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Abstract

Using resolved optical stellar photometry from the Panchromatic Hubble Andromeda Treasury Triangulum
Extended Region survey, we measured the star formation history near the position of 85 supernova remnants
(SNRs) in M33. We constrained the progenitor masses for 60 of these SNRs, finding that the remaining 25
remnants had no local star formation in the last 56Myr, consistent with core-collapse supernovae, making them
potential Type Ia candidates. We then infer a progenitor mass distribution from the age distribution, assuming
single star evolution. We find that the progenitor mass distribution is consistent with being drawn from a power law
with an index of 2.9 1.0

1.2- -
+ . Additionally, we infer a minimum progenitor mass of 7.1 0.2

0.1
-
+ Me from this sample,

consistent with several previous studies, providing further evidence that stars with ages older than the lifetimes of
single 8Me stars are producing supernovae.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Stellar evolution (1599); Massive stars (732); Stellar
populations (1622)
Supporting material: figure set, machine-readable tables

1. Introduction

Stellar evolution theory predicts that stars with a mass above
∼8 Me will end their lives as core-collapse supernovae
(CCSNe; Woosley et al. 2002). The precise value of this lower
limit has been the subject of multiple studies, some of which
have found that red supergiants with masses as low as 7 Me
can be progenitors for Type IIP SNe (Smartt et al. 2009; Fraser
et al. 2011; Jennings et al. 2012).

In addition to the uncertainty surrounding the lower mass limit
of supernova (SN) progenitors, there has been growing evidence
that not all stars with masses >8 Me experience a canonical
CCSNe (e.g., Smartt et al. 2009; Van Dyk 2017). For example,
stellar evolution theory suggests that there is an upper mass cutoff
of ∼30 Me for Type II SNe (Massey et al. 2017). Observations,
however, point to a new smaller upper limit of 17–19 Me
(Smartt 2015). This discrepancy, along with the lack of high-mass
progenitors in observations, was dubbed “the red supergiant
problem” by Smartt et al. (2009), who first argued that the
discrepancy is statistically significant. More recently, Davies &
Beasor (2020) suggested that some of the discrepancy can be
attributed to the steepness of the luminosity distribution of red
supergiants as well as the small sample size. They suggest the
problem may not be as significant as previously believed, but also
find a similar upper limit of 19 2

4
-
+ Me. Above this mass limit,

some stars may instead collapse straight into a black hole (Pejcha
& Thompson 2015). These “direct collapse” systems would not
produce a visible SN or leave behind a visible remnant. The first
observed black hole formation candidate occurred in the

star-forming galaxy NGC 6946 (Gerke et al. 2015; Adams
et al. 2017). Murphy et al. (2018) and Koplitz et al. (2021) used
the local stellar populations of the vanishing star to determine that
the progenitor was likely ∼10.6Myr old, which a single star
progenitor points to an initial mass of ∼17 Me.
Further progress on understanding the fates of massive stars

requires increasing the number of CCSNe progenitors with
mass constraints and expanding the measured distribution of
progenitor masses to wider ranges of galaxy properties. The
traditional method for determining the mass of SNe progenitors
is by directly imaging the progenitor stars (e.g., Smartt et al.
2003, 2004; Van Dyk et al. 2003; Li et al. 2006; Gal-Yam
et al. 2007; Kilpatrick et al. 2021). This technique requires high
resolution (better than ∼0 1) images of the SN site both before
and after the event, which involves a large amount of
serendipity. The difficult requirement of having spatially
resolved photometry of the location before the explosion has
resulted in only 34 SNe having their progenitor masses
determined by this method, along with 40 upper limits
constrained (Van Dyk 2017; Kilpatrick & Foley 2018; Van
Dyk et al. 2018; O’Neill et al. 2019; Kilpatrick et al. 2021;
Tinyanont et al. 2022; Vazquez et al. 2022). While the number
of cataloged SNe has increased in recent years (e.g.,
Guillochon et al. 2017; Holoien et al. 2019), few of these
SNe have had their progenitor constrained due to insufficient
precursor imaging.
An alternative method, which does not require preexplosion

images, uses an age-dating technique of the stellar populations
surrounding an SN event (Gogarten et al. 2009; Murphy et al.
2011). This technique leverages the stellar populations
surrounding an SN to measure the local star formation history
(SFH) by finding the model age distribution that best fits the
color–magnitude diagram (CMD) of the resolved local stars.
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By assuming the progenitor star belongs to the median
population near the event, we are able to place statistical
constraints on the age of the SN progenitor. We can then infer
the most likely mass of the progenitor by assuming that it was
the most massive star that survives to that age according to the
models.

This age-dating technique was shown to be a reliable way to
infer progenitor ages for distances out to ∼8 Mpc (Murphy
et al. 2011). Assuming only stars with masses 7Me become
CCSNe requires photometry that is sensitive to populations as
old as 56Myr (Girardi et al. 2002). Because the technique does
not require precursor imaging, it can be applied to any location
where an SN has occurred in the recent past, including any
known SN remnants (SNRs). As a result, several previous
works have shown that most young stars within 50 pc of an SN
event are associated with the progenitor (Bastian & Good-
win 2006; Badenes et al. 2009; Gogarten et al. 2009; Jennings
et al. 2012; Williams et al. 2014). For example, this technique
was used to constrain the masses of SNR progenitors in the
local star-forming galaxies M31 (Jennings et al. 2012), NGC
6946 (Koplitz et al. 2021), as well as the Magellanic Clouds
(Badenes et al. 2009; Auchettl et al. 2019). This technique has
also been used to constrain the mass of observed CCSNe
(Williams et al. 2014, 2018; Díaz-Rodríguez et al. 2021;
Koplitz et al. 2021). Progenitor masses in M83 have also been
constrained, including one with a most likely mass of 59 Me
whose errors exclude ages older than 8Myr, the highest mass
progenitor inferred from the technique to date (Williams
et al. 2019).

M33, or the Triangulum Galaxy, is an excellent target for our
technique. It is nearby, relatively face on (i= 56°; Zaritsky
et al. 1989), and is known to host over 200 SNRs (Long et al.
2010; Lee & Lee 2014a). Jennings et al. (2014), hereafter J14,
have already applied this technique to 33 SNRs in M33, finding
that the distribution was well fit by power-law distributions
with indices that were significantly steeper than a standard
Salpeter initial mass function power-law index of −2.35
(Salpeter 1955). However, their analysis in M33 was limited by
the heterogeneous set of archival Hubble Space Telescope
(HST) images available. This heterogeneous coverage resulted
in inconsistent filter coverage and photometric depths between
observations containing SNRs. Furthermore, they did not fit a
separate field star component to their ages, which could have
resulted in age biases. Here, we follow up on their work using
the deep, uniform coverage provided by the Panchromatic
Hubble Andromeda Treasury Triangulum Extended Region
(PHATTER) survey (Williams et al. 2021) as well as updated
fitting techniques.

The analysis we present here takes advantage of the work by
Díaz-Rodríguez et al. (2018), hereafter DR18, who developed a
Bayesian hierarchical analysis capable of constraining the
progenitor mass distribution index with an improved method
for accounting for background effects as well as the minimum
and maximum mass at which a star is able to undergo a CCSNe
event from a set of SFHs. They reanalyzed the SFHs from J14
as well as those from Lewis et al. (2015), which correspond to
likely SNRs from Lee & Lee (2014b), finding a progenitor
mass index closer to, but not consistent with, a Salpeter index
( 2.96 0.25

0.45- -
+ ). This combined M31 and M33 distribution

pointed to a minimum mass of ∼7.3 Me and a maximum
mass of >59Me. However, they found the SFHs from M31 led
to a Salpeter progenitor mass distribution index ( 2.35 0.48

0.36- -
+ )

with a minimum mass of 6.5 Me and a maximum mass of
>46 Me.
In this paper, we take an updated look at the ages of SNR

progenitors in M33 using resolved stellar photometry from the
PHATTER survey. Our larger sample and more homogeneous
photometry catalog allow us to compare different fitting
methods and quantify the impact these changes have on the
age and mass results. Additionally, we compare our custom
SNR-centered SFHs to those measured by Lazzarini et al.
(2022) in grids, allowing us to determine whether grid SFHs
are sufficient for inferring a progenitor age and mass. The rest
of the paper is outlined as follows: Section 2 details our SNR
source catalog, as well as how our SFHs were measured.
Section 3 presents our progenitor age and mass estimates. In
Section 4, we discuss our constraint on the lower mass limit for
CCSNe as well as the results of Kolmogorov–Smirnov (KS)
tests on our observed distribution, then compare our results to
similar studies in the literature. Finally, Section 5 provides a
short summary of our results. Throughout this paper, we
assume a distance to M33 of 859 kpc (de Grijs et al. 2017).

2. Data and Analysis

Our technique has two main data requirements. First, we
need to know the locations of past SN activity. Second, we
require resolved stellar photometry of the current populations
within 50 pc of the SNe, as stars tend to remain spatially
correlated within about 100 pc of their siblings for about
100Myr, even if the cluster is not gravitationally bound
(Bastian & Goodwin 2006). Using these, we can measure the
star formation rate as a function of lookback time, known as
the SFH, at each SNR location. The SFH provides the age
distribution of the stars near each SN. We then apply this age
distribution to constrain the age and mass of the progenitor star.
We detail each of these steps below.

2.1. SNR Locations

For the locations of past SN activity in M33, we take the
locations of SNRs from the catalogs of Long et al. (2010) and
Lee & Lee (2014a), hereafter L10 and LL14, respectively. L10
identified candidates based on their X-ray spectrum as well as
having [S II]:Hα ratios �0.4. The candidates in LL14 were
identified based on their lack of blue stars, remnant morph-
ology, and [S II]:Hα ratios �0.4. Of the 137 SNR candidates
in L10, 120 are included in LL14ʼs catalog of 199 candidates.
The remaining 17 locations were classified as likely superb-
ubbles or H II regions, leading LL14 to exclude them from their
final catalog. Of these 17 potential SNRs, four (L10-043, L10-
050, L10-079, L10-098) are within the PHATTER survey
footprint. We include these four locations in our catalog since
they may be SNRs located within larger star-forming
complexes. Of the 199 candidates from LL14, 81 reside in
the PHATTER footprint, leading to our catalog of 85 SNR
candidates.
In addition to the SNR locations, we produced two control

catalogs of locations not associated with SNRs. The first
sample is 85 locations randomly distributed within the
PHATTER footprint. The second sample is 2500 random
draws of the grid SFHs from Lazzarini et al. (2022), which do
not contain an SNR. Differences between the random and SNR
samples provide additional evidence that the stellar populations
near the SNRs are likely related to the progenitors, and not
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chance spatial coincidences of young stars (see Section 4.3 for
details).

2.2. Photometry

Once we had determined the historical SN locations, the
second requirement was resolved stellar photometry at those
locations. This photometry was obtained from the PHATTER
survey (Williams et al. 2021). The survey measured resolved
stellar photometry for 22 million stars within M33 in optical
(Advanced Camera for Surveys F475W and F814W), near-
ultraviolet (Wide Field Camera 3 (WFC3) F275W and
F336W), and near-infrared (WFC3 F110W and F160W) bands.
Our photometry is derived from the optical images (F475W
and F814W) of the PHATTER survey, rather than measuring
thephotometry in all six bands simultaneously. We took
samples from this photometry catalog for each SNR location
and each control location, with the samples consisting of all of
the stars within 50 pc (12″) from the SNR or random position.
We also collected samples of the widespread young popula-
tions surrounding each SNR from 50 to 1000 pc (12″ to 4¢).
These “background” samples allow us to identify young
populations unique to the region containing the SNR.

To fit stellar evolution models to the photometric data, we
require artificial star tests (ASTs) to correctly model the
photometric completeness and uncertainty as a function of
color and magnitude. We used the ASTs from these data that
were created by Lazzarini et al. (2022), who used them to
measure grid SFHs in M33, as discussed in Section 2.5. These
tests are obtained by adding stars of known flux to an image
and blindly rerunning the photometry routine to measure the
photometric bias, uncertainty, and completeness as a function
of color and magnitude when fitting models to the data. This is
done at least 50,000 times within a region of interest. Williams
et al. (2017) and Koplitz et al. (2021) found that one set of
artificial stars could be used for all locations of similar stellar
density, rather than creating a set for each location. This greatly
reduces the computation time required. Lazzarini et al. (2022)
used this technique to optimize the number of ASTs that
needed to be created. Since we are using the same photometry
catalog as Lazzarini et al. (2022), we are able to use the same
ASTs when analyzing the SNRs in our catalog. These tests and
the optical photometry catalog are described in further detail in
Lazzarini et al. (2022).

2.3. CMD Fitting

Once we had the photometry and ASTs necessary to study
each SNR location, we used the CMD fitting program MATCH
(Dolphin 2002, 2012, 2013) to measure SFHs near the SNRs in
our catalog. MATCH has been used to constrain the age of SN
progenitors (e.g., Jennings et al. 2012; J14; Williams et al.
2018, 2019; Koplitz et al. 2021) and SFH for nearby galaxies
(e.g., Williams et al. 2009; Weisz et al. 2014; Skillman et al.
2017). MATCH fits the observed CMD using the PARSEC
stellar evolution models (Bressan et al. 2012). For each model
age and metallicity, it creates a model CMD by assuming a
Kroupa initial mass function (Kroupa 2001). It then finds the
highest likelihood linear combination of those models that
provides the best fit to the observed CMD using a maximum
likelihood estimator and taking into account the bias,
uncertainty, and completeness of the photometry as determined
by ASTs. This combination of models yields the distribution of

ages and metallicities for the stars in the observed CMD, which
we refer to as the SFH of the region.
Below, we provide a brief description of our technique for

running MATCH. A more detailed account of the process can
be found in Koplitz et al. (2021), which is identical to how we
ran MATCH here. In short, for each SNR location, we fit the
CMD of the resolved stellar photometry with a grid of model
CMDs generated from the PARSEC stellar evolution models
(Bressan et al. 2012). Our model grid had time bins of size
0.05 dex from log10(t/ yr) = 6.6–8.0 while bins of size 0.1 dex
were used from log10(t/ yr) = 8.0–10.2. Since M33 is known
to have a subsolar metallicity (e.g., Barker et al. 2011), we
limited the metallicities MATCH applies to the model grid to
be −0.5� [Fe/H] �0.1 using the zinc flag. Multiple massive
stars can reside in the same location on CMDs even though
they have different metallicities. As a result, using the zinc flag
forces MATCH to use models for the young stars that are
within the known metallicity range of M33.
As in Koplitz et al. (2021), our model also includes a

“background” or “contamination” CMD of the stars in an
annulus between 50 and 1000 pc (12″–4¢) from the SNR. The
contamination CMD is scaled to the size of our regions before
fitting. This allows us to identify young populations that are
sparse in the surrounding field and more heavily weight the
populations concentrated within the regions being fit.
Furthermore, the fitting routine accounts for the effects of

dust on the photometry. We allowed MATCH to find the
combination of reddening parameters along with the combina-
tion of ages and metallicities, which provided the best fit to the
observed CMD. Since young populations are often found in
dusty regions, MATCH applies three types of extinction to the
model CMDs when fitting the stellar populations. The first, AV,
is the total foreground extinction over the full region. The
second, dAV, is the extinction spread due to the stars along the
line of sight. The third, dAVY, is additional differential
extinction added to populations younger than 100Myr old.
The default dAVY value of 0.5 was used. To determine AV and
dAV for an SNR, we fit a range of possible values at the
location. We allowed AV to be between 0.05 and 1.00 in steps
of 0.05 while dAV could be between 0.0 and 2.0 in steps of 0.2.
On average, our locations returned an AV value of 0.30,

higher than Schlafly & Finkbeiner’s (2011) value of 0.114.
This higher AV is not surprising given that MATCH takes into
account the Milky Way and M33 reddening, whereas Schlafly
& Finkbeiner (2011) only account for the Milky Way. The vast
majority of dAV values in our sample were 0.0, meaning the
default differential reddening for the youngest stars
(dAVY= 0.5) was sufficient to account for differential red-
dening in most cases.

2.4. Uncertainty Estimation

Random and systematic uncertainties are inherent to fitting
stellar models to CMDs. Most of the random uncertainties in
our fits arise from photometric errors as well as the number of
stars used to determine the most likely progenitor age. The
systematic uncertainties are from any deficiencies present in the
stellar evolution models used during the SFH fits. Lazzarini
et al. (2022) have shown that there is good agreement between
modelsets for fits to young ages, and that the random
uncertainties dominate the error budget in these fits. Thus,
we use the random uncertainties determination to estimate the
uncertainties in our SFHs.
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To estimate our random uncertainties, we used the
hybridMC tool within MATCH (Dolphin 2013). This task
uses a hybrid Monte Carlo algorithm to accept or reject
potential SFHs around the best-fit SFH based on likelihood.
We report the narrowest 68% of the distribution of accepted
SFHs that decreases with lookback time in columns (4) and (5)
of Table 1. A detailed description of how our uncertainties are
estimated can be found in Section 2.6.

2.5. SFHs from Previous Work

Recently, Lazzarini et al. (2022) published recent SFH maps
of the PHATTER region of M33. They used the same
PHATTER optical photometry to measure the SFH of M33ʼs
inner disk in a grid of 100 × 100 pc (24″ × 24″) cells, which
they have released to the community. Lazzarini et al. (2022)
largely used the same MATCH fitting technique as we have,
but there were a few differences. In their analysis, time bins of
size 0.1 dex were used for all bins (log10(t yr−1) = 6.6–10.2).
Since they were measuring the total amount of star formation in
each location, and not attempting to isolate very localized
populations, a contamination CMD was not included during
their fits.

Being able to constrain progenitor masses using such a grid of
spatially resolved age distributions would be very powerful, since
it would avoid having to access the original photometry and ASTs
and run custom fitting for each SNR location. Thus, we also
attempted to age date the SNR locations using this grid of
published SFHs by assigning an SFH from Lazzarini et al. (2022)
that corresponded to the location of each SNR in our sample. We

then compare the ages and masses of custom fits to those taken
from a less optimized, but more easily accessible, source.

2.6. Constraining Progenitor Mass

The next step in constraining the masses of SNR progenitors
is to convert the recent SFH from MATCH into a probability
distribution for the age of the progenitor. This calculation is
done by determining the fraction of the total stellar mass
present in each age bin. We take this fraction to be equal to the
probability that the progenitor is associated with that age. We
also take the error on that fraction as the error on the
probability. We provide an example of such a probability
distribution in Table 1.
The age probability distribution presented in Table 1 is for

the SNR LL14-060. Similar tables for each SNR with SF in the
last 56Myr are combined into one and made available in the
online supplemental material.
While the age probability distribution derived from the SFH

is the most complete constraint on the progenitor age, we also
provide a single progenitor mass estimate with uncertainties.
This age simplifies the mass inference, as well as comparisons
with other measurements and mass distribution analysis. To
derive the most likely progenitor age, we use the SFHs and
uncertainties produced by MATCH to calculate the median age
of the stellar populations younger than 56Myr surrounding
each SNR. We then take that age as the most likely progenitor
age. We determine the uncertainties on the median age as
follows. We recalculate the median age a million times by
accounting for the uncertainties and resampling the SF rates in

Table 1
Age Probability Distribution Results for LL14-060

T1 T2 SFR(Best) -err +err PDF(Best) -err +err CDF(Best) CDF(Low) CDF(High) M1 M2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

4.0 4.5 0.0000e+00 0.0000e+00 3.0515e-03 0.000 0.000 0.263 0.000 0.000 0.035 52.1 66.6
4.5 5.0 0.0000e+00 0.0000e+00 2.7223e-03 0.000 0.000 0.264 0.000 0.000 0.101 42.0 52.1
5.0 5.6 9.4464e-03 7.9741e-03 1.5900e-05 0.563 0.471 0.316 0.563 0.000 0.563 34.7 42.0
5.6 6.3 0.0000e+00 0.0000e+00 2.2637e-03 0.000 0.000 0.273 0.563 0.169 0.576 29.2 34.7
6.3 7.1 0.0000e+00 0.0000e+00 1.8153e-03 0.000 0.000 0.252 0.563 0.218 0.613 26.0 29.2
7.1 7.9 0.0000e+00 0.0000e+00 1.3441e-03 0.000 0.000 0.219 0.563 0.260 0.645 23.1 26.0
7.9 8.9 0.0000e+00 0.0000e+00 1.0684e-03 0.000 0.000 0.200 0.563 0.298 0.674 20.6 23.1
8.9 10.0 0.0000e+00 0.0000e+00 7.8472e-04 0.000 0.000 0.171 0.563 0.332 0.701 18.7 20.6
10.0 11.2 0.0000e+00 0.0000e+00 7.4253e-04 0.000 0.000 0.179 0.563 0.365 0.727 17.1 18.7
11.2 12.6 0.0000e+00 0.0000e+00 6.5002e-04 0.000 0.000 0.177 0.563 0.398 0.753 15.7 17.1
12.6 14.1 0.0000e+00 0.0000e+00 5.4978e-04 0.000 0.000 0.169 0.563 0.430 0.779 14.5 15.7
14.1 15.8 0.0000e+00 0.0000e+00 4.8213e-04 0.000 0.000 0.167 0.563 0.461 0.804 13.4 14.5
15.8 17.8 2.2299e-03 1.9046e-03 0.0000e+00 0.420 0.363 0.381 0.983 0.699 0.983 12.5 13.4
17.8 20.0 0.0000e+00 0.0000e+00 4.0795e-04 0.000 0.000 0.176 0.983 0.734 0.983 11.7 12.5
20.0 22.4 0.0000e+00 0.0000e+00 3.2564e-04 0.000 0.000 0.161 0.983 0.767 0.983 10.9 11.7
22.4 25.1 0.0000e+00 0.0000e+00 2.3611e-04 0.000 0.000 0.135 0.983 0.794 0.983 10.3 10.9
25.1 28.2 0.0000e+00 0.0000e+00 2.2838e-04 0.000 0.000 0.144 0.983 0.845 0.984 9.6 10.3
28.2 31.6 0.0000e+00 0.0000e+00 1.5449e-04 0.000 0.000 0.114 0.983 0.876 1.000 9.0 9.6
31.6 35.5 4.3935e-05 4.3935e-05 1.3031e-04 0.017 0.017 0.128 1.000 0.908 1.000 8.6 9.0
35.5 39.8 0.0000e+00 0.0000e+00 1.2988e-04 0.000 0.000 0.119 1.000 0.931 1.000 8.1 8.6
39.8 44.7 0.0000e+00 0.0000e+00 1.1090e-04 0.000 0.000 0.115 1.000 0.953 1.000 7.7 8.1
44.7 50.1 0.0000e+00 0.0000e+00 9.9118e-05 0.000 0.000 0.115 1.000 0.981 1.000 7.3 7.7
50.1 56.2 0.0000e+00 0.0000e+00 9.1503e-05 0.000 0.000 0.119 1.000 1.000 1.000 7.0 7.3

Notes. Columns (1) and (2) define the beginning and end of the age bin in log10(t yr−1). Column (3) is the best-fit SF rate in that age bin in Me yr−1. Columns (4) and
(5) are the lower and upper limits on that rate. Column (6) shows the fraction of stellar mass younger than 56 Myr in the age bin according to the best-fit SFH
equivalent to the probability of that progenitor age. Columns (7) and (8) are the negative and positive error bars on this probability. Column (9) provides the
cumulative fraction of stellar mass over time for the best-fit SFH. Columns (10) and (11) are the lower and upper uncertainties of the cumulative mass fraction for a set
of a million realizations of the SFH with the uncertainties in columns (4) and (5). Columns (12) and (13) give the mass of stars with lifetimes within the age bin inMe.

(This table is available in its entirety in machine-readable form.)
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each time bin, then determine the narrowest 68th percentile of
this distribution of ages that contain the best fit. We use a
56Myr cutoff for our SNR-centered SFHs, rather than the
50Myr used by other works, because of the results of our
Bayesian analysis presented in Section 4.1. A 56Myr
(log(t yr−1) = 7.75) cutoff is not possible for the grid SFHs
since Lazzarini et al. (2022) ran MATCH with time bins of

0.1 dex. As a result, we must decide whether to use a 50 or
63Myr cutoff (log(t yr−1) = 7.7 or 7.8) for the grid SFH
samples. We adopt a 50Myr cutoff as this limits the number of
contamination populations being included in our analysis. To
infer the progenitor mass for each age bin, we assume that the
SNR progenitor is the highest surviving mass on the PARSEC
stellar isochrone (Bressan et al. 2012).

Figure 1. Data and analysis used to constrain the progenitor mass for the SNR LL14-060. Top left: a 1. 5 1. 5¢ ´ ¢ F475W image of the region of interest for the SNR
with a green circle showing the 50 pc extraction region for the resolved stellar photometry sample. Top right: observed CMD within our region of interest. Red points
indicate the stars within 50 pc of the SNR while the background field populations are plotted in gray scale and the magnitude limits of the data are shown as yellow
dashed lines. Bottom left: the best-fit SFH and associated uncertainties produced by hybridMC. The cumulative fraction of stellar mass in each age bin is indicated by
the red line. The gray shaded region depicts the 1σ uncertainties on the SFH. The tan region shows the probable age range, which is taken to be median population of
the 1σ uncertainties. Bottom right: the differential SFH, showing the SF rates and uncertainties that correspond to the cumulative fraction plot in the bottom left. The
blue line indicates the SFH for the region, column (3) of Table 1. The orange lines show the uncertainties in each time bin, column (3) minus column (4) to column (3)
plus column (5) from Table 1.

The complete figure set (60 images) is available.
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We present an example of our progenitor age fitting results
for SNR LL14-160 in Figure 1. Similar summary plots are
available for all of the SNR locations in the online
supplemental material associated with the paper.

Past studies have shown that progenitor masses estimated
from the SFHs produced by MATCH are consistent with
estimates from other techniques (e.g., Jennings et al. 2012;
Williams et al. 2019; Koplitz et al. 2021). DR18 found that
their combined M31 and M33 distribution pointed to a
minimum mass for CCSN progenitors of ∼7 Me, which
corresponds to an age of ∼50 Myr assuming single star
evolution. Populations older than this are more likely to be
unrelated to the SNR since they have had more time to distance
themselves from their parent cluster. Older stars in binaries
have been shown to be possible SN progenitors (e.g., Xiao
et al. 2019); however, our current inference from age to mass
requires that we assume single star evolution. Fortunately, this
assumption should not impact our age constraints, which come
from the surrounding population, but it could significantly
impact our conversions between age and progenitor mass if the
progenitor system was a mass-exchanging binary.

3. Results

We present and provide the progenitor mass results from our
own custom SFHs. We then compare to results that we obtain
from previously published SFHs, as well as control samples
and results from SNR studies of other nearby galaxies. These
comparisons suggest that custom SFHs with a contamination
CMD included in the fit to account for the more widespread
populations are required to isolate the ages of the stars most
likely associated with each SNR.

3.1. Comparing Grid SFHs to SNR-Centered SFHs

We present our progenitor mass constraints for the SNRs in our
catalog in Table 2 and compare the resulting age distributions in
Figure 2, which reveals that the masses from Lazzarini et al.
(2022) are systematically lower than our custom measurements.

For 42 of the 85 locations in our catalog (∼49%), the best-fit
masses were not consistent with each other. KS tests between
these samples returned a p-value of 0.11, suggesting we cannot
rule out that they are from the same parent distribution.
To isolate the cause of the observed difference, we reran our

custom fits without including a contamination component,
which returned a distribution similar to the one from the
Lazzarini et al. (2022) grid SFHs. Performing KS tests between
the SNR-centered distributions returned a p-value of 0.09 while
0.27 was returned when comparing the grid distribution to the
SNR centered without a contamination CMD sample. Figure 3
is a histogram comparing the distribution of progenitor masses
that resulted from using the grid SFHs as well as the SNR-
centered SFHs with and without a contamination CMD. Each
distribution is normalized such that they integrate to one. The
overall distribution from the grid SFHs is similar to that of our
centered SFHs without a contamination CMD, which is
expected given that both SFHs were fit without a contamination
CMD and the sample populations overlap.
Even though none of the distributions contain a progenitor that

excludes masses <20 Me, the grid SFHs produced 10 locations
consistent with being more massive than 20 Me while the SNR-
centered SFHs returned 15 with a contamination CMD and nine
without. A similar fraction of locations with masses between 7–15
and 15–25Mewere found in the grid and SNR centered without a
contamination component distribution (86%, 13% and 86%, 11%,
respectively). These show that the inclusion of the contamination
CMD impacts the resulting distribution the most, though the high-
precision custom location does play a large role.

3.2. Type Ia Candidates

Of the 85 locations in our catalog, we classify 25 as Type Ia
candidates. Zapartas et al. (2017) showed that binaries with
ages down to 200Myr can produce delayed CCSNe; however,
these systems have had enough time to move a significant
distance away from their parent cluster, making the SF we
measure older than ∼56 Myr likely contaminated by nearby

Table 2
M33 Supernova Remnants

IDa,b R.A. (J2000)a,b Decl. (J2000)a,b Stars dAV AV Mass (Me) Region IDc Grid Mass (Me)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

L10-043 01:33:35.39 +30:42:32.4 5510 0.00 0.45 17.9 3.4
0.8

-
+ 1206 45.3 33.6

21.3
-
+

L10-050 01:33:40.73 +30:42:35.7 7591 0.00 0.30 16.6 4.9
2.1

-
+ 1208 14.0 5.9

1.7
-
+

L10-079 01:33:58.15 +30:48:37.2 5115 0.00 0.35 9.0 0.4
4.4

-
+ 1791 8.6 0.5

3.1
-
+

L10-098 01:34:12.69 +30:35:12.0 5334 0.00 0.40 10.8 0.5
7.9

-
+ 0534 19.5 10.5

3.6
-
+

LL14-050 01:33:21.56 +30:31:31.1 3471 0.40 0.40 14.0 1.5
0.5

-
+ 0178 8.1 0.8

5.3
-
+

LL14-054 01:33:24.01 +30:36:56.8 5599 0.00 0.25 7.3 0.3
18.7

-
+ 0686 10.6 2.5

1.1
-
+

LL14-060 01:33:28.10 +30:31:35.0 3965 0.00 0.40 35.5 23.0
6.5

-
+ 0182 10.2 1.2

3.2
-
+

LL14-061 01:33:29.04 +30:42:17.3 5522 0.00 0.40 7.2 0.2
1.8

-
+ 1163 7.0 0.4

6.4
-
+

LL14-067 01:33:31.38 +30:33:33.4 6592 0.00 0.15 9.8 1.7
0.5

-
+ 0365 7.9 0.6

1.1
-
+

LL14-068 01:33:31.32 +30:42:18.3 6023 0.00 0.30 7.2 0.2
4.5

-
+ 1164 7.3 0.7

0.8
-
+

L L L L L L L L L

Notes. Column (1) is the SNR identifier from L10 or LL14. Columns (2) and (3) are the R.A. and decl. (J2000) of the SNR. Column (4) indicates the number of stars
that were used to measure the SFH. Columns (5) and (6) are the best-fit dAV and AV values, respectively. Column (7) is the progenitor mass inferred from the median
age calculated from the best-fit SFH, and associated uncertainties in Me. Column (8) indicates which region from Lazzarini et al. (2022) the SNR is associated with.
Column (9) is the progenitor mass and uncertainties that resulted from the grid SFH.
References.a Long et al. (2010),b Lee & Lee (2014a),c Lazzarini et al. (2022).

(This table is available in its entirety in machine-readable form.)
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populations that are not associated with the SN event. Thus,
any location without SF in the last ∼56 Myr we classify as
Type Ia candidates since our technique cannot reliably
determine the progenitor age beyond this.

Including contamination CMDs in our SFH fits forces
MATCH to only fit for SF above any background young stellar
populations. While this requirement can be helpful in isolating
populations more likely to be associated with an SNR, it can
also cause some SNRs to be classified as Type Ia candidates
when they are actually Type II or Type Ibc in origin, because
their associated young population may be too similar to that of
the larger surroundings. To check how many of our Type Ia
candidates could actually be CCSNe, we can use our results
from the Lazzarini et al. (2022) SFHs, which measured the total
star formation in each location. The SNRs with mass estimates
in column (9) of Table 2 but without a constraint in column (7)
are less likely to be Type Ia in origin, as there are relatively
high-mass populations nearby, just not above the background
level. Of the 25 Type Ia candidates from our SNR-centered
SFHs, only LL14-103ʼs grid SFH contained no SF within the
last 50Myr, making it our best Type Ia candidate. The other 24
Type Ia candidates had young stellar populations present but
not in sufficient quantities to be detected above the larger
surroundings, making them weaker Type Ia candidates. These
results suggest a Type Ia fraction between 1% and 29%. While

this is not a tight constraint, it is consistent with the ∼15%
expected for late-type spirals (Li et al. 2011).

4. Discussion

Our progenitor age distributions probe the minimum mass at
which CCSNe can occur, how SNe are spatially distributed in
the disk of M33, and the power-law index of the progenitor
mass distribution for the galaxy.

4.1. Mass Limits for CCSNe

Using the Bayesian hierarchical analysis developed by DR18,
we use our SNR age sample to provide a constraint on the
maximum age at which stars undergo CCSNe, tmax. Our analysis
was sensitive to the assumed minimum age for CCSNe, tmin. To
account for this, we fit our distribution assuming tmin values of 6,
9, 10, 12, 15, and 18Myr, with each returning similar results. We
report the t 15 Myrmin = fit since this is the lowest tmin value that
stabilized the returned progenitor mass distribution slope, finding
54.3 2.0

3.8
-
+ Myr as the best-fit tmax, which corresponds to a Mmin of

7.1 0.2
0.1

-
+ Me. Figure 4 shows the distribution of tmax (left) andMmin

(right) returned by the Bayesian analysis for the fit
with t 15 Myrmin = .
The analysis also attempts to constrain the upper mass limit

for CCSNe and the progenitor mass distribution index when

Figure 2. A comparison of the progenitor mass constraints for our sample derived from SNR-centered SFHs and grid SFHs (Lazzarini et al. 2022). The red points
indicate the progenitor mass estimates while the gray dashed lines show the associated uncertainties. The dark blue dashed–dotted line indicates the 1−to−1 line.
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fitting a distribution. Our high-mass progenitors, however, have
large error bars that prevented the analysis from converging on
a rigorous best-fit value for the upper mass limit. Since the
upper mass is degenerate with the distribution index, it also did
not return a reliable index. We estimate the progenitor mass
distribution index in Section 4.3 using an alternate technique,
since it may be of interest to the community.

4.2. Spatial Distribution of Progenitor Masses

To investigate the spatial distribution of SNRs in M33, we plot
the locations of our catalog on an Hα image taken with the WIYN
0.9m telescope (Figure 5). The progenitor mass and most likely
SNe type are indicated by the color and symbol, respectively.
Locations for which we have mass constraints in column (7) of

Figure 3. Histogram comparing the normalized progenitor mass distributions from the SNR-centered SFHs with and without a contamination CMD as well as the
distribution from the grid SFHs (Lazzarini et al. 2022).

Figure 4. The results from performing a Bayesian hierarchical analysis on our full catalog of SNR progenitor ages. Left: the distribution of maximum ages at which
stars undergo CCSNe, tmax. Right: the distribution of minimum masses at which stars undergo CCSNe, Mmin. The y-axes in both histograms show the relative
frequency of each age and mass. We report the fit assuming t 15 Myrmin = , i.e., a minimum age for CCSNe of 15 Myr. This fit resulted in tmax = 54.3 2.0

3.8
-
+ Myr,

corresponding to Mmin = 7.1 0.2
0.1

-
+ Me. See Section 4.1 for details.
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Table 2, i.e., we were able to measure SF within the last 56Myr
above the background level, are shown as circles. Progenitors with
masses <9 Me are white, masses of 9–12 Me are red, masses of
12–15 Me are orange, masses of 15–20 Me are yellow, and
masses >20 Me are blue. Our Type Ia SNe candidates are shown
as squares, where the color indicates the best-fit progenitor mass
from the grid SFH that the SNR resides in from Lazzarini et al.
(2022). The colors show the mass that could have produced a
CCSNe at the location, though these are less likely to be CCSNe
than the colored circles due to the lower level of young SF. The
coloring depicts the same mass ranges as the circles, with the
addition of black indicating the location of LL14-103, our best
Type Ia candidate.

Our entire catalog mostly traces the Hα emission and spiral
arms of M33. There are many squares (Type Ia candidates)
inside star-forming regions throughout the galaxy, indicating
that young populations are present, just not enough to be
detected in fits that include a contamination component. In
these cases, fitting without a contamination CMD (i.e., fitting
the full population) often finds some massive stars in the
region, whereas the fit including a contamination CMD finds
no such populations.

4.3. Progenitor Mass Distribution Power-law Index

While the Bayesian hierarchical analysis of DR18 was not
able to converge on a power-law index for the progenitor

distribution due to the uncertainties at very young ages, it may
still be of interest to determine the closest power-law
representation of our most likely progenitor masses. To
determine this value, we use KS tests to determine the
likelihood the locations in our catalog with young populations
(<56 Myr) are drawn from various power-law distributions.
We compared the data to power-law indices between −6.0 and
0.0, in steps of 0.1, and report the most likely index. To
estimate the uncertainties on the index, we employee a
bootstrap analysis in which we sample the uncertainties on
each mass 1000 times. We then find the indices that return p-
values �0.05 (∼95% confidence) and report the extremes as
our limits.
Performing this analysis on our full catalog of SNRs

indicates the progenitor mass distribution is best matched by
a power law with an index of 2.9 1.0

1.2- -
+ , which does contain the

Salpeter index of −2.35 (Salpeter 1955). The best-fit index has
a p-value of 0.23. Running the progenitor mass distribution
from the grid SFHs through this same analysis found that the
sample was best matched by an index of 3.8 0.4

1.8- -
+ , significantly

steeper than our SNR-centered catalog though still consistent.
This is not surprising given that, as discussed in Section 3.1,
L10-043 was the only progenitor found to be more massive
than 25 Me in this sample.
Our power-law indices were estimated using only the

locations that contained SF at ages younger than ∼56 Myr.

Figure 5. Locations of SNRs in M33 color coded by their progenitor masses overplotted on an Hα image taken with the WIYN 0.9 m telescope where the mass and
type of the progenitor are indicated by the color and symbol, respectively. SNRs with an entry in column (7) of Table 2 are shown as colored circles with masses <9
Me in white, masses of 9–12 Me in red, masses of 12–15 Me in orange, masses of 15–20 Me in yellow, and masses >20 Me in blue. Type Ia candidates (those
without an entry in column (7) of Table 2) are shown as colored squares, where the color indicates the grid progenitor mass from column (9) of Table 2. The coloring
is the same as the circles with the addition of black indicating the location of LL14-103, our best Type Ia candidate.
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To estimate the impact that removing locations without young
SF has on our indices, we refit the progenitor mass distribution
index of our SNR-centered sample while adding in the grid
SFH progenitor mass for locations that did not contain young
SF in our custom fit. This combined sample was best fit by a

3.2 0.6
1.3- -

+ index, which is consistent with both the SNR-centered
and grid SFH indices. This indicates that removing locations
without young SF does not have a large impact on the returned
progenitor mass distribution index.

Figure 6 shows our ranked progenitor mass distribution. The
red points indicate the progenitor mass of each SNR with a
constraint in column (7) of Table 2, with uncertainties shown as
red lines. Overplotted as gray lines are 50 draws from a power-
law distribution with an index of 2.9 1.0

1.2- -
+ , our best-fit index.

4.4. Control Sample

As mentioned in Section 2.1, we also performed our analysis
on control samples, random locations that did not contain
SNRs. We compared our SNR results to these control results to
determine if the SNRs are indeed affecting our results. We
discuss both the control sample for the mass estimates based on
custom SFH measurements and the control samples for mass
estimates based on Lazzarini et al.’s (2022) SFH measurements
below.

Our first control sample, containing randomly drawn
locations in the PHATTER footprint, returned fewer progeni-
tors with masses >20 Me (five in the control sample and nine
in our catalog). There were also significantly more (33, ∼39%

of the sample) Type Ia candidates (i.e., locations with no
significant recent SF above what is present in the contamination
CMD) than our SNR-centered distribution with a contamina-
tion CMD (25, ∼30% of the sample). Both of these suggest
that the regions in this control sample contained, on average,
older populations than those found near SNRs. The locations in
this sample that contained SF at ages younger than 56Myr
were best fit by a power-law index of 4.9 0.2

3.2- -
+ , which is

consistent with our contamination CMD and the grid distribu-
tions. While the uncertainties do overlap, this can likely be
attributed to the amount of widespread SF within the
PHATTER footprint of M33. Comparing this random sample
to our SNR-centered sample returned a p-value of 0.08,
suggesting these sample are only marginally consistent with
being drawn from the same parent distribution.
Of the 2500 random draws in the grid control sample, ∼70%

were consistent with the grid power-law index, with the
remaining ∼30% resulting in steeper indices. We found the
median index to be −4.1± 0.5, which includes the grid SFH
sample index of −3.8 but excludes the SNR-centered index of
−2.9, though the uncertainties do overlap. Of the 2500 draws,
1492 (∼60%) resulted in p-values �0.05 when compared to
our grid sample. No p-values �0.05 were found when
compared to the SNR-centered sample. Additionally, our grid
sample only contained one location without recent SF (LL14-
103) whereas only three of the grid control draws contained as
many or fewer such locations, meaning that >99% of random
draws had more locations without young stars present than we
find in locations containing SNRs. These results show that the

Figure 6. The rank distribution of progenitor masses for our full catalog of SNRs in M33. The progenitor masses are shown as red dots, with uncertainties depicted as
red lines. Overplotted are 50 gray lines, which are draws from a power-law distribution with an index of 2.9 1.0

1.2- -
+ , our best-fitindex.
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grid SFHs that contain SNRs do differ from those that lack an
SNR, with the similar power-law indices likely being
explained, again, by the amount of widespread SF in M33.

4.5. Comparison to J14 and DR18

J14ʼs catalog contained 33 SNRs in M33, of which 28 are in
the PHATTER footprint. Our SNR-centered progenitor mass
estimates were consistent with those found by J14 for 16 of
these 28 sources. Of the 12 sources that were not consistent
between our estimates and those in J14, we identify eight Type
Ia candidates. J14 found their full distribution of 33 SNRs was
best fit by an index of 3.8 0.4

0.5- -
+ . Using our SNR-centered SFHs

of the 28 overlapping locations, our analysis pointed to the
distribution being well matched by a power-law index of

3.1 1.1
1.2- -

+ , which is flatter than what J14 found. Their steep
index could be from the few progenitors with masses >20 Me
in their sample, which can likely be partially attributed to the
low number of SNRs in their sample. Poisson fluctuations for
small numbers can randomly vary to zero quite easily.
Additionally, J14 did not include a contamination CMD when
fitting, which may have biased their estimates toward older,
less massive populations and reduced their number of Type Ia
candidates. We have shown in Section 3.1 that CMD-based age
dating returns more low-mass progenitors when no background
CMD is included in the fitting. DR18 constrained the minimum
mass for CCSNe to be 7.32 0.14

0.12
-
+ Me using the J14 measure-

ments, which is consistent with the minimum mass we
identified, suggesting that this cutoff may be the most reliable
parameter returned from the SNR sample.

4.6. Comparison to Other Galaxies

In addition to the SNRs in M33, J14 also constrained the
progenitor mass distribution for 82 SNRs in M31 using
photometry from the PHAT survey. Their KS test analysis
found that this distribution was best matched by a power-law
index of 4.4 0.4

0.4- -
+ , which is not consistent with our distribution.

Interestingly, one major difference between J14 and DR18 is
that DR18 allow for a uniform background distribution when
fitting for the progenitor mass distribution parameters. This
should have a similar effect to the use of a contamination CMD
during the fitting process in that it accounts for the possibility
that some of the measured SF may not be associated with the
SN. With the inclusion of the uniform background
distribution, DR18 constrained the distribution index to be

2.35 0.48
0.36- -

+ and found the minimum mass for CCSNe to be
6.5 0.2

0.6
-
+ Me using 62 SNRs in M31. Both of these measure-

ments are consistent with what we have found in M33.
Katsuda et al. (2018) gathered the progenitor masses for 40

SNRs in the Milky Way and both Magellanic Clouds from the
literature, which were estimated using chemical abundances.
They updated many of the measurements using Fe:Si ratios and
found a progenitor mass distribution consistent with both a
Salpeter index and our measured index for M33.

Auchettl et al. (2019) examined 23 SNRs in the Small
Magellanic Cloud, finding that 22 were likely core collapse in
origin. They report the likelihood that the mass of each
progenitor is between 8–12.5, 12.5–21.5, and >21.5 Me
assuming single and binary evolution. Regardless of single or
binary evolution, 70% of their progenitors had the highest
likelihood in the most massive bin, whereas 9% of our SNRs
were found to have progenitor masses in this range. The large

number of high-mass progenitors led to their distribution being
well matched by a power-law index of −1.84, though the
uncertainties are consistent with a Salpeter index. A possible
reason given by Auchettl et al. (2019) for the top-heavy
distribution is that the Small Magellanic Cloud has a lower
metallicity than M33. It has been shown that lower metallicity
gas is more likely to produce a top-heavy stellar distribution
(e.g., Bromm & Larson 2004; Marks et al. 2012).
Williams et al. (2019) constrained the progenitor mass of

199 SNRs in M83 using our technique. They found that the
progenitor mass distribution was well matched by a power-law
index of 2.9 0.7

0.2- -
+ . A KS test between their M83 distribution

and ours resulted in a p-value of 0.04, suggesting their parent
distributions may differ, possibly due to the higher star
formation intensity or lower metallicity of M33.
Koplitz et al. (2021) measured the progenitor mass of 169

SNRs, eight historically observed SNe, and NGC6946-BH1,
the first black hole formation candidate, in the galaxy NGC
6946 using our technique. They found that gas emission
impacted their broad V-band photometry, which biased some of
their mass estimates. As a result, they only included the 46
sources that were least likely to be biased when constraining
the progenitor mass distribution index. In this sample, they
found 24% with masses �20 Me, while we have 11%
progenitors in our catalog with similar masses. They found
their distribution was best fit by an index of 2.6 0.6

0.5- -
+ , which is

consistent with our measured index. KS tests between their
preferred sample and our distribution resulted in a p-value
of 0.2.
Figure 7 compares our distribution of progenitor masses to

those in M83 (Williams et al. 2019) and the preferred sample in
NGC 6946 (Koplitz et al. 2021). We normalize each
individually so that they integrate to one. Each is dominated
by the low-mass progenitors and those less massive than 25Me
have similar overall shapes. Both of these led to power-law
indices that are consistent with each other. Our distribution is
the only one that lacks any progenitors with mass �40 Me.
However, this could be the result of the small number of high-
mass progenitors expected combined with the smaller number
of SNRs in our sample.

5. Summary

We constrained the progenitor age and mass of 60 SNRs in
the nearby galaxy M33, or the Triangulum Galaxy, using an
age-dating technique of the stellar populations near the SNRs.
The remaining 25 showed no local SF within the past 56Myr,
making them potential Type Ia candidates. While it is possible
that these candidates are binary systems producing delayed
CCSNe with ages down to 200Myr, our analysis is not able to
reliably determine the progenitor age beyond ∼56 Myr.
Using the Bayesian hierarchical analysis developed

by DR18, we constrained the maximum age for CCSNe to be
54.3 2.0

3.8
-
+ Myr, which, assuming single star evolution, corre-

sponds to a minimum mass of 7.1 0.2
0.1

-
+ Me. A KS test analysis

determined that the progenitor mass distribution of our full
catalog was best matched by a power-law distribution with an
index of 2.9 1.0

1.2- -
+ , which includes the Salpeter index of −2.35.

Our distribution is well populated by progenitors with masses
9–40 Me.
When using grid SFHs from Lazzarini et al. (2022), rather

than SNR-centered regions with a contamination CMD
included, the inferred progenitor mass was biased to lower
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values, with only one progenitor more massive than 25 Me.
There were also fewer Type Ia candidates when using the grid
SFHs, one from the grid SFHs and 25 from the SNR-centered
SFHs. Additionally, the progenitor mass distribution index that
came from the grid SFHs was steeper than the index from the
SNR-centered SFHs while KS tests between these samples
returned a 0.03 p-value. Without a contamination CMD, our
custom SFHs returned a similar distribution to the grid, finding
a p-value of 0.14 between the two samples. The grid results
differ from a random distribution of grid cells that do not
contain an SNR, though not as strongly as our SNR-centered
sample. The stronger difference from the overall background
suggests that the custom SFHs with a contamination CMD
provide a more robust constraint on the age and mass of SNRs
than SFHs measured in grids, where the background popula-
tions are not taken into account and the SNR may be anywhere
in the grid cell.

Previously, J14 used archival HST images to constrain the
age and mass of 33 SNRs in M33. We present new age and
mass estimates for 28 of these using the deep, uniform
photometry from the PHATTER survey. Performing KS test
analysis on the SNRs with updated mass estimates pointed to
the distribution being well matched by a power-law index of

3.1 1.1
1.2- -

+ , which is consistent with the index J14 found for their
full catalog and our sample of 85 SNRs.

Our normalized progenitor mass distribution is similar to that of
M83 (Williams et al. 2019) and NGC 6946 (Koplitz et al. 2021).
All the distributions are dominated by low-mass progenitors and
have best-fit power-law indices that are consistent with one

another. KS tests between our sample and the preferred sample in
NGC 6946 resulted in a p-value of 0.20, suggesting that these are
likely drawn from the same parent distribution. A p-value of 0.04
was returned when performing KS tests between our sample and
the SNRs in M83. A p-value just below 0.05 and the matching
power-law indices means we cannot rule out that the samples are
drawn from the same parent distribution.
Each of our distributions shows a sharp drop in the number

of progenitors at ∼20 Me. Few progenitors are found more
massive than this, which coincides with the upper limits found
by Smartt (2015) and Davies & Beasor (2020) for Type II SNe.
It is possible that the reason we do not see many high-mass
progenitors is because not all experience a canonical CCSNe
and instead collapse directly into a black hole (Pejcha &
Thompson 2015). Now that the JWST has launched, similar
studies will be able to leverage red supergiants to constrain the
age of SN progenitors with higher precision and may resolve
the “red supergiant problem.”
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