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ABSTRACT

Motivated by edge computing with artificial intelligence, in this
paper we study a bandit-learning problem with switching costs.
Existing results in the literature either incur G(T%) regret with
bandit feedback, or rely on free full-feedback in order to reduce the
regret to O(VT). In contrast, we expand our study to incorporate
two new factors. First, full feedback could incur a cost. Second,
the player may choose 2 (or more) arms at a time, in which case
she is free to use any one of the chosen arms to calculate loss,
and switching costs are incurred only when she changes the set of
chosen arms. For the setting where the player pulls only one arm at
a time, our new regret lower-bound shows that, even when costly
full-feedback is added, the @(T%) regret still cannot be improved.
However, the dependence on the number of arms may be improved
when the full-feedback cost is small. In contrast, for the setting
where the player can choose 2 (or more) arms at a time, we provide
a novel online learning algorithm that achieves a lower O(VT)
regret. Further, our new algorithm does not need any full feedback
at all. This sharp difference therefore reveals the surprising power of
choosing 2 (or more) arms for this type of bandit-learning problems
with switching costs. Both our new algorithm and regret analysis
involve several new ideas, which may be of independent interest.
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1 INTRODUCTION

In this paper, we are interested in bandit learning with switching
costs, which can be used to model many practical decision-making
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problems that not only face significant uncertainty, but also incur
costs for changing decisions. Consider edge computing with artifi-
cial intelligence (Edge Al) [6] as an example, where an edge server
close to the end users downloads machine learning (ML) models
from the cloud to process incoming inference requests. As the un-
derlying ground-truth model of the data changes in uncertain ways
(which is often referred to as concept drift [12]), the best ML model
also changes in time. However, because of the limited capability
of the edge server, it can often only accommodate a small number
of ML models. Thus, the edge server needs to learn which subset
of ML models should be used, based on the feedback (e.g., infer-
ence losses) observed. Further, downloading an ML model (which
is not currently on the edge server) from the cloud incurs commu-
nication overhead, which can be modelled by a switching cost ;.
Hence, the edge server has to carefully select the ML models to
reduce the total inference losses and switching costs in the long
run, which thus corresponds to a bandit-learning problem with
switching costs. Other examples of such problems can be found in
transportation networks [2], data-center networks [17], wireless
communication [4] and cyber-physical systems [14], etc.

In the online learning literature, it is well-known that the ex-
istence of switching costs significantly changes the nature of the
regret. Specifically, in an adversarial setting (which we will focus
on in this paper), for bandit learning without switching costs, the
Exp3 algorithm can attain O(NT) regret over a time-horizon T [3].
However, once the switching cost is added, the regret (for the set-
ting where only one arm can be pulled at each time) increases

substantially to @(T%) [1]. A matching lower bound in [9] suggests
that such an increased regret is unavoidable. While this result may
be somewhat discouraging, it leaves many important open ques-
tions, as we explained below. Note that since ML models in Edge
Al corresponds to arms in bandit learning, we use the word “model”
and “arm” interchangeably in the rest of the paper.

First, in practice, in addition to pulling one arm, there are often
other ways to obtain feedback. For example, in Edge Al the edge
server could send the data to the cloud for analysis. In this case, the
feedback from all ML models can be obtained, beyond the model
already deployed on the edge server. This is somewhat analogous
to the full-feedback setting studied in [13]. Reference [13] shows
that, if the full feedback can be obtained with zero costs, the regret
for bandit learning with switching costs will remain at O(VT),
which would have been much lower than that of [1] where only
bandit feedback is available. However, in practice, feedback from
the cloud also incurs non-negative costs due to multiple reasons,
e.g., communication costs, latency and privacy issues [6]. Thus, the
regret for bandit learning with both switching costs and full-feedback
costs remains an open problem.

Second, instead of holding only one ML model at each time, in
Edge Al the edge server can usually accommodate M > 2 ML
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models at each time. In this setting, using any of these M models
for inference does not incur a switching/downloading cost, and at
each time the feedback from all these M models (currently on the
edge server) can be observed. This setting is thus most similar to
a bandit-learning problem with limited advice [16], where M > 2
arms can be chosen at each time. However, [16] only studied the
case without switching costs, where the regret is O(VT) regardless
of whether one (M = 1) or more (M > 2) arms are chosen at each
time. Our setting is also related to bandit-learning problems with
semi-bandit feedback [7] and side information [2]. The studies for
semi-bandit feedback [7] typically do not consider switching costs
either. Although the side-information setting [2] has been studied
with switching costs, it is somewhat different from ours because
switching within the M > 2 arms also incur switching costs there.

Partly due to this difference, the regret [2] remains at G)(Té). In
summary, it remains an open problem whether in our setting, choosing
M > 2 arms can improve the regret.

In this paper, we provide new answers to the above-mentioned
two open problems. First, we study the case when M = 1, i.e., only
one arm can be pulled at each time, and there is a switching cost 1
to change the arm and a full-feedback cost 2 to obtain feedback
from all arms. As we discussed earlier, the latter action corresponds
to the edge server sending data to the cloud for analysis. We provide

a lower bound of the regret, which grows as @(Té ). In other words,
when only one arm can be pulled (M = 1), adding costly full-
feedback will not fundamentally change how regret depends on T.
However, our lower bound does suggest that utilizing costly full-

feedback may change the multiplication factor in front of T5.In

some settings, this factor can be reduced from O(K% )to O((InK) 3 ),
where K is the total number of arms. Moreover, we provide an
algorithm that achieves a regret that matches the lower bound.
Second, we study the setting when M > 2, i.e., more than one
arm can be chosen at each time and one of them is used to incur the
loss, while there are still switching costs and full-feedback costs.
Surprisingly, here we provide a new online learning algorithm,
called Randomized Online Learning With Working Groups (ROW),
that can achieve a regret of O(VT) without even using full feedback

(see Theorem 4.1), which significantly improves the G)(T%) regret
for M = 1. In other words, having the flexibility to accommodate
one additional model (i.e., M = 2) almost brings comparable benefit
as having free full-feedback [13]. To the best of our knowledge, this
sharp transition from M = 1 to M > 2 has never be reported in the lit-
erature for bandit learning with switching costs'. This may be seen as
somewhat analogous to the “power-of-2” routing in load balancing
[15] (where sampling two queues can attain comparable reduction
to delay as sampling all queues), which is why we refer to it as
the “power-of-2-arms”. As M increases, the regret of ROW further
decreases. Using a trivial lower bound for bandit learning with free
full-feedback [5, 13], we conclude that the dependence of the regret
of ROW on T must be optimal.

To achieve the improved O(VT) regret, ROW employs several
new ideas. In order to fully utilize the flexibility of choosing M > 2
arms and minimize switching costs, the first idea of ROW is to

!Note that for bandit learning without switching costs, choosing M > 2 arms will
improve the regret, but it cannot alter the dependence on T [16].
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fix a primary arm over O(VT) time-slots (which we refer to as an
episode), and switch the secondary arms Hf[—:ﬂ times during an
episode, each time to a new subset of secondary arms that have
not yet been chosen in this episode. In this way, ROW only makes
a constant number of switches within each episode (and ©(VT)
switches for all the time), but it can obtain not only the feedback
of the primary arm for the entire episode, but also the feedback

of every other arms for @ fraction of the episode. Intuitively,

M-1
this way of obtaining feedback incurs much lower costs than using

costly full-feedback to obtain the same amount of feedback (for
any K and 2 > 0 independent of T), which is also the reason that
ROW does not use costly full-feedback at all.

However, just using the above idea alone is insufficient to pro-
duce the O(VT) regret. The reason is that the feedback obtained is
highly correlated in time. This is because each subset of secondary
arms is retained for the whole sub-episode (whose length is also
O(VT)). 1t is known that such correlation tends to increase the
regret (see the counter-examples in Sec. 4.1). ROW utilizes a second
crucial idea to overcome this difficulty. Our key observation is that,
whenever such a sub-episode with highly-correlated feedback oc-
curs, one of arms in the current working group (either the primary
arm or a secondary arm) will likely be consistently better than other
arms. Then, ROW will try to switch to the better arm more quickly
within the sub-episode, and thus improve the regret. To accomplish
this faster switching within a sub-episode, our proposed ROW al-
gorithm will use a larger weight-decay parameter 1, within each
sub-episode, while using a smaller parameter 77 across episodes.
In Sec. 4.2.2, we give a sufficient condition on how much 7, should
be larger than #; to strike the right balance. We note that this idea
of using two different weight-decay parameters is new and may be
of independent interest.

Finally, since in each episode the primary arm will receive much
more feedback than the secondary arms, this creates a bias in the
overall quality of feedback at the end of each episode. This bias
issue is resolved by using instead the loss differences between the
primary and secondary arms (please see our Idea 3 in Sec. 4.1). Our
proof for the O(VT) regret carefully captures the effect of the above
ideas by utilizing several new techniques (please see Sec. 4.2 for
details).

2 PROBLEM FORMULATION

In this section, we provide the problem formulation for our bandit-
learning problem with switching costs and full-feedback costs.
Moreover, we present a motivating example based on edge com-
puting with artificial intelligence (Edge AI), which has received
extensive attention recently [6]. Finally, we introduce the perfor-
mance metric.

2.1 Bandit Learning With Switching Costs and
Full-Feedback Costs

A player interacts with the adversary/environment sequentially in

time. Let K = {1,2,..., K} denote the set of all arms and let M be

an integer, 1 < M < K. In each time-slot t = 1, ..., T, first the player

chooses M arms among all K arms. Let k(t) denote the set of the M

arms chosen at time ¢. The player uses one of the arms in k() as the
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active arm, which is denoted by k(#). The loss of this arm, lk( P (1),
will be used to calculate the loss and regret later. In addition, the
losses I;.(t) of all arms k € ]lz((t) are observed by the player. The loss
I;.(t) can be any arbitrary value in [0, 1]. In this paper, we study
both the cases when M = 1and 2 < M < K. When M = 1, k(1)
only contains the active arm k() and only the loss of this arm is
observed. In this case, we simply say that the player “pulls” the
single arm k(#) at time . On the other hand, when 2 < M < K, in
addition to the loss of the active arm k(t), the losses of other M — 1
arms in ]}Ag(t) are also observed.

Next, for every arm that is newly added to the set k(t), a switch-
ing cost 1 > 0 will be incurred. Thus, the switching cost at time
tis fq Zke]l%(t) 1{k¢]1§(t—l)}’ where 1 is an indicator function (i.e.,
1r = 1 if the event E is true, and 15 = 0 otherwise). As typically
assumed in bandit-learning problems [2, 3, 9, 13, 19], we assume
that k(0) = ® is empty. In addition to the feedback from the M arms
ink(1), at each time ¢, the player can choose to obtain full feedback
of time ¢ for all the arms (including those not in H%(t)) at a cost f.
Let z(t) = 1 if the player chooses to obtain the full feedback at time
t, and z(t) = 0 otherwise. Therefore, the total cost is

T
Cost(1:T) £ )" Shny (D +B1 D Tpuiqoyy +Bez(®)
t=1 kek(1)

1

2.2 An Example Motivated by Edge Al

We consider an Edge Al setting where an edge server collaborates
with a remote cloud. The edge server runs machine learning (ML)
models on an online stream of input data to predict their labels.
(For example, in an E-commerce recommendation system, the input
data at each time contains the customer data, item data and web
shop transactions, etc. The input data will be used by the edge
server to return the recommendations, i.e., the predicted labels of
what the customer is interested in.) We assume that K ML models
are already trained and available in the remote cloud. However,
due to the limited capability of the edge server, only M models can
be deployed at the edge server at each time. Since it is unknown
which ML model works best, the edge server needs to use the
feedback (e.g., the actual product picked by the customer) to learn
which subset of ML models it should deploy. (In practice, both the
underlying distribution of the input data and the mapping from
data to labels change in time due to the so-called concept drift [12].
Therefore, the best model(s) also changes in time. As a result, this
learning process may be performed again after a concept drift.)
This learning process can be modelled as the bandit-learning
problem described above. Each arm corresponds to one of the K
ML models. At each time ¢, the edge server chooses the subset ]lAg(t)
of M models, which correspond to the M arms chosen in bandit
learning. This subset k(r) may be the same as the subset k(t-1)
chosen at last time ¢ — 1, or it may differ, in which case a switching
cost f1 Zke]&(t) l{kgfk(t—l)} for downloading the ML models that
are not currently on the edge server will be incurred. Note that this
switching cost is assumed to be proportional to the number of ML
models (which are not currently on the edge server) downloaded
at time ¢. Then, the input data X (t) is revealed. The edge server
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will use the models in k( t) to infer the label of X (t). Further, it will
use the result 17l;(t) (t) of one of the models k(t) € k(#), to return
to the end user. This model k(#) then corresponds to the active
arm in bandit learning. Next, the true label ?(t) of X (t) is revealed.
The edge server can then calculate the inference loss i () for each
ML model k € k(¢), based on the difference between the inferred
label )7];(t) and the true label ?(t), e.g., using the squared loss (i.e.,
k() = 1Y (£) = Y, (1)][?) [10].

At the end of time ¢, the edge server may also choose to consult
the cloud for the quality of all ML models. In that case, it sends the
data X () to the cloud. After the cloud processes this data with all
ML models k € %K, the edge server can retrieve the inference-loss
Ii(t) of all the ML models. Clearly, it incurs additional computa-
tion/communication overhead to obtain such feedback from the
cloud, which we model by the full-feedback cost f.

2.3 Performance Metric

We use the regret [1, 3, 9, 13] as the performance metric. For an
online learning algorithm 7, its total cost Cost™ (1 : T) is given by
(1), which includes both switching costs and full-feedback costs.
For the optimal static solution OPT, it knows the future losses in
advance, and hence can choose only one arm/model throughout the
time-horizon. The cost of OPT is then given by CostO?T(1: T) =
lini?ré Zthl I (t)+ p1, where there is only one switching cost $; at the
€

beginning of the time-horizon, and there is no full-feedback cost.
The regret of algorithm 7 is defined to be the worst-case difference
between the expected total cost of algorithm 7 and the total cost of
OPT, ie.,

R™(T) 2 sup {E,, [Cost™ (1: T)] = CostOPT(1 : T)} L@
Lk (1:T)
where the expectation is taken over the possible randomness of
the algorithm =, and I;.x (1 : T) denotes the losses I (¢) of all arms
k € [1,K] for all time ¢ € [1,T]. Our goal is to design an online
learning algorithm with a regret as low as possible.

3 THECASEOFM =1

In this section, we focus on the case when M = 1, i.e., the player
(e.g., edge-server) can pull only one arm (e.g., model) at each time.
We are interested in studying whether adding full feedback with a
cost 2 can alter the regret of bandit learning with switching costs.
Recall that in this case, the active arm k() is the only arm in ﬂ%( t).
As we mentioned in the introduction, when full feedback is free, it
has been shown in [13] that using full feedback will improve the
regret from @(Té) to O(VT). However, since in our model the full
feedback incurs a cost, it is no longer clear whether the regret can
still be improved.

3.1 A Lower Bound on the Regret (M=1)

Our first main result shows that adding costly full-feedback will
not change the dependence of the regret on T, but may change the
multiplication factor as a function of K.

THEOREM 3.1. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When M = 1, the regret of
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any online algorithm m must be lower-bounded as follows,

2

azgrﬁ ®)

Wi

R™(T) = R*(T) £ max {Clﬁé (log, K)
where
. |3 (3
Ba = min {Eﬂlﬂz} , Bp = min {ZKﬁl,ﬁz},

1
€] ,andCy = © .
(logz T - log, log, K) et (logz T)

We can see from Theorem 3.1 that, even when the costly full-
feedback is added, as long as M = 1, ®(T§) is still the optimal
regret for bandit learning with switching costs. This is in sharp
contrast to the case of free full-feedback [13], where the regret
can be improved to O(VT). While this result may be somewhat
discouraging, the costly full- feedback does play some role in the

G =

multiplication factor in front of T5, which depends on the relative
magnitude of f; and f. Intuitively, when the full-feedback cost 2
is large, the online learning algorithm would rather switch to obtain
feedback than using costly full-feedback. On the other hand, when
P2 is small, the online learning algorithm should avoid switching
and obtain feedback from costly full-feedback. Thus, we expect that
costly full-feedback will be more useful in the latter case than in the
former case. The conclusion of Theorem 3.1 shows this difference
precisely. Specifically, we can make the following observations.
(i) When Bz > 3Kpi, the lower bound R” (T) in (3) is equal to

max{ (ﬁl) (log, K) §C2(Zﬂ1)3K§T§}. (4)

As K increases, the second term in (4) quickly dominates. This
means that, when the full-feedback cost f; is high, the regret of any

Wi

online learning algorithm 7 will at least increase as ﬁ K3T3. Note
that this expression is the same as the regret (for bandit learning
with switching costs) when there is no full feedback at all [9]. This
observation is consistent with our intuition that, when fs is large,
the online algorithm cannot benefit from costly full-feedback.

(ii) When S < %Kﬁl, the lower bound R (T) in (3) is equal to

2

1, Cop; ﬂ. )

Wi

1
max {Clﬁ; (log, K)

As K increases, the first term in (5) quickly dominates. This means
that, when the full-feedback cost f7 is not hlgh the regret of any

online algorithm 7 will at least increase as ﬂa (InK)3 3T5. If in

addition fy < Qﬁl,we have ﬁa (an)S T = ﬁé (an)3 T3,wh1ch

1
is smaller than ﬁf K3TS. Compared with the earlier case (with large
P2), our regret expression here has the same dependence on T, but
now increases more slowly as a function of the total number K of
arms. This observation is also consistent with our intuition that,
when f; is small, the online algorithm can benefit from costly
full-feedback more.

Finally, we note that the division of the two cases depends on
the value of Kff; and f,. The intuition is that, with K switches,
an online algorithm may also attain the feedback from all K arms.
Thus, it makes sense to compare Kf; with f; to determine which
type of feedback is more effective.
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Algorithm 1 The Multivariate Hidden Markov (MHM) adversary

Parameters: Choose € and o according to (9).
Initialization: Choose k* uniformly from K.
fort=1:Tdo

Step 1: Generate the value of G(t) according to (7).

Step 2: Generate the losses of each arm k € K as follows,

h(D) =G0 + > = € Lgmie) + 1), ©

where yi (t) ~ N(0,0?) are i.i.d. Gaussian random variables
with zero-mean and ¢?-variance.

end for

3.2 Lower Bound Analysis

To prove Theorem 3.1, we design two important adversaries. For
both adversaries, we make use of Yao’s principle [20] that the worst-
case expected regret R"(T) of a randomized online algorithm x is
lower-bounded by the expected regret of the best deterministic on-
line algorithm against a randomized adversary. Thus, in the follow-
ing we focus on designing randomized adversaries, and studying the
regret of deterministic online algorithms. Recall that K = {1, ...,K}.

3.2.1 Multivariate Hidden Markov (MHM) Adversary. In this sec-
tion, we provide the first randomized adversary, called Multivariate
Hidden Markov (MHM) adversary, which generalizes the idea in [9].
Please see Algorithm 1.

Specifically, Step 1 in Algorithm 1 is the same as that used by
the adversary introduced in [9]. That is, for each time ¢, define the
parent time of t as p(t) =t — 29 where §(t) 2 max{§ | t = 0
(mod 29)}. The main reason that the parent time p(t) is 20(1)
time-slot ahead of time ¢ is to guarantee that with high probability,
the generated losses () are in [0, 1]. Please see our technical
report [18] for the concrete proof of this guarantee. Then, Step 1 of
MHM generates a Gaussian process G(t) in the following way,

G(t) = G(p(t)) + &(t), for all time t € [1,T], (7)

where G(0) = 0, and (t) ~ N(0,0?) are i.i.d. Gaussian random
variables with zero-mean and o?-variance. As in [9], this process
G(t) creates a common uncertainty across all arms. In Step 2, the
first three terms? in (6) are also the same as that used in [9]. How-
ever, (6) differs from the adversary of [9] in the fourth term. This
additional term adds a Gaussian noise yy (¢) to the loss I (¢) of each
arm at each time. This additional noise is critical because our online
algorithm 7 can use costly full-feedback, which is not considered
in [9]. Intuitively, without this noise y (¢), by using one round of
costly full-feedback, the online algorithm can know the losses of all
arms in the same time-slot. Then, the online algorithm will imme-
diately know which arm is the optimal one (i.e., the arm with a loss
that is € lower). In contrast, the additional noise in (6) eliminates
the possibility for such a trivial solution.

As we explain below, this additional noise yx (¢) causes new dif-
ficulties in the proof of the lower bound. We follow the approach
in [9] to derive the regret lower-bound of any deterministic online
algorithm 7 against the MHM adversary. Specifically, let P+ (-)

“The first three terms in (6) guarantees that the expected values of the losses are %
and % — € for the sub-optimal arms k # k* and the optimal arm k™, respectively.
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denote the probability measure under the setting where one op-
timal arm k* incurs € lower cost than other arms, as in (6). Let
Po(-) denotes the probability measure when € = 0, i.e., the arm
k* is statistically the same as other arms. In addition, let 1°b(.) de-
note the observed losses of the online learning algorithm. Then,
the analysis in [9] focuses on estimating the Kullback-Leibler (KL)
divergence Dy (Pr+ (1°°(1 : T))|Po (1°P (1 : T)), which then leads
to the lower bound on the regret. However, for our MHM adversary,
the additional noise y () incurs a new difficulty. Recall that p(¢) is
the parent (time) of ¢, and thus ¢ is the child (time) of p(t). Let p(¢)
denote the set of the predecessors of time t, i.e. its parent, parent’s
parent, etc. Similarly, let p(t) denote the set of the descendants

of time ¢. Note that without y (), the observed loss 1°b () would
have been a Gaussian process G(t) plus a fixed constant % or % —€
Thus, [°P(t) would have satisfied a form of Markov property [11,
p- 235], i.e., conditioned on current observed losses, the conditional
probability distribution of future losses at a descendant time in p(t)
is independent of past losses at any predecessor time in j(t). Then,
the proof could use the chain rule of KL divergence [8, p. 23]. In
contrast, with the additional noise y (), the observed loss 1°b (1)
does not satisfy the Markov property any more. This is because,
conditioned on the observed losses at time t, past observed losses
still provide information for the statistics of the future losses. For
example, by taking the average of the losses observed at all pre-
decessors in p(t), we can average out yi (¢) across time, and thus
estimate the mean value of the loss at a descendant time in p(t)
with a higher accuracy. Therefore, we cannot use the chain rule
directly, and must find a new way to bound the KL divergence.

To overcome this new difficulty, we develop a result on the KL
divergence of hidden Markov models [8, p. 69]. Specifically, notice
that the hidden loss Pi(¢) £ () () = Yi(p) (1), ie., the loss in (6)
but with yj(;) (¢) removed, satisfies the Markov property. Then,
using the chain rule of probability, we can show that

Dre (P (P (1 D) 2o (1P (1 : 7))
< Dt (Pie (PP (1 DI (L ) IR0 (%0 (1: DI (1: 7))

+ Dy (Pee (M1 TP (1 7)) ) ®)

The first term on the right-hand-side of (8) can be easily calculated at
each time, since conditioned on the hidden loss lhi(t), the observed
loss I°P(¢) is only due to i.i.d. Gaussian variables yi (t). The second
term on the right-hand-side of (8) can be calculated by using the
chain rule of the KL divergence, since the hidden loss 1M (1) satisfies
the Markov property. We can then obtain Lemma 3.2 below for the
regret lower-bound against the MHM adversary.

LEmMA 3.2. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When M = 1, by choosing

e= 2 L BT and ! )
= —_— . e o= N
9In2 9log, T "% 9log, T

the regret of any online learning algorithm n against the MHM ad-
versary is lower-bounded as follows: for T > max{fp, 6K},

1
R(T) > C2, T5, (10)
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where fj, = min{%Kﬂl,ﬁz} andCy = © (@)

Please see our technical report [18] for the complete proof of
Lemma 3.2. From Lemma 3.2, we can see that the regret lower-
bound produced by MHM corresponds to the second term in (3).
Note that it correctly captures the dependence of the regret on T,
but the dependence on K still needs to be refined.

To further refine the dependence on K, we provide a second
adversary, called Dividing Set (DS) adversary. Please see our tech-
nical report [18] for details. Finally, we design an online learning
algorithm, called Randomized Online Learning With Costly Full-
Feedback (ROCF), that attains the following regret for large T,

1
47 (KInK)ST5,  if pp > 3Kpy,
1

RROCF(T) S 1 1 2
36, (InI)STS +0(1). i B < 3 hi,

(11)

which matches the lower bound in Theorem 3.1. ROCF essentially
uses episodic versions of either Exp3 [3] (when f is large) or the
shrinking dartboard algorithm [13] (when S, is small). Due to page
limits, we refer the readers to our technical report [18].

4 THE POWER-OF-2-ARMS (M > 2)

In this section, we proceed to the case when M > 2. In contrast
to the previous section where we show that adding costly full-
feedback does not change the ®(T%) regret, here we provide a new
algorithm that utilizes the flexibility of having 2 (or more) arms and
successfully improves the regret to O(VT).

4.1 Randomized Online Learning With Working
Groups (ROW)

We call our new algorithm Randomized Online Learning With
Working Groups (ROW). Please see Algorithm 2. We start with de-
scribing the high-level skeleton of ROW. Recall that K = {1, ..., K}.

Idea 1: Note that in order to obtain the O(VT) regret, we can
switch or use costly full-feedback at most O(VT) number of times.
The first idea of ROW is thus to design an effective way to rotate a
working group (of M arms) through all K arms, so that plenty of
feedback can be obtained for all the arms, while incurring O(VT)
switching costs and zero full-feedback costs. Specifically, ROW di-

vides the entire time-horizon into U = [%1 episodes, each with

71 = O(VT) time-slots. At the beginning of the first time-slot
ty = (u— 1)1 + 1 of the u-th (u = 1,..,U) episode, each arm

k € K is associated with a weight W]EOW [u], which is initialized to
be WEOW [1] = 1 (we will describe how to update WEOW [u] from

W}:OW [u — 1] shortly). Then, from all arms k € K, ROW chooses a

primary arm k(};OW [u] with probability (i.e., Step 1 in Algorithm 2)

ROW
ROW we o lul

] = —Fk (12)
P R WOl

This primary arm k(I){OW [u] will be fixed for the entire episode u. In
addition, ROW divides each episode into V = {%] sub-episodes,
each with rp = % time-slots. In the rest of this paper, we refer to
the v-th sub-episode in the u-th episode as sub-episode (u,v). At
the beginning of the first time-slot t;, o = (u - )71 + (v - 1)z + 1
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Algorithm 2 Randomized Online Learning With Working Groups
(ROW)

Parameters: Choose 132, 72, 11 and 77 according to (28).

Initialization: W]I:OW[I] =1and piow[l] = % for all k € K.

foru=1: L—Tl-‘ (The u-th episode starts from t, = (u — 1)71 + 1
tot, +71 —1.)do
Step 1: At the beginning of the first time-slot #,, according to

probability pgow [u] calculated in (12), choose a primary arm

k(l){OW [u] from all arms k € K for the entire episode.
foro=1: % (The v-th sub-episode starts from t;,, = (u —
Do+ @-1)+1tot,y+m—1.)do
Step 2: At the beginning of the first time-slot t,,
uniformly choose the set ]1?(540_\?'[14, o] of M — 1 sec-

ondary arms from the not-yet-been-chosen arms in K —
o—

1.
U kﬁf_\i‘/[u,v'] U{kOROW[u]} . Then, form the work-

ing group by the primary arm and secondary arms, i.e.,
EROW [y, 0] = {kROW[u]} UEROW [y, 0].
Step 3: Initialize the weights Wgow(tu,v) and probabilities

ﬁgow(tu,z,) of all arms k € kROW [u,v] according to (13)
and (14), respectively.
fort=t,,:tyy+12—1do

Step 4: Use an arm k € H%Row[u, v] as the active arm

according to the updated probability ﬁzow(t).

Step 5: Update the weights Wﬁow(t) and probabilities

ﬁEOW(t) of all arms k € kROW [y, o] according to (15)
and (14), respectively.
end for
end for
Step 6: At the end of the last time-slot of the u-th episode,
update the weights wgow [u+1] and probabilities pEOW [u+1]
of all arms k € K according to (17) and (12), respectively.
end for

of sub-episode (u,v), ROW uniformly chooses M — 1 secondary
arms from the arms that have not yet been chosen in the u-th
episode® (i.e., Step 2 in Algorithm 2). We let ]1&113,?_\)1\/ [u, v] denote the
set of the M — 1 secondary arms chosen in sub-episode (u,v). Let
kROW [u,0] = {kgow[u]} ]lt(ﬁ/lo_vlv[u, v] denote the working group
formed by the primary arm and secondary arms. The working
group KROW [, 5] will be fixed for the whole sub-episode (u,v).
Notice that by using this idea, ROW only switches at the bound-
aries of sub-episodes and never uses full feedback. Therefore, by
tuning 7z to be ©(VT), the total switching cost is guaranteed to be
O(VT), and the total full-feedback cost is 0. More importantly, with
this idea, we not only have the feedback for the primary arm for the
entire episode, but also have the feedback for each secondary arm
for ‘l, fraction of each episode. Intuitively, this way of obtaining
feedback incurs much lower costs than using costly full-feedback.
For example, if we want to obtain the same amount of feedback

3When K — 1 is not divisible by M — 1, the number of the remaining unchosen arms
in the last (i.e., V-th) sub-episode may be less than M — 1. In this case, after choosing
all those unchosen arms, ROW uniformly chooses the secondary arms from the arms
that have not yet been chosen for the V-th sub-episode.
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by using costly full-feedback alone, we would have to incur a full-
feedback cost equal to ©(VT) in every episode! This is also the
reason that ROW does not use full feedback at all.

We now describe the rest of the details of ROW. After choosing
the working group kROW [4, 0] as we discussed above, within each
sub-episode (u,v) we solve a bandit-learning problem with the
set of arms restricted to the chosen working group. Note that this
restricted version of the bandit-learning problem has no switching
cost (since any arm k € kROW[y, 9] can be used as the active arm
without incurring switching costs), and also has full feedback (from
all the arms k € kROW [u, v]). Specifically, in the first time-slot ¢,
of sub-episode (u,v), ROW initializes the weights of all the arms
k € K as follows (i.e., Step 3 in Algorithm 2),

WROW (£0) = wiOW Tul, (13)

i.e., to be the values of the weights at the beginning of the entire
episode u. Then, for each time t = t,4, ..., typ + 72 — 1, each arm
k € kROW [u,0] is used as the active arm kROW (¢) with probability
(i.e., Step 4 and Step 5 in Algorithm 2)

WrOW (1)

R “ROW [
ke ekROW [0 Wi ()

POV (1) = (14)

After the losses I (t) of all the arms k € ﬂz(ROW[u, v] are obtained
for time ¢, ROW updates their weights with a tunable parameter
n2 as follows (i.e., Step 5 in Algorithm 2),

WROW (£ 4+ 1) = wEOW (1) - etk (D) (15)

and then proceeds to the next time-slot ¢ + 1. Note that the weights
W}:OW(t) are reset by (13) in the first time-slot ¢t = #,,, of each
sub-episode (u,v).

Finally, in the last time-slot of episode u, ROW subtracts the loss
of the primary arm from the corresponding loss of arm k in the sub-
episodes that k was observed. Then, the resulting value is divided
by the conditional probability that k is chosen as a secondary arm

-1

(conditioned on k not being the primary arm), i.e., % Precisely,

we let oy (k) 2 jolo=1,.,V, ke ﬂ%ROW[u, v]} denote the sub-

episodes (u,v) when the arm k was chosen in the working group.

Let Li[w,0,(k)] =2 X ) Z?;;’:ZZ_Z Ii.(t) denote the sum of the
veyy ’

losses of arm k in sub-(egzisodes (u,v) (except the last time-slot

t =ty + 12— 1) forallv € v,(k). Then, ROW computes the loss

difference of each arm k € K as follows,

Ly [u,0,(k)] - Lk}}ow [u] [u, 04 (k)]

L[] = Tt )

K-1

Note that for the primary arm kOROW[u], the loss difference is

i;%\é’][ | [u] = 0, which is also consistent with (16). Then, ROW up-
0 u

dates the weights for all the arms k € K with a tunable parameter
11 as follows (i.e., Step 6 in Algorithm 2),

WpOW [+ 1] = wfOW ) - eI, (7)

which becomes the initial weights for the next episode u + 1.
Readers familiar with bandit-learning algorithms may have al-

ready noticed two other crucial differences in ROW. First, a different

weight-decay parameter 7 is used to update weights in (15) within
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(a) Trace in counter-example 1 (i.i.d. across

arms k and sub-episodes [u, v]). every 2 time-slots).

(b) Trace in counter-example 2 (repeats

v

(c) Trace in counter-example 3 (repeats
every episode u).

Figure 1: One realization of the counter-example traces in one episode.

the episode, compared with the parameter 7; that is used in (17)
across episodes. Second, when updating the weights across episodes
in (17), we use the difference between the loss of an arm and that
of the primary arm, instead of using the absolute loss of the arm
directly. In the following, we explain why these two differences (i.e.,
our idea 2 and idea 3) are crucial for achieving the O(NT) regret.

Idea 2: Use different weight-decay parameters n2 and 71. Re-
call that in every episode, ROW can obtain at least % fraction of
feedback from every arm. We would have hoped that this amount
of feedback is sufficient for attaining a low O(VT) regret. Indeed,
consider an alternate bandit-learning problem where the feedback
of each arm is obtained independently with probability % in every
time-slot. It is not difficult to show that Exp3 [3] using this amount
of feedback will attain the O(VT) regret.

However, compared with the above alternate problem, the dif-
ficulty we are facing here is that in ROW the feedback becomes
highly correlated in time. Indeed, the secondary arms are fixed
during the whole sub-episode. Thus, we either have all feedback
of an arm, or have none for the whole sub-episode. Below, we con-
struct two counter-examples to illustrate the difficulties in dealing
with such correlation. For ease of exposition, we use [(t1 : t2) =
[L(t), forall t =t1,t; + 1, ..., t2] to collect I(t) from ¢t = t; to t = 5.

Counter-example 1: Consider K = 4 arms and M = 2. For each
arm k, in each sub-episode (u,0), Iy (tyo : tup + 72 — 1) = 0 with
probability % and I (ty,0 : tuop + 72 — 1) = 1 with probability %
The losses are independent across arms k and across sub-episodes
[u, v]. Please see Fig. 1a for this loss trace in one episode. Using this
counter-example, we show why existing bandit-learning method,
Exp3 [1], could lead to a poor regret. Let us consider the optimal
static loss. First, the expected total loss of each arm is trivially
E[L] = % Second, let us estimate the variance of the total loss
of each arm. Since the loss is a constant within a sub-episode, the
higher correlation in time leads to a higher variance in the total
loss of each arm. Specifically, for each arm, the variance of its total
loss in a sub-episode? is @(TZZ), Thus the variance of its total loss

across T time-slots is Var(L) = T—TZ . @(TZZ) = @(T%). Thus, one of
the K arms may incur a total loss that is smaller than the average by
O(4/Var(L)). As a result, the total loss of the optimal static decision
OPTisE[L] -©(y/Var(L)) = % - @(T% ). (This estimate can also be
obtained by applying the random walk analysis [19, p. 111].) Next,
we consider the total loss of the episodic version of Exp3 [1]. Such

4In contrast, if the losses were i.i.d. in time, the variance should have been ©(3).

version of Exp3 picks an arm ko at the beginning of an episode,
and use it as the active arm for the entire episode. Since the loss in
each episode is independent, the total loss of such Exp3 will be the
average loss of each arm in this counter-example, i.e., % Therefore,

the regret would be @(T% ).

Counter-example 1 clearly illustrates why the higher correlation
in time leads to a higher regret for the episodic version of Exp3.
To overcome this difficulty, we make an important observation. In
this setting with highly correlated losses, we observe that one arm
(with losses 0) will be consistently better than the other arms (with
losses 1) in each sub-episode. We may then beat the average loss
by switching to the better arm within a sub-episode. Indeed, with
M = 2, the chance that one of the two arms incurs zero loss is %.
Thus, if we can switch to the better arm (with losses 0) quickly
within a sub-episode, we may attain a total loss approximately
equals to %, which would have beaten the optimal static decision
OPT. This counter-example thus suggests why it is important to use
Exp3 [3] inside each sub-episode (in addition to across episodes).

However, it is still highly non-trivial to choose the parameter n
of Exp3 within each sub-episode. One possible thought is that, we
can think of each sub-episode as a bandit-learning problem with
73 = O(VT) time-slots. Then, if we view the better arm within
the sub-episode as the static optimal arm, we would have to use
n= @(T‘i) in order to attain the minimal regret against the better
arm. However, this choice of  would have been too large, as can
be seen in the counter-example below.

Counter-example 2: Consider K = 4 arms and M = 2. For arms
k =1,2,1;.(t) =0 for all odd time-slots ¢, and ;. (¢) = 1 for all even
time-slots ¢. For arms k = 3,4, [.(t) = 1 for all odd time-slots ¢,
and [ (t) = 0 for all even time-slots t. Please see Fig. 1b for this
loss trace in one episode. Using this counter-example, we can see
why using Exp3 [3] with a parameter = @(T_%) could lead to
a poor regret. Let us consider the optimal static loss. Since the
total loss of every arm is %, the optimal static loss is % Next, we
consider the total loss of Exp3. Notice that the probability of each
arm is initialized to be the same, i.e., % at time ¢t = 1. Then, at
each time, suppose that all arms have been observed almost the
same number of times. Thus, the probabilities of all arms would be
about the same. However, whenever an arm with loss i (t) = 0
and an arm with loss [, (t) = 1 are observed simultaneously, at the
next time ¢ + 1 Exp3 will use the arm k; as the active arm with a
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probability higher by approximately ©(#). According to counter-
example 2, [, (¢t + 1) = 1. Thus, Exp3 will suffer an additional loss
©(n) approximately at each time. Hence, the total loss of Exp3 will
be % +0(nT) = % + @(T% ). Therefore, the regret would be G)(T%).

Counter-example 2 clearly indicates that, in order to attain the
O(NT) regret, the parameter 7, should be no larger than O(T_% ).
However, since a sub-episode is of length much smaller than T,
we conjecture that 7, still needs to be larger than 7 (the latter is
used across episodes), so that ROW converges fast to the better
arm inside the chosen working group. Lemma 4.3 in Sec. 4.2.2 will
provide the exact condition on how 72 and 17 should be tuned to
obtain the O(VT) regret.

Idea 3: Use the loss difference from the primary arm to update
weights across episodes. We next describe why it is also crucial to
use the loss difference in (16) instead of the absolute loss of each arm.
Recall that at the end of each episode, we receive 7; feedback from
the primary arm, but only 7, = § feedback from each secondary
arm. Intuitively, this bias will also increase the variance of the total
losses accumulated in the past, which again leads to a higher regret.
The following counter-example illustrates this difficulty.

Counter-example 3: Consider K = 4 arms and M = 2. In the first
sub-episode of each episode, the loss of each arm at each time is 0.
For all subsequent sub-episodes of each episode, the loss of each
arm at each time is 1. Please see Fig. 1c for this loss trace in one
episode. In the literature, the standard way to deal with this bias
in the amount of feedback is to divide the observed loss by the
probability that the arm is observed [1, 3, 5]. For each arm, this
probability is pg [u]+(1—pg [u]) % where py [u] is the probability
that arm k is chosen as the primary arm, and (1 — pj [u])% is
the probability that arm k is chosen as the secondary arm in a sub-
episode. With this mechanism, the estimated losses will be Li [u] =

27y . . o _
—— =2 when k is the primary arm, L;. [u] = 0 when k
prlul+(1=pi [u]) 2T prmary elu]
is a secondary arm that is chosen in the first (v = 1) sub-episode,

and Ly [u] = Im when k is a secondary arms that

is chosen in the subsequent (v = 2, 3) sub-episodes. Suppose that
prlul = I% is the same across all arms. Then, the denominator is
actually the same across all arms, but the numerator will still lead
to a significant variance. Indeed. since the primary arm is chosen
randomly with probability py [u] = % it is not hard to verify that
the total estimated loss of each arm over an episode will have a
variance of @(TZZ). In contrast, if full feedback was available, all
arms would have a total loss equal to 273 in an episode, and the
variance would have been zero. It is easy to show that, with this
additional @(TZZ) gap in the variance, the regret of Exp3 [1] is still

O(Tg ), which is much larger than O(VT).

Counter-example 3 thus suggests that, instead of dividing the
loss by the probability of observing an arm, we need some new ways
to deal with the above bias issue. Precisely, in (16), ROW updates
the estimated loss by the difference of the loss of each secondary
arm and that of the primary arm. In addition, the loss difference of
the primary arm is simply 0. Returning to counter-example 3, the
new estimated loss will then be L~k [u] = 0 for all the arms k € K.
Thus, the additional variance @(122) of the estimated losses has been

eliminated, which is also crucial for attaining the O(VT) regret.
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4.2 Regret Analysis

In Theorem 4.1 below, we show the upper bound of the regret
attained by ROW. For ease of exposition, we focus on the case
when K — 1 is divisible by M — 1. (It is not difficult to extend to the
case when K — 1 is not divisible by M — 1. Please see our technical
report [18] for details.)

THEOREM 4.1. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When M > 2, the regret of

ROW can be upper-bounded as follows, for T > %,
2 1

K-1
RROW(T) < 8b, Y VInKVT + by, (18)

where by = ,/g +2b3B1, by = b3fy + 1 and b3 = min {M, K — M}.

In Sec. 3 when M = 1, the optimal regret is @(Té) for bandit
learning with switching costs and full-feedback costs. In sharp con-
trast, now with M > 2, ROW achieves a significantly lower regret
equals to O(VT). Moreover, ROW never uses full feedback. Further,
as M increases, the regret of ROW can be further reduced. To the best
of our knowledge, this is the first result in the literature to utilize the
flexibility of choosing M > 2 arms to improved the regret to O(NT)
for bandit learning with switching costs. Furthermore, using a trivial
lower bound for bandit learning with free full-feedback [5, 13], we
can conclude that the O(VT) regret cannot be further improved.

The rest of this section is devoted to the proof of Theorem 4.1.
Due to the three new ideas in ROW, new analytical techniques are
needed to capture the evolution of the weights, which are also of
independent interest. In order to relate the loss of ROW to that of the
optimal static loss, our analysis below is carried out in three steps,
first for inside each sub-episode, second for the end of each episode,
and third for across all episodes. In the following, we let H [u — 1]
denotes the o-algebra generated by the observation of ROW from

timet =1tot = (u—1)ry. Let L [u, 0] = bt Ty—2 I .(1).

t=ty o

4.2.1 Inside each sub-episode. We start by relating the expected
loss of ROW inside each sub-episode to a log-sum-exp function
g2 |u,v] (see Lemma 4.2). Recall that in (13), the weights in the first
time-slots of all sub-episodes are initialized to be the weights at the
beginning of the episode. Thus, given a same working group, the
probabilities ﬁgow(tu,v) are also the same at the beginning of all
~ROW

sub-episode v. We let p, -~ [u] denote this common probability.

LEMMA 4.2. For each sub-episode (u,v), given the history H[u—1]

and the chosen working group k[u,v], we have

typt+T2—1

Z Z ﬁ;fow(f)lk(t) < g2lu,0] + %7]2‘!2 +1, (19)

t=tuo keﬂ%ROW[u,v]

where

1
g2lu,0] = 0 In Z ﬁfow[u]e_”ﬂ‘k[“’”] . (20)
2 kekROW [y,0]

On the left-hand-side of (19), the probability ﬁﬁow(t) is the
probability of using arm k as the active arm. Thus, the left-hand-
side of (19) represents the conditional (conditioned on the working
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group KROW [y, 5] and history H [u — 1]) expected loss of ROW in
sub-episode (u,v). Hence, (19) upper-bounds the conditional ex-
pected loss of ROW by a log-sum-exp function g3 [u, v] and the
term %172 72 + 1. We make two important comments. First, the value
of g2 [u, v] is approximated dominated by the arm with the smallest
loss Ly [u,v] (as long as the corresponding probability ﬁ,EC{OW [u]
is non-zero). (19) thus confirms that ROW is trying to switch to
the “better” arm in the working group. Second, the gap %172 72 is
much smaller than the gap %l’]‘fg incurred by the episodic version of
Exp3 [1]. Note that the above-mentioned two conclusions precisely
capture our ideas 1 and 2, which together allow ROW to converge
quickly to the better arm in the working group. Please see our
technical report [18] for the complete proof of Lemma 4.2.

4.2.2 Relating the loss upper-bound at the end of a sub-episode to
the weights across episodes. Lemma 4.2 provides an upper bound
on the loss of ROW at the end of each sub-episode (u, v). Note that
this upper bound depends on 753. On the other hand, at the end of
each episode u, we calculate the weights according to (17). Notice
that not only is ]:iow [¢] in (17) different from Ly [u, v] in (20), the
parameter 7 is also different from 7. Thus, we need a way to
convert the loss upper-bound in Lemma 4.2 for each sub-episode
to a form that depends on the weights calculated by (17). This is
accomplished by Lemma 4.3 below. Further, this lemma gives a
sufficient condition on how to tune the parameters 12 and 7;.

Specifically, notice that the loss difference igow [u] calculated
in (16) is a difference from the loss of the primary arm k(l){OW [u].
We let g5 [u] denote the sum of g3 [, v] for all sub-episodes v, minus
a term that corresponds to the loss of the primary arm, i.e.,

\4 \4
s+ 3 st~ 3 b
0=1 0=1

=S| Y OV AT |

v=1 k ekROW [u,0]
where LEOW[H’ v] = Li|u,0] - ka}OW[u] [u,0].

LEMMA 4.3. If the parameters 12, 12, n1 and 1 satisfy that

n2 > 16 (}I\j;_ll)z ‘n1, 212 <In2 and ity <In2, (22)
we have
Bgrow gy [9211[H = 11]
< Bgaowpy ) |91l [H 1w - 11] (23)

where the expectation is taken with respect to the randomness in the
working groups, and

K
1 7 ROW
[u] £ ——1In E ROW |y e=mly " lul | | (24)
g1 " (k_lpk

The log-sum-exp function gz [u] on the left-hand-side of (23) is
related to g2 [u, v] through (21), which is then related to the loss of
ROW in each sub-episode through (19). The log-sum-exp function
g1[u] on the right-hand-side of (23) is related to the weights cal-
culated at the end of the episode. Thus, Lemma 4.3 relates the loss
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upper-bound at the end of each sub-episode to the weights across
episodes, and (22) confirms our conjecture that 172 should be larger
than n;.

The proof of Lemma 4.3 first relates the function g;[u] and
g2 [u] to the variances of the working-group feedback and the loss
differences, respectively, and then bounds these variances. Please
see our technical report [18] for the complete proof of Lemma 4.3.

Up to now, by combining (19), (21) and (23) for all sub-episode
v and episode u, we can relate the total loss of ROW to g [u] as
follows,

U

Z Etfu-1] {E]kROW [u,1:V]
u=1

V. luot+n—1

PIRDINDINN S0

o=l =ty [ ekROW [y 4]

U
1
< Z; Bpu1) {Egrow vy L9 (W] Hlu = 1]]}+ SmaT + VU,

(25)

\4
(1) = ) Lygow [ U]“H[u —1
v=1

In the next section, we show how to relate the first term on the
right-hand-side of (25) to the optimal static loss.

4.2.3 Relating the upper-bound of the total loss of ROW to the
optimal static loss. Lemma 4.4 below relates the sum of g1 [u] on
the right-hand-side of (25) to the optimal static loss of OPT.

LEMMA 4.4. We have the following inequality,

ZU:E'H[u—l] {EH%ROW[MV] [91 [u] ‘?{[u - 1]]} — Cost’T(1: T)
u=1

U

InK
< — - ZEW[u—l] {E
m ”

=1 v=1

\%4
Z Ligowy,[u.0] |¢([u-1]” . (26)

In (26), the first term on the left-hand-side is the first term on the
right-hand-side of (25). The first term on the right-hand-side of (26)
can be obtained by following the Exp3 analysis [3]. The second term
on the right-hand-side of (26) is because the loss of the primary
arm is subtracted in gz [u] (see (21)). This term also appears on the
left-hand-side of (25), which will eventually be cancelled. Please
see our technical report [18] for the complete proof of Lemma 4.4.

4.2.4 The final regret. Since ROW only switches at the boundaries
of the sub-episodes, the total switching cost of ROW can be upper-
bounded by min {M,K — M} - 1 le] Next, since ROW never asks

for full feedback, the total full-feedback cost of ROW is 0. Then,
together with (25), (26), we can see that the regret of ROW is upper-
bounded as follows,

3
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Figure 2: Compare the regrets of ROW, ROCF and the episodic version of Exp3.

we get the final regret of ROW in Theorem 4.1. Please see our
technical report [18] for the complete proof of Theorem 4.1.

5 NUMERICAL RESULTS

In this section, we present numerical results comparing the regret
of our algorithm ROW introduced in Sec. 4.1 (for M > 2) with that
of the episodic version of Exp3 proposed in [1]. (We also show the
regret of our ROCF algorithm from Sec. 3.2 for M = 1. Please see
our technical report [18] for more numerical results for ROW and
ROCF.) According to [1], the theoretical regret of the episodic ver-
sion of Exp3 is @(K%T%).

In Fig. 2, we use both the lower-bound trace that we designed in
Sec. 3.2 and the three counter-example traces that we designed in
Sec. 4.1. We consider K = 4 arms, and M = 2 for ROW. (When M
increases, the gap between the regret of ROW and that of Exp3 will
further increase.) We let the switching cost and full-feedback cost
be 1 = P2 = 1. We compare how the regret increases with the time
length T. From Fig. 2, we can see that for all 4 traces, the regret of
ROW (with M = 2) is much smaller than that of Exp3 (and ROCF).
For example, when using counter-example 3 and T = V10 x 10, the
regret of Exp3 is around 2.61x 10%. In contrast, the regret of ROW is
only about 3.22 x 10, confirming the power of using 2 arms. For
M =1, the regret of ROCF is also smaller than that of Exp3. This
is because the choice of 1 and f here satisfies iy < %K B1. As we
show in (3) and (11), this is the range where costly full-feedback is
helpful for reducing the regret when M = 1. When f increases to
values larger than %K P1, the gap between the regret of ROCF and
that of Exp3 will diminish. See [18] for additional numerical results.

6 CONCLUSION

In this paper, we investigate bandit-learning problems with switch-
ing costs and full-feedback costs. Although we show that adding
costly full-feedback will not alter the @(T%) regret (for M = 1),
we provide a novel online learning algorithm ROW that utilizes
the flexibility of choosing M > 2 arms at each time to improve the
regret to O(VT). Our result reveals that having 2 (or more) arms is
surprisingly as powerful as having free full-feedback, for obtaining
a low regret in bandit-learning problems with switching costs. Our
algorithm ROW and regret analysis involve several new ideas, e.g.,
using different weight-decay parameters inside and across episodes.
Our numerical results confirm that the regret of our algorithm
ROW is much smaller than that of the episodic version of Exp3.
There are several interesting directions of future work. First,
notice that we study the static regret. It would be interesting to
extend our study to the dynamic regret, where the optimal arm

changes in time. Second, ROW assumes the knowledge of the time
length T. It would be useful to extend ROW to the setting where T
is not known in advance.
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