
Power-of-2-Arms for Bandit Learning With Switching Costs
Ming Shi

Purdue University
West Lafayette, IN, USA
sming@purdue.edu

Xiaojun Lin
Purdue University

West Lafayette, IN, USA
linx@ecn.purdue.edu

Lei Jiao
University of Oregon
Eugene, OR, USA

jiao@cs.uoregon.edu

ABSTRACT
Motivated by edge computing with arti�cial intelligence, in this
paper we study a bandit-learning problem with switching costs.
Existing results in the literature either incur ⇥()

2
3) regret with

bandit feedback, or rely on free full-feedback in order to reduce the
regret to $ (

p
)). In contrast, we expand our study to incorporate

two new factors. First, full feedback could incur a cost. Second,
the player may choose 2 (or more) arms at a time, in which case
she is free to use any one of the chosen arms to calculate loss,
and switching costs are incurred only when she changes the set of
chosen arms. For the setting where the player pulls only one arm at
a time, our new regret lower-bound shows that, even when costly
full-feedback is added, the ⇥()

2
3) regret still cannot be improved.

However, the dependence on the number of arms may be improved
when the full-feedback cost is small. In contrast, for the setting
where the player can choose 2 (or more) arms at a time, we provide
a novel online learning algorithm that achieves a lower $ (

p
))

regret. Further, our new algorithm does not need any full feedback
at all. This sharp di�erence therefore reveals the surprising power of
choosing 2 (or more) arms for this type of bandit-learning problems
with switching costs. Both our new algorithm and regret analysis
involve several new ideas, which may be of independent interest.

CCS CONCEPTS
• Theory of computation ! Online learning algorithms; •
Networks ! Network algorithms; Network performance analysis.

KEYWORDS
Bandit learning, switching costs, regret analysis, edge computing
with arti�cial intelligence
ACM Reference Format:
Ming Shi, Xiaojun Lin, and Lei Jiao. 2022. Power-of-2-Arms for Bandit Learn-
ing With Switching Costs. In The Twenty-third International Symposium on
Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks
and Mobile Computing (MobiHoc ’22), October 17–20, 2022, Seoul, Republic of
Korea. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3492866.
3549720

1 INTRODUCTION
In this paper, we are interested in bandit learning with switching
costs, which can be used to model many practical decision-making

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9165-8/22/10.
https://doi.org/10.1145/3492866.3549720

problems that not only face signi�cant uncertainty, but also incur
costs for changing decisions. Consider edge computing with arti�-
cial intelligence (Edge AI) [6] as an example, where an edge server
close to the end users downloads machine learning (ML) models
from the cloud to process incoming inference requests. As the un-
derlying ground-truth model of the data changes in uncertain ways
(which is often referred to as concept drift [12]), the best ML model
also changes in time. However, because of the limited capability
of the edge server, it can often only accommodate a small number
of ML models. Thus, the edge server needs to learn which subset
of ML models should be used, based on the feedback (e.g., infer-
ence losses) observed. Further, downloading an ML model (which
is not currently on the edge server) from the cloud incurs commu-
nication overhead, which can be modelled by a switching cost V1.
Hence, the edge server has to carefully select the ML models to
reduce the total inference losses and switching costs in the long
run, which thus corresponds to a bandit-learning problem with
switching costs. Other examples of such problems can be found in
transportation networks [2], data-center networks [17], wireless
communication [4] and cyber-physical systems [14], etc.

In the online learning literature, it is well-known that the ex-
istence of switching costs signi�cantly changes the nature of the
regret. Speci�cally, in an adversarial setting (which we will focus
on in this paper), for bandit learning without switching costs, the
Exp3 algorithm can attain $ (

p
)) regret over a time-horizon) [3].

However, once the switching cost is added, the regret (for the set-
ting where only one arm can be pulled at each time) increases
substantially to ⇥()

2
3) [1]. A matching lower bound in [9] suggests

that such an increased regret is unavoidable. While this result may
be somewhat discouraging, it leaves many important open ques-
tions, as we explained below. Note that since ML models in Edge
AI corresponds to arms in bandit learning, we use the word “model”
and “arm” interchangeably in the rest of the paper.

First, in practice, in addition to pulling one arm, there are often
other ways to obtain feedback. For example, in Edge AI, the edge
server could send the data to the cloud for analysis. In this case, the
feedback from all ML models can be obtained, beyond the model
already deployed on the edge server. This is somewhat analogous
to the full-feedback setting studied in [13]. Reference [13] shows
that, if the full feedback can be obtained with zero costs, the regret
for bandit learning with switching costs will remain at $ (

p
)),

which would have been much lower than that of [1] where only
bandit feedback is available. However, in practice, feedback from
the cloud also incurs non-negative costs due to multiple reasons,
e.g., communication costs, latency and privacy issues [6]. Thus, the
regret for bandit learning with both switching costs and full-feedback
costs remains an open problem.

Second, instead of holding only one ML model at each time, in
Edge AI, the edge server can usually accommodate " � 2 ML

https://doi.org/10.1145/3492866.3549720
https://doi.org/10.1145/3492866.3549720
https://doi.org/10.1145/3492866.3549720

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Ming Shi, Xiaojun Lin, and Lei Jiao

models at each time. In this setting, using any of these" models
for inference does not incur a switching/downloading cost, and at
each time the feedback from all these" models (currently on the
edge server) can be observed. This setting is thus most similar to
a bandit-learning problem with limited advice [16], where" � 2
arms can be chosen at each time. However, [16] only studied the
case without switching costs, where the regret is$ (

p
)) regardless

of whether one (" = 1) or more (" � 2) arms are chosen at each
time. Our setting is also related to bandit-learning problems with
semi-bandit feedback [7] and side information [2]. The studies for
semi-bandit feedback [7] typically do not consider switching costs
either. Although the side-information setting [2] has been studied
with switching costs, it is somewhat di�erent from ours because
switching within the" � 2 arms also incur switching costs there.
Partly due to this di�erence, the regret [2] remains at ⇥()

2
3). In

summary, it remains an open problem whether in our setting, choosing
" � 2 arms can improve the regret.

In this paper, we provide new answers to the above-mentioned
two open problems. First, we study the case when" = 1, i.e., only
one arm can be pulled at each time, and there is a switching cost V1
to change the arm and a full-feedback cost V2 to obtain feedback
from all arms. As we discussed earlier, the latter action corresponds
to the edge server sending data to the cloud for analysis. We provide
a lower bound of the regret, which grows as ⇥()

2
3). In other words,

when only one arm can be pulled (" = 1), adding costly full-
feedback will not fundamentally change how regret depends on) .
However, our lower bound does suggest that utilizing costly full-
feedback may change the multiplication factor in front of)

2
3 . In

some settings, this factor can be reduced from$ (
1
3) to$ ((ln)

1
3),

where is the total number of arms. Moreover, we provide an
algorithm that achieves a regret that matches the lower bound.

Second, we study the setting when " � 2, i.e., more than one
arm can be chosen at each time and one of them is used to incur the
loss, while there are still switching costs and full-feedback costs.
Surprisingly, here we provide a new online learning algorithm,
called Randomized Online Learning With Working Groups (ROW),
that can achieve a regret of$ (

p
)) without even using full feedback

(see Theorem 4.1), which signi�cantly improves the ⇥()
2
3) regret

for " = 1. In other words, having the �exibility to accommodate
one additional model (i.e.," = 2) almost brings comparable bene�t
as having free full-feedback [13]. To the best of our knowledge, this
sharp transition from" = 1 to" � 2 has never be reported in the lit-
erature for bandit learning with switching costs1. This may be seen as
somewhat analogous to the “power-of-2” routing in load balancing
[15] (where sampling two queues can attain comparable reduction
to delay as sampling all queues), which is why we refer to it as
the “power-of-2-arms”. As" increases, the regret of ROW further
decreases. Using a trivial lower bound for bandit learning with free
full-feedback [5, 13], we conclude that the dependence of the regret
of ROW on) must be optimal.

To achieve the improved $ (
p
)) regret, ROW employs several

new ideas. In order to fully utilize the �exibility of choosing" � 2
arms and minimize switching costs, the �rst idea of ROW is to

1Note that for bandit learning without switching costs, choosing " � 2 arms will
improve the regret, but it cannot alter the dependence on) [16].

�x a primary arm over $ (
p
)) time-slots (which we refer to as an

episode), and switch the secondary arms
⌃ �1
"�1

⌥
times during an

episode, each time to a new subset of secondary arms that have
not yet been chosen in this episode. In this way, ROW only makes
a constant number of switches within each episode (and ⇥(

p
))

switches for all the time), but it can obtain not only the feedback
of the primary arm for the entire episode, but also the feedback
of every other arms for 1⌃

 �1
"�1

⌥ fraction of the episode. Intuitively,
this way of obtaining feedback incurs much lower costs than using
costly full-feedback to obtain the same amount of feedback (for
any and V2 > 0 independent of)), which is also the reason that
ROW does not use costly full-feedback at all.

However, just using the above idea alone is insu�cient to pro-
duce the $ (

p
)) regret. The reason is that the feedback obtained is

highly correlated in time. This is because each subset of secondary
arms is retained for the whole sub-episode (whose length is also
$ (

p
))). It is known that such correlation tends to increase the

regret (see the counter-examples in Sec. 4.1). ROW utilizes a second
crucial idea to overcome this di�culty. Our key observation is that,
whenever such a sub-episode with highly-correlated feedback oc-
curs, one of arms in the current working group (either the primary
arm or a secondary arm) will likely be consistently better than other
arms. Then, ROW will try to switch to the better arm more quickly
within the sub-episode, and thus improve the regret. To accomplish
this faster switching within a sub-episode, our proposed ROW al-
gorithm will use a larger weight-decay parameter [2 within each
sub-episode, while using a smaller parameter [1 across episodes.
In Sec. 4.2.2, we give a su�cient condition on how much [2 should
be larger than [1 to strike the right balance. We note that this idea
of using two di�erent weight-decay parameters is new and may be
of independent interest.

Finally, since in each episode the primary arm will receive much
more feedback than the secondary arms, this creates a bias in the
overall quality of feedback at the end of each episode. This bias
issue is resolved by using instead the loss di�erences between the
primary and secondary arms (please see our Idea 3 in Sec. 4.1). Our
proof for the$ (

p
)) regret carefully captures the e�ect of the above

ideas by utilizing several new techniques (please see Sec. 4.2 for
details).

2 PROBLEM FORMULATION
In this section, we provide the problem formulation for our bandit-
learning problem with switching costs and full-feedback costs.
Moreover, we present a motivating example based on edge com-
puting with arti�cial intelligence (Edge AI), which has received
extensive attention recently [6]. Finally, we introduce the perfor-
mance metric.

2.1 Bandit Learning With Switching Costs and
Full-Feedback Costs

A player interacts with the adversary/environment sequentially in
time. Let K , {1, 2, ..., } denote the set of all arms and let " be
an integer, 1  " < . In each time-slot C = 1, ...,) , �rst the player
chooses" arms among all arms. Let k̂(C) denote the set of the"
arms chosen at time C . The player uses one of the arms in k̂(C) as the

Power-of-2-Arms for Bandit Learning With Switching Costs MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

active arm, which is denoted by k(C). The loss of this arm, ;k(C) (C),
will be used to calculate the loss and regret later. In addition, the
losses ;: (C) of all arms : 2 k̂(C) are observed by the player. The loss
;: (C) can be any arbitrary value in [0, 1]. In this paper, we study
both the cases when " = 1 and 2  " < . When " = 1, k̂(C)
only contains the active arm k(C) and only the loss of this arm is
observed. In this case, we simply say that the player “pulls” the
single arm k(C) at time C . On the other hand, when 2  " < , in
addition to the loss of the active arm k(C), the losses of other" � 1
arms in k̂(C) are also observed.

Next, for every arm that is newly added to the set k̂(C), a switch-
ing cost V1 > 0 will be incurred. Thus, the switching cost at time
C is V1

Õ
:2k̂(C) 1{:8k̂(C�1) } , where 1⇢ is an indicator function (i.e.,

1⇢ = 1 if the event ⇢ is true, and 1⇢ = 0 otherwise). As typically
assumed in bandit-learning problems [2, 3, 9, 13, 19], we assume
that k̂(0) = � is empty. In addition to the feedback from the" arms
in k̂(C), at each time C , the player can choose to obtain full feedback
of time C for all the arms (including those not in k̂(C)) at a cost V2.
Let I (C) = 1 if the player chooses to obtain the full feedback at time
C , and I (C) = 0 otherwise. Therefore, the total cost is

Cost(1 :)) ,
)’
C=1

8>><
>>:
;k(C) (C) + V1

’
:2k̂(C)

1
{:8k̂(C�1) } + V2I (C)

9>>=
>>;
.

(1)

2.2 An Example Motivated by Edge AI
We consider an Edge AI setting where an edge server collaborates
with a remote cloud. The edge server runs machine learning (ML)
models on an online stream of input data to predict their labels.
(For example, in an E-commerce recommendation system, the input
data at each time contains the customer data, item data and web
shop transactions, etc. The input data will be used by the edge
server to return the recommendations, i.e., the predicted labels of
what the customer is interested in.) We assume that ML models
are already trained and available in the remote cloud. However,
due to the limited capability of the edge server, only" models can
be deployed at the edge server at each time. Since it is unknown
which ML model works best, the edge server needs to use the
feedback (e.g., the actual product picked by the customer) to learn
which subset of ML models it should deploy. (In practice, both the
underlying distribution of the input data and the mapping from
data to labels change in time due to the so-called concept drift [12].
Therefore, the best model(s) also changes in time. As a result, this
learning process may be performed again after a concept drift.)

This learning process can be modelled as the bandit-learning
problem described above. Each arm corresponds to one of the
ML models. At each time C , the edge server chooses the subset k̂(C)
of " models, which correspond to the " arms chosen in bandit
learning. This subset k̂(C) may be the same as the subset k̂(C � 1)
chosen at last time C � 1, or it may di�er, in which case a switching
cost V1

Õ
:2k̂(C) 1{:8k̂(C�1) } for downloading the ML models that

are not currently on the edge server will be incurred. Note that this
switching cost is assumed to be proportional to the number of ML
models (which are not currently on the edge server) downloaded
at time C . Then, the input data Æ- (C) is revealed. The edge server

will use the models in k̂(C) to infer the label of Æ- (C). Further, it will
use the result Æ.

0

k(C) (C) of one of the models k(C) 2 k̂(C), to return
to the end user. This model k(C) then corresponds to the active
arm in bandit learning. Next, the true label Æ. (C) of Æ- (C) is revealed.
The edge server can then calculate the inference loss ;: (C) for each
ML model : 2 k̂(C), based on the di�erence between the inferred
label Æ.

0

: (C) and the true label Æ. (C), e.g., using the squared loss (i.e.,
;: (C) = k Æ. (C) � Æ.

0

: (C)k
2) [10].

At the end of time C , the edge server may also choose to consult
the cloud for the quality of all ML models. In that case, it sends the
data Æ- (C) to the cloud. After the cloud processes this data with all
ML models : 2 K , the edge server can retrieve the inference-loss
;: (C) of all the ML models. Clearly, it incurs additional computa-
tion/communication overhead to obtain such feedback from the
cloud, which we model by the full-feedback cost V2.

2.3 Performance Metric
We use the regret [1, 3, 9, 13] as the performance metric. For an
online learning algorithm c , its total cost Costc (1 :)) is given by
(1), which includes both switching costs and full-feedback costs.
For the optimal static solution OPT, it knows the future losses in
advance, and hence can choose only one arm/model throughout the
time-horizon. The cost of OPT is then given by CostOPT (1 :)) =
min
:2K

Õ)
C=1 ;: (C)+V1, where there is only one switching cost V1 at the

beginning of the time-horizon, and there is no full-feedback cost.
The regret of algorithm c is de�ned to be the worst-case di�erence
between the expected total cost of algorithm c and the total cost of
OPT, i.e.,

'c ()) , sup
;1: (1:))

n
Ec

⇥
Costc (1 :))

⇤
� CostOPT (1 :))

o
, (2)

where the expectation is taken over the possible randomness of
the algorithm c , and ;1: (1 :)) denotes the losses ;: (C) of all arms
: 2 [1,] for all time C 2 [1,)]. Our goal is to design an online
learning algorithm with a regret as low as possible.

3 THE CASE OF" = 1
In this section, we focus on the case when " = 1, i.e., the player
(e.g., edge-server) can pull only one arm (e.g., model) at each time.
We are interested in studying whether adding full feedback with a
cost V2 can alter the regret of bandit learning with switching costs.
Recall that in this case, the active arm k(C) is the only arm in k̂(C).
As we mentioned in the introduction, when full feedback is free, it
has been shown in [13] that using full feedback will improve the
regret from ⇥()

2
3) to $ (

p
)). However, since in our model the full

feedback incurs a cost, it is no longer clear whether the regret can
still be improved.

3.1 A Lower Bound on the Regret (M=1)
Our �rst main result shows that adding costly full-feedback will
not change the dependence of the regret on) , but may change the
multiplication factor as a function of .

T������ 3.1. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When" = 1, the regret of

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Ming Shi, Xiaojun Lin, and Lei Jiao

any online algorithm c must be lower-bounded as follows,

'c ()) � 'c ()) , max
⇢
⇠1V

1
3
0

�
log2

� 1
3)

2
3 ,⇠2V

1
3
1
)

2
3

�
, (3)

where

V0 = min
⇢
3
2
V1, V2

�
, V1 = min

⇢
3
4
 V1, V2

�
,

⇠1 = ⇥

✓
1

log2) � log2 log2

◆
, and ⇠2 = ⇥

✓
1

log2)

◆
.

We can see from Theorem 3.1 that, even when the costly full-
feedback is added, as long as " = 1, ⇥()

2
3) is still the optimal

regret for bandit learning with switching costs. This is in sharp
contrast to the case of free full-feedback [13], where the regret
can be improved to $ (

p
)). While this result may be somewhat

discouraging, the costly full-feedback does play some role in the
multiplication factor in front of)

2
3 , which depends on the relative

magnitude of V1 and V2. Intuitively, when the full-feedback cost V2
is large, the online learning algorithmwould rather switch to obtain
feedback than using costly full-feedback. On the other hand, when
V2 is small, the online learning algorithm should avoid switching
and obtain feedback from costly full-feedback. Thus, we expect that
costly full-feedback will be more useful in the latter case than in the
former case. The conclusion of Theorem 3.1 shows this di�erence
precisely. Speci�cally, we can make the following observations.

(i) When V2 �
3
4 V1, the lower bound '

c
()) in (3) is equal to

max

(
⇠1

✓
3
2
V1

◆ 1
3 �

log2
� 1
3)

2
3 ,⇠2

✓
3
4
V1

◆ 1
3

1
3)

2
3

)
. (4)

As increases, the second term in (4) quickly dominates. This
means that, when the full-feedback cost V2 is high, the regret of any

online learning algorithm c will at least increase as V
1
3
1

1
3)

2
3 . Note

that this expression is the same as the regret (for bandit learning
with switching costs) when there is no full feedback at all [9]. This
observation is consistent with our intuition that, when V2 is large,
the online algorithm cannot bene�t from costly full-feedback.

(ii) When V2 < 3
4 V1, the lower bound '

c
()) in (3) is equal to

max
⇢
⇠1V

1
3
0

�
log2

� 1
3)

2
3 ,⇠2V

1
3
2)

2
3

�
. (5)

As increases, the �rst term in (5) quickly dominates. This means
that, when the full-feedback cost V2 is not high, the regret of any

online algorithm c will at least increase as V
1
3
0 (ln)

1
3)

2
3 . If in

addition V2 
3
2 V1, we have V

1
3
0 (ln)

1
3)

2
3 = V

1
3
2 (ln)

1
3)

2
3 , which

is smaller than V
1
3
1

1
3)

2
3 . Compared with the earlier case (with large

V2), our regret expression here has the same dependence on) , but
now increases more slowly as a function of the total number of
arms. This observation is also consistent with our intuition that,
when V2 is small, the online algorithm can bene�t from costly
full-feedback more.

Finally, we note that the division of the two cases depends on
the value of V1 and V2. The intuition is that, with switches,
an online algorithm may also attain the feedback from all arms.
Thus, it makes sense to compare V1 with V2 to determine which
type of feedback is more e�ective.

Algorithm 1 The Multivariate Hidden Markov (MHM) adversary

Parameters: Choose n and f according to (9).
Initialization: Choose :⇤ uniformly from K .
for C = 1 :) do

Step 1: Generate the value of ⌧ (C) according to (7).
Step 2: Generate the losses of each arm : 2 K as follows,

;: (C) = ⌧ (C) +
1
2
� n · 1{:=:⇤ } + W: (C), (6)

where W: (C) ⇠ N(0,f2) are i.i.d. Gaussian random variables
with zero-mean and f2-variance.

end for

3.2 Lower Bound Analysis
To prove Theorem 3.1, we design two important adversaries. For
both adversaries, we make use of Yao’s principle [20] that the worst-
case expected regret 'c ()) of a randomized online algorithm c is
lower-bounded by the expected regret of the best deterministic on-
line algorithm against a randomized adversary. Thus, in the follow-
ingwe focus on designing randomized adversaries, and studying the
regret of deterministic online algorithms. Recall thatK = {1, ..., }.

3.2.1 Multivariate Hidden Markov (MHM) Adversary. In this sec-
tion, we provide the �rst randomized adversary, called Multivariate
HiddenMarkov (MHM) adversary, which generalizes the idea in [9].
Please see Algorithm 1.

Speci�cally, Step 1 in Algorithm 1 is the same as that used by
the adversary introduced in [9]. That is, for each time C , de�ne the
parent time of C as d (C) , C � 2X (C) , where X (C) , max{X | C ⌘ 0
(mod 2X)}. The main reason that the parent time d (C) is 2X (C)
time-slot ahead of time C is to guarantee that with high probability,
the generated losses ;: (C) are in [0, 1]. Please see our technical
report [18] for the concrete proof of this guarantee. Then, Step 1 of
MHM generates a Gaussian process ⌧ (C) in the following way,

⌧ (C) = ⌧ (d (C)) + b (C), for all time C 2 [1,)], (7)

where ⌧ (0) = 0, and b (C) ⇠ N(0,f2) are i.i.d. Gaussian random
variables with zero-mean and f2-variance. As in [9], this process
⌧ (C) creates a common uncertainty across all arms. In Step 2, the
�rst three terms2 in (6) are also the same as that used in [9]. How-
ever, (6) di�ers from the adversary of [9] in the fourth term. This
additional term adds a Gaussian noise W: (C) to the loss ;: (C) of each
arm at each time. This additional noise is critical because our online
algorithm c can use costly full-feedback, which is not considered
in [9]. Intuitively, without this noise W: (C), by using one round of
costly full-feedback, the online algorithm can know the losses of all
arms in the same time-slot. Then, the online algorithm will imme-
diately know which arm is the optimal one (i.e., the arm with a loss
that is n lower). In contrast, the additional noise in (6) eliminates
the possibility for such a trivial solution.

As we explain below, this additional noise W: (C) causes new dif-
�culties in the proof of the lower bound. We follow the approach
in [9] to derive the regret lower-bound of any deterministic online
algorithm c against the MHM adversary. Speci�cally, let P:⇤ (·)

2The �rst three terms in (6) guarantees that the expected values of the losses are 1
2

and 1
2 � n for the sub-optimal arms : < :⇤ and the optimal arm :⇤ , respectively.

Power-of-2-Arms for Bandit Learning With Switching Costs MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

denote the probability measure under the setting where one op-
timal arm :⇤ incurs n lower cost than other arms, as in (6). Let
P0 (·) denotes the probability measure when n = 0, i.e., the arm
:⇤ is statistically the same as other arms. In addition, let ;ob (·) de-
note the observed losses of the online learning algorithm. Then,
the analysis in [9] focuses on estimating the Kullback-Leibler (KL)
divergence ⇡KL (P:⇤ (;

ob
(1 :)))kP0 (;ob (1 :))), which then leads

to the lower bound on the regret. However, for our MHM adversary,
the additional noise W: (C) incurs a new di�culty. Recall that d (C) is
the parent (time) of C , and thus C is the child (time) of d (C). Let d̄ (C)
denote the set of the predecessors of time C , i.e. its parent, parent’s
parent, etc. Similarly, let d (C) denote the set of the descendants
of time C . Note that without W: (C), the observed loss ;ob (C) would
have been a Gaussian process⌧ (C) plus a �xed constant 1

2 or 1
2 � n .

Thus, ;ob (C) would have satis�ed a form of Markov property [11,
p. 235], i.e., conditioned on current observed losses, the conditional
probability distribution of future losses at a descendant time in d (C)
is independent of past losses at any predecessor time in d̄ (C). Then,
the proof could use the chain rule of KL divergence [8, p. 23]. In
contrast, with the additional noise W: (C), the observed loss ;ob (C)
does not satisfy the Markov property any more. This is because,
conditioned on the observed losses at time C , past observed losses
still provide information for the statistics of the future losses. For
example, by taking the average of the losses observed at all pre-
decessors in d̄ (C), we can average out W: (C) across time, and thus
estimate the mean value of the loss at a descendant time in d (C)
with a higher accuracy. Therefore, we cannot use the chain rule
directly, and must �nd a new way to bound the KL divergence.

To overcome this new di�culty, we develop a result on the KL
divergence of hidden Markov models [8, p. 69]. Speci�cally, notice
that the hidden loss ;hi (C) , ;k(C) (C) � Wk(C) (C), i.e., the loss in (6)
but with Wk(C) (C) removed, satis�es the Markov property. Then,
using the chain rule of probability, we can show that

⇡KL
⇣
P:⇤ (;

ob
(1 :)))kP0 (;

ob
(1 :)))

⌘

 ⇡KL
⇣
P:⇤ (;

ob
(1 :)) |;hi (1 :)))kP0 (;

ob
(1 :)) |;hi (1 :)))

⌘

+ ⇡KL
⇣
P:⇤ (;

hi
(1 :)))kP0 (;

hi
(1 :)))

⌘
. (8)

The �rst term on the right-hand-side of (8) can be easily calculated at
each time, since conditioned on the hidden loss ;hi (C), the observed
loss ;ob (C) is only due to i.i.d. Gaussian variables W: (C). The second
term on the right-hand-side of (8) can be calculated by using the
chain rule of the KL divergence, since the hidden loss ;hi (C) satis�es
the Markov property. We can then obtain Lemma 3.2 below for the
regret lower-bound against the MHM adversary.

L���� 3.2. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When" = 1, by choosing

n = 3

r
4

9 ln 2
·

1
9 log2)

· V
1
3
1
)�

1
3 and f =

1
9 log2)

, (9)

the regret of any online learning algorithm c against the MHM ad-
versary is lower-bounded as follows: for) � max{V1 , 6 },

'c ()) � ⇠2V
1
3
1
)

2
3 , (10)

where V1 = min
� 3
4 V1, V2

and ⇠2 = ⇥

⇣
1

log2)

⌘
.

Please see our technical report [18] for the complete proof of
Lemma 3.2. From Lemma 3.2, we can see that the regret lower-
bound produced by MHM corresponds to the second term in (3).
Note that it correctly captures the dependence of the regret on) ,
but the dependence on still needs to be re�ned.

To further re�ne the dependence on , we provide a second
adversary, called Dividing Set (DS) adversary. Please see our tech-
nical report [18] for details. Finally, we design an online learning
algorithm, called Randomized Online Learning With Costly Full-
Feedback (ROCF), that attains the following regret for large) ,

'ROCF ()) 

8>><
>>:

4V
1
3
1 (ln)

1
3)

2
3 , if V2 �

3
4 V1,

7
2 V

1
3
2 (ln)

1
3)

2
3 +$ (1), if V2 < 3

4 V1,
(11)

which matches the lower bound in Theorem 3.1. ROCF essentially
uses episodic versions of either Exp3 [3] (when V2 is large) or the
shrinking dartboard algorithm [13] (when V2 is small). Due to page
limits, we refer the readers to our technical report [18].

4 THE POWER-OF-2-ARMS (" � 2)
In this section, we proceed to the case when " � 2. In contrast
to the previous section where we show that adding costly full-
feedback does not change the ⇥()

2
3) regret, here we provide a new

algorithm that utilizes the �exibility of having 2 (or more) arms and
successfully improves the regret to $ (

p
)).

4.1 Randomized Online Learning With Working
Groups (ROW)

We call our new algorithm Randomized Online Learning With
Working Groups (ROW). Please see Algorithm 2. We start with de-
scribing the high-level skeleton of ROW. Recall that K = {1, ..., }.

Idea 1: Note that in order to obtain the $ (
p
)) regret, we can

switch or use costly full-feedback at most $ (
p
)) number of times.

The �rst idea of ROW is thus to design an e�ective way to rotate a
working group (of " arms) through all arms, so that plenty of
feedback can be obtained for all the arms, while incurring $ (

p
))

switching costs and zero full-feedback costs. Speci�cally, ROW di-
vides the entire time-horizon into * =

l
)
g1

m
episodes, each with

g1 = ⇥(
p
)) time-slots. At the beginning of the �rst time-slot

CD = (D � 1)g1 + 1 of the D-th (D = 1, ...,*) episode, each arm
: 2 K is associated with a weightFROW

:
[D], which is initialized to

beFROW
:

[1] = 1 (we will describe how to updateFROW
:

[D] from
FROW
:

[D � 1] shortly). Then, from all arms : 2 K , ROW chooses a
primary arm :ROW0 [D] with probability (i.e., Step 1 in Algorithm 2)

?ROW: [D] =
FROW
:

[D]Õ
:=1F

ROW
:

[D]
. (12)

This primary arm :ROW0 [D] will be �xed for the entire episode D. In
addition, ROW divides each episode into + =

⌃ �1
"�1

⌥
sub-episodes,

each with g2 = g1
+ time-slots. In the rest of this paper, we refer to

the E-th sub-episode in the D-th episode as sub-episode (D, E). At
the beginning of the �rst time-slot CD,E = (D � 1)g1 + (E � 1)g2 + 1

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Ming Shi, Xiaojun Lin, and Lei Jiao

Algorithm 2 Randomized Online Learning With Working Groups
(ROW)

Parameters: Choose [2, g2, [1 and g1 according to (28).
Initialization:FROW

:
[1] = 1 and ?ROW

:
[1] = 1

 , for all : 2 K .

for D = 1 :
l
)
g1

m
(The D-th episode starts from CD = (D � 1)g1 + 1

to CD + g1 � 1.) do
Step 1: At the beginning of the �rst time-slot CD , according to
probability ?ROW

:
[D] calculated in (12), choose a primary arm

:ROW0 [D] from all arms : 2 K for the entire episode.
for E = 1 : g1g2 (The E-th sub-episode starts from CD,E = (D �

1)g1 + (E � 1)g2 + 1 to CD,E + g2 � 1.) do
Step 2: At the beginning of the �rst time-slot CD,E ,
uniformly choose the set k̂ROW"�1 [D, E] of " � 1 sec-
ondary arms from the not-yet-been-chosen arms in K �✓
E�1–
E0=1
k̂ROW"�1 [D, E

0
]
–
{:ROW0 [D]}

◆
. Then, form the work-

ing group by the primary arm and secondary arms, i.e.,
k̂ROW [D, E] =

�
:ROW0 [D]

 –
k̂ROW"�1 [D, E].

Step 3: Initialize the weights F̂ROW
:

(CD,E) and probabilities
?̂ROW
:

(CD,E) of all arms : 2 k̂ROW [D, E] according to (13)
and (14), respectively.
for C = CD,E : CD,E + g2 � 1 do
Step 4: Use an arm : 2 k̂ROW [D, E] as the active arm
according to the updated probability ?̂ROW

:
(C).

Step 5: Update the weights F̂ROW
:

(C) and probabilities
?̂ROW
:

(C) of all arms : 2 k̂ROW [D, E] according to (15)
and (14), respectively.

end for
end for
Step 6: At the end of the last time-slot of the D-th episode,
update the weightsFROW

:
[D+1] and probabilities ?ROW

:
[D+1]

of all arms : 2 K according to (17) and (12), respectively.
end for

of sub-episode (D, E), ROW uniformly chooses " � 1 secondary
arms from the arms that have not yet been chosen in the D-th
episode3 (i.e., Step 2 in Algorithm 2). We let k̂ROW"�1 [D, E] denote the
set of the" � 1 secondary arms chosen in sub-episode (D, E). Let
k̂ROW [D, E] =

�
:ROW0 [D]

 –
k̂ROW"�1 [D, E] denote the working group

formed by the primary arm and secondary arms. The working
group k̂ROW [D, E] will be �xed for the whole sub-episode (D, E).

Notice that by using this idea, ROW only switches at the bound-
aries of sub-episodes and never uses full feedback. Therefore, by
tuning g2 to be ⇥(

p
)), the total switching cost is guaranteed to be

⇥(
p
)), and the total full-feedback cost is 0. More importantly, with

this idea, we not only have the feedback for the primary arm for the
entire episode, but also have the feedback for each secondary arm
for 1

+ fraction of each episode. Intuitively, this way of obtaining
feedback incurs much lower costs than using costly full-feedback.
For example, if we want to obtain the same amount of feedback
3When � 1 is not divisible by" � 1, the number of the remaining unchosen arms
in the last (i.e.,+ -th) sub-episode may be less than" � 1. In this case, after choosing
all those unchosen arms, ROW uniformly chooses the secondary arms from the arms
that have not yet been chosen for the+ -th sub-episode.

by using costly full-feedback alone, we would have to incur a full-
feedback cost equal to ⇥(

p
)) in every episode! This is also the

reason that ROW does not use full feedback at all.
We now describe the rest of the details of ROW. After choosing

the working group k̂ROW [D, E] as we discussed above, within each
sub-episode (D, E) we solve a bandit-learning problem with the
set of arms restricted to the chosen working group. Note that this
restricted version of the bandit-learning problem has no switching
cost (since any arm : 2 k̂ROW [D, E] can be used as the active arm
without incurring switching costs), and also has full feedback (from
all the arms : 2 k̂ROW [D, E]). Speci�cally, in the �rst time-slot CD,E
of sub-episode (D, E), ROW initializes the weights of all the arms
: 2 K as follows (i.e., Step 3 in Algorithm 2),

F̂ROW
: (CD,E) = FROW

: [D], (13)

i.e., to be the values of the weights at the beginning of the entire
episode D. Then, for each time C = CD,E, ..., CD,E + g2 � 1, each arm
: 2 k̂ROW [D, E] is used as the active arm kROW (C) with probability
(i.e., Step 4 and Step 5 in Algorithm 2)

?̂ROW: (C) =
F̂ROW
:

(C)Õ
:2k̂ROW [D,E] F̂

ROW
:

(C)
. (14)

After the losses ;: (C) of all the arms : 2 k̂ROW [D, E] are obtained
for time C , ROW updates their weights with a tunable parameter
[2 as follows (i.e., Step 5 in Algorithm 2),

F̂ROW
: (C + 1) = F̂ROW

: (C) · 4�[2;: (C) , (15)

and then proceeds to the next time-slot C + 1. Note that the weights
F̂ROW
:

(C) are reset by (13) in the �rst time-slot C = CD,E of each
sub-episode (D, E).

Finally, in the last time-slot of episode D, ROW subtracts the loss
of the primary arm from the corresponding loss of arm : in the sub-
episodes that : was observed. Then, the resulting value is divided
by the conditional probability that : is chosen as a secondary arm
(conditioned on : not being the primary arm), i.e., "�1

 �1 . Precisely,

we let ED (:) ,
n
E | E = 1, ...,+ ,: 2 k̂ROW [D, E]

o
denote the sub-

episodes (D, E) when the arm : was chosen in the working group.
Let !: [D, ED (:)] ,

Õ
E2ED (:)

ÕCD,E+g2�2
C=CD,E ;: (C) denote the sum of the

losses of arm : in sub-episodes (D, E) (except the last time-slot
C = CD,E + g2 � 1) for all E 2 ED (:). Then, ROW computes the loss
di�erence of each arm : 2 K as follows,

!̃ROW: [D] =
!: [D, ED (:)] � !:ROW0 [D] [D, ED (:)]

"�1
 �1

. (16)

Note that for the primary arm :ROW0 [D], the loss di�erence is
!̃ROW
:ROW0 [D]

[D] = 0, which is also consistent with (16). Then, ROW up-

dates the weights for all the arms : 2 K with a tunable parameter
[1 as follows (i.e., Step 6 in Algorithm 2),

FROW
: [D + 1] = FROW

: [D] · 4�[1!̃: [D] , (17)

which becomes the initial weights for the next episode D + 1.
Readers familiar with bandit-learning algorithms may have al-

ready noticed two other crucial di�erences in ROW. First, a di�erent
weight-decay parameter [2 is used to update weights in (15) within

Power-of-2-Arms for Bandit Learning With Switching Costs MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

1 2 3

v

0

1

lo
s
s

arm 1

1 2 3

v

0

1

lo
s
s

arm 2

1 2 3

v

0

1

lo
s
s

arm 3

1 2 3

v

0

1
lo

s
s

arm 4

(a) Trace in counter-example 1 (i.i.d. across
arms : and sub-episodes [D, E]).

1 2 3

v

0

1

lo
s
s

arm 1 and 2

1 2 3

v

0

1

lo
s
s

arm 3 and 4

(b) Trace in counter-example 2 (repeats
every 2 time-slots).

1 2 3

v

0

1

lo
s
s

all arms

(c) Trace in counter-example 3 (repeats
every episode D).

Figure 1: One realization of the counter-example traces in one episode.

the episode, compared with the parameter [1 that is used in (17)
across episodes. Second, when updating the weights across episodes
in (17), we use the di�erence between the loss of an arm and that
of the primary arm, instead of using the absolute loss of the arm
directly. In the following, we explain why these two di�erences (i.e.,
our idea 2 and idea 3) are crucial for achieving the $ (

p
)) regret.

Idea 2: Use di�erent weight-decay parameters [2 and [1. Re-
call that in every episode, ROW can obtain at least 1

+ fraction of
feedback from every arm. We would have hoped that this amount
of feedback is su�cient for attaining a low $ (

p
)) regret. Indeed,

consider an alternate bandit-learning problem where the feedback
of each arm is obtained independently with probability 1

+ in every
time-slot. It is not di�cult to show that Exp3 [3] using this amount
of feedback will attain the $ (

p
)) regret.

However, compared with the above alternate problem, the dif-
�culty we are facing here is that in ROW the feedback becomes
highly correlated in time. Indeed, the secondary arms are �xed
during the whole sub-episode. Thus, we either have all feedback
of an arm, or have none for the whole sub-episode. Below, we con-
struct two counter-examples to illustrate the di�culties in dealing
with such correlation. For ease of exposition, we use ; (C1 : C2) ,
[; (C), for all C = C1, C1 + 1, ..., C2] to collect ; (C) from C = C1 to C = C2.

Counter-example 1: Consider = 4 arms and " = 2. For each
arm : , in each sub-episode (D, E), ;: (CD,E : CD,E + g2 � 1) = 0 with
probability 1

2 , and ;: (CD,E : CD,E + g2 � 1) = 1 with probability 1
2 .

The losses are independent across arms : and across sub-episodes
[D, E]. Please see Fig. 1a for this loss trace in one episode. Using this
counter-example, we show why existing bandit-learning method,
Exp3 [1], could lead to a poor regret. Let us consider the optimal
static loss. First, the expected total loss of each arm is trivially
E[!] =)

2 . Second, let us estimate the variance of the total loss
of each arm. Since the loss is a constant within a sub-episode, the
higher correlation in time leads to a higher variance in the total
loss of each arm. Speci�cally, for each arm, the variance of its total
loss in a sub-episode4 is ⇥(g22). Thus the variance of its total loss
across) time-slots is Var(!) =)

g2
· ⇥(g22) = ⇥()

3
2). Thus, one of

the arms may incur a total loss that is smaller than the average by
⇥(

p
Var(!)). As a result, the total loss of the optimal static decision

OPT is E[!]�⇥(
p
Var(!)) =)

2 �⇥()
3
4). (This estimate can also be

obtained by applying the random walk analysis [19, p. 111].) Next,
we consider the total loss of the episodic version of Exp3 [1]. Such
4In contrast, if the losses were i.i.d. in time, the variance should have been ⇥(g2) .

version of Exp3 picks an arm :0 at the beginning of an episode,
and use it as the active arm for the entire episode. Since the loss in
each episode is independent, the total loss of such Exp3 will be the
average loss of each arm in this counter-example, i.e.,)2 . Therefore,
the regret would be ⇥()

3
4).

Counter-example 1 clearly illustrates why the higher correlation
in time leads to a higher regret for the episodic version of Exp3.
To overcome this di�culty, we make an important observation. In
this setting with highly correlated losses, we observe that one arm
(with losses 0) will be consistently better than the other arms (with
losses 1) in each sub-episode. We may then beat the average loss
by switching to the better arm within a sub-episode. Indeed, with
" = 2, the chance that one of the two arms incurs zero loss is 3

4 .
Thus, if we can switch to the better arm (with losses 0) quickly
within a sub-episode, we may attain a total loss approximately
equals to)

4 , which would have beaten the optimal static decision
OPT. This counter-example thus suggests why it is important to use
Exp3 [3] inside each sub-episode (in addition to across episodes).

However, it is still highly non-trivial to choose the parameter [
of Exp3 within each sub-episode. One possible thought is that, we
can think of each sub-episode as a bandit-learning problem with
g2 = ⇥(

p
)) time-slots. Then, if we view the better arm within

the sub-episode as the static optimal arm, we would have to use
[= ⇥()�

1
4) in order to attain the minimal regret against the better

arm. However, this choice of [would have been too large, as can
be seen in the counter-example below.

Counter-example 2: Consider = 4 arms and " = 2. For arms
: = 1, 2, ;: (C) = 0 for all odd time-slots C , and ;: (C) = 1 for all even
time-slots C . For arms : = 3, 4, ;: (C) = 1 for all odd time-slots C ,
and ;: (C) = 0 for all even time-slots C . Please see Fig. 1b for this
loss trace in one episode. Using this counter-example, we can see
why using Exp3 [3] with a parameter [= ⇥()�

1
4) could lead to

a poor regret. Let us consider the optimal static loss. Since the
total loss of every arm is)2 , the optimal static loss is)2 . Next, we
consider the total loss of Exp3. Notice that the probability of each
arm is initialized to be the same, i.e., 1

 , at time C = 1. Then, at
each time, suppose that all arms have been observed almost the
same number of times. Thus, the probabilities of all arms would be
about the same. However, whenever an arm with loss ;:1 (C) = 0
and an arm with loss ;:2 (C) = 1 are observed simultaneously, at the
next time C + 1 Exp3 will use the arm :1 as the active arm with a

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Ming Shi, Xiaojun Lin, and Lei Jiao

probability higher by approximately ⇥([). According to counter-
example 2, ;:1 (C + 1) = 1. Thus, Exp3 will su�er an additional loss
⇥([) approximately at each time. Hence, the total loss of Exp3 will
be)2 +⇥([)) =)

2 +⇥()
3
4). Therefore, the regret would be ⇥()

3
4).

Counter-example 2 clearly indicates that, in order to attain the
$ (

p
)) regret, the parameter [2 should be no larger than $ ()�

1
2).

However, since a sub-episode is of length much smaller than) ,
we conjecture that [2 still needs to be larger than [1 (the latter is
used across episodes), so that ROW converges fast to the better
arm inside the chosen working group. Lemma 4.3 in Sec. 4.2.2 will
provide the exact condition on how [2 and [1 should be tuned to
obtain the $ (

p
)) regret.

Idea 3: Use the loss di�erence from the primary arm to update
weights across episodes. We next describe why it is also crucial to
use the loss di�erence in (16) instead of the absolute loss of each arm.
Recall that at the end of each episode, we receive g1 feedback from
the primary arm, but only g2 = g1

+ feedback from each secondary
arm. Intuitively, this bias will also increase the variance of the total
losses accumulated in the past, which again leads to a higher regret.
The following counter-example illustrates this di�culty.

Counter-example 3: Consider = 4 arms and" = 2. In the �rst
sub-episode of each episode, the loss of each arm at each time is 0.
For all subsequent sub-episodes of each episode, the loss of each
arm at each time is 1. Please see Fig. 1c for this loss trace in one
episode. In the literature, the standard way to deal with this bias
in the amount of feedback is to divide the observed loss by the
probability that the arm is observed [1, 3, 5]. For each arm, this
probability is ?: [D]+(1�?: [D])"�1

 �1 , where ?: [D] is the probability
that arm : is chosen as the primary arm, and (1 � ?: [D])"�1

 �1 is
the probability that arm : is chosen as the secondary arm in a sub-
episode. With this mechanism, the estimated losses will be !̃: [D] =

2g2
?: [D]+(1�?: [D]) "�1

 �1
when : is the primary arm, !̃: [D] = 0 when :

is a secondary arm that is chosen in the �rst (E = 1) sub-episode,
and !̃: [D] =

g2
?: [D]+(1�?: [D]) "�1

 �1
when : is a secondary arms that

is chosen in the subsequent (E = 2, 3) sub-episodes. Suppose that
?: [D] =

1
 is the same across all arms. Then, the denominator is

actually the same across all arms, but the numerator will still lead
to a signi�cant variance. Indeed. since the primary arm is chosen
randomly with probability ?: [D] = 1

 , it is not hard to verify that
the total estimated loss of each arm over an episode will have a
variance of ⇥(g22). In contrast, if full feedback was available, all
arms would have a total loss equal to 2g2 in an episode, and the
variance would have been zero. It is easy to show that, with this
additional ⇥(g22) gap in the variance, the regret of Exp3 [1] is still
$ ()

2
3), which is much larger than $ (

p
)).

Counter-example 3 thus suggests that, instead of dividing the
loss by the probability of observing an arm, we need some newways
to deal with the above bias issue. Precisely, in (16), ROW updates
the estimated loss by the di�erence of the loss of each secondary
arm and that of the primary arm. In addition, the loss di�erence of
the primary arm is simply 0. Returning to counter-example 3, the
new estimated loss will then be !̃: [D] = 0 for all the arms : 2 K .
Thus, the additional variance⇥(g22) of the estimated losses has been
eliminated, which is also crucial for attaining the $ (

p
)) regret.

4.2 Regret Analysis
In Theorem 4.1 below, we show the upper bound of the regret
attained by ROW. For ease of exposition, we focus on the case
when � 1 is divisible by" � 1. (It is not di�cult to extend to the
case when � 1 is not divisible by" � 1. Please see our technical
report [18] for details.)

T������ 4.1. Consider bandit learning with switching costs and
full-feedback costs introduced in Sec. 2.1. When" � 2, the regret of
ROW can be upper-bounded as follows, for) �

448(�1)2 ln
5
2+4V1

,

'ROW ())  811
 � 1
" � 1

p

ln
p
) + 12, (18)

where 11 =
q

5
2 + 213V1, 12 = 13V1 + 1 and 13 = min {", �"}.

In Sec. 3 when " = 1, the optimal regret is ⇥()
2
3) for bandit

learning with switching costs and full-feedback costs. In sharp con-
trast, now with" � 2, ROW achieves a signi�cantly lower regret
equals to$ (

p
)). Moreover, ROW never uses full feedback. Further,

as" increases, the regret of ROWcan be further reduced. To the best
of our knowledge, this is the �rst result in the literature to utilize the
�exibility of choosing" � 2 arms to improved the regret to $ (

p
))

for bandit learning with switching costs. Furthermore, using a trivial
lower bound for bandit learning with free full-feedback [5, 13], we
can conclude that the $ (

p
)) regret cannot be further improved.

The rest of this section is devoted to the proof of Theorem 4.1.
Due to the three new ideas in ROW, new analytical techniques are
needed to capture the evolution of the weights, which are also of
independent interest. In order to relate the loss of ROW to that of the
optimal static loss, our analysis below is carried out in three steps,
�rst for inside each sub-episode, second for the end of each episode,
and third for across all episodes. In the following, we let H[D � 1]
denotes the f-algebra generated by the observation of ROW from
time C = 1 to C = (D � 1)g1. Let !: [D, E] ,

ÕCD,E+g2�2
C=CD,E ;: (C).

4.2.1 Inside each sub-episode. We start by relating the expected
loss of ROW inside each sub-episode to a log-sum-exp function
62 [D, E] (see Lemma 4.2). Recall that in (13), the weights in the �rst
time-slots of all sub-episodes are initialized to be the weights at the
beginning of the episode. Thus, given a same working group, the
probabilities ?̂ROW

:
(CD,E) are also the same at the beginning of all

sub-episode E . We let ?̂ROW
:

[D] denote this common probability.

L���� 4.2. For each sub-episode (D, E), given the historyH[D�1]
and the chosen working group k̂[D, E], we have

CD,E+g2�1’
C=CD,E

’
:2k̂ROW [D,E]

?̂ROW: (C);: (C)  62 [D, E] +
1
2
[2g2 + 1, (19)

where

62 [D, E] , �
1
[2

ln
©≠≠
´

’
:2k̂ROW [D,E]

?̂ROW: [D]4�[2!: [D,E]
™ÆÆ
¨
. (20)

On the left-hand-side of (19), the probability ?̂ROW
:

(C) is the
probability of using arm : as the active arm. Thus, the left-hand-
side of (19) represents the conditional (conditioned on the working

Power-of-2-Arms for Bandit Learning With Switching Costs MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

group k̂ROW [D, E] and history H[D � 1]) expected loss of ROW in
sub-episode (D, E). Hence, (19) upper-bounds the conditional ex-
pected loss of ROW by a log-sum-exp function 62 [D, E] and the
term 1

2[2g2 + 1. We make two important comments. First, the value
of 62 [D, E] is approximated dominated by the arm with the smallest
loss !: [D, E] (as long as the corresponding probability ?̂ROW

:
[D]

is non-zero). (19) thus con�rms that ROW is trying to switch to
the “better” arm in the working group. Second, the gap 1

2[2g2 is
much smaller than the gap 1

2[g
2
2 incurred by the episodic version of

Exp3 [1]. Note that the above-mentioned two conclusions precisely
capture our ideas 1 and 2, which together allow ROW to converge
quickly to the better arm in the working group. Please see our
technical report [18] for the complete proof of Lemma 4.2.

4.2.2 Relating the loss upper-bound at the end of a sub-episode to
the weights across episodes. Lemma 4.2 provides an upper bound
on the loss of ROW at the end of each sub-episode (D, E). Note that
this upper bound depends on [2. On the other hand, at the end of
each episode D, we calculate the weights according to (17). Notice
that not only is !̃ROW

:
[D] in (17) di�erent from !: [D, E] in (20), the

parameter [2 is also di�erent from [1. Thus, we need a way to
convert the loss upper-bound in Lemma 4.2 for each sub-episode
to a form that depends on the weights calculated by (17). This is
accomplished by Lemma 4.3 below. Further, this lemma gives a
su�cient condition on how to tune the parameters [2 and [1.

Speci�cally, notice that the loss di�erence !̃ROW
:

[D] calculated
in (16) is a di�erence from the loss of the primary arm :ROW0 [D].
We let 62 [D] denote the sum of 62 [D, E] for all sub-episodes E , minus
a term that corresponds to the loss of the primary arm, i.e.,

62 [D] ,
+’
E=1

62 [D, E] �
+’
E=1

!:ROW0 [D] [D, E]

= �
1
[2

+’
E=1

ln
©≠≠
´

’
:2k̂ROW [D,E]

?̂ROW: [D]4�[2L
ROW
: [D,E]™ÆÆ

¨
, (21)

where LROW
:

[D, E] = !: [D, E] � !:ROW0 [D] [D, E].

L���� 4.3. If the parameters [2, g2, [1 and g1 satisfy that

[2 � 16
✓
 � 1
" � 1

◆2
· [1, [2g2  ln 2 and [1g1  ln 2, (22)

we have

Ek̂ROW [D,1:+]

h
62 [D]

���H[D � 1]
i

 Ek̂ROW [D,1:+]

h
61 [D]

���H[D � 1]
i
, (23)

where the expectation is taken with respect to the randomness in the
working groups, and

61 [D] , �
1
[1

ln

 ’
:=1

?ROW: [D]4�[1!̃
ROW
: [D]

!
. (24)

The log-sum-exp function 62 [D] on the left-hand-side of (23) is
related to 62 [D, E] through (21), which is then related to the loss of
ROW in each sub-episode through (19). The log-sum-exp function
61 [D] on the right-hand-side of (23) is related to the weights cal-
culated at the end of the episode. Thus, Lemma 4.3 relates the loss

upper-bound at the end of each sub-episode to the weights across
episodes, and (22) con�rms our conjecture that [2 should be larger
than [1.

The proof of Lemma 4.3 �rst relates the function 61 [D] and
62 [D] to the variances of the working-group feedback and the loss
di�erences, respectively, and then bounds these variances. Please
see our technical report [18] for the complete proof of Lemma 4.3.

Up to now, by combining (19), (21) and (23) for all sub-episode
E and episode D, we can relate the total loss of ROW to 61 [D] as
follows,
*’
D=1
EH[D�1]

(
Ek̂ROW [D,1:+]

"
+’
E=1

CD,E+g2�1’
C=CD,E

’
:2k̂ROW [D,E]

?̂ROW: (C)

· ;: (C) �
+’
E=1

!:ROW0 [D] [D, E]
���H[D � 1]

#)



*’
D=1
EH[D�1]

n
Ek̂ROW [D,1:+]

⇥
61 [D]

��H[D � 1]
⇤o

+
1
2
[2) ++* .

(25)

In the next section, we show how to relate the �rst term on the
right-hand-side of (25) to the optimal static loss.

4.2.3 Relating the upper-bound of the total loss of ROW to the
optimal static loss. Lemma 4.4 below relates the sum of 61 [D] on
the right-hand-side of (25) to the optimal static loss of OPT.

L���� 4.4. We have the following inequality,
*’
D=1
EH[D�1]

n
Ek̂ROW [D,1:+]

h
61 [D]

���H[D � 1]
io

� CostOPT (1 :))


ln
[1

�

*’
D=1
EH[D�1]

(
E

"
+’
E=1

!:ROW0 [D] [D, E]
��H[D-1]

#)
. (26)

In (26), the �rst term on the left-hand-side is the �rst term on the
right-hand-side of (25). The �rst term on the right-hand-side of (26)
can be obtained by following the Exp3 analysis [3]. The second term
on the right-hand-side of (26) is because the loss of the primary
arm is subtracted in 62 [D] (see (21)). This term also appears on the
left-hand-side of (25), which will eventually be cancelled. Please
see our technical report [18] for the complete proof of Lemma 4.4.

4.2.4 The final regret. Since ROW only switches at the boundaries
of the sub-episodes, the total switching cost of ROW can be upper-
bounded by min {", �"} · V1

l
)
g2

m
. Next, since ROW never asks

for full feedback, the total full-feedback cost of ROW is 0. Then,
together with (25), (26), we can see that the regret of ROW is upper-
bounded as follows,

'ROW ()) 
ln
[1

+
1
2
[2) +min {", -"} · V1

⇠
)

g2

⇡
+

⇠
)

g2

⇡
. (27)

Then, by choosing (21 =
r

ln
5
2+min{", �" }·2V1

and 22 = 4(�1)
"�1)

8>><
>>:

[2 =
2122p
)
, g2 =

j
ln 2
2122

p
)
k
,

[1 =
21
22
p
)
, g1 =

⌃ �1
"�1

⌥ j
ln 2
2122

p
)
k
,

(28)

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Ming Shi, Xiaojun Lin, and Lei Jiao

0 1 2 3

T 106

0

2

4

re
g

re
t

104

ROW (M=2)
ROCF (M=1)
Exp3 (M=1)

(a) Using the lower-bound trace.

0 1 2 3

T 106

-2

0

2

4

re
g

re
t

104

ROW (M=2)
ROCF (M=1)
Exp3 (M=1)

(b) Using counter-example 1.

0 1 2 3

T 106

0

1

2

3

re
g

re
t

104

ROW (M=2)
ROCF (M=1)
Exp3 (M=1)

(c) Using counter-example 2.

0 1 2 3

T 106

0

1

2

3

re
g

re
t

104

ROW (M=2)
ROCF (M=1)
Exp3 (M=1)

(d) Using counter-example 3.

Figure 2: Compare the regrets of ROW, ROCF and the episodic version of Exp3.

we get the �nal regret of ROW in Theorem 4.1. Please see our
technical report [18] for the complete proof of Theorem 4.1.

5 NUMERICAL RESULTS
In this section, we present numerical results comparing the regret
of our algorithm ROW introduced in Sec. 4.1 (for" � 2) with that
of the episodic version of Exp3 proposed in [1]. (We also show the
regret of our ROCF algorithm from Sec. 3.2 for " = 1. Please see
our technical report [18] for more numerical results for ROW and
ROCF.) According to [1], the theoretical regret of the episodic ver-
sion of Exp3 is ⇥(

1
3)

2
3).

In Fig. 2, we use both the lower-bound trace that we designed in
Sec. 3.2 and the three counter-example traces that we designed in
Sec. 4.1. We consider = 4 arms, and " = 2 for ROW. (When "
increases, the gap between the regret of ROW and that of Exp3 will
further increase.) We let the switching cost and full-feedback cost
be V1 = V2 = 1. We compare how the regret increases with the time
length) . From Fig. 2, we can see that for all 4 traces, the regret of
ROW (with" = 2) is much smaller than that of Exp3 (and ROCF).
For example, when using counter-example 3 and) =

p
10⇥106, the

regret of Exp3 is around 2.61⇥104. In contrast, the regret of ROW is
only about 3.22 ⇥ 103, con�rming the power of using 2 arms. For
" = 1, the regret of ROCF is also smaller than that of Exp3. This
is because the choice of V1 and V2 here satis�es V2 

3
4 V1. As we

show in (3) and (11), this is the range where costly full-feedback is
helpful for reducing the regret when" = 1. When V2 increases to
values larger than 3

4 V1, the gap between the regret of ROCF and
that of Exp3 will diminish. See [18] for additional numerical results.

6 CONCLUSION
In this paper, we investigate bandit-learning problems with switch-
ing costs and full-feedback costs. Although we show that adding
costly full-feedback will not alter the ⇥()

2
3) regret (for " = 1),

we provide a novel online learning algorithm ROW that utilizes
the �exibility of choosing" � 2 arms at each time to improve the
regret to $ (

p
)). Our result reveals that having 2 (or more) arms is

surprisingly as powerful as having free full-feedback, for obtaining
a low regret in bandit-learning problems with switching costs. Our
algorithm ROW and regret analysis involve several new ideas, e.g.,
using di�erent weight-decay parameters inside and across episodes.
Our numerical results con�rm that the regret of our algorithm
ROW is much smaller than that of the episodic version of Exp3.

There are several interesting directions of future work. First,
notice that we study the static regret. It would be interesting to
extend our study to the dynamic regret, where the optimal arm

changes in time. Second, ROW assumes the knowledge of the time
length) . It would be useful to extend ROW to the setting where)
is not known in advance.

ACKNOWLEDGMENTS
This work has been partially supported by NSF grants CNS-2113893
and CNS-2047719.

REFERENCES
[1] Raman Arora, Ofer Dekel, and Ambuj Tewari. 2012. Online bandit learning

against an adaptive adversary: from regret to policy regret. In Proceedings of 29th
International Conference on Machine Learning. 1747–1754.

[2] Raman Arora, Teodor Vanislavov Marinov, and Mehryar Mohri. 2019. Bandits
with feedback graphs and switching costs. In Advances in Neural Information
Processing Systems. 10397–10407.

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The
nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1
(2002), 48–77.

[4] Dirk Bergemann and Juuso Välimäki. 2006. Bandit problems. Cowles Foundation
discussion paper (2006).

[5] Avrim Blum and Yishay Monsour. 2007. Learning, regret minimization, and
equilibria. Algorithmic Game Theory (2007).

[6] Jiasi Chen and Xukan Ran. 2019. Deep learning with edge computing: A review.
Proc. IEEE 107, 8 (2019), 1655–1674.

[7] Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, and Alexandre
Proutiere. 2015. Combinatorial bandits revisited. In Advances in Neural Informa-
tion Processing Systems. 2116–2124.

[8] Thomas M Cover. 1999. Elements of information theory. John Wiley & Sons.
[9] Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. 2014. Bandits with switch-

ing costs:) 2/3 regret. In Proceedings of 46th annual ACM symposium on Theory
of computing. 459–467.

[10] Pedro Domingos. 2000. A uni�ed bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning. 231–238.

[11] Rick Durrett. 2019. Probability: theory and examples. Cambridge university press.
[12] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
46, 4 (2014), 1–37.

[13] Sascha Geulen, Berthold Vöcking, and Melanie Winkler. 2010. Regret minimiza-
tion for online bu�ering problems using the weighted majority algorithm. In
Conference on Learning Theory. Citeseer, 132–143.

[14] Sudipto Guha and Kamesh Munagala. 2009. Multi-armed bandits with met-
ric switching costs. In International Colloquium on Automata, Languages, and
Programming. Springer, 496–507.

[15] Michael Mitzenmacher. 2001. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10 (2001),
1094–1104.

[16] Yevgeny Seldin, Peter Bartlett, Koby Crammer, and Yasin Abbasi-Yadkori. 2014.
Prediction with limited advice and multiarmed bandits with paid observations.
In Proceedings of 31st International Conference on Machine Learning. 280–287.

[17] Shai Shalev-Shwartz. 2011. Online learning and online convex optimization.
Foundations and trends in Machine Learning 4, 2 (2011), 107–194.

[18] Ming Shi, Xiaojun Lin, and Lei Jiao. 2022. Available at https://engineering.purdue.
edu/%7elinx/papers.html. Power-of-2-arms for bandit learning with switching costs.
Technical Report. Purdue University.

[19] Aleksandrs Slivkins. 2019. Introduction to multi-armed bandits. Foundations and
Trends® in Machine Learning 12, 1-2 (2019), 1–286.

[20] Andrew Chi-Chin Yao. 1977. Probabilistic computations: Toward a uni�ed mea-
sure of complexity. In 18th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 222–227.

https://engineering.purdue.edu/%7elinx/papers.html
https://engineering.purdue.edu/%7elinx/papers.html

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Bandit Learning With Switching Costs and Full-Feedback Costs
	2.2 An Example Motivated by Edge AI
	2.3 Performance Metric

	3 The Case of M=1
	3.1 A Lower Bound on the Regret (M=1)
	3.2 Lower Bound Analysis

	4 The Power-of-2-Arms (M2)
	4.1 Randomized Online Learning With Working Groups (ROW)
	4.2 Regret Analysis

	5 Numerical Results
	6 Conclusion
	Acknowledgments
	References

