S|, . . . , 1/|S|) over S ⊂ [n] as

DS(π) =
∑
i∈S

πi log(πi |S|) .

We simply write D(π) when S = [n]. Inspired by [72, 3, 25], we define the smooth counterpart to (7) as

F νθ (w) = max
π∈Pθ

{
n∑
i=1

πiFi(w)− νD(π)

}
+
λ

2
‖w‖2 , (14)

where ν > 0 is a fixed smoothing parameter. We have that |F νθ (w)− Fθ(w)| ≤ 2ν log n. Finally, we modify
line 3 of Algorithm 3 to handle F νθ rather than Fθ as

π(t) = arg max
π∈Pθ,S

{∑
i∈S

πiFi(w
(t))− νDS(π)

}
. (15)

Theorem 5. Suppose each function Fi is convex and 0 < λ < L. Define the condition number κ = (L+λ)/λ
and fix a time horizon T ≥ 16κ3/2. Consider the sequence (w(t))Tt=0 of iterates produced by the Algorithm 3
with line 3 replaced by (15). Define the averaged iterate

w(t) =

∑t
j=0 βjw

(i)∑t
i=0 βj

, where βj =

(
1− γλτ

2

)−(1+j)

,

and w? = arg minw∈Rd Fθ(w). Then, there exist learning rate γ and smoothing parameter ν depending on the
number of communication rounds T as well as problem parameters τ,G, λ, L, ‖w(0) − w?‖2, θ,m, such that
the iterate w(T ) satisfies the bound

EFθ(w(T ))− Fθ(w?) ≤ λ‖w(0) − w?‖2 exp

(
− T

16κ3/2

)
+
G2

λT
+
G2κ2

λT 2
+

B√
θm

,

where we hide absolute constants and factors polylogarithmic in T and problem parameters.

Remark 2 (About the Rate). As soon as T & κ3/2 (ignoring constants and polylog factors), we achieve the
optimal rate of 1/(λT ) rate of strongly convex stochastic optimization up to the bias B/

√
θm.

Further, the bias B/
√
θm due to partial participation is larger at small θ and can be controlled by choosing

the cohort size m large enough. In the experiments of Section 7, we obtain meaningful numerical results when
m is around 50 or 100 and θ around 1/2, indicating that the worst-case bound (12) can be pessimistic.

Proof Sketch of Theorem 5. We start with some additional notation. We absorb the regularization into the
client losses to define F̃i(w) = Fi(w) + (λ/2)‖w‖2. Now, consider the smoothed counterpart of (7) on a subset
S ⊂ [n] with a smoothing parameter ν > 0 as

F νθ,S(w) = max
π∈Pθ,S

{∑
i∈S

πiF̃i(w)− νDS(π)

}
.

It follows from the properties of smoothing [72, 3] and composition rules that F νθ,S is L′-Lipschitz, where
L′ = L+ λ+G2/ν. Finally, let Ft denote the sigma-algebra generated by w(t) and let Et[·] := E[·|Ft].
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We start the proof with the decomposition

‖w(t+1) − w‖2 = ‖w(t) − w‖2 − 2γ
∑
i∈S

π
(t)
i

τ−1∑
k=0

〈∇F̃i(w(t)
i,k), w(t) − w〉︸ ︷︷ ︸

=:T1

+ γ2

∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

∇F̃i(w(t)
i,k)

∥∥∥∥∥
2

︸ ︷︷ ︸
=:T2

,

where w is arbitrary. For the first order term T1, we bound using λ-strong convexity and L-smoothness of F̃i
as

T ′1 := 2τγ
∑
i∈S

π
(t)
i

〈
∇F̃i(w(t), w(t) − w?

〉
= 2τγ

〈
∇F νθ,S(w(t)), w(t) − w?

〉
≥ 2τγ

(
F νθ,S(w(t))− F νθ,S(w?) +

λ

2
‖w(t) − w?‖2

)
.

where we used
∑
i∈S π

(t)
i ∇Fi(w(t)) = ∇F νθ,S(w(t)) holds with smoothing, analogous to (11), and strong

convexity.
The gap T1 − T ′1 is due to the effect of the drift from multiple local steps. We bound this term similar to

the non-convex case of Theorem 4. For the second order term T2, we rely on the variance bound [61, Prop. 2]

ES∼Um

∥∥∥∥∥∑
i∈S

π
(t)
i ∇F̃i(w(t))−∇F νθ (w(t))

∥∥∥∥∥
2

≤ 8G2

θm
,

where Um is the uniform distribution over subsets S ⊂ [n] of size m, and F
ν

θ(w) := ES∼UmF νθ,S(w) as the
expectation of F νθ,S over random subsets S ∼ Um. Putting these together and taking w = w? := arg minF

ν

θ

gives the inequality,

F
ν

θ (w(t))− F νθ (w?) ≤ γA+ γ2B+ (16)
1

γτ

(
1− λγτ

2

)
‖w(t) − w?‖2 − 1

γτ
Et‖w(t+1) − w?‖2 ,

where A,B are problem-dependent constants. We sum this up with the averaging weights βt given in the
statement of the theorem to get

F
ν

θ (w(T ))− F νθ (w?) ≤ λ‖w(0) − w?‖2
exp(λτγT )− 1

+Aγ +Bγ2 .

The final missing piece is a bound which allows us to translate statements about the convergence of F
ν

θ in
terms of the convergence of Fθ. We achieve this using the bias bound of (12) together with the approximation
error of smoothing. Finally, we optimize the choice of the learning rate and smoothing coefficient to give the
final statement of the theorem. The details are provided in Appendix A.3.

5.2 Privacy and Utility Analysis
We now analyze the privacy and utility of Algorithm 2. In this section, we assume without loss of generality
that S = [n] so that m = |S| = n.

First, we recall the definition of concentrated differential privacy [12]. A randomized algorithm A
satisfies (1/2)ε2-concentrated differential privacy if the Rényi α-divergence Dα(A(X)‖A(X ′)) ≤ αε2/2 for
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all α ∈ (0,∞) and all sequences X,X ′ of inputs that differ by the addition or removal of one client’s data.
Intuitively, the addition or removal of the data contributed by one client should not change the output
distribution of the randomized algorithm by much, as measured by the Rényi divergence. A smaller value of
ε implies a stronger privacy guarantee. This notion of differential privacy can be translated back and forth
with the usual one, cf. [14].

Error Criterion. We approximate the (1− θ)-quantile of the n per-client losses `i = Fi(w) for i = 1, . . . , n
by the quantile of a hierarchical histogram h with entries h(r, j) =

∑n
i=1 I

(
l2r(j−1)+1 ≤ Fi(w) < l2rj

)
where

0 = l0 < l1 < · · · < lb = B are the bin edges. The edge lj corresponding to index j ∈ [b] approximates the
(1− θ)-quantile well if the cumulative mass H(j) ≈ (1− θ)n. We measure this error of approximation by the
difference between the two sides. Formally, we define the error Rθ(H, j) of approximating the (1− θ)-quantile
of the cumulative function H of a hierarchical histogram with index j ∈ [b] by

Rθ(H, j) =

∣∣∣∣H(j)

n
− (1− θ)

∣∣∣∣ . (17)

We define the best achievable error R∗θ(H) for estimating the (1− θ)-quantile of the cumulative function H
and the best approximating index j∗(H) as

R∗θ(H) = min
j∈[b]

Rθ(H, j) , and j∗θ (H) = arg min
j∈[b]

Rθ(H, j) , (18)

where we assume ties are broken in an arbitrary but deterministic manner — note that j∗θ (H) is defined here
identically to (8). Lastly, we define the quantile error ∆θ(H, Ĥ) of estimating the quantile of the cumulative
function H from that of Ĥ as

∆θ(Ĥ,H) = Rθ
(
H, j∗θ (Ĥ)

)
. (19)

Essentially, if the index j∗θ (Ĥ) computed from the estimate Ĥ corresponds to the (1− θ′)-quantile of H, the
quantile error satisfies ∆θ(Ĥ,H) = |θ − θ′|.
Privacy and Utility Analysis. We now analyze the differential privacy bound of Algorithm 2 and the
error in the quantile computation.

Theorem 6. Fix a δ > 0. Suppose that σ ≥ 1/2 and c > 0 are given, and the modular arithmetic is performed
on the base M ≥ 2 + 2cn+ 2n

√
2σ2 log(16nb/δ). Then, we have:

(a) Algorithm 2 satisfies (1/2)ε2-concentrated DP with

ε = min


√
c2 log2

2 b

nσ2
+ ψb,

c log2 b√
nσ

+ ψ
√

2b

 ,

where ψ = 10
∑n−1
i=1 exp

(
− 2π2σ2i/(i+ 1)

)
≤ 10(n− 1) exp(−2π2σ2).

(b) With probability at least 1− δ, the quantile error of cumulative function Ĥ returned by Algorithm 2 is at
most

∆θ(Ĥ,H) ≤ R∗θ(Ĥ) +

√
4σ2

c2n
log2 b log

4b

δ

where R∗θ(Ĥ) is the error in the estimation of (1− θ)-quantile of the cumulative function Ĥ.

Let us interpret the result. The effective noise scale is σ/c. Since the dominant term of the privacy error
is ε ≈ c log2 b/(σ

√
n), we choose σ/c ≈ log2 b/(ε

√
n), so that the algorithm satisfies (1/2)ε2-concentrated DP.

The role of c is to avoid the degeneracy of the discrete Gaussian as σ → 0. In particular, the theorem requires
σ ≥ 1/2. The error resulting quantile error ∆θ(Ĥ,H) is (ignoring constants and log factors)

∆θ(Ĥ,H) . R∗θ(Ĥ) +
log2 b

εn
.
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The quantile error scales as 1/(εn). The total communication cost is O(bn logM) bits since the dimension of
each hierarchical histogram is 2(b− 2). If we take σ = O(1) and c = O(ε

√
n), we require M & n3/2, so that

the total communication cost is O(bn log n).

Proof of Theorem 6. We can show that no modular wraparound occurs anywhere in the algorithm with high
probability. We assume that it holds for the proof sketch. Thus, for all valid levels r and indices j, we have
x̃i(r, j) = cxi(r, j) + ξi(r, j) and

ĥ(r, j) =
n∑
i=1

x̃i(r, j)

c
=

n∑
i=1

(
xi(r, j) +

ξi(r, j)

c

)
.

The privacy analysis follows from the sensitivity of the sum query. Namely, let X = (x1, . . . , xn) be a
sequence and define A(X) =

∑n
i=1 cxi as the (rescaled) sum query. In our case, each xi is a hierarchical

histogram with log2 b ones being the only non-zeros, one for each level of the tree. Algorithm 2 adds discrete
Gaussian noise to the sum query to make it differentially private. That is, we get the randomized algorithm
A(X) = A(X) +

∑n
i=1 ξi. It was shown in [49, Corollary 12] that A(X) is approximately distributed as

NZ(A(X), nσ2), so the desired privacy guarantee follows from that of the discrete Gaussian mechanism [14].
In particular, for two sequences X and X ′ differing by the addition or removal of a single basis vector x′, we
have that

Dα(A(X)‖A(X ′)) ≈ Dα(NZ(A(X), nσ2)‖NZ(A(X ′), nσ2)) =
αc2

2nσ2
.

A rigorous analysis of the error, following the recipe of [49], leads to the first part of the theorem; the details
can be found in Appendix B.

Utility Analysis. The triangle inequality gives

∆θ(Ĥ,H) ≤ 1

n

∣∣∣H(j∗θ (Ĥ)
)
− Ĥ

(
j∗θ (Ĥ)

)∣∣∣+

∣∣∣∣ 1nĤ(j∗θ (Ĥ)
)
− (1− θ)

∣∣∣∣
≤ max

j∈[b]

{
1

n

∣∣∣H(j)− Ĥ(j)
∣∣∣}+R∗θ(Ĥ) .

Using standard concentration arguments, we show that the first term is, at most
√

2σ2n log2(b) log(4b/δ),
completing the proof.

6 Discussion
We discuss connections of ∆-FL to risk measures, fair resource allocation, and model personalization.

Connection to Risk Measures. The framework of risk measures in economics and finance formalizes the
notion of minimizing the worst-case cost over a set of distributions [36, 85, 37]. The superquantile Sθ(·) is a
special case of a risk measure. The ∆-FL framework, which minimizes the superquantile of the per-client
losses, can be extended to other risk measures M by minimizing the objective

FM (w) := M(Z(w)) +
λ

2
‖w‖2 ,

where Z(w) is a discrete random variable which takes value Fi(w) with probability 1/n for i ∈ [n]. Another
example of a risk measure is the entropic risk measure, which is defined as Mν

ent(Z) = E[exp(νZ)]/ν where
ν ∈ R+ is a parameter. The entropic risk measure is well defined provided the moment generating function
E[exp(νZ)] exists, for instance, for sub-Gaussian Z. The analog of ∆-FL with the entropic risk minimizes

F νent(w) =
1

ν
log

(
1

n

n∑
i=1

exp
(
νFi(w)

))
+
λ

2
‖w‖2 .
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This objective F νent(w) coincides with the one studied recently in [65] under the name Tilted-ERM subsequent
to the first presentation of this work [57]. Finally, we note that F νent is also related to the smoothed objective
F νθ from (14) as the limit

F νent(w) = lim
θ→0

F νθ (w) ,

Maximin Strategy for Resource Allocation. We would like to point out an interesting analogy between
distributional robustness and proportional fairness. The superquantile-based objective in Eq. (7) is a
maximin-type objective that is reminiscent of maximin objectives used in load balancing and network
scheduling [54, 94, 74].

We can draw an analogy between the two worlds, federated learning and resource allocation resp., by
identifying errors to rates and clients to users. The maximin fair strategy to resource allocation seeks to treat
all users as fairly as possible by making their rates as large and as equal as possible so that no rate can be
increased without sacrificing other rates that are smaller or equal [74].

Our superquantile-based ∆-FL framework builds off the maximin decision-theoretic foundation to frame
an objective that we optimize with respect to parameters of models, and this, iteratively, over multiple rounds
of client-server communication, while preserving the privacy of each client.

This compositional nature of our problem, where we optimize a composition (in the mathematical
sense) of a maximin-type objective, a loss function, and model predictions differ with resource allocation in
communication networks. Further explorations of the analogy are left for future work.

Model Family and Tail Thresholds. Using a single global value of the tail threshold θ for all clients
could fail to balance supporting tail clients with fitting the population average. To circumvent this issue, we
use a similar idea to the one of [64] where a family of models is trained simultaneously for various levels, and
each test client can tune its tail threshold.

∆-FL vs. Model Personalization. Consider a family of distributions qi(x, y) for i = 1, . . . , n over input-
output pairs. From the decomposition qi(x, y) = qi(x)qi(y|x), it follows that the heterogeneity of the joint
distributions can be due to (a) heterogeneity of the marginal distributions qi(x) over the input x, or, (b)
heterogeneity of the conditional distributions qi(y|x), or in other words, the input-output mapping.

If two clients do not agree on their input-output mapping, a single global model cannot serve both
simultaneously. Thus, when training one single global model (as in vanilla FL) or a small number of them
(as in ∆-FL), there is an implicit assumption that the heterogeneity of {qi(y|x) : i ∈ [n]} is small. ∆-FL
was designed to handle the heterogeneity of qi(x) better than vanilla FL by providing better worst-case
performance on tail clients.

On the other hand, the cases where the heterogeneity of the conditional distributions qi(y|x) is large
requires a separate model per client, or in other words, model personalization. Standard approaches to model
personalization still aim to minimize the average error across all clients [27, 78], similar to the vanilla FL
objective. Thus, it can still suffer from disparate performance across clients, including poor performance on
some tail clients or data-poor clients. One solution to reduce this disparity is to combine personalization with
the ∆-FL objective. We refer to Section 7.6 for numerical experiments.

Quantile-based Filtering and Client Availability. We note that the quantile-based filtering of Algo-
rithm 3 implies that only θm tail clients contribute their updates to the global model in the absence of noise
(that is, the weight π(t) in line 3 of Algorithm 3 is sparse; see also Theorem 3). In order to include the updates
of m′ clients after filtering, ∆-FL would require initially sampling an initial cohort of m = m′/θ clients. On
the other hand, clients in cross-device federated learning are typically available in a diurnal pattern [34, 50],
where a large enough number of clients might not be available at certain times of the day. This issue might
be exacerbated by ∆-FL’s requirement of m′/θ clients per round as compared to FedAvg’s m′. Devising
strategies to dynamically vary the tail threshold θ based on the number of available clients to overcome this
issue is an interesting venue for future work.
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Table 1: Dataset description and statistics.

Task Dataset #Classes Devices #Data per client

Median Max

Image Recognition EMNIST 62 1730 179 447
Sentiment Analysis Sent140 2 877 69 549

7 Experiments
In this section, we demonstrate the effectiveness of ∆-FL in handling heterogeneity in federated learning.
Our experiments were implemented in Python using automatic differentiation provided by PyTorch while
the data was preprocessed using LEAF [13]. The code to reproduce our experiments can be found online.
We start by describing the datasets, tasks, and models in Section 7.1. We present numerical comparisons
to several recent works – we list them in Section 7.2 and show the experimental results in Section 7.3. We
demonstrate that ∆-FL provides the most favorable tradeoff between average error and the error on tail clients
in Section 7.4. Next, we compare ∆-FL with model personalization in Section 7.5. Finally, we numerically
study the privacy-utility tradeoff of the differentially private quantile computation (in Section 7.6), and of
∆-FL with end-to-end differential privacy (in Section 7.7).

Full details regarding the experiments, as well as additional results, are provided in the supplementary
material.

7.1 Datasets, Tasks and Models
We consider two learning tasks. The dataset and task statistics are summarized in Table 1.
(a) Character Recognition : We use the EMNIST dataset [19], where the input x is a 28× 28 grayscale image

of a handwritten character, and the output y is its label (0-9, a-z, A-Z). Each client is a writer of the
character x. The weight αi assigned to author i is the number of characters written by this author. We
train both a linear model and a convolutional neural network architecture (ConvNet). The ConvNet
consists of two 5×5 convolutional layers with max-pooling followed by one fully connected layer. Outputs
are vectors of scores for each of the 62 classes. The multinomial logistic loss is used to train both models.

(b) Sentiment Analysis : We use the Sent140 dataset [39] where the input x is a tweet, and the output y = ±1
is its sentiment. Each client is a distinct Twitter user. The weight αi assigned to user i is the number
of tweets published by this user. We train a logistic regression and a Long-Short Term Memory neural
network architecture (LSTM). The LSTM is built on the GloVe embeddings of the words of the tweet [45].
The hidden dimension of the LSTM is the same as the embedding dimension, i.e., 50. We refer to the
latter as “RNN”. The loss used to train both models is the binary logistic loss.

7.2 Algorithms and Hyperparameters
We list here the competing approaches we benchmark and discuss their hyperparameters.

Algorithms. As discussed in Section 3, a federated learning method is characterized by the objective
function, as well as the federated optimization algorithm. We compare ∆-FL with the following baselines:
(a) Vanilla FL objective: We consider two methods that attempt to minimize the vanilla FL objective:

FedAvg [67] and FedProx [63]. The latter augments FedAvg with a proximal term for more stable
optimization.

(b) Heterogeneity-aware objectives: We consider Tilted-ERM [65], which is the analogue of ∆-FL with the
entropic risk measure (cf. Section 6) and AFL [71], whose objective is obtained as the limit limθ→0 Fθ(w)

https://github.com/krishnap25/simplicial-fl
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Table 2: 90th percentile of the distribution of misclassification error (in %) on the test devices. Each
entry is the mean over five random seeds while the standard deviation is reported in the subscript. The
boldfaced/highlighted entries denote the smallest value for each dataset-model pair.

EMNIST Sent140

Linear ConvNet Linear RNN

FedAvg 49.660.67 28.461.07 46.830.54 49.673.95

FedAvg-Sub 50.280.77 27.570.81 46.600.38 46.943.84

FedProx 49.150.74 27.011.86 46.830.54 49.864.07

q-FFL 49.900.58 28.020.80 46.390.40 48.664.68

Tilted-ERM 48.590.62 25.461.49 46.690.49 46.543.27

AFL 51.620.28 45.081.00 47.520.32 57.781.19

∆-FL, θ = 0.8 49.100.24 26.231.15 46.440.38 46.464.39

∆-FL, θ = 0.5 48.440.38 23.690.94 46.640.41 50.488.24

∆-FL, θ = 0.1 50.340.95 25.462.77 51.391.07 86.4510.95

of the ∆-FL objective. We also consider q-FFL [64], which raises the per-client loss Fi to the (q + 1)th

power, for some q > 0. We optimize q-FFL and Tilted-ERM with the federated optimization algorithms
proposed in their respective papers. We use q-FFL with q = 10 in place of AFL, as it was found to have
more stable convergence with similar performance.

We compare to one more baseline for the vanilla FL objective. Note that ∆-FL the weight π(t) (see line 3
of Algorithm 3) is sparse, i.e., it is non-zero for only some of the m selected clients, cf. Theorem 3. This is
equivalent to a fewer number of effective clients per round, which is θm on average. We use as baseline FedAvg
with θm clients per round, where m is the number of clients per round in ∆-FL; we call it FedAvg-Sub.

Similar to [67], we consider a weighted version of the vanilla FL objective where each client’s loss is
weighted by αi = Ni/N , where Ni is the number of data points on client i and N =

∑
iNi. Similarly, we also

consider a weighted version of the ∆-FL objective as a superquantile of a random variable that takes value
Fi(w) with probability αi. For a fair comparison, we run all algorithms, including ∆-FL, without differential
privacy. We postpone a study of ∆-FL with differential privacy to Section 7.7.

Hyperparameters. We fix the number of clients per round to be m = 100 for each dataset-model pair
except for Sent140-RNN, for which we use m = 50. We fixed an iteration budget for each dataset during
which FedAvg converged. We tuned a learning rate schedule using grid search to find the smallest terminal
loss averaged over training clients for FedAvg. The same iteration budget and learning rate schedule were
used for all other methods, including ∆-FL. Each method, except FedAvg-Sub, selected m clients per round
for training, as specified earlier. The regularization parameter λ, and the proximal weight of FedProx were
tuned to minimize the 90th percentile of the misclassification error on a held-out subset of training clients.
We run q-FFL for q ∈ {10−3, 10−2, . . . , 10} and report q with the smallest 90th percentile of misclassification
error on test clients. We run Tilted-ERM with a temperature parameter ν ∈ {0.1, 0.5, 1, 5, 10, 50, 100, 200}
and also report ν with the smallest 90th percentile of misclassification error on test clients. We optimize
∆-FL with Algorithm 3 for threshold levels θ ∈ {0.8, 0.5, 0.1}.

7.3 Experimental Results
We measure in Table 2 the 90th percentile of the misclassification error across the test clients as a measure of
the right tail of the per-client performance. We also measure in Table 3 the mean error, which measures the
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Table 3: Mean of the distribution of misclassification error (in %) on the test devices. Each entry is the mean
over five random seeds while the standard deviation is reported in the subscript. The boldfaced/highlighted
entries denote the smallest value for each dataset-model pair.

EMNIST Sent140

Linear ConvNet Linear RNN

FedAvg 34.380.38 16.640.50 34.750.31 30.160.44

FedAvg-Sub 34.510.47 16.230.23 34.470.03 29.860.46

FedProx 33.820.30 16.020.54 34.740.31 30.200.48

q-FFL 34.340.33 16.590.30 34.480.06 29.960.56

Tilted-ERM 34.020.30 15.680.38 34.700.31 30.040.25

AFL 39.330.27 33.010.37 35.980.08 37.740.65

∆-FL, θ = 0.8 34.490.26 16.090.40 34.410.22 30.310.33

∆-FL, θ = 0.5 35.020.20 15.490.30 35.290.25 33.592.44

∆-FL, θ = 0.1 38.330.48 16.371.03 37.790.89 51.9811.81

average test performance. Our main findings are summarized below.

∆-FL consistently achieves the smallest 90th percentile error. ∆-FL achieves a 3.3% absolute (12%
relative) improvement over any vanilla FL objective on EMNIST-ConvNet. Among the heterogeneity-aware
objectives, ∆-FL achieves 1.8% improvement over the next best objective, which is Tilted-ERM. We note
that q-FFL marginally outperforms ∆-FL on Sent140-Linear, but the difference 0.05% is much smaller than
the standard deviation across runs.

∆-FL is competitive at multiple values of θ. For EMNIST-ConvNet, ∆-FL with θ ∈ {0.5, 0.8} is better
in 90th percentile error than all other methods we compare to, and ∆-FL with θ = 0.1 is tied with Tilted-ERM,
the next best method. We also empirically confirm that ∆-FL interpolates between FedAvg (θ → 1) and AFL
(θ → 0).

∆-FL works best for larger threshold levels. We observe that ∆-FL with θ = 0.1 is unstable for Sent140-
RNN. This is consistent with Theorem 5, which requires m to be much larger than 1/θ (cf. Remark 2).
Indeed, this can be explained by ∆-FL’s sparse re-weighting, which only gives non-zero weights to θm = 5
clients on average in each round (cf. Remark 1).

Yet, ∆-FL is competitive in terms of average error. Perhaps surprisingly, ∆-FL gets the best test
error performance on EMNIST-ConvNet and Sent140-Linear. This suggests that the average test distribution
is shifted relative to the average training distribution pα. In the other cases, we find that the reduction in
mean error is small relative to the gains in the 90th percentile error compared to Vanilla FL methods.

Minimizing superquantile loss over all clients performs better than minimizing worst error
over all clients. Specifically, AFL which aims to minimize the worst error among all clients, as well as
other objectives which approximate it (∆-FL with θ → 0, q-FFL with q →∞, Tilted-ERM with ν → 0) tend
to achieve poor performance. We find that AFL achieves the highest error both in terms of 90th percentile
and the mean. ∆-FL offers a more nuanced and more effective approach through an averaging of the tail
performances rather than the straightforward pessimistic approach minimizing the worst error among all
clients.
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Figure 3: Histogram of misclassification error on test clients for the EMNIST-ConvNet and Sent140-RNN.

7.4 Exploring the Trade-off Between Average and Tail Error
We visualize in Figures 3 and 4 the distribution of test errors to explore the trade-off various methods provide
between the average error and the error on tail clients.

∆-FL yields improved prediction on tail clients. This can be observed from the histogram of ∆-FL in
Figure 3, which exhibits thinner tails than FedAvg or Tilted-ERM. We see that the vanilla FL objective of
FedAvg sacrifices performance on the tail clients. Tilted-ERM does improve over FedAvg in this regard, but
∆-FL has a thinner right tail than Tilted-ERM, showing better handling of heterogeneity.

∆-FL yields improved prediction on data-poor clients. We observe in Figure 4 that Tilted-ERM and
q-FFL mainly improve the performance on data-rich clients, that is clients with lots of data. On the other
hand, ∆-FL gives a more significant reduction in misclassification error on data-poor clients, that is clients
with little data (< 200 examples per client).

7.5 ∆-FL and Model Personalization
We now repeat the experiment of Section 7.3 with model personalization for the EMNIST ConvNet model.

Setup. We personalize a model to a test client by finetuning a model trained either via FedAvg or ∆-FL on
the particular test client’s data at the end of federated training. This simple baseline is competitive with
more sophisticated personalization algorithms [78]. Towards this end, we split the data on each test client
into a training set used for the finetuning and a test set used to report the evaluation metrics. We finetune
the model for 10 epochs with the same local learning rate as at the end of federated training.

Results. The numerical results are given in Table 4. We observe that after model personalization, both
FedAvg and ∆-FL models perform similarly, often within one standard deviation of each other. The mean
error is marginally smaller for FedAvg while the 90th percentile error is marginally smaller for ∆-FL with
θ = 0.8. The gap between these, 0.01 or 0.02 percentage points, is smaller than the standard deviation, 0.1
percentage points.
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Figure 4: Scatter plots of misclassification error on test clients against its data size for the EMNIST-ConvNet.

7.6 Differentially Private Quantile Estimation
We study the privacy-utility tradeoff of Algorithm 2.

Setup. We sample n = 256 numbers from a uniform distribution over [0, B] or a χ2(4) distribution clipped to
[0, B] with B = 10. We consider the performance of Algorithm 2 by varying the number b of bins and the ring
size M . Since the communication cost of the protocol scales as the bit width log2M , we display it instead in
the plots. Recall that if our algorithm returns the (1− θ′)-quantile when we aim to find the (1− θ)-quantile,
then its quantile error is |θ − θ′|, cf. (19). We plot the quantile error averaged over θ = 0.1, 0.2, . . . , 0.9, and
the standard deviations are obtained from 10 random runs.

Results. The results are given in Figure 5. For n = 256 and b = 64, we find that the quantile error is 0.14
for the uniform distribution at ε ≈ 1; this means we might find the 36rd percentile or the 64th percentile
instead of the median. This error quickly falls to 0.03 at ε ≈ 5 at large enough bit widths. At a bit width of
10, we incur errors due to the modular wraparound at ε ≥ 5. The results are also qualitatively similar for

Table 4: Misclassification error % of FedAvg and ∆-FL with model personalization on the EMNIST ConvNet
model. Each table entry is the average over 5 random seeds, while the subscript denotes the standard
deviation. The boldfaced entries indicate the smallest error in each column.

Mean error 90th percentile error

Before pers. After pers. Before pers. After pers.

FedAvg 16.680.50 5.430.12 28.441.15 8.710.19

∆-FL, θ = 0.8 16.000.44 5.440.08 26.261.28 8.690.12

∆-FL, θ = 0.5 15.500.31 5.580.07 23.611.02 8.760.15

∆-FL, θ = 0.1 16.050.78 6.170.11 24.581.96 9.380.06
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Figure 5: The quantile error (defined in (19)) incurred by Algorithm 2 to estimate the quantile of n = 256 numbers
drawn from a uniform or χ2(4) distribution with (ε, 10−5)-differential privacy.

other settings, although the quantile error is unsurprisingly higher at b > n.

7.7 End-to-end Differential Privacy with ∆-FL
We now compare ∆-FL with FedAvg with end-to-end differential privacy on a synthetic classification dataset.

Dataset and Models. The synthetic dataset contains k = 10 classes in d = 20 dimensions and n = 2500
training clients. The class-conditional distribution q(x|y = k) = N (µk, Id) is a Gaussian and is the same
across all the clients while there is a label shift, i.e., qi(y) varies across clients. For the training clients, we
have qi(y) = Dir(0.5) is a Dirichlet distribution with parameter 0.5, while for validation and test clients, we
have qi(y) = Dir(0.01). For each client, we sample 100 examples from its data distribution. We refer to
Appendix D for details.

Algorithms and Privacy Budgeting. For the FedAvg baseline, we clip the model updates to an `2 norm
bound of C, which is a tunable hyperparameter. We add Gaussian noise N (0, σ2

wI) — thus, each update
satisfies σ2

w/(2C
2)-concentrated differential privacy. To get a privacy bound across all the rounds, we use

the generic bounds of [105] for privacy amplification by subsampling and composing the privacy loss across
the number of rounds of the algorithm. Given a fixed norm bound C, we select the noise scale σw to get
(ε, 1/n)-differential privacy over the entire algorithm, where ε is provided as an input, and n is the number of
clients.

Each round of ∆-FL involves quantile computation and weight aggregation: we use Algorithm 2 to
compute the quantile of the losses clipped to a tuned bound B using a hierarchical histogram with b bins.
We clip the weight updates to a norm bound C and add Gaussian noise, similar to FedAvg. The total privacy
loss is calculated by composing the privacy loss across both the quantile and weight updates, and the number
of rounds together with amplification by subsampling using the bounds of [105].

We calculate the noise scales σq of the quantile and σw of the weight update so that (a) the privacy
budget for the quantile computation to be r times the privacy budget of the weight update, where r is a
hyperparameter, and (b) the overall algorithm satisfies (ε, 1/n)-differential privacy. We tune the loss bound
B, norm bound C, the number of bins b, and the quantile privacy ratio r to attain the best 90th percentile
misclassification error across validation clients. For all experiments, we train for 1000 rounds with 100 clients
per round and a fixed learning rate of 0.1. For further details on the algorithms, privacy budgeting, and
hyperparameters, we refer to Appendix D.

Results: ∆-FL gives better tail performance under the same privacy budget. The privacy-utility
tradeoff of ∆-FL and FedAvg are shown in Figure 6. We see that ∆-FL with threshold level θ = 0.5 has a
privacy-utility tradeoff within one standard deviation of FedAvg on the mean misclassification error while
being 3.1 percentage points better on the tail misclassification error as measured by its 90th percentile: 55.7%
for FedAvg versus 52.6% for ∆-FL at ε = 5. Smaller values of θ, such as θ = 0.25 are 0.6 percentage points
worse on the mean error while being 1.2 and 4.3 percentage points better than θ = 0.5 and FedAvg respectively
on the tail error. We note that the utility of ∆-FL degrades more at smaller ε when compared to FedAvg:
1.64 percentage points for θ = 0.5 versus 0.2 percentage points for FedAvg from ε = 10 to ε = 3 for the tail
error. Despite this effect, the tail error for ∆-FL is smaller than FedAvg even at ε = 3.
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Figure 6: ∆-FL vs. FedAvg with (ε, 1/n)-differential privacy on a synthetic classification task in R20 with 10 classes
and n = 2500 clients. The error bars denote the standard deviation across 5 random runs.

8 Conclusion
We present the ∆-FL framework that operates with heterogeneous clients while guaranteeing a minimal
predictive performance to each client. ∆-FL relies on a superquantile-based objective, parameterized by a
tail threshold level, to optimize the tail statistics of the prediction errors on the client data distributions. We
present a federated optimization algorithm that combines differentially private quantile estimation to filter
out clients to run federated averaging steps. We derive finite time convergence guarantees of O(1/

√
T ) in

T communication rounds in the nonconvex case and O(exp(−T/κ3/2) + κ/T ) in the strongly convex case
with local condition number κ. We establish a utility bound of O(log2 b/(εn)) for (ε, δ)-differentially private
quantile computation. Experimental results on federated learning benchmarks demonstrate the superior
performance of ∆-FL over state-of-the-art baselines on the upper quantiles of the error on test clients, with
particular improvements on data-poor clients, while being competitive on the mean error with and without
differential privacy.
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Appendix
The outline of the appendix is as follows:

• Appendix A: Convergence analyses and proofs of Theorems 4 and 5.

• Appendix C: Privacy analysis and proof of Theorem 6.

• Appendix C: Full experimental details and additional plots.

• Appendix D: End-to-end ∆-FL— details and numerical results.

A Convergence Analysis
Below, we restate and prove Theorem 4 as Theorem 7 in Appendix A.2 and Theorem 5 as Theorem 8 in
Appendix A.3,
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Table 5: Review of notation.

Function Description

Fi Loss function of client i

F̃i Loss plus regularization on client i: F̃i(w) = Fi(w) + λ
2 ‖w‖2

Fθ The main objective of ∆-FL, defined in (7)

Fθ,S The analogue of Fθ defined on only on a sample S of clients

F θ Averaged minibatch objective: F θ(w) = ES [Fθ,S(w)] where the expec-
tation is over uniform subsamples of clients of size |S| = m

Φ
µ

θ The Moreau envelope of F θ; see (13)

F̂θ The variant of the ∆-FL objective computed with a tail mean, and
used to formalize the connection between Algorithms 1 and 3

F νθ Smoothing of Fθ using the KL divergence; see (14)

A.1 Review of Notation
Here, we review the notation of the variants of the functions Fi and Fθ in Table 5.

A.2 Convergence Analysis: Non-convex Case
We review some definitions of subdifferentials and weak convexity before we get to the main theorem.

Nonconvex Subdifferentials. We start by recalling the definition of subgradients for nonsmooth functions
(in finite dimension), following the terminology of [86]. Consider a function ψ : Rd → R ∪ {+∞} and a point
w̄ such that ψ(w̄) < +∞. The regular (or Fréchet) subdifferential of ψ at w̄ is defined by

∂ψ(w̄) =
{
s ∈ Rd : ψ(w) ≥ ψ(w̄) + 〈s, w − w̄)〉+ o(‖w − w̄‖)

}
.

The regular subdifferential thus corresponds to the set of gradients of smooth functions that are below ψ
and coincide with it at w̄. These notions generalize (sub)gradients of both smooth functions and convex
functions: it reduces to the singleton {∇ψ(w̄)} when ψ is smooth and to the standard subdifferential from
convex analysis when ψ is convex.

Weak Convexity. We recall the notion of weak convexity, which is one way of characterizing functions
that are “close” to convex. A function ψ : Rd → R is said to be η-weakly convex if the function w 7→
ψ(w) + (η/2)‖w‖2 is convex [73]. The class of weakly convex functions includes all convex functions (with
η = 0) and all L-smooth functions (with η = L).

Weak convexity also admits an equivalent first-order condition: for any w, z ∈ Rd and s ∈ ∂ψ(w), we
have,

ψ(z) ≥ ψ(w) + 〈s, z − w〉 − η

2
‖z − w‖2 . (20)

Weak convexity will feature in our developments in two ways:
• In our case, both Fθ as well as Fθ,S are L-weakly convex, since each can be written as the maximum of a

family of L-smooth functions [28, Lemma 4.2].
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• The prox operator for weakly convex functions is well-defined. Let ψ be a η-weakly convex function. Its
proximal or prox operator, with parameter µ > 0, is defined as

proxψ/µ(w) = arg min
z

{
ψ(z) +

µ

2
‖w − z‖2

}
.

It is well-defined (i.e., the argmin exists and is unique) for µ > η, since the function inside the argmin is
(µ− η)-strongly convex.

In nonsmooth and nonconvex optimization of weakly convex functions, we are interested in finding stationary
points w.r.t. the regular subdifferential, i.e., points w satisfying 0 ∈ ∂ψ(w). A natural measure of near-
stationarity is, therefore,

dist(0, ∂ψ(w)) = inf
s∈∂ψ(w)

‖s‖ .

Moreau Envelope. Given a parameter µ > 0, we define the Moreau envelope of F θ as

Φ
µ

θ (w) = inf
z

{
F θ(z) +

µ

2
‖w − z‖2

}
.

The Moreau envelope is well-defined since F θ is bounded from below by our assumptions. We will use two
standard properties of the Moreau envelope:
• Since F θ,S is L-weakly convex, we have that its Moreau envelope Φ

µ

θ (w) is continuously differentiable for
µ > L with

∇Φ
µ

θ (w) = µ
(
w − proxF θ/µ(w)

)
. (21)

• The stationary points of Φ
µ

θ and F θ coincide and inf Φ
µ

θ = inf F θ for µ > L.
• We have for all µ > 0 that Φ

µ

θ (w) ≤ F θ(w).

Notation. Let S = S(t) denote the random set of clients selected in round t of Algorithm 3. We define

∇̃Fθ,S(w(t)) =
∑
i∈S

π
(t)
i ∇Fi(w(t)) , (22)

where π(t)
i ∈ arg maxπ∈Pθ,S

∑
i∈S πiFi(w

(t)) is selected as in line 3 of Algorithm 3. A key consequence of the
chain rule [86, Thm. 10.6] is

∇̃Fθ,S(w(t)) ∈ ∂Fθ,S(w(t)) . (23)

Convergence Analysis. We now state and prove the convergence result in the nonconvex case.

Theorem 7. Fix the number of local steps τ and the number of rounds T , fix µ = 2L and set the learning
rate

γ = min

{
1

4τL
,

1

τ
√
T

√
∆F0

LG2
,

1

τT 1/3

(
∆F0

32L2G2(1− τ−1)

)1/3
}
,

where we denote ∆F0 = Φ
µ

θ (w(0))− inf Φ
µ

θ ≤ F θ(w(0))− inf F θ. Let ŵ be sampled uniformly at random from
{w(0), . . . , w(T−1)}. Ignoring absolute constants, we have the bound,

E
∥∥∥∇Φ

µ

θ (ŵ)
∥∥∥2

≤
√

∆F0LG2

T
+

(
∆F0LG(1− τ−1)1/2

T

)2/3

+
∆F0L

T
.

Proof. We start with some notation. Throughout, we denote z(t) as the proximal point of w(t):

z(t) = proxF θ/µ(w(t)) = arg min
z

{
F θ(z) +

µ

2

∥∥∥z − w(t)
∥∥∥2
}
.
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Let F (t) denote the sigma algebra generated by w(t) and define Et[·] = E[· | F (t)]. By definition, we have
that z(t) is also F (t)-measurable.

We use the update w(t+1) = w(t) − γ∑i∈S π
(t)
i

∑τ−1
k=0∇Fi(w

(t)
i,k) to get

Φ
µ

θ (w(t+1)) = min
z

{
F θ(z) +

µ

2

∥∥∥z − w(t+1)
∥∥∥2
}

≤ F θ(z(t)) +
µ

2

∥∥∥z(t) − w(t+1)
∥∥∥2

= F θ(z
(t)) +

µ

2

∥∥∥z(t) − w(t)
∥∥∥2

+ µγ

〈
z(t) − w(t),

∑
i∈S

π
(t)
i

τ−1∑
k=0

∇Fi(w(t)
i,k)

〉

+
µγ2

2

∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

∇Fi(w(t)
i,k)

∥∥∥∥∥
2

= Φ
µ

θ (w(t)) + µγ

〈
z(t) − w(t),

∑
i∈S

π
(t)
i

τ−1∑
k=0

∇Fi(w(t)
i,k)

〉
︸ ︷︷ ︸

=:T1

+
µγ2

2

∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

∇Fi(w(t)
i,k)

∥∥∥∥∥
2

︸ ︷︷ ︸
=:T2

.

(24)

For T1, we consider the effect of a single update with a learning τγ:

T ′1 := µτγ

〈
z(t) − w(t),

∑
i∈S

π
(t)
i ∇Fi(w(t))

〉
,

so that the difference T1 − T ′1 is the effect of the drift introduced by taking multiple local steps. We bound
the first order term T ′1 , the drift term T1 − T ′1 and the second order term T2 separately.

Bounding the first order term T ′1 . By definition of the weights π(t)
i , we have

∑
i∈S π

(t)
i ∇Fi(w(t)) =

∇̃Fθ,S(w(t)) ∈ ∂Fθ,S(w(t)), see also (22). This allows us to invoke the weak convexity of Fθ,S , in particular
(20), to bound

T ′1
µτγ

=
〈
z(t) − w(t), ∇̃Fθ,S(w(t))

〉
≤ Fθ,S(z(t))− Fθ,S(w(t)) +

L

2

∥∥∥z(t) − w(t)
∥∥∥2

.

Taking an expectation conditioned on F (t) (i.e., over the randomness in S), we get Et[Fθ,S(w(t))] = F θ(w
(t)).

Further, since z(t) is F (t)-measurable, we also have Et[Fθ,S(z(t))] = F θ(z
(t)). That gives,

1

µτγ
Et[T ′1 ] ≤

(
F θ(z

(t)) +
µ

2

∥∥∥z(t) − w(t)
∥∥∥2
)
− F θ(w(t))− µ− L

2

∥∥∥z(t) − w(t)
∥∥∥2

.

Note that the function
h(z) := F θ(z) +

µ

2

∥∥∥z − w(t)
∥∥∥2

is (µ− L)-strongly convex and z(t) is its minimizer. This gives,

h(w(t))− h(z(t)) ≥ µ− L
2

∥∥∥z(t) − w(t)
∥∥∥2

,

so that we have the bound
1

µτγ
Et[T ′1 ] ≤ −(µ− L)

∥∥∥z(t) − w(t)
∥∥∥2 (21)

= −µ− L
µ2

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2

. (25)
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Bounding the effect of the drift T1 − T ′1 . The contribution of kth local step to the drift T1 − T ′1 can be
bounded as ∣∣∣∣∣

〈
z(t) − w(t),

∑
i∈S

π
(t)
i

(
∇Fi(w(t)

i,k)−∇Fi(w(t))
)〉∣∣∣∣∣

(i)
≤ µ− L

2

∥∥∥z(t) − w(t)
∥∥∥2

+
1

2(µ− L)

∥∥∥∥∥∑
i∈S

π
(t)
i

(
∇Fi(w(t)

i,k)−∇Fi(w(t))
)∥∥∥∥∥

2

(ii)
≤ µ− L

2

∥∥∥z(t) − w(t)
∥∥∥2

+
1

2(µ− L)

∑
i∈S

π
(t)
i

∥∥∥∇Fi(w(t)
i,k)−∇Fi(w(t))

∥∥∥2

(iii)
≤ µ− L

2

∥∥∥z(t) − w(t)
∥∥∥2

+
L2

2(µ− L)

∑
i∈S

π
(t)
i

∥∥∥w(t)
i,k − w(t)

∥∥∥2

.

Here, we first used (i) the Cauchy-Schwarz inequality, (ii) Jensen’s inequality, and (iii) the smoothness of Fi.
Summing this over k, we get the bound

Et |T1 − T ′1 | ≤
τγ(µ− L)

2µ

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2

+
µγL2

2(µ− L)
d(t)

≤ τγ(µ− L)

2µ

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2

+
4µτ3γ3G2

µ− L (1− τ−1) , (26)

where we bounded d(t) := Et
[∑

i∈S
∑τ−1
k=0 π

(t)
i

∥∥∥w(t)
i,k − w(t)

∥∥∥2
]
by Theorem 12.

Bounding the second order term T2. Next, we bound T2 as

T2 =
µγ2

2

∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

∇Fi(w(t)
i,k)

∥∥∥∥∥
2

≤ µγ2τ

2

∑
i∈S

π
(t)
i

τ−1∑
k=0

∥∥∥∇Fi(w(t)
i,k)
∥∥∥2

≤ µγ2τ2G2

2
, (27)

where we used Jensen’s inequality and
∥∥∥∇Fi(w(t)

i,k)
∥∥∥2

≤ G2 since Fi is G-Lipschitz.

One step update and telescoping the bound. Plugging (25) to (27) into (24), we have,

Et
[
Φ
µ

θ (w(t+1))
]
≤ Φ

µ

θ (w(t))− τγ(µ− L)

2µ

∥∥∥∇Φ
µ

θ (w(t))
∥∥∥2

+
µγ2τ2G2

2

(
1 +

8L2γ

µ− L (τ − 1)

)
.

Finally, taking an unconditional expectation, summing this up over t = 0 to T − 1 and rearranging gives us
the bound

E
∥∥∥∇Φ

µ

θ (ŵ)
∥∥∥2

≤ 4∆F0

τγT
+ 4τγLG2 (1 + 8Lγ(τ − 1)) ,

where we plugged in µ = 2L. Plugging in the choice of γ (cf. Theorem 14) completes the proof.

A.3 Convergence Analysis: Strongly Convex Case
The fully specified version of Theorem 5 is the following.

30



Theorem 8 (Convergence rate, Strongly Convex Case). Suppose that each Fi is convex and the regularization
parameter satisfies 0 < λ < L. Define notation κ = (L+ λ)/λ, w? = arg minw Fθ(w) and ∆0 = ‖w(0) −w?‖2.
Assume also that the number of rounds is T ≥ 16κ3/2. Fix a smoothing parameter ν > 0 as

ν =
8G2δ

λ

(
1 ∨ 32κ2δ

)
,

where δ > 0 is given by

δ = min

{
1

16κ3/2
,

1

T

(
1 ∨ log

CT

logm

)
,

1

T

(
1 ∨ log

CT 2

κ2 logm

)}
,

and C = λ2∆0/G
2. Letting L′ = L+ λ+G2/ν, fix a learning rate

γ = min

{
1

4τL′
,

1

8τκ
√

2λL′
,

1

λτT
(1 ∨ logCθmT ) ,

1

λτT

(
1 ∨ log

CT 2

κ2(1− τ−1)

)2
}
.

Consider the sequence (w(t))Tt=0 produced by Algorithm 3 run with smoothing parameter ν and learning rate γ
chosen as above, and the corresponding averaged iterate

w(T ) :=

∑T
t=0 w

(t)
(

1− λτγ
2

)−(1+t)

∑T
r=0

(
1− λτγ

2

)−(1+r)
.

Then, ignoring absolute constants, we have,

E
[
Fθ(w

(T ))− Fθ(w?)
]
≤ λ‖w(0) − w?‖2 exp

(
− T

16κ3/2

)
+

B√
θm

+
G2

λT

(
1

θm
+ logm

) (
1 ∨ log

λ2∆0θmT

G2

)
+
G2κ2

λT 2

(
1− τ−1 + logm

)(
1 ∨ log

λ2∆0T
2

G2κ2

)2

.

We review some notation before giving the proof.

Notation. Analogous to the smoothing F νθ of Fθ, we define the smoothing of the sample version Fθ,S as

F νθ,S(w) = max
π∈Pθ,S

{∑
i∈S

πiFi(w)− νDS(π)

}
+
λ

2
‖w‖2 , (28)

From Danskin’s theorem [6, Proposition B.25], we get the expression of its gradient as

∇F νθ,S(w(t)) =
∑
i∈S

π
(t)
i ∇F̃i(w(t)) , (29)

where π(t) attains the unique argmax in (28) (see also (15) for the definition).
We define the averaged superquantile as

F
ν

θ (w) = ES∼Um [F νθ,S(w)] , (30)

where Um is the uniform distribution over subsets of [n] of size m. Finally, let w? = arg minw F
ν

θ (w).
We also define the notion of client drift as

d(t) := ES∼Um

[∑
i∈S

π
(t)
i

τ−1∑
k=0

‖w(t)
i,k − w(t)‖2

∣∣∣∣∣Ft
]
. (31)

31



Proof of Theorem 8. We denote Et[·] := E[ · | Ft]. We expand the update w(t+1) = w(t)−γ∑i∈S π
(t)
i

∑τ−1
k=0∇F̃i(w

(t)
i,k)

to get

‖w(t+1) − w?‖2 = ‖w(t) − w?‖2 − 2γ
∑
i∈S

π
(t)
i

τ−1∑
k=0

〈
∇F̃i(w(t)

i,k), w(t) − w?
〉

︸ ︷︷ ︸
=:T1

+ γ2

∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

∇F̃i(w(t)
i,k)

∥∥∥∥∥
2

︸ ︷︷ ︸
=:T2

.

(32)

In order to bound the first order term T1, we analyze the effect of a single local step of learning rate τγ rather
than τ local steps of learning rate γ. The analogue of the first order term T1, in this case, would be

T ′1 := 2τγ
∑
i∈S

π
(t)
i

〈
∇F̃i(w(t)), w(t) − w?

〉
(29)
= 2τγ

〈
∇F νθ,S(w(t)), w(t) − w?

〉
.

The difference T1 − T ′1 is the effect of the drift from taking multiple local steps. From here, the proof consists
of the following steps:
1. bound the first order term T ′1 ,
2. bound the drift T1 − T ′1 ,
3. bound the second order term T2,
4. combine these to get the effect of one communication round t,
5. unroll the bound over all communication rounds t = 1, . . . , T ,
6. connect optimization on the surrogate F

ν

θ to the original Fθ,
7. optimize the choices of the learning rate γ and smoothing parameter ν.

1. Bounding the first order term T ′1 . We use the λ-strong convexity (cf. (44)) of F νθ,S to get

T ′1 ≥ 2τγ

(
F νθ,S(w(t))− F νθ,S(w?) +

λ

2
‖w(t) − w?‖2

)
.

Taking an expectation w.r.t. the sampling S (i.e., conditioned on Ft) gives

Et[T ′1 ] ≥ 2τγ

(
F
ν

θ (w(t))− F νθ (w?) +
λ

2
‖w(t) − w?‖2

)
. (33)

2. Bounding the effect of the drift T1 − T ′1 . The contribution of kth local step to the drift T1 − T ′1 can
be bounded as ∣∣∣∣∣

〈∑
i∈S

π
(t)
i

(
∇F̃i(w(t)

i,k)−∇F̃i(w(t))
)
, w(t) − w?

〉∣∣∣∣∣
(i)
≤ λ

4

∥∥∥w(t) − w?
∥∥∥2

+
1

λ

∥∥∥∥∥∑
i∈S

π
(t)
i

(
∇F̃i(w(t)

i,k)−∇F̃i(w(t))
)∥∥∥∥∥

2

(ii)
≤ λ

4

∥∥∥w(t) − w?
∥∥∥2

+
1

λ

∑
i∈S

π
(t)
i

∥∥∥∇F̃i(w(t)
i,k)−∇F̃i(w(t))

∥∥∥2

(iii)
≤ λ

4

∥∥∥w(t) − w?
∥∥∥2

+
(L+ λ)2

λ

∑
i∈S

π
(t)
i

∥∥∥w(t)
i,k − w(t)

∥∥∥2

.
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Here, we first used (i) the Cauchy-Schwarz inequality, (ii) Jensen’s inequality, and (iii) the (L+λ)-smoothness
of F̃i. Summing this over k, we get the bound

Et|T1 − T ′1 | ≤
λτγ

2
‖w(t) − w?‖2 +

2γ(L+ λ)2

λ
d(t) , (34)

where we use the definition of d(t) from (31).

3. Bounding the second order term T2. By using the expression (29) of ∇F νθ,S , we get∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

∇F̃i(w(t)
i,k)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

(
∇F̃i(w(t)

i,k)−∇F̃i(w(t))
)∥∥∥∥∥

2

+ 2

∥∥∥∥∥∑
i∈S

π
(t)
i

τ−1∑
k=0

∇F̃i(w(t))

∥∥∥∥∥
2

≤ 2τ
∑
i∈S

π
(t)
i

τ−1∑
k=0

∥∥∥∇F̃i(w(t)
i,k)−∇F̃i(w(t))

∥∥∥2

+ 2τ2
∥∥∥∇F νθ,S(w(t))

∥∥∥2

.

For the first term, we invoke (L+ λ)-smoothness of F̃i and take an expectation to get 2τ(L+ λ)2d(t). For the
second term, we have from the definition (30) of F

ν

θ that Et
[
∇F νθ,S(w(t))

]
= ∇F νθ (w(t)). Therefore, we can

write

Et
∥∥∥∇F νθ,S(w(t))

∥∥∥2

= Et
∥∥∥∇F νθ,S(w(t))−∇F νθ (w(t))

∥∥∥2

+
∥∥∥∇F νθ (w(t))

∥∥∥2

≤ 8G2

θm
+ 2L′

(
F
ν

θ (w(t))− F νθ (w?)
)
,

where we invoked Theorem 9 to bound the variance of the partial superquantile and L′-smoothness of F
ν

θ .
Overall, this gives us

Et[T2] ≤ 2γ2τ(L+ λ)2 d(t) +
16τ2γ2G2

θm
+ 4τ2γ2L′

(
F
ν

θ (w(t))− F νθ (w?)
)
. (35)

4. One-step update. Plugging (33) to (35) into (32), we get,

Et‖w(t+1) − w?‖2 ≤
(

1− λτγ

2

)
‖w(t) − w?‖2

− (2τγ − 4γ2τ2L′)
(
F
ν

θ (w(t))− F νθ (w?)
)

+
16τ2γ2G2

θm
+ 2γ(L+ λ)2(τγ + λ−1)d(t) .

Next, we plug in the bound on d(t) from Theorem 12 and simplify some coefficients. First, since γ ≤ (4τL′)−1

we have 2τγ − 4γ2τ2L′ ≥ τγ. Likewise, the same condition on γ also implies τγ + 1/λ ≤ 2/λ. Finally,
γ ≤

(
8τκ
√

2λL′
)−1 implies 64L′(L+ λ)2τ2γ2/λ ≤ 1/2. As a result, we arrive at the bound

F
ν

θ (w(t))− F νθ (w?) ≤ 2

τγ

(
1− λτγ

2

)
‖w(t) − w?‖2 − 2

τγ
Et‖w(t+1) − w?‖2

+
32τγG2

θm
+

64G2(L+ λ)2τ2(1− τ−1)γ2

λ

(
4 +

8

θm

)
︸ ︷︷ ︸

=:T3

.
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5. Telescoping the bound. By telescoping the one-step improvement and convexity, we get, Next, we use
convexity to get

E
[
F
ν

θ (w(T ))− F νθ (w?)
]

≤ 1∑T
t=0

(
1− λγτ

2

)−(1+t)

T∑
t=0

(
1− λτγ

2

)−(1+t)

E
[
F
ν

θ (w(t))− F νθ (w?)
]

≤ 2
∥∥w(0) − w?

∥∥2

τγ
∑T
t=0

(
1− λτγ

2

)−(1+t)
+ T3 .

Now, we can bound the denominator from below with

T∑
t=0

(
1− λτγ

2

)−(1+t)

≥ 2

λτγ

((
1− λτγ

2

)−(T+1)

− 1

)
≥ 2

τγλ

(
e(T+1)λτγ − 1

)
.

This gives us the final bound

E
[
F
ν

θ (w(T ))− F νθ (w?)
]
≤ λ

eTλτγ − 1
‖w(0) − w?‖2 + T3 . (36)

6. Translating the results from the surrogate F
ν

θ to the original Fθ. We optimize the surrogate F
ν

θ

defined on a sample S of clients rather than the full superquantile. The effect of this shows up in both sides
of (36). We bound the left-hand side by noting that the bias introduced by the surrogate is bounded as in
Theorem 9. For the right hand side, we use the λ-strong convexity of Fθ and Theorem 9 to get

‖w(0) − w?‖2 ≤ 2‖w(0) − w?‖2 + 2‖w? − w?‖2

≤ 2‖w(0) − w?‖2 +
4

λ
(Fθ(w

?)− Fθ(w?))

≤ 2‖w(0) − w?‖2

+
4

λ

(
Fθ(w

?)− F νθ (w?) + F
ν

θ (w?)− F νθ (w?) + F
ν

θ (w?)− Fθ(w?)
)

≤ 2‖w(0) − w?‖2 +
4

λ

(
2B√
θm

+ 4ν logm

)
,

since F
ν

θ (w?)− F νθ (w?) ≤ 0. Plugging this into (36) gives us the bound

E
[
Fθ(w

(T ))− Fθ(w?)
]
≤ 2λ

eTλτγ − 1
‖w(0) − w?‖2 +

32τγG2

θm
+

64G2(L+ λ)2τ2(1− τ−1)γ2

λ

(
4 +

8

θm

)
+(

2B√
θm

+ 4ν logm

)(
1 +

8

eTλτγ − 1

)
.

(37)

7. Hyperparameter optimization. To complete the proof from here, it remains to optimize the learning
rate γ and the smoothing parameter ν by repeated invocations of Theorem 13.
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We start with the learning rate γ. Ignoring absolute constants gives us the bound

E
[
Fθ(w

(T ))
]
− Fθ(w?) ≤ λ∆0 exp(−λτΓT ) +

G2

θmλT

(
1 ∨ log

λ2∆0θm

G2
T

)
+
G2κ2

λT 2
(1− τ−1)

(
1 ∨ log

λ2∆0T
2

G2κ2

)2

+
B√
θm

+ ν logm,

(38)

where we take

Γ = min

{ √
λ

8τ(L+ λ)
√

2L′
,

1

4τL′

}
This application of Theorem 13 requires λτΓT ≥ 1, which we will ensure later, based on the choice of ν.
Recall that Γ depends on L′, which itself depends on ν as L′ = L+ λ+G2/ν.

Next, we set ν. We will require that ν ≤ G2/(λκ), so that the two terms from (38) that depend on ν can
be bounded as

λ∆0 exp(−λτΓT ) + ν logm ≤ λ∆0 exp

− T

16κ
√

G2

λν ∨ 8G2

λν

+ ν logm. (39)

To simplify the expression, we substitute

1

δ
= max

{
16κ

√
G2

λν
,

8G2

λν

}
⇐⇒ ν = max

{
256κ2G2δ2

λ
,

8G2δ

λ

}
.

The bound ν ≤ G2/(λκ) translates to the upper bound δ ≤ (16κ3/2)−1. Therefore, the right hand side of
(39) can be further upper bounded by using max{a, b} ≤ a+ b as

λ∆0 exp(−δT ) +
8G2 logm

λ
δ +

256G2κ2G2 logm

λ
δ2 .

We now invoke Theorem 13 under the condition T ≥ 16κ3/2. We set δ as specified by Theorem 13 — this
gives us the choices of the smoothing parameter ν and learning rate γ. Plugging this into (38) gives the
bound of the theorem. Finally, to complete the proof, it can be verified that the condition λτΓT ≥ 1 is
guaranteed by T ≥ 16κ3/2.

A.4 Intermediate Results
We present some prerequisites and some intermediate results which are required in the convergence proofs.

Note that for any S ⊂ [n] of size m, the partial superquantile is differentiable at w with :

∇F νθ,S(w) =
∑
i∈S

π?i∇F̃i(w) (40)

where π? denotes the solution to the maximization

F νθ,S(w) = max
π∈Pθ,S

∑
i∈S

πiF̃i(w)− νDS(π)

Bias and variance of the partial superquantile. We use the partial superquantile defined on a subset
S ⊂ [n] to approximate the full superquantile. We start with the quality of this approximation.
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Property 9. Let Um denote the uniform distribution over all subsets of [n] of size m. For any w ∈ Rd, we
have ∣∣∣F νθ (w)− Fθ(w)

∣∣∣ ≤ B√
θm

+ 2ν logm,

ES∼Um
∥∥∥∇F νθ,S(w)−∇F νθ (w)

∥∥∥2

≤ 8G2

θm
.

Smoothing and smoothness constants. The following result is standard [3, Theorem 4.1, Lemma 4.2].

Property 10. For every ν > 0, we have that F νθ,S and F
ν

θ,S are L′-smooth with L′ = L+ λ+ G2

ν .

Bounding the gradient dissimilarity. Bounding of the variance of gradient estimators is a key assumption
in the analysis of stochastic gradient methods (see e.g. the textbook [10]). In the centralized setting, when a
stochastic objective Eξ[f(w, ξ)], it is standard to assume for a given estimator gw of ∇wEf(w, ξ) that there
exists some constants M1,M2 > 0 such that for all w ∈ Rd,

‖E [gw]‖2 ≤M1 or ‖E [gw]‖2 ≤M1 +M2 ‖∇wE [f(w, ξ]‖2 .
In the federated setting, the use of a subset S ⊂ [n] of clients in each round induces noise on the estimation of
the average gradient over the whole network. Thus, such assumption translates into a bound on the gradient
dissimilarity among the clients [51, 99]:

1

n

∑
i∈[n]

∥∥∥∇F̃i(w)
∥∥∥2

≤M1 +M2

∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇F̃i(w)

∥∥∥∥∥∥
2

.

In this work, we also consider the minimization of the global loss F νθ by a stochastic algorithm based on
partial participation of the clients, with the additional difficulty that we only have access to a biased estimator
F
ν

θ of the loss F νθ and its gradient. In particular, the adaptive reweighting of the clients selected at each
round does not permit the direct use of such an assumption. We show instead in the next lemma that the
variance of the stochastic gradient estimator can also be bounded, thanks to the Lipschitz assumption.

Proposition 11 (Gradient Dissimilarity). Consider the quantities π(t), w(t) from Algorithm 3. We have,

E

[∑
i∈S

π
(t)
i

∥∥∥∇F̃i(w(t))
∥∥∥2
∣∣∣∣∣Ft
]
≤
(

4 +
8

θm

)
G2 +

∥∥∥∇F νθ (w(t))
∥∥∥2

.

Proof. We drop the superscript t throughout this proof. By centering the second moment (cf. (43)), we have:∑
i∈S

πi

∥∥∥∇F̃j(w)
∥∥∥2

=
∑
i∈S

πi

∥∥∥∇F̃i(w)−∇F νθ,S(w)
∥∥∥2

+
∥∥∇F νθ,S(w)

∥∥2

=
∑
i∈S

πi

∥∥∥∥∥∥∇Fi(w)−
∑
j∈S

πj∇Fj(w)

∥∥∥∥∥∥
2

+
∥∥∇F νθ,S(w)

∥∥2
.

Now since the weights πi sum to one, we may use the convexity of ‖·‖2 to get:∑
i∈S

πi

∥∥∥∇F̃j(w)
∥∥∥2

≤
∑
i,j∈S

πiπj ‖∇Fj(w)−∇Fi(w)‖2 +
∥∥∇F νθ,S(w)

∥∥2
.

The squared triangle inequality (cf. (42)) together with the Lipschitz assumption on the functions Fi yields:∑
i∈S

πi

∥∥∥∇F̃i(w)
∥∥∥2

≤ 2
∑
i,j∈S

πiπi

(
‖∇Fi(w)‖2 + ‖∇Fj(w)‖2

)
+
∥∥∇F νθ,S(w)

∥∥2

≤ 4 G2 +
∥∥∇F νθ,S(w)

∥∥2
.
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Thus, taking an expectation over S ∼ Um gives

E

[∑
i∈S

πi

∥∥∥∇F̃j(w)
∥∥∥2
∣∣∣∣∣Ft
]
≤ 4 G2 + ES∼Um

[∥∥∇F νθ,S(w)
∥∥2
]
.

By centering (cf. (43)), we get,

E

[∑
i∈S

πi

∥∥∥∇F̃i(w)
∥∥∥2
∣∣∣∣∣Ft
]
≤ 4 G2 +

∥∥∥∇F νθ (w)
∥∥∥2

+ E
[∥∥∥∇F νθ,S(w)−∇F νθ (w)

∥∥∥2
∣∣∣∣Ft] .

(41)

Finally, substituting the variance bound from Theorem 9 into (41) yields the stated result.

Bounding the Client Drift. During federated learning, each client takes multiple local steps. This causes
the resulting update to be a biased estimator of a descent direction for the global objective. This phenomenon
has been referred to as “client drift” [66, 51]. Current proof techniques rely on treating this as a “noise” term
that is to be controlled. In the context of this work, the reweighting by π(t) requires us to adapt this typical
definition of client drift to our setting. In particular, recall that we define the client drift d(t) in outer iteration
t of the algorithm as

d(t) := ES∼Um

[∑
i∈S

π
(t)
i

τ−1∑
k=0

‖w(t)
i,k − w(t)‖2

∣∣∣∣∣Ft
]
.

Proposition 12 (Client Drift). If γ ≤ 1
4τ(L+λ) , we have for any t ≥ 0 that

d(t) ≤ 8τ2(τ − 1)γ2

((
4 +

8

θm

)
G2 + 2L′

(
F
ν

θ (w(t))− F νθ (w?)
))

.

Furthermore, if λ = 0, we have the bound

d(t) ≤ 8τ2(τ − 1)γ2G2 .

The last bound also works without smoothing, i.e., ν = 0.

Proof. We absorb the regularization into the superquantile by defining F̃i(w) = Fi(w) + (λ/2)‖w‖2. If τ = 1,
there is nothing to prove as both sides of the inequality are 0. We assume now that τ > 1. Let us first fix
S ⊂ [n] of size |S| = m. For any k ∈ S and j ∈ {1, . . . , τ − 1}, by the squared triangle inequality (cf. (42)),
we have: ∥∥∥w(t)

i,k − w(t)
∥∥∥2

=
∥∥∥w(t)

i,k−1 − γ∇F̃i(w
(t)
i,k−1)− w(t)

∥∥∥2

≤
(

1 +
1

τ − 1

)∥∥∥w(t)
i,k−1 − w(t)

∥∥∥2

+ τγ2
∥∥∥∇F̃i(w(t)

i,k−1)
∥∥∥2

.

The squared triangle inequality (cf. (42)) together with the smoothness of the local losses gives:∥∥∥w(t)
i,k − w(t)

∥∥∥2

(∥∥∥w(t)
i,k − w(t)

∥∥∥2
)≤

(
1 +

1

τ − 1

)∥∥∥w(t)
i,k−1 − w(t)

∥∥∥2

+ 2τγ2

(∥∥∥∇F̃i(w(t)
i,k−1)−∇F̃i(w(t))

∥∥∥2

+
∥∥∥∇F̃i(w(t))

∥∥∥2
)

≤
(

1 +
1

τ − 1

)∥∥∥w(t)
i,k−1 − w(t)

∥∥∥2

+ 2τγ2(L+ λ)2
∥∥∥w(t)

i,k−1 − w(t)
∥∥∥2

+ 2τγ2
∥∥∥∇F̃i(w(t))

∥∥∥2

.
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Hence, for γ ≤ 1
4τ(L+λ) , we get:

∥∥∥w(t)
i,k − w(t)

∥∥∥2

≤
(

1 +
2

τ − 1

)∥∥∥w(t)
i,k−1 − w(t)

∥∥∥2

+ 2τγ2
∥∥∥∇F̃i(w(t))

∥∥∥2

.

Unrolling this recursion yields for any j ≤ τ − 1

∥∥∥w(t)
i,k − w(t)

∥∥∥2

≤
k−1∑
i=0

(
1 +

2

τ − 1

)i(
2τγ2

∥∥∥∇F̃i(w(t))
∥∥∥2
)

≤ τ − 1

2

(
1 +

2

τ − 1

)k (
2τγ2

∥∥∥∇F̃i(w(t))
∥∥∥2
)

≤ τ − 1

2

(
1 +

2

τ − 1

)τ−1(
2τγ2

∥∥∥∇F̃i(w(t))
∥∥∥2
)

≤ 8τ(τ − 1)γ2
∥∥∥∇F̃i(w(t))

∥∥∥2

,

where we use (1 + 2/x)x ≤ e2 < 8 for any x > 0. If λ = 0 we have that
∥∥∥∇F̃i(w(t))

∥∥∥2

=
∥∥∇Fi(w(t))

∥∥2 ≤ G2

since Fi is G-Lipschitz; this gives us the final bound in the statement. When λ 6= 0, this does not hold. In
this case, we apply Theorem 11 to get

d(t) ≤ 8τ2(τ − 1)γ2 ES∼Um

[∑
i∈S

π
(t)
i

∥∥∥∇F̃i(w(t))
∥∥∥2
∣∣∣∣∣F (t)

]

≤ 8τ2(τ − 1)γ2

((
4 +

8

θm

)
G2 +

∥∥∥∇F νθ (w(t))
∥∥∥2
)
.

Invoking smoothness (cf. (45)) completes the proof.

A.5 Useful Inequalities and Technical Results
We recall a few standard inequalities:

• Squared Triangle inequality: For any x, y ∈ Rd and α > 0 we have:

‖x+ y‖2 ≤ (1 + α) ‖x‖2 +

(
1 +

1

α

)
‖y‖2 . (42)

• Centering the second moment: For any Rd-valued random vector X such that E‖X‖2 <∞,

E‖X‖2 = E‖X−E [X]‖2 + ‖E [X]‖2 (43)

• Strong convexity: Let F : Rd → R be µ-strongly convex. Then for any x, y ∈ Rd, we have:

〈∇F (x), x− y〉 ≥ F (x)− F (y) +
µ

2
‖x− y‖2 (44)

• Smoothness: Let F : Rd → R be L-smooth and let F ? be the minimum value of F (assuming it exists).
Then for any x ∈ Rd, we have:

‖∇F (x)‖2 ≤ 2L (F (x)− F ?) (45)
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Lemma 13. Consider the maps ϕ,ψ : (0,Γ]→ R+ given by

ϕ(γ) =
A

exp(λγT )− 1
+Bγ + Cγ2 , ψ(γ) = 2A exp(−λγT ) +Bγ + Cγ2 ,

where λ,Γ, A,B,C, T > 0 are given and λΓ ≤ 1. If T ≥ (λΓ)−1, then, we have,

ϕ(γ?) ≤ ψ(γ?) ≤ 2A exp(−λΓT ) +
3B

λT

(
1 ∨ log

AλT

B

)
+

3C

λ2T 2

(
1 ∨ log

Aλ2T 2

C

)2

,

where γ? is given by

γ? = min

{
Γ,

1

λT

(
1 ∨ log

AλT

B

)
,

1

λT

(
1 ∨ log

Aλ2T 2

C

)}
.

Furthermore, we also have that
(

exp(λγ?T )− 1
)−1 ≤ 1.

Proof. Since λΓT ≥ 1, we have that λγ?T ≥ 1. Then, exp(−λγ?T ) ≤ exp(−1) < 1/2 so that

1

exp(λγ?T )− 1
=

exp(−λγ?T )

1− exp(−λγ?T )
≤ 2 exp(−λγ?T ) ≤ 1 .

Therefore, we have,
ϕ(γ?) ≤ 2A exp(−λγ?T ) +Bγ? + C(γ?)2 = ψ(γ?) .

Next, define γ1 = (λT )−1 log(1∨AλT/B) and γ2 = (λT )−1 log(1∨Aλ2T 2/C), so that γ? = min{Γ, γ1, γ2}.
We have three cases:

• If γ? = Γ, we have that Γ ≤ γ1 and Γ ≤ γ2 so that

ψ(γ?) = 2A exp(−λΓT ) +BΓ + CΓ2 ≤ 2A exp(−λΓT ) +Bγ1 + Cγ2
2 .

• If γ? = γ1, we have γ1 ≤ γ2. In this case,

ψ(γ?) = A exp(−λγ1T ) +Bγ1 + Cγ2
1 ≤

2B

λT
+

B

λT

(
1 ∨ log

AλT

B

)
+ Cγ2

2 .

• If γ? = γ2, we have γ2 ≤ γ1, so that

ψ(γ?) = 2A exp(−λγ2T ) +Bγ2 + Cγ2
2 ≤

2C

λ2T 2
+Bγ1 +

C

λ2T 2

(
1 ∨ log

Aλ2T 2

C

)2

.

The proof of the next lemma is elementary and is omitted.

Lemma 14. Consider the map ϕ : (0,Γ]→ R+ given by

ϕ(γ) =
A

γT
+Bγ + Cγ2 ,

where Γ, A,B,C > 0 are given. Then, we have,

ϕ(γ?) ≤ A

ΓT
+ 2

(
AB

T

)1/2

+ 2C1/3

(
A

T

)2/3

,

where γ? is given by

γ? = min

{
Γ,

√
A

BT
,

(
A

CT

)1/3
}
.
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B Privacy Analysis

B.1 Preliminaries
The discrete Gaussian mechanism was introduced in [14] as an extension of the Gaussian mechanism to
integer data. A random variable ξ is said to satisfy the discrete Gaussian distribution with mean µ and
variance proxy σ2 if

P(ξ = n) = C exp

(
− (n− µ)2

2σ2

)
for all n ∈ Z ,

where C is an appropriate normalizing constant. We denote it by NZ(µ, σ2). We need the following property
of the discrete Gaussian.

Property 15. Let ξ be distributed according to NZ(µ, σ2). Then, E[ξ] = µ. Furthermore, if µ = 0, then ξ is
sub-Gaussian with variance proxy σ2, i.e., E[exp(λξ)] ≤ exp(λ2σ2/2) for all λ > 0.

B.2 Privacy-Utility Analysis of Quantile Computation
We now give the full proof of Theorem 6.

Proof of Theorem 6. We start by defining and controlling the probabilities of some events. Throughout, let
δ > 0 be fixed. Define the event

Emod =

n⋂
i=1

log2 b−1⋂
r=0

b/2r⋂
j=1

{
−M − 2

2n
≤ cxi(r, j) + ξi(r, j) ≤

M − 2

2n

}
. (46)

Note that under Emod, no modular wraparound occurs in the algorithm. Thus, for all valid levels r and
indices j, we have x̃i(r, j) = cxi(r, j) + ξi(r, j) and

ĥ(r, j) =

n∑
i=1

x̃i(r, j)

c
=

n∑
i=1

(
xi(r, j) +

ξi(r, j)

c

)
.

Next, we define the event

Ediff =
b⋂
j=1

{∣∣∣H(j)− Ĥ(j)
∣∣∣ ≤√2σ2n log2(b) log(4b/δ)

}
. (47)

We will show later that Emod and Ediff holds with high probability; for now, we assume that they hold.

Privacy Analysis. We start by establishing the sensitivity of the sum query over xi’s as log2 b, one for each
level in the hierarchical histogram. Define the input space X to be the space of hierarchical histograms with
one non-zero entry in the leaf nodes with consistent counts (i.e., the count of a parent node in the hierarchical
histogram equals the sum of its child nodes). Let X ∗ = ∪∞m=1Xm denote the set of all sequences of elements
of X . We consider the rescaled sum query A((x1, . . . , xN )) =

∑n
i=1 cxi. The L2 sensitivity S(A) of this query

A is supremum over all X ∈ X ∗ and X ′ which is obtained by concatenating x′ to X:

S(A) = sup
X,X′

‖A(X)−A(X ′)‖2 = sup
x′∈X

c ‖x′‖2 = c log2 b .

We invoke the privacy bound of sums of discrete Gaussians (Theorem 18) to claim that an algorithm A
returning A(x) +

∑n
i=1 ξi satisfies (1/2)ε2-concentrated DP where ε is as in the theorem statement. The fact
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that the quantile and all further functions of it remain private follows from the post-processing property of
DP (also known as the data-processing inequality).

Utility Analysis. Using the triangle inequality, we get,

∆θ(Ĥ,H) =

∣∣∣∣∣H
(
j∗θ (Ĥ)

)
n

− (1− θ)
∣∣∣∣∣

≤ 1

n

∣∣∣H(j∗θ (Ĥ)
)
− Ĥ

(
j∗θ (Ĥ)

)∣∣∣+

∣∣∣∣ 1nĤ(j∗θ (Ĥ)
)
− (1− θ)

∣∣∣∣
≤ max

j∈[b]

{
1

n

∣∣∣H(j)− Ĥ(j)
∣∣∣}+R∗θ(Ĥ) .

The first term is bounded under Ediff , and this gives the utility bound.

Bounding the Failure Probability. The algorithm fails when at least one of Emod or Ediff fail to hold.
We have from Theorem 16 that P(Emod) ≥ 1 − δ/4 under the given assumptions. From, Theorem 17, we
have P(Ediff |Emod) ≥ 1− δ/2. We bound the total failure probability of the algorithm with a union bound as

P(Ēdiff ∪ Ēmod) ≤ P(Ēdiff |Emod)P(Emod) + P(Ēdiff |Ēmod)P(Ēmod) + P(Ēmod)

≤ P(Ēdiff |Emod) + 2P(Ēmod) ≤ δ .

We state and prove bounds on probabilities of the events Emod, Ediff defined above.

Claim 16. If M ≥ 2 + 2cn+ 2n
√

2σ2 log(16nb/δ), then P(Emod) ≥ 1− δ/4.

Proof. Each discrete Gaussian random variable ξi(r, j) is centered and sub-Gaussian with variance proxy σ2

(cf. Theorem 15). A Cramér-Chernoff bound (cf. Theorem 19) gives us the exponential tail bound

P
(
|ξi(r, j)| >

√
2σ2 log(16nb/δ)

)
≤ δ

8nb
.

Applying the union bound over i = 1, . . . , n and the 2b − 2 nodes in each hierarchical histogram xi (each
node corresponding to one (r, j) pair) completes the proof.

Claim 17. We have P(Ediff |Emod) ≥ 1− δ/2.

Proof. Under Emod, we have that Ĥ(j) = H(j) +
∑n
i=1

∑
(r,o)∈Pj ξi(r, o), where Pj is the maximal dyadic

partition of [1, j] with |Pj | ≤ log2 b. Thus, ζj := Ĥ(j)−H(j) is sub-Gaussian with variance proxy n|Pj |σ2 ≤
nσ2 log2 b. A Cramér-Chernoff bound (cf. Theorem 19) gives us

P
(
|ζj | >

√
2σ2n log2(b) log(4b/δ)

)
≤ δ

2b
.

Applying a union bound over j = 1, . . . , b completes the proof.

B.3 Useful Results
The distributed discrete Gaussian mechanism gets privacy guarantees by adding a sum of discrete Gaussian
random variables. We give a bound on its privacy. The following lemma is due to [49].

Lemma 18 (Privacy of Sum of Discrete Gaussians). Fix σ ≥ 1/2. Let A : X →d be a deterministic algorithm
with `2-sensitivity S for some input space X . Define a randomized algorithm A, which when given an input
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x ∈ X , samples ξ1, . . . , ξn ∼ NZ(0, σ2Id) and returns A(x) +
∑n
i=1 ξi. Then, A satisfies ε2/2-concentrated

DP with

ε = min

{√
S2

nσ2
+
ψd

2
,
S√
nσ

+ ψ
√
d

}
,

where ψ = 10
∑n−1
i=1 exp

(
− 2π2σ2i/(k + 1)

)
≤ 10(n− 1) exp(−2π2σ2).

Next, we record a standard concentration result.

Lemma 19 (Cramér-Chernoff). Let ξ be a real-valued and centered sub-Gaussian random variable with
variance proxy σ2, i.e., E[ξ] = 0 and E[exp(λξ)] ≤ exp(λ2σ2/2) for all λ > 0. Then, we have for any t > 0,

P(|ξ| > t) ≤ 2 exp

(
− t2

2σ2

)
.

C Numerical Experiments: Extended Results
We conduct our experiments on two datasets from computer vision and natural language processing. These
datasets contain a natural, non-iid split of data which is reflective of data heterogeneity encountered in
federated learning. In this section, we describe in detail the experimental setup and the results. Here is its
outline:

• Appendix C.1 describes the datasets and tasks.

• Appendix C.2 presents the algorithm and the hyperparameters used.

• Appendix C.3 details the evaluation methodology.

• Appendix C.4 gives the experimental comparison of ∆-FL to baselines.

Since each client has a finite number of datapoints in the examples below, we let its probability distribution
qi to be the empirical distribution over the available examples, and the weight αi to be proportional to the
number of datapoints available on the client.

C.1 Datasets and Tasks
We use the two following datasets, described in detail below. The data was preprocessed using LEAF [13].

EMNIST for handwritten-letter recognition.

Dataset. EMNIST [19] is a character recognition dataset. This dataset contains images of handwritten
digits or letters, labeled with their identification (a-z, A-Z, 0-9). The images are grey-scaled pictures of
28× 28 = 784 pixels.

Train and Test Devices. Each image is also annotated with the “writer” of the image, i.e., the human
subject who hand-wrote the digit/letter during the data collection process. Each client corresponds to
one writer. From this set of clients, we discard all clients containing less than 100 images. The remaining
clients were partitioned into two groups — 1730 training and 1730 testing clients. For each experiment, we
subsampled 865 training and 865 testing clients for computational tractability, where the sampled clients
vary based on the random seed of each experiment.

Model. We consider the following models for this task.
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• Linear Model: We use a linear softmax regression model. In this case, each Fi is convex. We
train parameters w ∈ R62×784. Given an input image x ∈ R784, the score of each class c ∈ [62] is
the dot product 〈wc, x〉. The probability pc assigned to each class is then computed as a softmax:
pc = exp 〈wc, x〉/

∑
c′ exp 〈wc′ , x〉. The prediction for a given image is then the class with the highest

probability.

• ConvNet: We also consider a convolutional neural network with two convolutional layers with max-
pooling and one fully connected layer (F.C) which outputs a vector in R62. The outputs of the ConvNet
are scores with respect to each class. They are also used with a softmax operation to compute probabilities.

The loss used to train both models is the multinomial logistic loss L(p, y) = − log py where p denotes the
vector of probabilities computed by the model and py denotes its yth component. In the convex case, we add
a quadratic regularization term of the form (λ/2)‖w‖22.

Sent140 for Sentiment Analysis.

Dataset. Sent140 [39] is a text dataset of 1,600,498 tweets produced by 660,120 Twitter accounts. Each
tweet is represented by a character string with emojis redacted. Each tweet is labeled with a binary sentiment
reaction (i.e., positive or negative), which is inferred based on the emojis in the original tweet.

Train and Test Devices. Each client represents a Twitter account and contains only tweets published by
this account. From this set of clients, we discarded all clients containing less than 50 tweets and split the 877
remaining clients into a train set and a test set of sizes 438 and 439 respectively. This split was held fixed for
all experiments. Each word in the tweet is encoded by its 50-dimensional GloVe embedding [77].

Model. We consider the following models.

• Linear Model: We consider a l2-regularized linear logistic regression model where the parameter vector
w is of dimension 50. In this case, each Fi is convex. We summarize each tweet by the average of the
GloVe embeddings of the words of the tweet.

• RNN: The nonconvex model is a Long Short Term Memory (LSTM) model [45] built on the GloVe
embeddings of the words of the tweet. The hidden dimension of the LSTM is the same as the embedding
dimension, i.e., 50. We refer to it as “RNN”.

The loss function is the binary logistic loss.

C.2 Algorithms and Hyperparameters

Algorithm and Baselines.
The proposed ∆-FL is run for three values of θ ∈ {0.8, 0.5, 0.1}. We compare it to the following baselines:

• FedAvg [67]: It is the de facto standard for the vanilla federated learning objective.

• FedAvg, θ: We also consider FedAvg with a random client subselection step: local updates are run on
a fraction of the initial number of clients randomly selected per round. For each dataset, we try three
values, corresponding to the average number of clients selected by ∆-FL for the three values of θ used. In
the main paper, we report as FedAvg-Sub the performance of FedAvg, θ with θ ∈ {0.8, 0.5, 0.1} which
gives the best performance on ∆-FL (i.e., lowest 90th percentile of test misclassification error). Here we
report numbers for all values of θ considered.

• FedProx [63]: It augments FedAvg with a proximal term but still minimizes the vanilla federated learning
objective.

• q-FFL [64]: It raises the per-client losses to the power (1 + q), where q ≥ 0 is a parameter, in order to
focus on clients with higher loss. We run q-FFL for values of q in {10j , j ∈ {−3, . . . , 1}}.
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• AFL [71]: It aims to minimize the worst per-client loss. We implement it as an asymptotic version of q-FFL,
using a large value of q, as this was found to yield better convergence with comparable performance [64].
In the experiments, we take q = 10.0.

The experiments are conducted on the datasets described in Appendix C.1.

Hyperparameters.

Rounds. We measure the progress of each algorithm by the number of calls to secure aggregation routine
for weight vectors, i.e., the number of communication rounds.

For the experiments, we choose the number of communication rounds depending on the convergence of
the optimization for FedAvg. For the EMNIST dataset, we run the algorithm for 3000 communication rounds
with the linear model and 1000 for the ConvNet. For the Sent140 dataset, we run the 1000 communication
rounds for the linear model and 600 for the RNN.

Devices per Round. We choose the same number of clients per round for each method, with the exception
of FedAvg, θ. All clients are assumed to be available and selections are made uniformly at random. In
particular, we select 100 clients per round for all experiments with the exception of Sent140 RNN for which
we used 50 clients per round.

Local Updates and Minibatch Size. Each selected client locally runs 1 epoch of mini-batch stochastic
gradient descent locally. We used the default mini-batch of 10 for all experiments [67], except for 16 for
EMNIST ConvNet. This is because the latter experiments were run using on a GPU, as we describe in the
section on the hardware.

Learning rate scheme. We now describe the learning rate γt used during LocalUpdate. For the linear
model, we used a constant fixed learning rate γt ≡ γ0, while for the neural network models, we used a step
decay scheme of the learning rate γt = γ0c

−bt/t0c for some t0 where γ0 and 0 < c ≤ 1 are tuned. We tuned
the learning rates only for the baseline FedAvg and used the same learning rate for the other baselines and
∆-FL at all values of θ.

For the neural network models, we fixed t0 so that the learning rate decayed once or twice during the
fixed time horizon T . In particular, we used t0 = 400 for EMNIST ConvNet (where T = 1000) and t0 = 200
for Sent140 RNN (where T = 600). We tuned c from the set {2−3, 2−2, 2−1, 1}, while the choice of the range
of γ0 depended on the dataset-model pair. The tuning criterion we used was the mean of the loss distribution
over the training clients (with client i weighted by αi) at the end of the time horizon. That is, we chose the
γ0, c which gave the best terminal training loss.

Tuning of the regularization parameter. The regularization parameter λ for linear models was tuned
with cross validation from the set {10−k : k ∈ {3, . . . , 8}}. This was performed as described below.

For each dataset, we held out half the training clients as validation clients. Then, for different values of
the regularization parameter, we trained a model with the (smaller subset of) training clients and evaluate
its performance on the validation clients. We selected the value of the regularization parameter as the one
which gave the smallest 90th percentile of the misclassification error on the validation clients.

Baselines Parameters. We tune the proximal parameter of FedProx with cross validation. The procedure
we followed is identical to the procedure we described above for the regularization parameter λ. The set of
parameters tested is {10−j , j ∈ {0, . . . , 3}}. We did not attempt to tune the parameter q of q-FFL and report
the performance of all values of q which we tried.

Hyperparameters of ∆-FL. We optimize ∆-FL via Algorithm 3 with a fixed number of local steps,
corresponding to one epoch. For simplicity, we calculate the quantile exactly, assuming client losses are
available to the server.
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Table 6: Metrics for the test misclassification error for EMNIST (Linear Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 34.38± 0.38 18.39± 0.33 21.54± 0.35 32.61± 0.39 49.65± 0.67
FedAvg θ = 0.8 34.20± 0.45 18.25± 0.22 21.37± 0.26 32.10± 0.34 49.92± 1.16
FedAvg θ = 0.5 34.51± 0.47 18.21± 0.30 21.40± 0.36 32.36± 0.59 50.28± 0.77
FedAvg θ = 0.1 34.60± 0.46 18.58± 0.31 21.71± 0.37 32.54± 0.37 50.33± 1.28
FedProx 33.82± 0.30 18.25± 0.23 21.37± 0.35 31.75± 0.20 49.15± 0.74
q-FFL (Best q = 1.0) 34.71± 0.27 19.34± 0.30 22.33± 0.41 32.80± 0.23 49.90± 0.58
Tilted-ERM (Best t = 1.0) 34.15± 0.25 10.78± 0.30 22.43± 0.29 32.36± 0.23 48.59± 0.62
AFL 39.32± 0.27 25.42± 0.27 28.64± 0.43 38.16± 0.34 51.62± 0.28

∆-FL θ = 0.8 34.48± 0.26 19.16± 0.32 22.24± 0.32 32.85± 0.31 49.10± 0.24
∆-FL θ = 0.5 35.01± 0.20 20.46± 0.34 23.64± 0.22 33.83± 0.34 48.44± 0.38
∆-FL θ = 0.1 38.32± 0.48 23.86± 0.59 27.27± 0.64 37.52± 0.67 50.34± 0.95

Table 7: Metrics for the test misclassification error for EMNIST (ConvNet Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 16.63± 0.50 4.94± 0.14 6.43± 0.24 15.34± 0.37 28.46± 1.07
FedAvg θ = 0.8 15.95± 0.42 5.25± 0.19 6.86± 0.38 14.84± 0.24 26.82± 1.28
FedAvg θ = 0.5 16.22± 0.23 5.06± 0.17 6.47± 0.28 15.05± 0.25 27.56± 0.81
FedAvg θ = 0.1 15.97± 0.43 5.40± 0.42 7.10± 0.64 14.76± 0.20 26.35± 2.08
FedProx 16.01± 0.54 5.16± 0.32 6.68± 0.44 14.88± 0.29 27.01± 1.86
q-FFL (Best q = 0.001) 16.58± 0.30 5.05± 0.21 6.53± 0.20 15.40± 0.43 28.02± 0.80
Tilted-ERM (Best t = 1.0) 15.69± 0.38 7.31± 0.68 7.26± 0.51 14.66± 0.16 25.46± 1.49
AFL 33.00± 0.37 20.38± 0.23 22.92± 0.23 31.58± 0.27 45.07± 1.00

∆-FL θ = 0.8 16.08± 0.40 5.60± 0.14 7.31± 0.29 14.85± 0.48 26.23± 1.15
∆-FL θ = 0.5 15.48± 0.30 6.13± 0.15 8.08± 0.16 14.73± 0.22 23.69± 0.94
∆-FL θ = 0.1 16.37± 1.03 6.61± 0.42 8.28± 0.65 15.49± 1.03 25.45± 2.77

Table 8: Metrics for the test misclassification error for Sent140 (Linear Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 34.74± 0.31 12.16± 0.15 21.89± 0.24 34.81± 0.38 46.83± 0.54
FedAvg θ = 0.8 34.47± 0.03 12.08± 0.16 21.69± 0.26 34.62± 0.17 46.59± 0.38
FedAvg θ = 0.5 34.46± 0.07 12.11± 0.24 21.55± 0.51 34.48± 0.20 47.00± 0.40
FedAvg θ = 0.1 34.79± 0.32 11.97± 0.37 22.08± 0.75 34.93± 0.35 46.69± 0.84
FedProx 34.74± 0.31 12.16± 0.15 21.89± 0.24 34.82± 0.39 46.83± 0.54
q-FFL (Best q = 1.0) 34.48± 0.06 11.96± 0.14 21.61± 0.24 34.57± 0.16 46.38± 0.40
Tilted-ERM (Best t = 1.0) 34.71± 0.31 12.00± 0.14 21.83± 0.34 34.91± 0.39 46.70± 0.50
AFL 35.97± 0.08 11.83± 0.09 23.58± 0.28 36.09± 0.17 47.51± 0.32

∆-FL θ = 0.8 34.41± 0.22 12.17± 0.11 21.77± 0.34 34.64± 0.25 46.44± 0.38
∆-FL θ = 0.5 35.28± 0.25 11.68± 0.40 23.03± 0.38 35.55± 0.53 46.64± 0.41
∆-FL θ = 0.1 37.78± 0.89 12.86± 0.52 23.93± 0.99 37.80± 1.30 51.38± 1.07
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Table 9: Metrics for the test misclassification error for Sent140 (RNN Model).

Method Mean Standard Deviation 10th Percentile Median 90th Percentile

FedAvg 30.16± 0.44 4.36± 1.26 10.06± 2.06 29.51± 0.33 49.66± 3.95 1
FedAvg θ = 0.8 29.85± 0.46 5.39± 1.32 11.90± 2.27 29.57± 0.31 46.93± 3.84 1
FedAvg θ = 0.5 31.06± 1.01 4.33± 2.73 9.69± 4.89 30.14± 0.71 53.10± 7.22 1
FedAvg θ = 0.1 31.96± 1.47 4.82± 2.09 11.65± 4.83 31.55± 1.13 52.87± 8.41 1
FedProx 30.20± 0.48 4.35± 1.23 10.37± 2.08 29.51± 0.32 49.85± 4.07
q-FFL (Best q = 0.01) 29.99± 0.56 4.90± 1.66 10.98± 2.88 29.56± 0.39 48.65± 4.68
Tilted-ERM (Best t = 1.0) 30.13± 0.49 14.17± 2.10 13.18± 3.33 29.96± 0.84 46.54± 3.27
AFL 37.74± 0.65 9.90± 1.46 18.19± 1.99 36.95± 1.03 57.78± 1.19

∆-FL θ = 0.8 30.30± 0.33 6.75± 2.68 13.05± 3.87 29.92± 0.38 46.46± 4.39
∆-FL θ = 0.5 33.58± 2.44 8.74± 3.98 16.77± 6.62 33.28± 2.27 50.47± 8.24
∆-FL θ = 0.1 51.97± 11.81 9.11± 5.47 16.67± 9.15 52.44± 13.21 86.44± 10.95

C.3 Evaluation Strategy and Other Details

Evaluation metrics. We record the loss of each training client and the misclassification error of each testing
client, as measured on its local data.

The evaluation metrics noted in Appendix C.4 are the following: the weighted mean of the loss distribution
over the training clients, the (unweighted) mean misclassification error over the testing clients, the weighted
τ -percentile of the loss over the training client and the (unweighted) τ -percentile of the misclassification
error over the testing clients for values of τ among {20, 50, 60, 80, 90, 95}. We also present the 90th and 95th

superquantile of the test misclassification error (i.e., average misclassification error of the worst 10% and 5%
of the clients respectively), as well as the average test misclassification error of the best 10% clients. The
weight αi used for training client i was set as proportional to the number of datapoints on the client.

Evaluation times. We evaluate the model during the training process once every l communication rounds.
The value of l used was l = 50 for EMNIST linear model, l = 10 for EMNIST ConvNet, l = 20 for Sent140
linear model and l = 25 for Sent140 RNN.

Hardware. We run each experiment as a simulation as a single process. The linear models were trained
on m5.8xlarge AWS instances, each with an Intel Xeon Platinum 8000 series processor with 128 GB of
memory running at most 3.1 GHz. The neural network experiments were trained on workstation with an
Intel i9 processor with 128 GB of memory at 1.2 GHz, and two Nvidia Titan Xp GPUs. The Sent140 RNN
experiments were run on a CPU while the other neural network experiments were run using GPUs.

Software Packages. Our implementation is based on NumPy using the Python language. In the neural
network experiments, we use PyTorch to implement the LocalUpdate procedure, i.e., the model itself and the
automatic differentiation routines provided by PyTorch to make SGD updates.

Randomness. Since several sampling routines appear in the procedures such as the selection of clients or
the local stochastic gradient, we carry out our experiments with five different seeds and plot the average
metric value over these seeds. Each simulation is run on a single process. Where appropriate, we report one
standard deviation from the mean.

C.4 Experimental Results
We now present the experimental results of the paper.
• We present different metrics on the distribution of test misclassification error over the clients, comparing

∆-FL to baselines.
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Figure 7: Histogram of loss distribution over training clients and misclassification error distribution over
testing clients for EMNIST. The identification of the model (linear or ConvNet) is given on the y-axis of the
histograms.

• We study the convergence of Algorithm 3 for ∆-FL over the course of the optimization, and compare it
with FedAvg.

• We plot the histograms of the distribution of losses over train clients as well as the test misclassification
errors over test clients at the end of the training process.

• We present in the form of scatter plots the training loss and test misclassification error across clients
achieved at the end of the training, versus the number of local data points on the client.

• We present the number of clients having a loss greater than the quantile at each communication round for
∆-FL. This gives the effective number of clients selected in each round, cf. Theorem 3 and Remark 1.

Comparison to Baselines. We now present a detailed comparison of various statistics of the test misclas-
sification error distribution for different methods in Table 6- For each column, the smallest mean over five
random runs is highlighted in bold. Further, if no other method is within one standard deviation of this
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Figure 8: Histogram of loss distribution over training clients and misclassification error distribution over
testing clients for Sent140. The identification of the model (linear or RNN) is given on the y-axis of the
histograms.

method, the entire entry (i.e., mean± std) is highlighted in bold.

Histograms of Loss and Test Misc. Error over Devices. Here, we plot the histograms of the loss
distribution over training clients and the misclassification error distribution over testing clients. We report
the losses and errors obtained at the end of the training process. Each metric is averaged per client over 5
runs of the random seed. Figure 7 shows the histograms for EMNIST, while Figure 8 shows the histograms
for Sent140 dataset. for Sent140. We note that ∆-FL tends to exhibit thinner upper tails at multiple values
of θ and a lower variance of the distribution in most of the cases. This is also confirmed by the figures in
Tables 6 to 9. This shows the benefit of using ∆-FL over vanilla FedAvg.

Performance compared to local data size. Next, we plot the loss on training clients versus the amount
of local data on the client and the misclassification error on the test clients versus the amount of local data
on the client. See Figure 9 for EMNIST and Figure 10 for Sent140.

Observe firstly that improvement over the worst cases is achieved regardless of the local data size of the
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Scatter plot of losses and accuracies across devices sizes for EMNIST (Linear Model)
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Scatter plot of losses and accuracies across devices sizes for EMNIST (ConvNet Model)

Figure 9: Scatter plot of (a) loss on training client vs. amount of local data, and (b) misclassification error
on testing client vs. amount of local data for EMNIST.

clients. Indeed, the client re-weighting step operates a sorting of the loss of the clients which does not prevent
small clients from being selected. In contrast, FedAvg, by averaging with respect to the weights of the clients
is likely to put more weight on the clients with larger local data size. Secondly, ∆-FL appears to reduce the
variance of of the loss on the train clients. Lastly, note that amongst test clients with a small number of data
points (e.g., < 200 for EMNIST or < 100 for Sent140), ∆-FL reduces the variance of the misclassification
error. Both effects are more pronounced on the neural network models.

D Numerical Experiments: End-to-End Differential Privacy
We consider a synthetic classification dataset to evaluate the privacy-utility tradeoff of ∆-FL under end-to-end
differential privacy.

D.1 End-to-End Differential Privacy with ∆-FL
To obtain an end-to-end differentially private version of ∆-FL, we modify the weight aggregation step of
Algorithm 1 (line 9). Specially, we clip the weight updates and add Gaussian noise to obtain differential
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Scatter plot of losses and test misclassification error across across devices sizes for Sent140 (Linear Model)
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Scatter plot of losses and test misclassification error across across devices sizes for Sent140 (LSTM Model)

Figure 10: Scatter plot of (a) loss on training client vs. amount of local data, and (b) misclassification error
on testing client vs. amount of local data for Sent140.

privacy via the Gaussian mechanism. The overall algorithm is given in Algorithm 4.

Privacy Accounting. We now discuss the privacy spent in each communication round. For simplicity, we
assume the number m(t) =

∑
i∈S I(Fi(w(t)) ≥ Q(t)) of selected clients is publicly known.

Claim 20. Consider the setting of Algorithm 4 with noise scale σw, norm bound C and Algorithm 2 with b
bins and noise scale σ = σq. Each round of Algorithm 4 satisfies (1/2)ε2-concentrated DP where

1

2
ε2 =

1

2
min

{
c2 log2

2 b

mσ2
q

+ ψb ,

(
c log2 b√
mσq

+ ψ
√

2b

)2
}

+
σ2
w

2C2
,

where ψ = 10
∑m−1
i=1 exp

(
−2π2σ2

q i/(i+ 1)
)
.

Proof. The privacy bound of the quantile computation from Algorithm 2 is given by Theorem 6. Since
the contribution δ

(t)
i of each client has `2 norm

∥∥∥δ(t)
i

∥∥∥ ≤ C and we add Gaussian noise N (0, σ2
wId), the
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Algorithm 4 The ∆-FL Algorithm with End-to-End Differential Privacy

Input: Initial iterate w(0), number of communication rounds T , number of clients per round m, number of
local updates τ , local step size γ, `2 norm bound C for weight updates, noise variance σ2

w

1: for t = 0, 1, . . . , T − 1 do
2: Sample m clients from [n] without replacement in S
3: Estimate the (1− θ)-quantile of Fi(w(t)) for i ∈ S with distributed differential privacy (Algorithm 2);

call this Q(t)

4: Set m(t) =
∑
i∈S I

(
Fi(w

(t)) ≥ Q(t)
)

5: for each selected client i ∈ S in parallel do
6: Initialize w(t)

k,0 = w(t)

7: for k = 0, . . . , τ − 1 do
8: w

(t)
i,k+1 = (1− γλ)w

(t)
i,k − γ∇Fi(w

(t)
i,k)

9: Define the norm-clipped update contributed by the client

δ
(t)
i =


C (w

(t)
i,τ−w

(t))

max
{
C,
∥∥∥w(t)

i,τ−w(t)
∥∥∥
2

} , if Fi(w(t)) ≥ Q(t)

0d, else

10: Sample Gaussian noise ξ(t) ∼ N (0, σ2
wId) and update

w(t+1) = w(t) +
1

m(t)

∑
i∈S

δ
(t)
i + ξ(t)

11: return wT

weight update step satisfies σ2
w/(2C

2)-concentrated DP. The proof is completed by noting that concentrated
differential privacy composes additively.

To obtain a bound on the concentrated DP of the entire algorithm, we rely on generic upper bounds of
[105] for privacy amplification by subsampling.

D.2 Experimental Setup
We consider a synthetic classification dataset and train a linear model on it.

Dataset Description. We create a 10-class classification dataset in d = 20 dimensions, inspired by [40].
The input x for each class k is drawn from a Gaussian of mean µi and identity covariance in R15. The means
µi’s are the corners of a random polytope in R15. We add 2 features that are linear combinations of the
15 informative ones and 3 features that are pure noise. Overall, the dataset can be generated using the
make_classification function of scikit-learn [76] as

x , y = make_c l a s s i f i c a t i on (
n_samples=in t (5 e5 ) , n_features=20,
n_informative=15, n_redundant=2, n_repeated=0,
n_classes =10, n_clusters_per_class=1,
c las s_sep =5.0 , hypercube=False , random_state=2345

)

We now split this dataset into a federated dataset with n = 2500 training clients and n′ = 500 validation
and n′′ = 500 test clients. The data distribution qi(x, y) = qi(y)qi(x|y) across the clients is designed to
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exhibit a label shift, i.e., the distribution qi(y) over labels for each client is different while the class-conditional
distribution qi(x|y = k) = N (µk, Id) is the same across clients. The class distribution qi(y) on each training
client i is drawn from a Dirichlet distribution Dir(0.5), while that for a validation or test client is drawn from
Dir(0.01). We sample 100 input-output pairs for each training, validation, and test client.

Model and Per-Client Objective. We use a linear model (with intercept) on each client and the
multinomial logistic loss, also known as the cross entropy loss, to define the per-client objective.

Algorithms and Hyperparameters. We compare Algorithm 4 with DP-FedAvg [68], a version of FedAvg
with differential privacy.

Both algorithms used a single full gradient step per client with a fixed learning rate of 0.1. For each
algorithm, we sample 100 clients per round and run the training for a total of 1000 rounds. We vary the
privacy budget ε ∈ {3, 5, 10, 15, 20} and tune the following hyperparameters for each algorithm.

For DP-FedAvg, we tune the `2 norm bound (analogous to C in Algorithm 4) and set the noise scale σw
depending on the target privacy budget ε and the norm bound C. For Algorithm 4, we allocate r-times the
privacy budget of the weight updates to the quantile updates. In addition, we also tune:

• the loss upper bound B, so that all losses are truncated to [0, B],
• the number of bins b in the hierarchical histogram,
• the `2 norm bound C for the weight update.

We tune all 4 hyperparameters with a grid search and set the noise scale σw for the weight update, and σq/c
for the quantile update depending on the selected hyperparameters and the privacy budget ε. The objective
of the grid search was to minimize the 90th percentile of the misclassification errors across all validation
clients.

The ranges of the hyperparameters considered are quantile privacy ratio r ∈ {0.1, 0.25, 0.5, 0.75}, loss upper
bound B ∈ {0.7, 0.9, 1.1, 1.3, 1.5},, number of bins b ∈ {16, 32, 64}, and update norm C ∈ {0.9, 1.1, 1.3, 1.5}.
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