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Abstract—Conducting federated learning across distributed
sites with In-Band Network Telemetry (INT) based data collection
faces critical challenges, including control decisions of different
frequencies, convergence of the models being trained, and re-
source provisioning coupled over time. To study this problem,
we formulate a non-linear mixed-integer program to optimize the
long-term INT overhead, resource cost, and federated learning
cost. We then design polynomial-time online algorithms to solve
this problem with only observable inputs on the fly, featuring
laziness-aware resource adaption, online-learning-based INT flow
selection and model aggregation control, as well as expectation-
preserving randomized dependent rounding. We rigorously prove
the parameterized-constant competitive ratio of our approach
against the offline optimum, and the time-averaged constraint
violation that vanishes in the long run. With extensive trace-
driven evaluations, we confirm the superiority of our approach
over other alternative approaches for reducing total cost and the
efficacy of our trained models for solving real machine learning
problems, reducing the real-time cost by 34% on average.

Index Terms—Online Provisioning, In-Band Network Teleme-
try, Federated Learning, Multi-timescale Optimization

I. INTRODUCTION

In-Band Network Telemetry (INT) [1, 2] enables the net-
work switch to insert its state information (e.g., queue length,
hop latency, link utilization) into the packet header. Such state
data are then transported by the packet and separated from
the packet payload for further processing at the destination.
Compared to conventional network monitoring approaches,
INT can collect data at line speed in the data-forwarding
plane, measure desired switches en route, adapt to almost any
encapsulation format, and scale to large networks of diverse
types. P4 switch is an industrial example to realize INT [2].

INT data collected from networks are often aggregated [3]
for data analytics [3–6]; however, this approach cannot work
when one tries to aggregate INT data to a central place from
multiple distributed sites in order to train machine learning
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Fig. 1: Scenario of INT with Federated Learning

TABLE I: Mismatch of Time Scales (Testbed Results)
Duration1 Size Repetitions

INT ∼85ms ∼2.3KB ∼100 pps
Federated Learning Minutes∼Hours MB∼GB Hundreds

1. The duration and the size here are investigated for one round of INT and
for one round of model aggregation of federated learning.

models to solve complex problems. This is because each site
may be owned and managed by a different operator or Internet
Service Provider (ISP) [7]. Due to privacy concerns [8–10],
a site may be unwilling to share or upload the measurement
data of its internal networks to train machine learning models.
Federated learning [11] can actually address this issue, where
only the models being trained, rather than the raw training
data, are exchanged between sites and can also save wide-area
network (WAN) traffic. This scenario is visualized in Fig. 1.

Unfortunately, it is non-trivial to make INT and federated
learning work together, which entails the joint orchestration of
INT scheduling, resource provisioning, and federated learning
control (e.g., convergence of the trained models). Operating
such a system optimally faces multiple challenges as follows:

First, INT and federated learning often need to be managed
at different frequencies in an online manner. INT is often
conducted repeatedly in multiple rounds to capture the time-
varying network states, and each round of INT can finish
relatively fast even for the entire network of a site and needs to
be managed in real time. In contrast, federated learning, upon
required computing resources (e.g., virtual machines), often
takes time [12, 13] and can only be adjusted less frequently.
This misalignment, exemplified in Table 1, indicates that when
setting up the resources for federated learning the amount of
INT data to be learnt from is uncertain; once the resources
are allocated, we cannot adjust such resources until sometime
later—this inflexibility makes it hard to manage the system.

Second, both INT and federated learning desire long-term
performance guarantees. While we may choose to conduct INT
only if the data from adjacent rounds tend to have adequate
difference, we are still subject to the total amount of resources
available for data processing before it can be adjusted next
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time. For federated learning, to achieve desired convergence
of the model being trained, we need to ensure the cumulative
number of model aggregations over time, to exceed a pre-
specified threshold. Such long-term constraints are generally
not easy to meet in the online setting, since any current
decisions will restrict the decisions that could be made in the
future and may only turn out to be suboptimal.

Third, control decisions are time-coupled, or need to be
made before observing their impact on the cost to be op-
timized. Changing the amount of resources incurs “switch-
ing cost” in terms of leading time, performance oscillation,
and hardware wear-and-tear. Every current resource decision
serves as a base for the switching cost that will be incurred if
next time a different resource decision is made; yet, as the next
resource decision is unknown now, it is not straightforward to
determine the current resource allocation for optimizing the
switching cost. INT decisions also need to be made without
knowing the resultant measurements. Such an structure of the
online decisions escalates the difficulty in the joint orchestra-
tion of both INT and federated learning in the system.

Existing research falls insufficient for addressing afore-
mentioned challenges. Some [1–3, 14–16] have studied INT
in terms of path selection, congestion control, and network
visualization, without utilizing INT for sophisticated analyt-
ics and machine learning. Others [12, 17–21] have focused
on the optimization of federated learning, but often do not
consider training data collection, not to mention via INT. The
rest [7, 10, 22–25] on geo-distributed analytics and machine
learning have never captured federated learning or INT.

In this paper, we first model and formulate the optimization
problem of convergence-preserving federated learning with
INT-based data collection across geo-distributed sites. Seeking
to optimize the long-term total cost of INT overhead, resource
cost (i.e., operational and switching cost), and federated learn-
ing cost, we control flow selections and resource provisioning
in each site as well as model aggregations across sites. Our
formulation features control decisions at different frequencies,
network-wise switch covering, and convergence of the model.
Our problem is a non-linear mixed-integer program.

Afterwards, we design a group of polynomial-time algo-
rithms that work together to solve this problem in an on-
line manner. Our Algorithm 1 overcomes the time-coupling
between decisions through postponing the adaption of the
resources provisioned unless the cumulative non-switching
cost since the last switch operation exceeds a controllable
parameter of “laziness” times the switching cost incurred by
the last switch operation. Invoked by Algorithm 1, our Al-
gorithm 2 exploits a convex-concave problem transformation
and the primal-dual-based updates to “learn” from previous
decisions in order to dynamically allocate resources for INT
processing and federated learning (i.e., “outer” learning) and
select flows to collect the INT data (i.e., “inner” learning)
without relying on future uncertainties, while addressing long-
term resource caps and model aggregation requirements. Also
invoked by Algorithm 1, our Algorithm 3 is responsible
for converting the fractional decisions into integers via a
randomized dependent rounding strategy, so that fractions are
rounded in pairs while ensuring that the expectation of the

ETH Source Route IP UDP/TCP   Telemetry
Packet Format

Flows 16 bits * N
Forwarding Ports

160 bits * N
Data

INT
Header

INT Data: swid, ingress_port, ingress_global_timestamp, 
                                               egress_port, egress_global_timestamp, dep_timedelta  

Fig. 2: Implementation of In-Band Network Telemetry
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Fig. 4: Telemetry for Queue Length Anomaly Detection

integer equals the corresponding fraction.
Further, we conduct rigorous analysis for our algorithms.

We prove that our online approach can lead to a parameter-
ized constant “competitive ratio” for the overall cost against
the offline optimum where the inputs are observed at once
at hindsight. We also prove that both the “regret” for the
cumulative non-switching cost against its offline optimum and
the cumulative violation of the long-term constraints, including
the model quality, grow only sub-linearly with time.

Finally, we utilize our proposed algorithms to perform a spe-
cific case study of exploiting INT to detect queue occupancy
anomalies of network switches using real-world data under
realistic settings. We use Mininet [26] to compose networks,
and use INT-Path [2] to collect INT data from the one-week
time-varying flows [27] deployed in such networks. We use the
queue length of each switch as our INT data, and use federated
learning implemented by Tensorflow Keras [28] and Federated
[29] to train the Long Short-Term Memory (LSTM) models
for our detections. Besides, we also use the MNIST [30] data
to train a Support Vector Machine (SVM) for handwriting
recognization. We observe the following results. Our approach
reduces the real-time cost by 34% on average and reduces
the long-term cumulative total cost by 15%∼57% compared
to other algorithms. As a typical machine learning example,
our approach can produce LSTM and SVM models that work
effectively. Our algorithms can finish execution in seconds.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Experiment-Based Motivating Study

INT enables switches to insert self-status information into
packets that are forwarded via these switches, and existing lit-
eratures have already demonstrated that such state information



IEEE/ACM TRANSACTIONS ON NETWORKING, 2023 3

TABLE II: Major Notations for Model
Inputs Descriptions1

τ Number of time slots in an interval
Φ Set of candidate time slots for model aggregations

c0, c1, c2 Unit costs for telemetry, switch, and operation
wt Transference cost for global model aggregation at t

vft, r Flow rate of f in t, ratio of telemetry rate over flow rate
p Processing capability per single-unit resource
efi Indicator of whether flow f passes switch i
dft Difference of telemetry data from f between t and t− 1
θ, ε Thresholds of triggering training and model convergence

Decisions Descriptions
xft Whether to activate INT for flow f in t
yft Amount of resources devoted to flow f in t
zt Whether to conduct the global aggregation at t

1. Unless specified otherwise, t ∈ T , f ∈ F , i ∈ N by default.

from network switches can be used for a variety of purposes. In
this paper, we will further show that, if we continuously collect
a series of INT information from network switches, we can
actually conduct machine learning to train models upon such
time series INT data and use such trained models to detect
anomalies in network switches’ queue occupancy. In this
section, we demonstrate this new application via experiments.

In our INT implementation, as in Fig. 2, we prepare 160
bits for the INT data for each switch, and such a capacity can
be reconfigured if needed. Here, we focus on the length of
the packet forwarding queue in each switch as our INT data,
where “dep timedelta” indicates the duration of the packet
in the packet queue (in millionseconds). Further information
regarding the instantaneous queue length, the congestion status
based on the ratio of the current queue length over the
configured maximum queue limit, and the number of the
dropped packets are all available [31] by extracting the INT
data. To specify a route for a packet, we have implemented
source routing, in which every 16 bits are used for an egress
port and all ports specify the route. The switches forward the
packets using the ports pre-stored in the packet header.

We use the flow rate traces from [27], lasting for 7 days and
ranging in 0∼12 Gbps, shown in Fig. 3. The left subfigure
shows the fluctuations of the (normalized) flow rates; the
subfigure in the middle shows the (normalized) flow rates
with randomly-inserted anomalous values; the right subfigure
shows the (normalized) queue lengths measured by INT at the
switches through which the flows with anomalous rates pass.

Learning upon Telemetry: In order to detect the queue
length anomalies, we train the Long Short-Term Memory
(LSTM) model which is suitable for predicting sequential data
over time. We train LSTM via Tensorflow Keras [28], which
has an input layer, an output layer, and three hidden layers
of 64, 256, and 100 neurons, respectively. The sequential data
length of a sample is 3. That is, the LSTM model uses three
consecutive data points to predict the follow-up fourth data
point in the time series, and performs this in a sliding-window
manner. For the results, the squared errors between predicted
values and the actual values regarding the queue length are
shown in the left subfigure of Fig. 4. If the squared error of one
data point is large, it is likely to be an anomaly. We consider
it as an anomaly if it exceeds a threshold [32]. The threshold
used is 0.03. Here, 96% anomalies are detected, showing that
machine learning is effective upon the INT data. For training,
we divide the data into mini-batches, where we put 50 data

samples as one mini-batch. We pass the entire training data five
times, and each time we do it batch by batch for calculating the
gradient and updating the model until all samples are handled.

Learning across Sites: The above simple example mo-
tivates us to use the INT data for machine learning (e.g.,
network anomaly detections, or other complex learning-based
applications of service providers). However, when services are
deployed across multiple geo-distributed serving sites (e.g.,
Google [33] and Facebook [34]), collecting telemetry data via
wide area networks [7] to a central location and conducting
machine learning there could be prevented by data locality
policies and privacy concerns [8–10], as shown in the right
subfigure of Fig. 4. This motivates us to study convergence-
preserving distributed learning for this case. Our previous Fig.
1 is an indicative visualization of the scenario targeted in
this paper. In this figure, the wide-area network connects a
cloud with three geo-distributed “sites”: the first site on the
top left, the second site on the top right, and the third site at
the bottom. The third site is further enlarged, and composes
the major part of Fig. 1. Each site has its own internal network
where INT can be conducted. As shown in the third site, INT
information (marked red) is inserted into packets of an existing
application flow (marked blue); at the destination of this flow,
INT information is separated and used on a dedicated virtual
machine instance (marked green) to train the local models
(marked in orange). That is, we consider Federated Learning
(FL) here: each site is an FL client where the “local training”
is conducted, and the cloud is the FL server where the “global
aggregation” is conducted. The local models are thus sent to
the cloud and aggregated there to produce the global model
(marked purple). The global model is then sent back to each
site for the local training in the next round.

In this paper, we thus model and design online algorithms to
solve the optimization problem of minimizing the cumulative
INT overhead and the resource cost of local model training in
each site and the traffic footprint of global model aggregations
across sites as in federated learning. That is, we control
federated learning upon INT data in a cost-minimal manner.
We can use this approach to train machine learning models
to detect anomalies of network switches’ queue occupancy
in each site, as elaborated in Section V. More generally, we
believe that such INT data can be used to train models to solve
other complex problems as well, such as network congestion
pattern recognition and crowd traffic prediction.

B. System Settings and Models

We summarize the major notations in Table 2.
In-Band Network Telemetry: We consider multiple dis-

tributed locations where each location has a serving site [35]
or a point of presence [36] near the users at the network edge,
as shown in Fig. 1. These sites are connected via the wide-area
network (WAN), and each of such sites has its sophisticated
intra-site network (e.g., Fat Tree [37]) which connects a set of
switches. Inside each site, a set of flows are deployed, each of
which may belong to a different application and travel along
only a subset of the switches. We use N to denote the set of
all the switches in all sites, and use F to denote the set of all
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Fig. 6: Control Decisions at Different Frequencies

the flows in all sites. Then, we use the binary indicator efi to
denote whether the flow f ∈ F passes the switch i ∈ N or
not. Enabled by In-Band Network Telemetry (INT) [38], each
flow is enabled to collect and host the INT data of a switch
in the packet header as the packet passes the switch, whose
cost is c0 per packet. Here, we study the system over a series
of time slots T = {0, 1, ..., T}. If the rate of the flow f at
the time slot t (or the number of packets transported in the
flow f during the time slot t) is vft, then to ensure sufficient
measurements, the number of packets used to carry INT data
is vftr, where r is a pre-specified ratio, as in Fig. 5.

As an example, we extract related INT data (i.e., queue
length [5, 15]) from our testbed by conducting INT upon
Mininet [26] with 20 switches, and visualize the results as
a bitmap. Visualization results are shown in the experiments
later. Other results about the same testbed experiment have
been shown in Table 1 previously. Except for visualizations [4,
5], in this paper, we train machine learning models using the
INT data via convergence-preserving federated learning.

Federated Learning: We consider multiple sites partici-
pating in federated learning. We model federated learning as
follows, targeting the FedAvg [39], which is one of the most
popular approaches. Each site trains a “local model” using
the INT data collected from its own intra-site networks and
sends such a local model to a selected central location for
the aggregation with local models from other sites, producing
a “global model” which is then sent back to every site to
continue with the local training in the next round. We use τ
to denote the number of consecutive time slots between two
adjacent potential global aggregations, as shown in Fig. 6,
and use Φ = {0, τ, 2τ, 3τ...} to denote the set of all the time
slots for conducting global aggregations. We also call the time
slots of [t, t+ τ) an “interval”, ∀t ∈ Φ. We denote by c2 the
unit computational cost for processing INT data and training
local models, and use wt to denote the communication cost
such as the traffic incurred for global model aggregations at
t. We also note that changing the amount of resources can
incur the “switching cost” such as the leading time or any
system performance oscillation and degradation incurred for
instantiating new virtual machine (VM) instances. We use c1 to
denote such cost for switching on one single unit of resources.

Control Decisions: We make three types of decisions. We
use xft ∈ {1, 0} to indicate whether or not to conduct INT
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for the flow f at the time slot t. We use yft ∈ Z≥0 to denote
the amount of resource such as the number of active virtual
machines devoted to federated learning for the flow f at the
time slot t. We use zt ∈ {1, 0} to indicate whether to conduct
the global model aggregation across sites at t.

System Cost: The total cost of joint telemetry and feder-
ated learning consists of multiple components. Based on the
aforementioned notations, first of all, the total overhead of INT
data transference is

∑
t∈T

xftc0vftr !
∑

t∈T
xftaft. Next,

the total operational cost of INT data processing and local
model training is

∑
t∈Φ c2yft. Further, the total switching

cost between adjacent resource provisioning is
∑

t∈Φ c1[yft−
yft−τ ]+, where [·]+ ! max{·, 0}. As in Fig. 7, due to flow
variations, the volume of the extracted telemetry data changes.
Accordingly, more computation resources (e.g., additional VM
instances) may need to be switched on for training the models.
Finally, the total traffic cost of aggregations is

∑
t∈Φ ztwt.

Note that the term “cost” in our work does not necessarily
refer to monetary cost; instead, we actually use this term to
refer to performance cost (or overhead), no matter such cost
can be monetized or not. Therefore, the delay to spin up new
VMs is a specific example of switching cost, because such
delay or lead time impacts service availability and system
performance oscillation or degradation. Note that different
types of performance costs or overhead can be indeed accumu-
lated, even though they have different units. The right way to
accumulate them is not to sum them up by their mathematical
values, but to sum them up in a weighted-sum manner—this
is an important approach which is pretty common in “multi-
objective optimization” and lots of computer networking re-
search literatures. That is, each type of cost (i.e., objective) is
associated with or multiplied by a non-negative weight, which
is used to indicate the importance and mask the unit difference
of this objective, and then multiple weighted objectives are
accumulated to compose the overall objective for optimization
(i.e., converting multi-objective into single-objective). These
weights are also part of inputs (i.e., not decision variables),
often pre-specified by the system operator or manager, or the
users of the algorithms, based on their own understanding of
the problem space and own needs for the optimization.
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System Constraints: We enforce multiple constraints. First,
for the data collected from INT between two possible consec-
utive global aggregations (i.e.,

∑
k∈[t,t+τ) xfkvfkr, ∀t ∈ Φ),

adequate resources need to be provisioned. Given the process-
ing capability p per unit resource or per single virtual machine,
we need to ensure the following inequality:

∀t ∈ Φ, ∀f,Θft(xt, yft)!(
∑

k∈[t,t+τ)xfkvfkr)− yftp ≤ 0.

Second, for a network-wise INT, we need to select flows
to carry telemetry data to cover every switch of every site at
every time slot, where a switch is “covered” if at least one
flow with telemetry passes the switch, as shown in Fig. 8:

∀k ∈ [t, t+τ), ∀t∈Φ, ∀i, Λitk(xt) ! 1−
∑

fxfkefi ≤ 0.

For simplicity, we write its aggregation as Λit(xt), where
xt is the aggregation (column vector) of xfk, ∀k∈ [t, t+ τ).

Third, since both computation and transmission of federated
learning are resource-consuming, we expect to conduct feder-
ated learning only when there is sufficient difference between
consecutive telemetry results. We use dft to denote the amount
of difference that exist in the INT data collected from the flow
f between the time slot t and the time slot t−1, and use θ to
denote a pre-specified threshold. If the difference between the
INT data from the current time slot and that from the previous
time slot is larger than the threshold, then we should continue
to do INT at the next time slot; otherwise, we do not have to
do INT. To capture this, as shown in Fig. 9, we enforce

∀k−1,k∈ [t,t+τ), ∀t ∈ Φ, ∀f, ||xfk−1dfk−1−θ||≤(Mxfk+ξ),

where M is a large constant and ξ<θ is another small constant.
Besides, at any time slot t, if INT is conducted, then a follow-
up global aggregation needs to be conducted at a later time
slot as soon as possible. To capture this,

∀k−1, k ∈ [t, t+τ), ∀t, t+ τ ∈ Φ, ∀f, xfk − zt+τ ≤ 0.

Combing the above two, we define ∆ftk(xfk−1, xfk, zt+τ ):

[||xfk−1dfk−1 − θ||− (Mxfk + ξ);xfk − zt+τ ]
$.

For the ease of the presentation, we express the constraints
as ∆ft(xt, zt) & 0, ∀t, where ∆ft is the aggregation of ∆ftk

and is convex in xt (convex) and zt (linear).
Fourth, in order to guarantee the convergence of the global

model being trained by federated learning across sites, the
number of global model aggregations needs to be no less than
a desired threshold (i.e.,

∑
t∈Φ zt ≥ O(ε)). That is, the global

accuracy ε is achieved after O(ε) aggregations [20, 40]. Here,
O refers to asymptotical growth. Convergence is a natural
requirement in most, if not all, of the cases of (supervised)
machine learning. The nature of (supervised) machine learning
is minimizing the underlying loss function, and thus one would
desire that the algorithm used to minimize the loss function
can indeed eventually minimize it to its theoretical optimum,
i.e., to converge. More importantly, one would desire to relate
the extent to which the loss function is minimized with the
amount of computation needed by the algorithm. In federated
learning, the amount of computation could refer to the number
of global aggregations that aggregate the local models and the

number of local iterations (e.g., gradient decent) that computes
each local model (note that in this work, we do not control
the number of local iterations per time slot, and assume it
is given; that is, with a given number of local iterations per
time slot, the convergence can be related with the number of
global aggregations alone). Overall, convergence ensures the
“quality” of the model to be trained.

C. Problem Formulation and Challenges

Control Problem P: With the above models, we formulate
the following optimization problem of minimizing the sys-
tem’s total cost of INT with convergence-preserving federated
learning in a long-term time scope:

min
∑

t∈T ;f

xftaft+
∑

t∈Φ

{∑

f

{c1[yft−yft−τ ]
++c2yft}+ztwt

}

s.t. Θft(xt, yft) ≤ 0, ∀t ∈ Φ, ∀f ∈ F , (1)

Λit(xt) & 0, ∀t ∈ Φ, ∀i ∈N , (2)

∆ft(xt, zt) & 0, ∀t ∈ Φ, ∀f ∈ F , (3)
∑

t∈Φ zt ≥ O(ε), (4)

var. xft ∈ {0, 1}, yft ∈ Z≥0, zt ∈ {0, 1}, (5)

whose objective function is denoted as P . We have explained
Constraints (1)∼(4) sequentially in the above. Constraint (5)
specifies the domains of our control variables.

We actually maintain a weight for each term in the opti-
mization objective as these terms in the objective represent
different types of costs. We do not show these weights in the
problem formulation for the ease of the presentation.

The problem P is “useful” yet “challenging”. It is useful
because collecting INT data and training machine learning
models can be exploited for lots of purposes, including net-
work diagnosis (e.g., anomaly detection) as we will demon-
strate later; conducting such machine learning across sites
can make the model more general and accurate by training
it over more diversified, larger volumes of INT data. This is
however a challenging and non-trivial problem because INT
data collection in each site and distributed model training (as
in federated learning) incurs overhead continuously, and such
overhead needs to be carefully managed or optimized over
time. Specifically, when making the control decisions online
at each time slot regarding whether to conduct INT for each
network flow, how much computation resources to allocate
for INT processing and local model training, and whether
to conduct the global aggregation (as required in federated
learning), we face the challenges of decision coupling in
adjacent time slots, long-term constraints over time, and the
problem’s NP-hardness, further elaborated as follows.

Algorithmic Challenges: We actually face multiple chal-
lenges when designing algorithms to solve problem P online.

First, in the online setting, we need to make the control
decisions irrevocably in real time as the system runs, and can
only make such decisions for each time slot based on the
inputs for that time slot without any inputs beyond that time
slot. This constitutes an obstacle. For example, at the time slot
t−τ , in order to minimize [yft−yft−τ ]+ as in P , we need to
set a value to yft−τ ; however, as the value of yft is unknown
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(it is a future decision that can only be made at t), it is hard
to choose a good value for yft−τ at t− τ .

Second, Constraints (1) and (4) are in the “long-term” form
which imposes a non-trivial challenge as well. In (1), having
made the decision of yft at t, we need to determine xfk at each
k ∈ [t, t+τ) to ensure the sum of xfkvfkr across [t, t+τ) is no
greater than yftp. This is in fact a dilemma, as we have no idea
on how vfk varies over k: choosing a larger xfk (i.e., xfk = 1)
at the beginning will force a smaller xfk (i.e., xfk = 0) in
the future, which cannot be optimal if vfk decreases over k;
choosing a smaller xfk at the beginning can force a larger xfk

in the future due to Constraint (2), which cannot be optimal
as well if vfk increases over k. It is an analogous case for (4),
where we need to guarantee that the cumulative sum of zt is
no less than a given constant for ensured model convergence.

Third, this problem P is a non-linear integer program, which
is actually NP-hard, via reducing the “covering” problem to P

regarding those terms with {xfk}. This intractability is already
not easy to handle in the offline setting where we are assumed
to see all the inputs altogether before the system starts. Solving
this problem in an online manner without observing all the
inputs of the entire time horizon increases the difficulty.

Algorithmic Goal: We aim to design the polynomial-time
online approximation algorithms for the problem P to find
the solutions {x̄, ȳ, z̄} while provably ensuring P(x̄, ȳ, z̄) ≤
γP∗, where P(x̄, ȳ, z̄) is the objective function value eval-
uated with our online solutions; P∗ is the offline optimal
objective function value, assuming all the inputs are observed
in prior; and γ is a constant called the “competitive ratio”,
which measures the gap against the optimum.

Note that the goal of our work is neither the fine-tuning of
the hyper-parameters of any machine learning models, nor the
selection or determination regarding what could be the best
model for any learning tasks; instead, we optimize the cost of
training, regardless of what specific machine learning models
are trained in the federated learning framework.

III. ALGORITHM DESIGN

Preliminaries: We introduce auxiliary notations to facilitate
our algorithm design, and then present the algorithm overview.

正文

1
Lazy 

Switch:
Alg. 1

Multi-layer Online Learning

Outer Layer: Alg. 2

Duration ߬

Inner Layer: Alg. 2 + Alg. 3

Fig. 11: Lazy Switch with Online Learning

First, we split the objective function. For t ∈ Φ, we define

Ct
¬S(xt,yt,zt)!

∑
k∈[t,t+τ);f xfkafk+

∑
fc2yft+ztwt,

Ct
S(yt,yt−τ ) !

∑
f c1[yft − yft−τ ]+,

which represent the non-switching cost and the switching cost,
respectively. For the constraints, we define

gs
t,1(xt,yt, zt) = Λit(xt),

gl
t,1(xt,yt, zt) = τO(ε)/T − zt, ∆ft(xt, zt)

corresponding to the short-term (i.e., for every time slot)
constraint and the long-term constraint, respectively, for the
large time scale of all t ∈ Φ. Similarly, we then define the
following, for all k ∈ [t, t+ τ) of a given t ∈ Φ, with short-
term and long-term constraints:

gs
k,2(xt,yt, zt) = Λik(xt),

gl
k,2(xt,yt, zt) = xfkvftr − yftp/τ, ∆ftk(xfk−1, xfk, zt+τ ),

Next, we formulate the following subproblem, where we
add the new constraint (6) and relax xt and zt:

min
∑

t∈Φ Pt,1 !
∑

t∈Φ Ct
¬S(xt,yt, zt)

s.t. Ct
S(yt,yt−τ ) ≤ ζ1Ct

¬S(xt,yt, zt), ∀t ∈ Φ, (6)

gs
t,1(xt,yt, zt) & 0, ∀t ∈ Φ,

∑
t∈Φ gl

t,1(xt,yt, zt) & 0.

var. xft ∈ [0, 1], yft ∈ R≥0, zt ∈ [0, 1],

We also introduce the following subproblem for each inter-
val. That is, ∀t ∈ Φ, given yt and zt, we have

min
∑

k∈[t,t+τ) Pk,2 ! Ct
¬S(xt,yt, zt)

s.t. gs
k,2(xt,yt, zt) & 0, ∀k ∈ [t, t+ τ),

∑
k∈[t,t+τ) g

l
k,2(xt,yt, zt) & 0,

var. xft ∈ [0, 1],

where Pk,2 := xfkafk+(
∑

fc2yft + ztwt)/τ , ∀k∈ [t, t+τ).
Although the problems have long-term objectives, the one-

shot versions are Pt,1 := minPt,1, Pk,2 := minPk,2.
Algorithm Overview: We design Algorithm 1 as our major

algorithm, which invokes Algorithms 2 and 3, as in Fig. 10
and 11. Algorithm 1 controls resources via the “lazy switch”,
and uses Algorithm 2 for both inner and outer “online learn-
ing”. Algorithm 3 rounds fractional decisions to integers.

A. Lazy Switch with Multi-Layer Online Learning

Algorithm 1: Algorithm 1 postpones the switch operation
that changes the amount of the resources (e.g., the number of
virtual machines) until the cumulative non-switching cost so
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Algorithm 1 Lazy Switch with Online Learning

1: Initialize t = t′ = 0; given ȳ−τ = ȳ0 = 0;
2: while t ∈ Φ do
3: if Ct′

S (ȳt′,ȳt′−τ) ≤
1
ζ0

∑
v∈Φ∩[t′,t)C

v
¬S(ȳv,x̄v,z̄v) then

4: Obtain ỹt, x̃t, z̃t+τ from Pt,1 via Algorithm 2;
5: Round ỹt to obtain ȳt;
6: If ȳt (= ȳt−τ , t′ = t;
7: end if
8: for k ∈ [t, t+ τ) do
9: Obtain x̃k from Pk,2(·, ȳt, z̃t+τ ) via Algorithm 2;

10: Round x̃k to get x̄k via Algorithm 3;
11: end for
12: z̄t+τ =1 if ∆ft(xt, ·) requires else round z̃t+τ ;
13: end while

far, including the telemetry overhead, the resource operational
cost, and the global model aggregation cost, exceeds a speci-
fied control parameter ζ0 times the switching cost of the most
recent switch operation. This comparison of switching cost vs.
non-switching cost is in Line 3. When switching is needed, our
algorithm seeks the potentially new control decisions in Line
4. These new decisions are subject to Constraint (6), so that the
switching cost, if the switching operation is to occur currently,
will not exceed another specified control parameter ζ1 times
the non-switching cost for the current time slot. Via ζ0 and ζ1
that control the “laziness” of the switch operations, Algorithm
1 proceeds “conservatively” while overcoming the blindness
to the varying inputs of the future in the online setting.

For each t ∈ Φ, Algorithm 1 obtains the control decisions
from the subproblem Pt,1. Note that we still need to satisfy
the long-term constraint

∑
t∈Φ gl

t,1(xt,yt, zt) & 0, which is
hard to do in the online setting as discussed in “Algorithmic
Challenges” previously. Therefore, instead of seeking to satisfy
it strictly, we allow it to be violated; but we will upper-
bound the cumulative violation with provable guarantees and
more importantly, will ensure that the time-averaged violation
will diminish as the length of the entire time horizon goes
to infinity. This is “online learning” as we will discuss, and
we call this per-interval online learning as the “outer” online
learning. The approach of lazy switch actually coordinates the
inner and the outer online learning via controlling the VM
instances for distributed learning.

For each interval k ∈ [t, t + τ), ∀t ∈ Φ, proposed Algo-
rithm 1 obtains the control decisions from the subproblem
Pk,2 in Line 9, where we face related long-term constraint∑

k∈[t,t+τ) g
l
k,2(xt,yt, zt) & 0. Analogously, we apply the

online learning idea, and we call this per-time-slot online
learning as the “inner” online learning. Although {∆ft} is
treated as long-term constraint, it is actually ensured by the
algorithm after being solved as shown in the analysis.

B. Online Learning under Long-Term Constraints

Algorithm 2: Algorithm 2 solves both Pt,1 and Pk,2 on the
fly by using a common framework of online learning. Note that
a convex optimization with the objective function

∑
vov(Ĩv),

the long-term constraint
∑

vg
l
v(Ĩv) & 0, and the short-term

constraints gs
v(Ĩv) & 0, ∀v (we call it “short-term”, as it is

Algorithm 2 Online Learning

// For Pt,1,It=(x$t,y
$
t ,zt)

$, ot=Pt,1, gs
t =gs

t,1, gl
t=gl

t,1;
// For Pk,2,Ik = xk, ok=Pk,2, gs

k=gs
k,2, gl

k=gl
k,2;

1: Initialize λ0 = 0, and set proper step sizes to α and µ;
2: for v do
3: Observe Ĩv , ov , and gl

v;
4: Update λv+1 by (8), and then solve Ĩv+1 from (7);
5: end for

Algorithm 3 Randomized Rounding, ∀t ∈ Φ

Input: ∀i,
∑

f x̃ftefi as an integer;
1: Determined: Υ←{}; Undetermined: Γi←{}, ∀i;
2: for i ∈N do
3: Γi!{f | efi = 1}\Υ; Σi!

∑
f x̃ftefi−

∑
f∈Υ x̄ftefi;

4: while True do
5: {x̄ft|f ∈ Γi}← DepRound(Σi, {x̃ft|f ∈ Γi});
6: if ∀i′, |Γi′ \Γi| ≥ Σi′ −

∑
f∈Γi′∩Γi

x̄ft then

Update Υ = Υ ∪ Γi, Γi ← {}, and break;
7: end while
8: end for

for every slot v individually) can be equivalently re-written
into the following convex-concave format:

min
Ĩv

maxλv

∑
v

(
ov(Ĩv) + λ$

v g
l
v(Ĩv)

)
, s.t., gs

v(Ĩv) & 0.

Here, all the decision variables are in the real domain, and

{λv ∈ R
dim(Ĩv)
≥0 } are the Lagrange multipliers. In the online

setting, we can only solve this problem by using the observable
inputs at each v as time goes, where v represents the time
slot. Towards that end, we consider the following function by
introducing the Lagrange multiplier:

Lv(Ĩ,λ) = ov(Ĩ) + λ$gl
v(Ĩ).

That is, we alternately minimize Lv(Ĩ,λv+1) with respect
to Ĩ with the given λv+1 and maximize Lv(Ĩv,λ) with
respect to λ with the given Ĩv . We can then achieve such an
alternate optimization through primal descent steps and dual
ascent steps iteratively over time. As the primal step, we solve
the following subproblem:

minI ∇ov(Ĩv)$(I − Ĩv) + λ$
v+1g

l
v(I) +

||I−Ĩv||
2

2α ,

s.t., gs
v+1(I) & 0, (7)

where α is a positive step size. The objective function here is
just an approximation to Lv(Ĩ,λv+1). As the dual step, we
update the Lagrange multiplier as follows:

λv+1 = [λv + µ∇gl
v(Ĩv)]

+, (8)

where the step size µ used here is also a positive constant.
We highlight two aspects. First, the objective function of the

problem (7) is not a standard gradient-based approximation to
Lv(Ĩ,λv+1), but rather a rectified approximation by introduc-

ing a carefully-designed “regularization” term ||I−Ĩv||
2

2α , in
order to facilitate our performance analysis as demonstrated
later. Second, the constraint of the problem (7) is changing
as time goes, while traditional online learning approaches
often only support the unchanged domains. Despite the step
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sizes set by following previous works [41, 42], we extend the
theoretical analysis to time-varying domains for our problem.

We clarify again the notations of Ĩv , ov and gl
v appearing

in Line 3 of Algorithm 2 (v = t for Pt,1 and v = k for Pk,2).
Specifically, for the problem Pt,1, they mean the following:

Ĩt = (x̃$
t , ỹ

$
t , z̃t)

$, ot = Pt,1(x̃t, ỹt, z̃t),

gl
t = (τO(ε)/T − z̃t, (∆ft(x̃t, z̃t))

$)$.

That is, in the round t (as in Line 2 of Algorithm 2) where
we will solve the solution for t + 1, we need to observe
(i) the existing solution that has already been produced by
Algorithm 2 for t, (ii) the objective function Pt,1, and (iii) the
corresponding constraint functions. These inputs are required
for constructing the auxiliary problem (7) as stated in Line
4 of Algorithm 2. Analogously, for the problem Pk,2, these
notations mean the following:

Ĩk = x̃k, ok = Pk,2(x̃k, ỹt, z̃t),

gl
k = (xfkvftr − ỹftp/τ,∆ftk(xfk−1, xfk, z̃t+τ ))

$,

with analogous interpretations as the above. Note that for k ∈
[t, t+ τ), ỹt and z̃t are given (as already determined at t).

C. Randomized Rounding with Preservation

Algorithm 3: Algorithm 3 rounds fractional decisions into
integers, which is invoked in Line 10 of Algorithm 1. Then,
Algorithm 3 invokes a randomized dependent rounding algo-
rithm in its Line 5, DepRound [43], as follows:

(v1, v2)→

{
(v1 +(1, v2 −(1), with probability $2

$1+$2

(v1 −(2, v2 +(2), with probability $1

$1+$2

,

where (1 = min{1 − v1, v2} and (2 = min{v1, 1 − v2}.
Given the sum Σi of some fractions {x̃ft|f ∈ Υi}, DepRound
rounds each fraction into an integer of either 0 or 1 such that
i) the sum of the integers after rounding is still Σi, and ii)
the expectation of every integer is actually the corresponding
fraction before rounding (i.e., E[x̄t] = x̃t).

To ensure
∑

f x̃ftefi, ∀i are all integers, we may need to
adapt the constant on the right-hand side of the constraint∑

f xftefi ≥ 1. That is, “1” is used for all i at first, and then
for some i, the constant is increased by 1 and x̃t needs to be
re-solved. As the maximum number of flows is limited and
each increment is at least one, the number of such increments
is also limited. We should mention here that the x̃t that makes∑

f x̃ftefi integral always exists upon such increasement.
In Algorithm 1 Line 5, ỹt is rounded “conventionally”, by

rounding it up to 1 with the probability of ỹft and rounding it
down to 0 with the probability of 1− ỹft. In Algorithm 1 Line

12, if ∆ft requires z̄t to be 1, then we set z̄t = 1; otherwise,
z̄t could set to either 0 or 1, where we will use conventional
rounding again to ensure E[z̄t] = z̃t, and also E[z̄t] ≥ z̃t.

IV. PERFORMANCE ANALYSIS

Preliminaries: We need some notations to present our
analysis. {x̄t, ȳt, z̄t} is the (integral) output of our proposed
online approach. {ỹt, x̃t, z̃t} is the (fractional) output of multi-
layer online learning. x̃t solved from Pt,1 is updated later by
solving Pk,2. Given ȳt and z̃t, {x̃(

t } is the optimal solution to∑
k∈[t,t+τ) Pk,2. Given ȳt, {x̃∗

t , z̃
∗
t } is the optimal solution to∑

t∈ΦPt,1. {x∗,y∗, z∗} is offline optimum.
Before presenting our theoretical results, we need to make

the following assumptions to facilitate the analysis:
Assumption 1: All domains used are bounded, and all of the

objectives (if derivable) have bounded gradients. The objective
and constraints for online learning are all convex.

Assumption 2: The optimum exists per slot and interval. The
changes in the long-term constraints are bounded.

Analysis Overview: We can interpret our theoretical results
as follows. For the problem, Theorems 2 and 4, and Lemma
1 are for objectives; Theorems 1, 3, and 5 are for constraints.
For the algorithms, Theorem 1 is for inner online learning;
Theorems 2 and 3 are for outer online learning; Lemma 1, and
Theorems 4 and 5 are for lazy switch with multi-layer online
learning, plus rounding. Theorem 4 is our major conclusion.

Theorem 1. Given ȳt, ∀t∈Φ, the violation of the long-term

constraint (1) for [t, t+τ) grows sub-linearly (γ′
t,0 < 1):

∀f, [E[Θft(x̄t, ȳft)]]+≤ [Θft(x̃t, ȳft)]+≤O(τγ
′

t,0).

Proof. See Section 4.1. Via inner online learning.

Theorem 2. Given ȳt, ∀t∈Φ, the regret of non-switching cost

over the entire time horizon T grows sub-linearly (γ1 < 1):
∑

t∈Φ

{
E[Ct

¬S(ȳt, x̃(
t , z̃t)]−C

t
¬S(ȳt, x̃∗

t , z̃
∗
t )
}
≤O(T γ1).

Proof. See Section 4.2. Via outer online learning.

Theorem 3. The violation of the long-term constraint (4) for

T (i.e., the model converges) grows sub-linearly (γ′
1 < 1):

E[
∑

t∈Φ z̄t] ≥
∑

t∈Φ z̃t ≥ O(ε)−O(T γ′

1).

Proof. See Section 4.3. Via outer online learning.

Lemma 1. The cumulative non-switching cost and the cumu-

lative switching cost satisfies the following inequality:
∑

t∈Φ Ct
S(ȳt, ȳt−τ ) ≤ γ′

2

∑
t∈Φ Ct

¬S(ȳt, x̃∗
t , z̃

∗
t ),

where γ′
2 is a constant. By letting γ2 = γ′

2(1+max{ζ1, 1/ζ0}),
we have P(x̃∗, ȳ, z̃∗) ≤ γ2P(x∗,y∗, z∗) = γ2P∗.

Proof. See Section 4.4. Via the lazy switch approach.

Theorem 4. The competitive ratio γ of our proposed approach

is shown through the following inequality:

E[P(x̄, ȳ, z̄)] ≤ {γ2P∗ +O
(
Ψτ + (T/τ)γ1

)
} ! γP∗,

where Ψτ , γ1 and γ2 are all constants, given T and τ .
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Proof. See Section 4.5. Via Theorem 2 and Lemma 1.

Theorem 5. {x̄t, ȳt, z̄t} satisfy the constraints (2) and (3).

Proof. See Section 4.6. Via expectation preservation.

A. Proof of Theorem 1

Proof. We show the result by first introducing a proposition:

Proposition 1. For the optimization with objective
∑

v ov(Ĩv)
and long-term constraint

∑
v gv(Ĩv) & 0, the main results

obtained by using online learning are shown as follows:
∑

v{ov(Ĩv)−ov(Ĩ
∗

v)}≤O(V α1), ||[
∑

v gv(Ĩv)]+||≤O(V α2),

where the variable Ĩv is the aggregation of all decisions over

a convex domain X̃ ⊆ R|Ĩ|; the overall scope is V ; α1 < 1,

α2 < 1 are constants; and {Ĩ
∗

v} are the dynamic optimums.

The details regarding such proposition for online learn-
ing are omitted, since they have been studied by the lit-
eratures before upon some simple assumptions (convex &
bounded) [41, 42, 44–46] just mentioned before.

We summary necessary assumptions as follows:
Assumption 1: ov has bounded gradient, i.e., ||∇ov(Ĩ)|| ≤

F, ∀Ĩ ∈ X̃ ; and gv(Ĩ) is bounded, i.e., ||gv(Ĩ)||≤G.
Assumption 2: There exists a constant ε′ > 0, and an interior

point Îv ∈ X̃ such that ∀v,gv(Îv) ≤ −ε′1.
Assumption 3: Slack constant ε′ satisfies: ε′ > V (g), where

the point-wise maximal variation of consecutive constraints is
V (g) := maxv max

Ĩ∈X̃ ||[gv+1(Ĩ)− gv(Ĩ)]
+||.

Assumption 1 bounds primal and dual gradients, which is
a very common assumption [47]. Assumption 2 is Slater’s
condition, which guarantees the existence of a bounded opti-
mal Lagrange multiplier. Assumption 3 implies that the slack
constant is larger than the maximal variation of the constraints,
requiring minu,v max

Ĩ∈X̃ [−gu,v(Ĩ)]+ is larger than V (g),

when feasible region defined by gv(Ĩ) & 0 is large enough,
or the trajectory of gv(Ĩ) is smooth enough.

Furthermore, given ȳt, ∀f, ||[Θft(x̃t, ȳft)]+|| ≤ O(τγ
′

t,0)
is obtained from Proposition 1, where γ′

t,0 is a constant and
γ′
t,0 < 1. We then have [E[Θft(x̄t, ȳft)]]+ = [Θft(x̃t, ȳft)]+,

since Θft is a linear function respect to {xft}.

B. Proof of Theorem 2

Proof. For Pt,1, let X̃ t be the domain just defined by Con-

straint (6) and gs
t,1. Note that x̄t is solved under X̃ t and {x̃(

t }
are the dynamic optimums. Then, for a minimum objective,
we have E[Ct

¬S(ȳt, x̃(
t , z̃t)] ≤ E[Ct

¬S(ȳt, x̃t, z̃t)], where ȳt

is given and z̃t is also solved from Pt,1. Then, the left
terms in Theorem 2 is actually less than the following term∑

t∈Φ

{
E[Ct

¬S(ȳt, x̃t, z̃t)]− Ct
¬S(ȳt, x̃∗

t , z̃
∗
t )
}

.
Via Proposition 1 for a series of Pt,1 over t ∈ Φ, we have
∑

t

{
E[Ct

¬S(ȳt, x̃t, z̃t)]−Ct
¬S(ȳt, x̃∗

t , z̃
∗
t )
}
≤

∑
t

{
E[Ct

¬S(ȳt, x̃t, z̃t)]−Ct
¬S(ȳt, x̃∗∗

t , z̃∗∗t )
}
≤O((T

τ
)γ1),

where γ1 < 1 is a constant; x̃∗
t and z̃∗t are both the dynamic

optimums over X̃ t; x̃
∗∗
t and z̃∗∗t are the dynamic optimums

over X̃ = ∪t∈ΦX̃ t. The first inequality sign holds due to the
optimum over a larger domain. The second inequality holds
due to the online learning over |Φ| = T/τ subproblems.
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C. Proof of Theorem 3

Proof. When deciding z̄t, there are two basic cases. i) z̄t is 1
when a large difference exists on consecutive telemetry data.
Then, z̄t = 1 ≥ z̃t. ii) z̄t could be either 0 or 1. Then, z̄t is
rounded upon z̃t (i.e., E[z̄t] = z̃t). By combining these two
cases, we have E[z̄t] ≥ z̃t, ∀t ∈ Φ. After that, we sum up this
inequality over T and have

∑
t∈Φ E[z̄t] ≥

∑
t∈Φ z̃t.

Since gl
t,1 = τO(ε)/T − z̃t is also the long-term constraint

of Pt,1 and z̃t is solved, by using Proposition 1 again, we then
have ||[

∑
t∈Φ gl

t,1]
+|| = ||[O(ε) −

∑
t∈Φ z̃t]+|| ≤ O(T γ′

1),
where γ′

1 is a constant and γ′
1 < 1. There are also two cases

here. In the first case, O(ε)−
∑

t∈Φ z̃t ≤ 0. Therefore, we have∑
t∈Φ z̃t ≥ O(ε), which directly obeys the Corollary needed

to be proved. In the second case, O(ε)−
∑

t∈Φ z̃t > 0. Then,

we have ||O(ε)−
∑

t∈Φ z̃t|| ≤ O(T γ′

1). Although
∑

t∈Φ z̃t is
less than O(ε) in this case, the distance between them is not
large (i.e., we have the following result

∑
t∈Φ z̃t ≥ O(ε) −

O(T γ′

1)), which ensures the number of global aggregations.
O(ε) is larger than O(T γ′

1) since the federated learning
often contains hundreds of global model aggregations. O(T γ′

1)
is actually O((T/τ)γ

′

1). And gl
t,1 could be scaled for a desired

value, since
∑

t∈Φ gl
t,1/M ≤ 0 is equivalent to

∑
t∈Φ gl

t,1 ≤ 0
for optimization. M is a large number.

D. Proof of Lemma 1

Proof. Given ȳt and z̃t, ∀t ∈ Φ, constraint gs
k,2(xt, ȳt, z̃t)

decides a series of domains X̃ k ⊆ X̃ , ∀k ∈ [t, t+ τ). Then
∑

k∈[t,t+τ) Pk,2(x̃(
t ) ≥

∑
k∈[t,t+τ) Pk,2(x̃(∗

t ),
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where x̃(∗
t is dynamic optimums over X̃ , and the previous

inequality holds since X̃ is a larger domain. We have
∑

k{Pk,2(x̃t)− Pk,2(x̃(
t )} ≤

∑
k{Pk,2(x̃t)− Pk,2(x̃(∗

t )}.

{x̃t} is obtained by a series of Pk,2 over k ∈ [t, t+ τ) via
online learning. Then, by using Proposition 1, the right part of
the previous inequality is bounded by O(τγt,0), where γt,0 < 1
is a constant. Then, given ȳt, we consider the difference for
Pk,2(x̃t, z̃t) and Pk,2(x̃t, z̄t) (i.e., (z̄t−z̃t)wt). Since the value
of z̄t is either 0 or 1, (z̄t − z̃t)wt ≤ (1 − z̃t)wt. Since z̃t is
solved by the outer online learning, (1 − z̃t)wt is a constant
Ξ. For E[Ct

¬S(ȳt, x̄t, z̄t)]−Ct
¬S(ȳt, x̃(

t , z̃t), it is ≤ O(τγt,0),
where E[x̄t] = x̃t is ensured by rounding.

Here, we introduce some new notations:

(Cv
S)1 = Cv

S(ȳt, x̃
∗
t , z̃

∗
t ), (Cv

¬S)1 = Cv
¬S(ȳt, x̃

∗
t , z̃

∗
t ),

(Cv
S)2 = Cv

S(y
∗
t ,x

∗
t , z

∗
t ), (Cv

¬S)2 = Cv
¬S(y

∗
t ,x

∗
t , z

∗
t ).

For the switching cost incurred between two consecutive
switches (i.e., ∀tu and ∀tu+1 ∈ Φ, ∀u : 1 ≤ u ≤ u′), the non-
switching cost is at least ζ0 times the switching cost, as shown
in the algorithm, where u′ is the maximum index recorded for
switching. Further, the potential switching cost in [tu′, t] is at
most ζ1 times the non-switching cost. That is, ∀t∈Φ,

∑t
v=0(C

v
S)1 =

∑
u≤u′

∑tu+1−1
v=tu

(Cv
S)1 +

∑t
v=tu′

(Cv
S)1

≤
∑

u≤u′

{
1
ζ0

∑tu+1−1
v=tu

(Cv
¬S)1 + 0

}
+
{
ζ1(C

tu′

¬S )1 + 0
}

≤ max{ζ1, 1/ζ0}
∑t

v=0(C
v
¬S)1,

where we omit the related decisions for simplicity. And, after
defining γ′

2 = maxv∈Φ
maxCv

¬S

minCv
¬S

over the domain of the integer

decisions, we have Cv
¬S(ȳt, x̃∗

t , z̃
∗
t ) ≤ γ′

2C
v
¬S(y

∗
t ,x

∗
t , z

∗
t ). By

summing up the previous inequality over T, ∀t ∈ Φ, we have
the following inequality for the optimums of reals and integers:

∑t
v=0 C

v
¬S(ȳt, x̃∗

t , z̃
∗
t ) ≤ γ′

2

∑t
v=0 C

v
¬S(y

∗
t ,x

∗
t , z

∗
t ).

The overall cost over the entire time horizon is

P(x̃∗, ȳ, z̃∗) ≤ (1+max{ζ1, 1/ζ0})
∑

t∈ΦC
t
¬S(x̃

∗, ȳ, z̃∗),

≤ γ′
2(1+max{ζ1, 1/ζ0})

∑
t∈Φ{(C

t
¬S)2 + (Ct

S)2} ! γ2P∗,

where γ2 = γ′
2(1+max{ζ1, 1/ζ0}) forms the conclusion.

E. Proof of Theorem 4

Proof. We complete this theorem by introducing the following
chain of derivations, which combines previous results

E[P(x̄, ȳ, z̄)]=E[
∑

t∈Φ

{
Ct
¬S(ȳt,x̄t,z̄t)+Ct

S(ȳt, ȳt−τ)
}
]

≤ E[
∑

t∈Φ

{
Ct

¬S(ȳt, x̃(
t , z̃t)+O(τγt,0)+Ct

S(ȳt, ȳt−τ )
}
]

≤
∑

t∈Φ

{
Ct
¬S(ȳt,x̃∗

t ,z̃
∗
t )+Ct

S(ȳt,ȳt−τ)+O(τγt,0)
}
+O(T γ1)

≤ {γ2P∗ +O
(
Ψτ + (T/τ)γ1

)
} ! γP∗,

where the first inequality sign holds because of Lemma 1; the
second inequality holds by applying Theorem 2; and the third
inequality holds based on the results also from Lemma 1. We
define Ψτ =

∑
t∈Φ O(τγt,0). We should mentioned here that

Ψτ and γ are both constants, given T and τ .

TABLE III: Environments and Data Traces
Environment/Trace Description

Mininet [26] 4 Sites, Each with 20 Switches
Flow [27] Flow Rates 0∼12 Gbps, 7 Days

Telemetry [2] INT Packets over Flow Rate as 20
Instance [50] 0.093$/hour for AWS EC2 “m3.medium”

Learning [12, 28] LSTM for Flow, SVM for MNIST [30]

F. Proof of Theorem 5

Proof. {∆ft} is directly ensured by proposed algorithm after
being solved. For constraint {Λit}, line 6 of Algorithm
3 enures that, those undetermined variables always form a
feasible solution of DepRound. That is, ∀i ∈ N , the sum of
those undetermined variables is not larger than their amount.
As in Fig. 13, the number of undetermined flows |S| should be
larger than the number of undetermined telemetry invoker |E|,
in case flows are sufficient for telemetry decision. DepRound
can let some of the variables be 1 to ensure the unchanged
sum and E[x̄t] = x̃t. Such condition is similar to the Hall
Theorem [48] for determining whether a matching exists in a
bipartite graph [49] via repeatedly checking the numbers of
the vertexes and the number of their neighbors.

V. EXPERIMENTAL EVALUATIONS

A. Evaluation Settings

We summarize the environment and the data in Table 3.
Sites, Flows, and INT: We use Mininet [26] to construct

4 sites, each with 20 switches connected via a fat tree [37].
Each fat tree has 4 pods and 4 aggregation switches, where
each pod has 4 top-of-rack switches. We obtain the flow trace
from [27], with the flow rates of 0∼12 Gbps, where the trace
is recorded every quarter (i.e., 15 minutes) through 7 days.
We use this trace to assign 8 flows to each site, with 4 flows
traveling from the first two pods to the last and 4 other flows
in the opposite direction, as shown in Fig. 14. We adopt the
implementation of “INT-Path” [2] for INT. We focus on the
queue length of each switch’s packet queue as our INT data.
Aligned with INT-Path, where 50 packets are used to carry
INT data for a flow of 1000 packets per second, we set the
ratio of INT packets over the flow rate as 20 [2]. The INT
packet has a field “int lists”, where each element in this list
corresponds to a switch. The data collected from a switch in-
cluds “ingress port”, “egress port”, “swid”, “deq timedelta”,
“deq qdepth” and time stamps, where “deq timedelta” records
the time waiting in the queue and “deq qdepth” records the
queue length of the switch.

Federated Learning: We conduct the federated learning
upon the INT data for queue occupancy anomaly detection.
That is, given the queue length time series data of a switch,
we train a Long Short-Term Memory (LSTM) model to detect
the existence and the number of anomalies in the queue length
variations. To create the ground truth, we choose one flow and
add noise to its flow rate to create queue length anomalies;
then, we extract the INT data of queue length from all flows
for training and detection. We randomly choose 30 out of the
total 672 quarters to add such noise, where the maximum noise
value matches the maximum flow rate in our trace. We train
the LSTM model via Tensorflow Keras [28] and Tensorflow
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Federated [29]. And the settings for the LSTM are the same as
in Section II-A (i.e., mentioned in our preliminary case study).
We highlight that the anomaly detection using INT data is
just a case study here; further exploitations of INT data via
federated learning can be indeed studied in the future.

Besides anomaly detection for the switch queue occupancy,
we additionally use the MNIST [30] data, which consist of 70k
images of handwritten digits, to train a least-square Support
Vector Machine (SVM) model [12] via our federated learning
to detect whether the single digit in an image is even or odd.
Note that the visualization derived from INT is similar to the
images in the MNIST dataset, and we use MNIST for digit
recognition to simulate the learning task of using INT for
network congestion pattern detection, as discussed later.

More specifically, the loss of the SVM (with the norm for
smoothing) is {λ ∗ pow(linalg.norm(w), 2) + val/len}/2,
where λ is set to 0.1 as the learning rate; linalg is a function
of the Python library “Numpy”; w is a vector indicating the
parameter of the SVM; len is the size of the samples; and val
is the sum of pow(max(0, 1−yi ∗np.inner(w, xi)), 2). Here,
np.inner calculates the inner product; xi is the feature of the
sample i; and yi is the label of the sample i. For LSTM, there
are three hidden layers. We use the “Dropout” method with
the parameter 0.2 as regularization. The activation mode after
the output layer is linear, and the model is compiled with the
“rmsprop” optimizer. We use “model.fit” for training, whose
inputs are the features and labels of the samples, the epoch
size, the batch size, and the “validation split” value of 0.5.

Resource Cost: The operational cost for a virtual machine
is set to 0.093$/hour, which is the price of an AWS EC2 virtual
machine “m3.medium” with 1 vCPU and 3.75-GB memory
[50]. The unit switching cost is set as doubling the operational
cost. Since INT is on a per minute basis and a virtual machine
can often last for tens of minutes, we specify that a virtual
machine lasts for two quarters (i.e., 1 minute is one time slot
and 30 time slots constitute an interval). Regarding the weights
associated to the different cost terms in the objective, we set
these weights such that the weighted costs fall into the same
order of magnitude in terms of their mathematical values.

Algorithms: We denote our proposed approach that uses
lazy switch and multi-layer online learning (via AMPL [51]
and IPOPT [52] to solve the subproblems) as MLO in the
evaluation results. We define a “mod” file containing the
problem formulation via AMPL. Then, we use the Python
package “amplpy” to import the “mod” files (one file per
subproblem), set the solver as IPOPT, and use the DataFrame
API of AMPL to combine the model formulation with the
input data that dynamically arrive at runtime. After repetitively
calling “ampl.solve()”, we obtaine the results in an online
manner. We also compare different combinations of alternative
algorithms1. For determining the number of virtual machines
per time slot, the algorithms we use are as follows:

• N -∗ uses a fixed number of virtual machines for the
entire time horizon. We set the default number of virtual
machines to 7, and vary it in our evaluations.

1Here, the mark ∗ is a wildcard to match different algorithms. The notation
“*(n)” shows the parameters (i.e., we run the algorithm with its algorithmic
parameter being set as the value n in the experiments).

• O-∗ uses lazy switch and outer online learning. We use
the parameters of ζ0 = 2 and ζ1 = 0.5, derived from [53],
as the inputs in our experiments.

For determining whether to conduct INT per time slot or at
a different frequency, the algorithms are as follows:

• ∗-A triggers INT in every minute with a given ratio of
INT packets to the flow rate. This ratio is 20.

• ∗-F triggers INT at a fixed frequency (i.e., every three
minutes), unless data of adjacent time slots show adequate
difference where INT is done.

• ∗-O uses inner online learning for INT within an interval,
with the number of virtual machines given by the other
algorithm described in the above. We currently use the
parameters of µ = 0.15 and α = 2.

B. Evaluation Results

Fig. 15 first shows the total cost per interval. MLO always
performs the best, reducing the total cost by 34% on average
compared to others. Compared to those without online learn-
ing, MLO reduces at least 60% total cost. The fluctuations of
the total cost mainly depend on the dynamic flow rates which
impact the telemetry overhead and further impact the cost of
the resources for the federated learning.

Note that Fig. 15 and Fig. 3 (as shown previously) convey
different information. The left subfigure in Fig. 3 shows the
fluctuations of the (normalized) flow rates; the subfigure in
the middle of Fig. 3 shows the (normalized) flow rates with
randomly-inserted anomalous values; the right subfigure in
Fig. 3 shows the (normalized) queue lengths measured by
telemetry for the switches which the flows with anomalous
rates pass through. In contrast, Fig. 15 shows the “system
cost” in each time slot incurred by different control algorithms,
where the system cost, as defined in Section II-B, includes
telemetry overhead; operational cost and switching cost of
resources for telemetry data processing and local model train-
ing; and traffic of global model aggregations as in federated
learning. The goal of this paper is to optimize the cumulative
system cost in the long run. In this sense, Fig. 3 shows
information about the input, and Fig. 15 exhibits the output.
Another difference is that Fig. 3 only shows flow traces in part
of the first day, and Fig. 15 shows the system cost over the
entire time horizon of 7 days.

Fig. 16(a) depicts how telemetry and resource costs impact
the total cost. MLO always performs the best, decreasing the
overall cost by 15.8%∼57.9% compared to other approaches.
This figure also illustrates, for MLO, the switching cost using
the blue line and the corresponding operational cost with
green line. MLO dynamically changes the number of virtual
machines and triggers INT to minimize the cost.

Fig. 16(b) shows the training results of federated learning
upon INT data. The top figure shows the ground-truth nor-
malized flow rate, where the peaks are our added noises. For
queue length, we conduct federated learning to train an LSTM
across four sites (with normal flows from other sites), and
calculate the squared error in the bottom figure. The peaks
in errors imply that we can indeed detect anomalies in queue
length (e.g., for a threshold 0.05). The count of true positive
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Fig. 17: Cumulative Total Cost of Different Approaches

(TP) is 28 and the count of false positive is 23. The ratio of
true positive to all noises is 28/30=93%; and the ratio of false
positive to all data points is 23/672=3%.

Fig. 16(c) shows the results regarding both true positive and
false positive under various thresholds. When the threshold is
large, fewer noises are detected. The ratio of true positive to
all noises (average for multiple trials) is 77%, and the ratio
of false positive to all data points is less than 3%. To balance
the detection and false alarms, one may choose to pre-train
the model upon a small proportion of the datasets.

Fig. 17 exhibits the cumulative total cost over the entire time
horizon for different approaches. In Fig. 17(a), with the growth
of flow rates, the cumulative cost increases. To ensure the ratio
of INT packets over the flow’s, the growth of the flow rate
leads to the growth of the INT cost, which also demands more
resources for federated learning. The average cost reduction
by MLO compared to others is 68.7%. In Fig. 17(b), with the
growth of INT overhead, the cumulative cost increases. Since
telemetry overhead is relatively small compared to that of O-
F , the average cost reduction of MLO is only 8%, without
increasing the flow rates. Note that O-F uses outer online
learning for virtual machine resource control and conducts
telemetry at a fixed frequency. In Fig. 17(c), with the growth of
the operational cost, the cumulative cost increases. Compared
to N -O, the cost reduction of MLO is 7%∼1.93x. Note that
N -O uses inner online learning and a fixed number of virtual
machines. In Fig. 17(d), with the growth of the global model
aggregation cost, the cumulative cost increases. The average
cost reduction of MLO compared to others is 49.6%.

Fig. 18 visualizes the queue lengths in a two-dimensional
image, and a sample image from the MNIST dataset. In
the left subfigure, the horizontal and the vertical axes are
“Switch IDs”. The element at the a-th row and the b-th column
of the matrix represents the maximum queue length of the
switches “en route” recorded by the INT packets traveling
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Fig. 19: Results of Our Approach upon MNIST Data

from Switch a to Switch b within a specified time period.
We normalize these maximum queue lengths, and consider
them as indicators for congestion—the higher the maximum
queue length is, the more congested the network path is.
This is similar to the MNIST data in the right subfigure. For
example, the left subfigure contains the English letter “U” and
the right subfigure contains the number “4”. This indicates
that, similar to digit recognition, using the INT-based two-
dimensional images as the features and the specified network
congestion patterns (unnecessarily letters or numbers) as the
labels, we can adopt our proposed algorithms to train models
for detecting network congestion patterns, or more broadly,
for the scenarios of network diagnosis and other related cases.

Fig. 19 adopts the MNIST data to train SVMs for digit
recognition under MLO to simulate the task of training SVMs
for network congestion pattern detection. The learning task
here is to distinguish even and odd numbers. We train multiple
SVMs across 4, 8, and 12 participants (i.e., sites in our case),
respectively, in federated learning and all of the trained models
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converge. The data samples of MNIST are randomly divided
among the sites, as mentioned in the implementation [12]. It
also visualizes that the average execution time incurred by our
proposed approach is only 0.13s, which is totally acceptable.
Note that this is using MNIST for digit recognition to simulate
INT for congestion pattern detection, and does not mean in
reality we should use MNIST data to replace INT data; in
reality, we should still use INT data, and here we choose to
use the MNIST data to simulate the INT data because we
lack sufficient amounts of INT data for this specific evaluation
scenario (although we use real-world flow data for the anomaly
detection scenario). Also, the MNIST evaluations train SVMs
to demonstrate that our proposed algorithms also work with
convex loss functions, in addition to non-convex loss functions.

VI. RELATED WORK

We summarize prior research in three categories, and high-
light their drawbacks compared to our work, respectively.

A. Optimization for In-Band Network Telemetry

In-Band Network Telemetry (INT) was comprehensively
researched in research [3, 54]. INT [38] was a telemetry
application using P4, which obtained the device-internal states
without disturbing the controller. LightGuardian [1] first con-
ducted a full-visibility and lightweight INT system using a
small constant-sized data structure. PINT [14] was designed
as an INT framework that bounded the amount of informa-
tion added to each packet. NetView [15] supported various
telemetry applications and telemetry frequencies on demand,
monitoring each device via sending dedicated probes [54].
INT-path [2] decoupled the system into a routing mechanism
and a routing path generation policy for embedding source
routing into INT probes with minimum paths.

These works consider the implementation and the optimiza-
tion for INT, but fail to consider higher-level applications or
complicated machine learning using data from INT.

B. Optimization for Federated Learning

Some works [17, 18, 55] discussed the theoretically analysis
for federated learning. Wang et al. [12] proposed a control
algorithm that determined the best trade-off between local
updates and global parameter aggregation under a given re-
source budget. The network-aware optimization of distributed
learning was proposed [19] for the fog computing, where
devices optimally shared local data processing and sent their
learnt parameters to a server for periodic aggregation. Zhou
et al. [20] investigated how to coordinate the edge and the
cloud to optimize the system-wide cost efficiency of federated
learning. Guo et al. [21] adjusted the parameters for learning,
that minimized the overall cost. Lots of other existing papers
focus on the practical design and implementation of federated
learning systems [11], producing machine learning models
without theoretically characterizing the convergence aspect.

These works either focus on the optimization of federated
learning but fail to consider sources and training data collec-
tion, especially obtained frequently from a faster time scale
(e.g., INT), or focus on system design and implementation,
being unable to incorporate the learning convergence.

C. Online Provisioning over Clusters

Hung et al. [7] studied related management of multiple
resources over wide area network. Zhou et al. [22] proposed
a learning-driven cloud resource provisioning for the content
providers. SmartFCT [24] employed the learning coupled with
software defined networking to improve the power efficiency.
Zhao et al. [25] found that the completion time for flows
could be further optimized considering the destinations as an
additional dimension via reducer placement. Clarinet [56] con-
ducted the analytics over wide area network and dynamically
adopt the best one with the minimum response time. Yuan
et al. [10] treated the critical communication bottleneck.

These works optimize various applications [6, 57, 58] and
conduct the resource management for clusters, and do not
explore applications such as federated learning or INT.

VII. CONCLUSION

Federated learning and INT have been often investigated
separately. In this paper, we bridge this gap by studying the
scenario of conducting federated learning across sites while
provisioning resources and scheduling INT to collect training
data in each site. We formulate a non-linear integer program
to optimize the long-term total cost of the system, and solve
it on the fly by the laziness-based switch control approach
with multi-layer online learning and randomized rounding. We
prove a diverse set of performance guarantees rigorously, and
use trace-driven experiments to validate that our approach can
reduce the total cost significantly and can train models to solve
real problems with high accuracy.

REFERENCES

[1] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng, R. Wang,
H. Wu, Y. Wang et al., “Lightguardian: A full-visibility, lightweight,
in-band telemetry system using sketchlets.” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2021, pp. 991–
1010.

[2] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang,
B. Liu, and Y. Liu, “Int-path: Towards optimal path planning for
in-band network-wide telemetry,” in IEEE Conference on Computer
Communications (INFOCOM), 2019, pp. 487–495.

[3] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, and N. Li, “In-
band network telemetry: a survey,” Elsevier Computer Networks (CN),
vol. 186, pp. 1–28, 2021.

[4] Z. Liu, J. Bi, Y. Zhou, Y. Wang, and Y. Lin, “Netvision: Towards network
telemetry as a service,” in IEEE International Conference on Network
Protocols (ICNP), 2018, pp. 247–248.

[5] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. A. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z. Lin, and V. Kurien, “Pingmesh: A large-
scale system for data center network latency measurement and analysis,”
in ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), 2015, pp. 139–
152.

[6] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
ACM Symposium on Operating Systems Principles (SOSP), 2017, pp.
153–167.

[7] C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and M. Zhang,
“Wide-area analytics with multiple resources,” in ACM European Con-
ference on Computer Systems (EuroSys), 2018, pp. 1–16.

[8] W. House, “Consumer data privacy in a networked world: A framework
for protecting privacy and promoting innovation in the global digital
economy,” in White House, Washington, DC, 2012, pp. 1–62.

[9] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and regulatory



IEEE/ACM TRANSACTIONS ON NETWORKING, 2023 14

constraints,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2015, pp. 323–336.

[10] J. Yuan, M. Xu, X. Ma, A. Zhou, X. Liu, and S. Wang, “Hierarchical
federated learning through lan-wan orchestration,” arXiv:2010.11612,
pp. 1–11, 2020.

[11] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
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