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A B S T R A C T 
We use young clusters and giant molecular clouds (GMCs) in the galaxies M33 and M31 to constrain temporal and spatial 
scales in the star formation process. In M33, we compare the Panchromatic Hubble Andromeda T reasury: T riangulum Extended 
Region (PHATTER) catalogue of 1214 clusters with ages measured via colour–magnitude diagram (CMD) fitting to 444 GMCs 
identified from a new 35 pc resolution Atacama Large Millimeter/submillimeter Array (ALMA) 12 CO(2–1) surv e y. In M31, 
we compare the Panchromatic Hubble Andromeda Treasury (PHAT) catalogue of 1249 clusters to 251 GMCs measured from 
a Combined Array for Research in Millimeter -wa ve Astronomy (CARMA) 12 CO(1–0) survey with 20 pc resolution. Through 
two-point correlation analysis, we find that young clusters have a high probability of being near other young clusters, but 
correlation between GMCs is suppressed by the cloud identification algorithm. By comparing the positions, we find that younger 
clusters are closer to GMCs than older clusters. Through cross-correlation analysis of the M33 cluster data, we find that clusters 
are statistically associated when they are ≤10 Myr old. Utilizing the high precision ages of the clusters, we find that clusters older 
than ≈18 Myr are uncorrelated with the molecular interstellar medium (ISM). Using the spatial coincidence of the youngest 
clusters and GMCs in M33, we estimate that clusters spend ≈4–6 Myr inside their parent GMC. Through similar analysis, 
we find that the GMCs in M33 have a total lifetime of ≈11–15 Myr. We also develop a drift model and show that the abo v e 
correlations can be explained if the clusters in M33 have a 5–10 km s −1 velocity dispersion relative to the molecular ISM. 
Key words: ISM: clouds – galaxies: individual: M33 – galaxies: individual: M31 – galaxies: star clusters: general – galaxies: 
star formation – galaxies: structure. 

1  I N T RO D U C T I O N  
The essential heavy elements around us are evidence of the cycling 
process between gas and stars in the Universe. Molecular gas in the 
interstellar medium (ISM) forms high-mass stars and clusters that, in 
their evolution, will disrupt the surrounding gas. This star formation 
and resulting disruption rely on the interplay of gra vity, turb ulence, 
stellar feedback, magnetic fields, chemistry, and thermal regulation. 
! E-mail: peltonen@ualberta.ca 

The processes that play the most significant role in regulating star 
formation remain areas of active research (McKee & Ostriker 2007 ; 
Che v ance et al. 2022a ). 

Constraining the time-scales associated with the various phases 
of the star formation process can help constrain which physical 
processes are at play. This has moti v ated a number of studies that 
attempt to infer the evolutionary time-scales of the molecular ISM, 
in particular, lifetimes of giant molecular clouds (GMCs) or the 
time-scale o v er which feedback destroys the GMCs. GMCs are 
massive collections of molecular gas that are the primary sites of 
star formation. Early attempts to measure the lifetimes of GMCs 
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led to a range of results with some estimates converging to long 
lifetimes (10 7.5 –10 8 yr; Bash, Green & Peters 1977 ; Scoville & Hersh 
1979 ) and others to shorter lifetimes ( < 10 7.5 yr; Blitz & Shu 1980 ; 
Blitz 1993 ). Lifetimes that are 10 7.5 yr or longer require GMCs to 
survive much of a galactic rotation period with forces that prevent 
gravitational collapse. Some recent analyses of gas distribution 
still point to long GMC lifetimes (Koda et al. 2012 , 2020 ; Koda, 
Sco ville & He yer 2016 ). Ho we ver, there are also many approaches 
that point to short lifetimes. Kawamura et al. ( 2009 ) used the spatial 
coincidence of GMCs and young clusters to determine that GMCs 
live for 20–30 Myr in the Large Magellanic Cloud (LMC). Numerical 
simulations have also suggested a short molecular cloud lifetime, for 
example, 4–25 Myr in Dobbs & Pringle ( 2013 ) and 13–20 Myr in 
Jeffreson et al. ( 2021 ). Using the ‘tuning fork’ measurements of 
the decorrelation between star formation tracers and molecular gas 
developed in Schruba et al. ( 2010 , see also Onodera et al. 2010 ), 
Kruijssen & Longmore ( 2014 ) and Kruijssen et al. ( 2018 ) developed 
their ‘uncertainty principle’ formalism to measure a short (10 Myr 
in NGC 300; Kruijssen et al. 2019 ) lifetime for molecular clouds. 
This methodology has now been replicated in simulations (Semenov, 
Kravtsov & Gnedin 2021 ) and applied to broader samples of galaxies 
(Kim et al. 2021 , 2022 ; Che v ance et al. 2022b ). Che v ance et al. 
( 2022b ) argued for short lifetimes and contended that GMCs are 
dispersed quickly after the onset of star formation. They suggest that 
pre-supernova feedback mechanisms play a key role in disrupting 
clouds. 

While the details of some of the measurements can be quite 
sophisticated, these measurements are usually framed around our 
na ̈ıve model for star formation in molecular clouds. The model starts 
with o v erdense turbulent comple x es of molecular gas that can be 
di vided into indi vidual GMCs. Ho we ver, the boundaries between 
GMCs and the outside ISM are not al w ays clear (Che v ance et al. 
2022a ). These GMCs then begin forming clusters that inherit the 
clustered structure of their progenitor clouds (Grasha et al. 2018 , 
2019 ; Turner et al. 2022 ). After the cluster spends some time 
inside their progenitor clouds they will disrupt the cloud through 
a combination of supernovae and stellar feedback (the significance 
of each effect is still debated; Kim, Kim & Ostriker 2018 ; Che v ance 
et al. 2022b ). We define the lifetime of a GMC as the time between 
when the cloud can first be detected and when it can no longer be 
detected because of this disruption. The disruption of the dense gas 
occurs before most of the gas can be converted into stars, leading to 
very long depletion times and inefficient star formation (Che v ance 
et al. 2022a ). After the clusters have dispersed the gas, the correlated 
structure of the clusters will be erased by random drift velocities 
inherited from the turbulent motions of the gas. 

Many of the approaches to characterize the evolutionary time- 
scale of the molecular ISM rely on tracers of star formation (H α, 
ultraviolet, and mid-infrared) that do not directly measure the ages of 
a stellar population. Instead, they trace the integrated radiation from 
a stellar population in a given waveband; for example, H α traces the 
ionizing photon radiation that comes from short-lived O-stars. Using 
an assumed model of the initial mass function, these measurements 
can then be translated back into star formation rates and characterize 
the time-scale for evolution of molecular clouds, providing a narrow 
window into the star formation history (Kennicutt & Evans 2012 ). 
These tracers are typically restricted to only a portion of the star 
formation process. H α, for example, requires high-mass stars and 
is thus restricted to star formation events that host massive star 
formation. 

Alternatively, the ages of simple stellar populations provide a 
robust method to establish evolutionary time-scales and provide a 

long view into the star formation history of a galaxy. Stellar clusters 
represent close approximations of simple stellar populations, which 
Kawamura et al. ( 2009 ) leveraged for their measurement of cloud 
evolution. Such studies cannot be carried out in the Milky Way 
for large samples because of line-of-sight blending and extinction. 
Therefore, comparing clusters and GMCs has been limited only to 
the nearest galaxies (e.g. the LMC) or limited to unresolved cluster 
candidates in galaxies like M33 (Corbelli et al. 2017 ). Ho we ver, with 
the recent Hubble Space Telescope ( HST ) surv e ys and interferometer 
observations, resolved clusters can be compared to GMCs in nearby 
galaxies like is done in Grasha et al. ( 2018 , 2019 ) and Turner et al. 
( 2022 ). 

In this work, we take advantage of new, high-quality data to 
measure the relationship between cluster and molecular cloud pop- 
ulations in the two largest star-forming galaxies in the Local Group: 
M31 and M33. Clusters were identified in these galaxies using the 
wide-area HST surv e ys, P anchromatic Hubble Andromeda Treasury 
(PHAT; Dalcanton et al. 2012 ) in M31 and Panchromatic Hubble 
Andromeda T reasury: T riangulum Extended Region (PHATTER; 
Williams et al. 2021 ) in M33. In addition, high-resolution surv e ys of 
12 CO, obtained by the Combined Array for Research in Millimeter- 
wave Astronomy (CARMA) in M31 (Cald ́u-Primo & Schruba 2016 ; 
Leroy et al. 2016 ; Schruba, Kruijssen & Leroy 2019 ) and the Atacama 
Large Millimeter/submillimeter Array (ALMA) in M33 (Koch et al., 
in preparation), allow for the analysis of GMCs at subcloud scales. 
M31 is about three times the diameter (de Vaucouleurs et al. 1991 ) 
and 23 ◦ more inclined (Koch et al. 2018 ; van der Marel et al. 
2019 ) than M33. In M33, the surv e ys thoroughly co v er the central 
part of the galaxy and a majority of the star-forming spiral arms 
(Williams et al. 2021 ). Because of its inclination and large area on 
the sk y, the HST surv e ys in M31 are more limited and only co v er a 
quadrant of the galaxy. Despite the limitations in M31, these high- 
resolution surv e ys and the relative proximity of M31 and M33 allow 
for colour–magnitude diagram (CMD) fitting of the clusters, which 
yields robust age and mass estimates. These accurate ages and the 
relatively deep mass completeness limits allow for an unprecedented 
study of molecular gas and star formation. 

We focus on the correlation structure between the GMCs identified 
in the 12 CO surv e ys and the clusters identified in the HST surv e ys. 
Previous studies have shown that very young clusters are typically 
near GMCs (Kawamura et al. 2009 ; Whitmore et al. 2014 ; Corbelli 
et al. 2017 ; Grasha et al. 2018 , 2019 ). It has also been shown that 
the two-point correlation is stronger for younger clusters than older 
clusters (Grasha et al. 2015 , 2017 ; Menon et al. 2021 ). Finally, the 
cross-correlation function has been used to show that young clusters 
are more correlated with GMCs than old clusters (Turner et al. 2022 ). 
Ho we ver, Li & Barmby ( 2021 ) have noted that applying correlation 
functions to non-homogeneous populations may produce spurious 
correlation signal. While the more sophisticated ways of interpreting 
correlation, like spatial-point processes, have their benefits, they 
are difficult to interpret and implement. Therefore, we have de- 
cided to address some of the concerns with correlation functions 
by building in the o v erall effects of galactic structure by using 
random cluster distributions that contain the same non-homogeneous 
structure. 

The details of the M33 surv e ys and the more limited M31 surv e ys 
are presented in Section 2 . Because of the limitations of the M31 data, 
Section 3 focuses on the main results found in M33. These results 
include an analysis of the correlation between clusters and GMCs, 
a comparison of cluster and GMC properties, and estimations of 
GMC time-scales. Section 4 is a partial parallel analysis on M31. In 
Section 5 , we develop a simple model to estimate the drift velocity 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/4/6137/7161133 by C
alifornia Institute of Technology user on 20 June 2023



Clusters, clouds, correlations: M33 and M31 6139 

MNRAS 522, 6137–6149 (2023) 

Figure 1. The data used to study the clusters and GMCs in M33. The 
background is a B -band image from the 4-m Mayall Telescope (Massey et al. 
2006 ). The red outline shows the footprint of the PHATTER surv e y, while 
the dark blue outline shows the footprint of the ALMA ACA surv e y. The top 
zoomed-in frame shows the resolution of the PHATTER data. The bottom 
zoomed-in frame shows a GMC in the same area identified from the ALMA 
ACA data. The orange circles show the locations of the clusters identified 
from the PHATTER data. The GMCs identified from the ALMA ACA surv e y 
are shown as blue diamonds. 
Table 1. Adopted parameters for M33 and M31. 

M33 M31 
Distance (kpc) 859 a 776 b 
Orientation i = 55 ◦ c , PA = 201 ◦ c i = 78 ◦ d , PA = 38 ◦ d 
Central position e RA = 23 . ◦46204 RA = 10 . ◦68479 

Dec. = 30 . ◦66022 Dec. = 41 . ◦26907 
SFR e (M % yr −1 ) 0.32 0.39 
Stellar mass e (M %) 2.63 × 10 9 5.37 × 10 10 
a de Grijs et al. ( 2017 ); b Savino et al. ( 2022 ); c Koch et al. ( 2018 ); d van der 
Marel et al. ( 2019 ); e Leroy et al. ( 2019 ). 
of the clusters and discuss the effects of completeness. Finally, a 
summary of the work is presented in Section 6 . 
2  OBSERVATIONS  
2.1 M33 
We trace GMCs in M33 using a new CO surv e y carried out using the 
ALMA Atacama Compact Array (ACA). The ALMA ACA surv e y 
co v ers a section of M33 shown in Fig. 1 as a dark blue outline and 
is described in more detail in Koch et al. (in preparation). The ACA 
surv e y is centred on the 12 CO J = 2–1 transition at 230.538 GHz 
with a bandwidth of 154 MHz ≈ 200 km s −1 . The synthesized beam 
size of ≈8.5 arcsec corresponds to a physical size of ≈35 pc at the 
distance of M33 from Table 1 . The data have a noise level of 45 
mK in a 0.7 km s −1 channel. Koch et al. (in preparation) applied the 
Spectral Clustering for Molecular Emission Segmentation (SCIMES) 
algorithm (Colombo et al. 2015 ) to the ACA data to obtain a catalogue 

of 444 GMCs. These GMCs are shown in Fig. 1 as blue diamonds. 
An integrated intensity map for one of these GMCs is shown in 
Fig. 1 in the bottom zoomed-in frame. 

The PHATTER surv e y (Williams et al. 2021 ) is composed of 
observations in six HST filters and co v ers a re gion of M33 shown 
in Fig. 1 as a red outline. The top zoomed-in panel of Fig. 1 shows 
a portion of the PHATTER surv e y (in the F475W filter for HST ), 
illustrating the resolution is sufficient to identify individual stars 
and clusters. Using a crowd-sourced visual search, Johnson et al. 
( 2022 ) identified 1214 clusters from the PHATTER surv e y that are 
believed to be long-lived. These clusters are marked in Fig. 1 as 
orange circles. The ages and masses of the clusters were identified 
using CMD fitting as described in Wainer et al. ( 2022 ). This catalogue 
of optically identified clusters is distinct from the catalogue of 630 
young star cluster candidates (YSCCs) in Corbelli et al. ( 2017 ) found 
using Spitzer Space Telescope 24 µm images (Verley et al. 2007 ). 
These infrared YSCCs, originally identified by Sharma et al. ( 2011 ), 
are thought to be young ( ≤10 Myr) embedded objects. Ho we ver, 
Johnson et al. ( 2022 ) found that at least 30 per cent of the YSCCs 
cannot be embedded young clusters because of the lack of visual 
extinction. Because of the potential contamination of non-cluster 
objects, we will only use this YSCC catalogue from Corbelli et al. 
( 2017 ) for comparison in Sections 3.2 and 3.3 . 
2.2 M31 
A portion of M31 was surv e yed using CARMA, PI: A. Schruba, 
which includes short-spacing data from Nieten et al. (2006). These 
data have appeared in Cald ́u-Primo & Schruba ( 2016 ), Leroy et al. 
( 2016 ), and Schruba et al. ( 2019 ) with description and images of the 
data in those papers. Fig. 2 shows the area surv e yed in the CO surv e y. 
With a synthesized beam size of ≈5.5 arcsec and at the distance of 
M31 from Table 1 , the physical resolution is ≈20 pc. The data have a 
noise level of 190 mK in a 2.5 km s −1 channel. We do not match the 
CARMA resolution to the ALMA ACA resolution because we want 
to utilize the highest resolution possible, and most of our analysis 
will be done at scales larger than the resolution. 

We then applied the SCIMES algorithm (Colombo et al. 2015 ) to 
the CARMA data, which yielded a catalogue of 251 GMCs. We use 
the same default algorithm parameters as were used in Koch et al. 
(in preparation) for signal identification and cloud decomposition. 
These GMCs are shown in Fig. 2 as blue diamonds. Fig. 2 also 
shows an integrated intensity map of one of the clouds in the bottom 
zoomed-in frame. 

We use the stellar cluster catalogue generated from the PHAT 
surv e y (Dalcanton et al. 2012 ), the predecessor to PHATTER. PHAT 
co v ers a quadrant of M31’s star-forming disc in six HST bands. 
Fig. 2 shows an area that is smaller than the PHAT surv e y, with a 
small portion shown in the top zoomed-in panel. Using a crowd- 
sourced visual search, Johnson et al. ( 2015 ) identified 2753 clusters 
from the PHAT surv e y. Age and mass estimates are derived from 
CMD fitting, and a subsample of 1249 clusters with ages between 10 
and 300 Myr was reported in Johnson et al. ( 2016 ). These clusters 
are shown in Fig. 2 as orange circles. 
2.3 Completeness 
Throughout the analysis, we will use all of the clusters identified in 
Johnson et al. ( 2016 , 2022 ) to use the greatest number of sources. 
Ho we ver, our results will depend on the completeness properties of 
the cluster and GMC catalogues. For the clusters in both PHATTER 
and PHAT, the visual search for clusters included injected synthetic 
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Figure 2. The data used to study the clusters and GMCs in M31. The 
background is a far -ultra violet image from the Galaxy Evolution Explorer 
(Gil de Paz et al. 2007 ). The dark blue outline shows the footprint of the 
CARMA surv e y. The top zoomed-in frame shows the resolution of the PHAT 
data. The bottom zoomed-in frame shows a GMC in the same area identified 
from the CARMA data. The orange circles show the locations of the clusters 
identified from the PHAT data. The GMCs identified from the CARMA 
surv e y are shown as blue diamonds. 
clusters of known mass and age (Johnson et al. 2015 , 2022 ). These 
synthetic clusters allow for thorough completeness analysis. In M31, 
the cluster catalogue at 100 Myr is 50 per cent complete down to 
M c, 50 ≈ 500 M % (Johnson et al. 2015 ). The completeness is better 
for younger clusters since they are more likely to have bright young 
stars. Ho we ver, the oldest clusters in the catalogue (100–333 Myr) 
are 50 per cent complete down to M c, 50 ≈ 1000 M % (Johnson et al. 
2015 ). The completeness in M33’s cluster catalogue is worse than in 
M31 with a 50 per cent completeness limit of ≈1000 M % at an age 
of 100 Myr (Johnson et al. 2022 ). This difference in completeness 
in M31 and M33 comes from the higher degree of crowding in 
M33, which makes identifying clusters more difficult (Johnson et al. 
2022 ). Therefore, more crowded regions of each galaxy will also lead 
to lower completeness in these regions. Another property that has an 
impact on cluster completeness is e xtinction. The v ery youngest 
( < 3 Myr) deeply embedded clusters will be difficult to identify due 
to optical extinction (Johnson et al. 2022 ). The very young embedded 
stars should be visible with recent observations from the James Webb 
Space Telescope ( JWST ), which can see with eyes unclouded by the 
optical extinction of GMCs (Peltonen et al., in preparation). 

For M33 and M31, we measure the 50 per cent completeness limit 
for molecular cloud identification as M GMC, 50 = 1.3 × 10 4 M % and 
M GMC, 50 = 3.0 × 10 4 M %, respectively, based on the artificial cloud 
reco v ery test method presented in Rosolowsky et al. ( 2021 ). This 
approach inserts GMCs of known brightness and properties into the 
data and tests whether they are recovered in the cloud identification 

algorithm. This value is approximately 40 × the 1 σ noise level in a 
single synthesized beam. Our estimate assumes a Galactic CO-to-H 2 
conversion factor (Bolatto, Wolfire & Leroy 2013 ) and a CO(2–
1)/CO(1–0) line ratio of R = 0.7 (Leroy et al. 2022 ). 

Another issue to consider is not the absolute mass limit of the 
cloud and cluster catalogues independently, but possible mismatches 
between these two limits. In other words, could small clusters be 
undetectable when hosted by the lowest mass of the GMC sample, 
or conversely, could the host GMC of a low-mass stellar cluster 
be undetectable in the CO observations? The mass of the GMC 
completeness limit is 15–30 times larger than the corresponding 
cluster mass completeness limit (typically 10 3 M % as abo v e), 
suggesting these two catalogue limits are well matched as long as 
the efficiency of a GMC forming a cluster (by mass) is ∼0.03–0.06. 
If the true efficiency is lower (i.e. a given GMC can only host a 
smaller maximum-mass cluster), then some catalogued GMCs may 
host clusters that could not actually be detected, and the cluster 
catalogue would be incomplete with respect to the GMC catalogue. 
If the efficiency is higher, then the converse is true and some low- 
mass stellar clusters may actually live in GMCs that are too low mass 
to have been detected, and the GMC catalogue would be incomplete 
with respect to the stellar cluster catalogue. 

We can compare the ‘matched’ catalogue of efficiency of 0.03–
0.06 to current constraints on the efficiency of stellar clusters forming 
in GMCs. Estimates suggest that, on the scale of individual clouds, 
up to 30 per cent of the cloud mass may be converted into stars 
(Krumholz, McKee & Bland-Hawthorn 2019 ). This is a much higher 
efficiency, suggesting that the lowest mass stellar clusters in our 
samples may in fact be hosted by undetected GMCs, but that every 
catalogued GMC that hosts a stellar cluster should have the cluster 
detected. In other words, the cluster catalogue is complete with 
respect to the GMC catalogue, but the GMCs are not complete 
with respect to the cluster catalogue. We can also look at global, 
ensemble estimates of the efficiency, by multiplying the efficiency 
of turning molecular gas into stars on large (kpc) scales ( f ! ) by the 
fraction of the o v erall star formation that produces stellar clusters 
( f clust ). Current estimates of these quantities are f ! ∼ 0.03 (Utomo 
et al. 2018 ; Che v ance et al. 2022a ; Kim et al. 2022 ) and f clust ∼ 0.1 
(Krumholz et al. 2019 ), giving an o v erall efficienc y of f ! f clust ∼ 0.003. 
This is much lower than our ideal ‘matched’ catalogue efficiency, 
which would imply that some GMCs in our catalogue may actually 
host undetectable stellar clusters, but that every stellar cluster should 
have its host GMC detected. In this case, the strength of our cross- 
correlation signals would be lower limits since the presence of more 
clusters correctly matched near progenitor cloud structures should 
enhance the cross-correlation amplitude. 

We can also assess whether there is additional low-mass in- 
completeness in the stellar cluster catalogue by constraining the 
population of embedded clusters using the 24- µm-derived YSCC 
catalogue from Corbelli et al. ( 2017 ) to assess whether there are 
infrared sources without associated CO emission, which would imply 
our surv e y misses clouds hosting embedded cluster formation. We 
find that 188 / 244 = 77 per cent of sources in the surv e y area o v erlap 
with CO clouds. Since up to 30 per cent of these infrared sources 
could be interlopers (Johnson et al. 2022 ), the degree of spatial 
coincidence suggests our cloud catalogue is sufficiently deep to 
include most of the cluster-forming cloud population. 

Finally, we note that both cloud catalogues rely on CO as a tracer 
of molecular gas and our mass estimates abo v e rely on assumptions 
about the CO-to-H 2 conversion factor in these galaxies. Moreo v er, 
these two studies use two different line tracers (J = 2–1 for M33 
and J = 1–0 for M31), so the catalogues inherit potential biases 
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from relying on CO emission as a proxy for star-forming gas. 
Our study, ho we ver, relies primarily on the locations of the CO 
emission and not on its brightness, so concerns about conversion 
f actor variations (Lero y et al. 2011 ) will manifest as uncertainties in 
the mass completeness limit. Similarly, systematic variations in the 
CO line ratios with galaxy and environment (e.g. Koda et al. 2020 ; 
den Brok et al. 2021 ; Leroy et al. 2022 ) may represent a caution for 
comparing the M33 and M31 results. Our analysis relies on whether 
a given cloud is detected or not, so such concerns will manifest as 
changes in the true completeness limits relative to those determined 
by false source injection of CO sources. Given the magnitude of 
these variations observed in the literature, we expect that the typical 
change in completeness limit would be about 0.2 dex, though these 
variations are typically measured in more massive systems than M33. 
This effect is relatively small compared to the range of cloud masses 
probed ( ∼2 dex) so is not likely to dramatically change the results. 

Despite careful measures of completeness for both the clouds and 
clusters, the lack of constraints on the mass fraction of stars found 
in bound clusters ( f clust ) and the relationship between cloud mass 
and cluster mass (Krumholz et al. 2019 ) precludes a clear answer 
to how tightly the two populations relate to each other. We proceed 
assuming the populations are comparable and our later results do not 
contradict this assumption. 
3  T H E  C L O U D – C L U S T E R  POPULATION  IN  M 3 3  
Utilizing the high-quality data of clusters (PHATTER) and GMCs 
(ALMA ACA) in M33, we determine how these clusters and GMCs 
are correlated. First, we find the separations between the clusters and 
clouds and determine if they correlate with the cluster’s age, as would 
be expected in the standard model of cloud and cluster evolution. We 
then refine this measurement with a two-point correlation analysis of 
the individual objects and a cross-correlation analysis of the clusters 
and GMCs. This cross-correlation analysis indicates the degree to 
which clusters are statistically associated with GMCs. We then look 
at how the properties of the clusters are related to the properties of 
the associated GMC, with a particular focus on the angle at which 
the clusters leave their associated clouds. Finally, we determine the 
lifetime of the GMCs in M33 by using the method of Kawamura 
et al. ( 2009 ), which is based on the spatial o v erlap of young clusters. 
These results depend on the completeness limits of the contributing 
catalogues, which we discuss in more detail in Section 2.3 . 
3.1 Cloud–cluster spatial offsets 
To compare the properties of the GMCs and clusters, we must first 
find their locations in the plane of M33’s disc. As seen in Fig. 1 the 
clusters (from PHATTER) and the GMCs (from ALMA ACA) co v er 
different areas. Therefore, we only consider GMCs and clusters in 
the o v erlapping surv e y areas, resulting in a sample of 444 GMCs and 
934 of 1214 clusters. Here we treat the SCIMES molecular clouds 
and PHATTER clusters as point sources. We use the centres of the 
clusters as the point source location. For the molecular clouds, we use 
the location of the brightest CO emission (CO peak) as the location 
of the point sources. Using the orientation parameters from Table 1 , 
we convert celestial coordinates into galactocentric coordinates for 
each object and measure distances in the plane of the galaxy. 

We then compare the azimuthally averaged radial distributions and 
generate random distributions that match the radial distributions of 
the different objects. We use these random distributions to assess the 
significance of our results. Fig. 3 shows the radial distribution for 
the GMCs and the clusters split into three age categories. We choose 

Figure 3. The normalized count per area of the clusters, GMCs, and the 
generated random clusters. The count is found in galactocentric radial bins 
and then divided by the area contained in the o v erlapping surv e y re gion in 
that radial bin. The clusters are split into the three age categories: youngest 
(green squares), medium-aged (blue triangles), and oldest (yellow tripoints). 
The GMC radial distribution (dark pink line with crosses) is found from the 
coordinates of the CO peak of each cloud. The random cluster distribution 
(red line) results from averaging 100 exponential distributions with a scale 
length fitted from the oldest clusters. The random distribution traces a similar 
distribution to the oldest clusters in M33. 
three age categories that have distinct relations to the GMCs. The 60 
youngest clusters have ages ≤10 7 yr, the 93 medium-aged clusters 
have ages between 10 7 yr and 10 7.5 yr, and the 781 oldest clusters 
are > 10 7.5 yr old. 

We assume that GMCs and clusters both follow an exponential 
distribution for surface density, so that the number in a given radial 
bin is 
N ∼ 2 πR $R exp (− R 

R d 
)

, (1) 
where R is the radial distance from the galactic centre and $ R is the 
width of the radial bin. The different cluster age bins and the GMCs 
have different scale lengths, R d , that can be seen from the shapes 
of each radial distribution. We then generate random exponential 
distributions, selecting the same number of sources (934) in the 
same o v erlapping surv e y area. We generate 100 of these random 
distributions at each scale length for a range of scale lengths. Then 
we compared these random distributions to our real distributions 
and found the real–random distribution pair with the lowest chi- 
square value. We find a best-fitting scale length of 1.6 kpc for the 
youngest clusters, 3.2 kpc for the medium-aged clusters, 5.8 kpc for 
the oldest clusters, and 2.5 kpc for the GMCs. These scale lengths 
differ from M33’s molecular gas scale length of ≈2.1 kpc (Druard 
et al. 2014 ) and stellar scale length of ≈1.55 kpc (Verley et al. 
2009 ). The averaged random distribution fitted to the oldest clusters 
(5.8 kpc) is shown in Fig. 3 as a red line. This random distribution 
based on the oldest clusters is used as our standard reference, but we 
use the other distributions for our correlation analysis. 

There are many possible explanations for the differing scale 
lengths. The young clusters have a scale length consistent with 
the stellar scale length (Verley et al. 2009 ), and the GMCs have 
a scale length reasonably close to M33’s molecular gas scale length 
(Druard et al. 2014 ). Ho we ver, the medium-aged and oldest clusters 
have longer scale lengths than the stellar scale length indicating 
fewer clusters at smaller radii, which is clear from Fig. 3 . Therefore, 
there might be something preventing the older clusters from being 
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Figure 4. The separation between the clusters and the GMCs based on the 
age of the clusters in M33. The boxes show the span of the first and third 
quartiles (interquartile range or IQR) for each age bin that are 10 0.5 yr wide, 
with the medians marked with red lines. The error bars extending from the 
boxes indicate the minimum and maximum values in each bin, excluding the 
outliers. The outliers, marked with circles, are defined as points outside of 
1.5 times the IQR. The separation between clusters with random positions 
and the GMCs have their median (white line) and IQR (blue shaded region) 
plotted. The youngest clusters have a shorter median and a smaller IQR 
than random clusters. Clusters older than 10 7.5 yr have medians and IQRs 
consistent with the random distribution. 
identified in the central region of M33. One possible explanation 
that is discussed in more detail in Section 2.3 is that clusters with 
young bright stars are easier to visually identify in the crowded 
central region (Wainer et al. 2022 ). Ho we ver, this trend has also been 
observed in the Milky Way (Soubiran et al. 2018 ) and in simulations 
(Ro ̌skar et al. 2008 ). Therefore, the more likely explanation is due 
to clusters being destroyed in the crowded central region and from 
clusters migrating to larger radii. 

We expect that the youngest clusters will be closer to their parent 
GMCs (e.g. Kawamura et al. 2009 ; Corbelli et al. 2017 ; Grasha 
et al. 2018 , 2019 ), which can be shown by comparing cluster age 
and cluster–cloud separation. We find the closest GMC to each 
cluster using the galactocentric coordinates. We then measure the 
physical separation between the centre of each cluster and the nearest 
molecular cloud CO peak. Fig. 4 shows the result of creating a 
box plot with the separation versus cluster age. Clusters of all ages 
have typical separations far greater than the 35 pc resolution of the 
ALMA ACA surv e y. The youngest clusters have the lowest median 
separation of 90 pc and the smallest interquartile range (IQR) of 
60 pc. With a median separation of 100 pc, the medium-aged clusters 
are further from GMCs and have an IQR of 80 pc, larger than the 
youngest clusters. The oldest clusters composed of three bins in Fig. 
4 are all quite similar, with medians of 120 pc and IQRs of 100–
120 pc consistent with random. The random median (120 pc) and 
IQR (120 pc) shown in Fig. 4 are from the oldest random distribution 
( R d = 5.8 kpc). Using the other random distributions shifts the median 
and IQR by ≈10 pc, which is still most consistent with the oldest 
clusters. As expected, the clusters start close to a GMC and drift 
towards randomly distributed as they age. 
3.2 The two-point correlation function 
We now further analyse the spatial properties of our distributions 
using the two-point correlation function that quantifies the amount of 
clustering on different spatial scales (Peebles 1980 ). In general, the 

Figure 5. The two-point correlation function, 1 + ω, at radial separations, 
r , in M33. The two-point correlation is shown for the GMCs as a dark pink 
line with crosses. The two-point correlation is also shown for the youngest 
clusters (green line with squares), medium-aged clusters (blue line with 
triangles), and the oldest clusters (yellow line with tripoints). These two- 
point correlations are calculated with respect to the 100 random cluster 
distrib utions and a veraged. The error bars show the standard deviation of 
100 two-point correlations. The black line marks uncorrelated. This plot 
shows that the youngest and medium-aged clusters are correlated, and the 
GMCs are anticorrelated at small radii. At larger radii, all the groups become 
uncorrelated. 
two-point correlation function describes the probability of finding 
an object in two volume elements separated by r . The two-point 
correlation of a real data set can then be compared to the two-point 
correlation of a random distribution to find the excess probability of 
spatial correlation (Peebles 1980 ). We use a slight variation on the 
two-point correlation function since we are working in the plane of 
the disc. Therefore, we use ω( r ) to indicate the excess probability 
that an object will be found at a distance r from another object of the 
same type compared to a random distribution. 1 + ω = 1 indicates a 
random uncorrelated distribution, 1 + ω > 1 indicates a correlated 
distribution, and 1 + ω < 1 indicates an anticorrelated distribution. 
ω( r ) is calculated in radial bins separated by log 10 ( r ) = 0.2. For each 
radial bin, we count the number of real catalogue pairs DD , random 
catalogue pairs RR , and pairs of one real and one random object DR . 
Then we use the Landy & Szalay ( 1993 ) estimator in the same form 
as Turner et al. ( 2022 ): 
ω( r) = 1 

RR 
[ 
DD (N R 

N D 
)2 

− 2 DR (N R 
N D 

)
+ RR ] 

, (2) 
where N R is the total number of objects in the random catalogue, 
and N D is the total number of objects in the real catalogue. This 
process is repeated for each object type using their respective 100 
random exponential distributions. Fig. 5 shows the average two- 
point correlation function for the GMCs and the three cluster age 
categories. The standard deviation in two-point correlations from the 
random distributions is shown in Fig. 5 as error bars. 

The youngest and medium-aged clusters are correlated at separa- 
tions smaller than ∼100 pc. The oldest clusters are uncorrelated at all 
scales. GMCs show anticorrelation on small ( < 50 pc) scales, which 
we attribute to the object identification algorithm. When the SCIMES 
algorithm defines the local maxima of GMCs, it requires a minimum 
spatial separation between the maxima, which is set to 50 pc (Koch 
et al., in preparation). As the radial separation increases beyond 
100 pc, all catalogues tend toward 1 + ω = 1, which indicates they 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/4/6137/7161133 by C
alifornia Institute of Technology user on 20 June 2023

art/stad1430_f4.eps
art/stad1430_f5.eps


Clusters, clouds, correlations: M33 and M31 6143 

MNRAS 522, 6137–6149 (2023) 

are uncorrelated on large scales. The youngest clusters show modest 
anticorrelation on medium scales (200 pc) and are uncorrelated at 
larger scales. This anticorrelation is likely the consequence of strong 
correlation at small scales ( < 100 pc). Not shown in Fig. 5 is the two- 
point correlation of the YSCCs from Corbelli et al. ( 2017 ) because 
we find no significant correlation at any scale. 

We also tried to test the effects of completeness by removing clus- 
ters below a certain mass. We remo v ed the clusters below 10 3.5 M %
where the cluster catalogue is ≈90 per cent complete. This high level 
of completion should eliminate the effects of difficulty identifying 
older clusters and in crowded regions. There are fewer clusters that 
make the correlation structure less consistent. Ho we ver, the trend for 
decreasing correlation strength with age is still apparent. Therefore, 
we assume the change in completeness due to crowding and cluster 
ageing will not significantly impact our results. Performing a similar 
test for the GMCs, removing the GMCs below 3.6 × 10 4 M % leaving 
only the GMCs that are ≈90 per cent complete. Removing these 
lower mass clouds has very little effect on the two-point correlation 
of the GMCs. Grasha et al. ( 2018 , 2019 ) found that removing lower 
mass clusters and GMCs resulted in higher correlation magnitudes. 
We see this effect with the clusters but not with the GMCs. 

The results of our two-point correlation analysis are consistent 
with what other studies have found. Grasha et al. ( 2018 , 2019 ) and 
Turner et al. ( 2022 ) all found that young clusters ( < 10 Myr) have 
stronger correlation than the older clusters. While the main results 
are consistent, there are two major differences between our results 
and previous studies. In NGC 7793, Grasha et al. ( 2018 ) found the 
two-point correlation using a catalogue of 293 clusters using the same 
estimator. Ho we ver, Grasha et al. ( 2018 ) find a larger magnitude of 
correlation and the clusters remain correlated until separations of 
approximately 1000 pc instead of 100 pc. Grasha et al. ( 2019 ) and 
Turner et al. ( 2022 ) found the same difference in magnitude and 
scale in the galaxy M51 and 11 PHANGS galaxies, respectively. 
This difference likely comes from the inherent clustering of stars in a 
galaxy that we have tried to account for by using exponential random 
distributions fitted to our clusters. 

Another important result that is consistent between our results 
and Grasha et al. ( 2018 , 2019 ) and Turner et al. ( 2022 ) is that the 
GMCs are much closer to a random distribution than the clusters. If 
each GMC produced only a single cluster it would be expected for 
the correlation structure of the GMCs and young clusters to match. 
The strong correlation seen in the youngest clusters and the lack 
of correlation in GMCs could suggest that GMCs produce multiple 
clusters. Ho we ver, we find that none of our GMCs are overlapping 
with several of the youngest clusters, which does not fully rule 
out this possibility since clusters drift. Another possible solution 
is that enough GMCs are quickly destroyed by young clusters that 
the correlation structure of the GMCs is erased. Finally, a more 
mundane solution would be to attribute the lack of correlation to 
the cloud identification algorithm, which suppresses the correlation 
structure in the molecular clouds at short scales (Fig. 5 ) by forcing 
them into discrete, well-separated units. The resolution of the ALMA 
ACA surv e y could prev ent the cloud identification algorithm from 
distinguishing between a complex of smaller clouds and one large 
cloud. We will address this possibility by analysing the correlation 
of all of the 12 CO emission without cloud decomposition in Peltonen 
et al. (in preparation). 
3.3 The cloud–cluster cr oss-corr elation 
We want to understand how cluster distributions are related to the 
GMC distribution at different scales, which can be shown using 

Figure 6. The cross-correlation function, 1 + ζ , at radial separations, r , 
between the clusters and GMCs in M33. The cross-correlation is shown 
for GMCs correlated with the youngest clusters (green line with squares), 
medium-aged clusters (blue line with triangles), and the oldest clusters 
(yellow line with tripoints). The blue dotted line with circles shows the 
cross-correlation between the Corbelli et al. ( 2017 ) YSCCs and GMCs. These 
cross-correlations have been found with respect to the 100 random cluster and 
GMC distributions and averaged. The error bars show the standard deviation 
of 100 cross-correlations. The black line marks uncorrelated. This plot shows 
that the youngest clusters are correlated with the GMCs at small radii. 
the cross-correlation function. The cross-correlation function, ζ ( r ), 
indicates the excess probability that two data sets are jointly clustered 
more than two random data sets at a distance r . As with the two- 
point correlation function, 1 + ζ = 1 marks the boundary between 
correlated and anticorrelated. We use the cross-correlation function 
to find the correlation between GMCs and clusters in the three 
age categories. To estimate this cross-correlation, we use the three 
random cluster distributions and the random GMC distributions. 
Then by repeating this process with all 100 respective random 
distributions, we find an average cross-correlation. For each radial 
bin, we find the number of real cluster GMC pairs D sc D gmc , real 
cluster random GMC pairs D sc R gmc , random cluster real GMC pairs 
R sc D gmc , and random cluster random GMC pairs R sc R gmc . Again, we 
use the Landy & Szalay ( 1993 ) estimator in the same form as Turner 
et al. ( 2022 ): 
ζ = ( 

N R sc N R gmc 
N D sc N D gmc D sc D gmc 

R sc R gmc 
) 

−
(

N R sc 
N D sc D sc R gmc 

R sc R gmc 
)

−
( 

N R gmc 
N D gmc R sc D gmc 

R sc R gmc 
) 

+ 1 , (3) 
where N D sc is the number of real clusters, N D gmc is the number of 
real GMCs, N R sc is the number of random clusters, and N R gmc is 
the number of random GMCs. Fig. 6 shows the result of finding 
the average cross-correlation between the GMCs and the clusters of 
the three age categories. The standard deviations of the 100 cross- 
correlations are shown in Fig. 6 as error bars. The youngest clusters 
are correlated with GMCs at small radial separations. The medium- 
aged and oldest clusters are uncorrelated at most separations. In the 
first bin, the medium-aged clusters are anticorrelated. Ho we ver, this 
could be explained by the large standard deviations, smaller number 
of sources at small separations, and extinction from the GMCs. The 
older clusters would be less subject to the extinction since older 
clusters have larger scale heights. The youngest clusters are likely 
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also affected by this extinction. The correlation at small scales is 
expected to be quite strong, which could be partially o v ercoming the 
extinction, and the missing embedded clusters would likely amplify 
the correlation strength at these small separations. Removing the 
clusters and GMCs below the 90 per cent completeness limits slightly 
reduces the correlation magnitudes. Ho we v er, the o v erall shape of the 
correlations remains unchanged and our conclusions are the same. 

The correlation between the Corbelli et al. ( 2017 ) YSCCs in our 
surv e y area (244 out of 630) and the GMCs is similar to our youngest 
clusters. We have found this correlation with respect to a random 
distribution with a scale length of 2.9 kpc, which was found in 
the same way as the other random exponential distributions. The 
YSCCs become uncorrelated at a smaller scale than our youngest 
clusters. The YSCCs also have a greater magnitude of correlation 
at the smallest scale. This increased correlation could be due to the 
very young ≤3 Myr clusters that cannot be identified in the optical. 

Fewer studies have analysed cross-correlation than two-point 
correlation. Ho we ver, our results appear consistent with what Turner 
et al. ( 2022 ) found for a sample of 11 PHANGS galaxies. There is 
some variation o v er the 11 galaxy sample, but Turner et al. ( 2022 ) 
find that clusters younger than 10 Myr have similar correlation 
magnitudes to what we have found. There is still a difference in 
random catalogues, but Turner et al. ( 2022 ) find that older clusters 
are typically much less correlated with GMCs, similar to our analysis. 
This correlation between young clusters and GMCs allows for two 
possibilities. The first possibility is that clusters are still nearby to 
their parent GMC, which means that the cluster has not had sufficient 
time to fully destroy the progenitor cloud. The second possibility is 
that the cluster has destroyed its true progenitor cloud, but is still 
associated with a nearby GMC. As discussed in Section 3.2 our 
cloud identification algorithm might be identifying comple x es of 
multiple GMCs as a single larger GMC that would erase the two- 
point correlation of the GMCs. Therefore, it would be difficult to 
distinguish between these two possibilities using these methods. We 
note that, unlike the real GMC catalogue, objects in our random 
GMC catalogue are not required to be separated by 50 pc. Therefore, 
the random GMC catalogue is more correlated at small scales, which 
could decrease the cross-correlation magnitudes at these small scales. 

We now determine at what age clusters transition from correlated 
to uncorrelated with GMCs. Fig. 7 shows the cross-correlation at 
specific radial bins broken into smaller, o v erlapping age groups. The 
age groups are logarithmically spaced with a width of 0.5 dex, starting 
with 10 6.5 –10 7 yr and increasing by a factor of 0.1 dex. We choose 
o v erlapping age bins to increase the number of sources and reduce 
noise. The radial bins used (second, third, and fourth bins from Fig. 
6 ) are where the youngest clusters are correlated with GMCs and the 
medium-aged clusters are not anticorrelated. To find the scale length 
of the random distribution for each o v erlapping bin we assume the 
scale length increases linearly with age. Fig. 7 shows that the clusters 
begin with being correlated with GMCs at these small separations, 
and then at ≈18 Myr, all bins are consistent with being uncorrelated. 
The three radial bins in Fig. 7 behave similarly before 10 7 –10 7.5 
yr, but with different amplitudes of correlation. The longest radial 
bin (100–158 pc) trends directly to uncorrelated at ≈18 Myr, while 
the shorter bins become anticorrelated. This anticorrelation could be 
due to the larger correlation at younger ages or from extinction from 
GMCs. 
3.4 Properties of associated clusters 
Since the molecular cloud population is the site of star formation, 
the resulting star formation properties and cluster population should 

Figure 7. The cross-correlation function, 1 + ζ , at specific radial bins versus 
cluster age in M33. The second (dark blue line with dots), third (light green 
line with triangles), and fourth (orange line with squares) bins from Fig. 6 
are plotted. Where the age bins are 0.5 dex wide. The cross-correlations have 
been found with respect to the 100 random cluster and GMC distributions 
and averaged. The shaded regions show the standard deviation of the 100 
cross-correlations. The black line marks uncorrelated. The cross-correlation 
between clusters and GMCs decreases with age. 
depend on the properties of the progenitor clouds (Kruijssen 2012 ; 
Krumholz et al. 2019 ). We look at the properties of the clusters 
younger than 10 Myr that are likely still correlated with GMCs. We 
find, similar to other studies (Corbelli et al. 2017 ; Grasha et al. 2018 , 
2019 ), that the properties of the nearest cloud (like mass, radius, 
and surface density) have no significant correlation with the mass 
of the clusters produced. This lack of correlation could mean cluster 
properties are not determined by the properties of the cloud. Ho we ver, 
this lack of correlation can also be explained by the evolution 
of GMCs. It has been suggested that GMCs continually accrete 
additional gas throughout their lifetimes (Fukui et al. 2009 ; Gratier 
et al. 2012 ). Then once the GMC has produced a sufficient number 
of stars, the GMC is dispersed through stellar feedback. Therefore, 
the properties of GMCs are not constant, and the properties of the 
nearest GMC to a cluster are unlikely to be the same as the progenitor 
cloud’s properties at the time of formation. 

One property that will be more difficult to erase via feedback is 
the direction a cluster leaves its progenitor cloud. If a cloud forms 
multiple clusters or clouds exist in comple x es, the direction of the 
correlated young cluster ( ≤10 Myr) will be preserved. Ho we ver, if 
the progenitor cloud is destroyed and there are no GMCs near the 
progenitor cloud, then the direction will not be preserved. We select 
the nearest young cluster–cloud pairs and find the angle from the 
cloud to the cluster. We define the angle to start from 0 ◦ pointing 
from the molecular cloud to the galactic centre and with 90 ◦ pointing 
in the direction of galactic rotation. The histogram in Fig. 8 shows 
this cloud to cluster angle broken into 20 ◦ bins. We then found the 
angles from our molecular clouds to the 100 random young cluster 
distributions ( R d = 1.6 kpc). The 100 angle distributions are then 
averaged, which is shown in Fig. 8 as a red line. The red shaded 
region in Fig. 8 shows the standard deviation in the 100 random 
angular distributions. Young clusters are marginally more likely to 
be at 90 ◦ (in the direction of galactic rotation) and 270 ◦ (in the 
opposite direction of rotation). We recognize that the significance 
of this result is weak, but we find it notable that the peaks in the 
real angular distributions lie in the 90 ◦ and 270 ◦ directions, though 
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Figure 8. The angular distributions of real and random young clusters 
( ≤10 Myr) in M33. The green histogram shows the distribution of angles 
between pairs of young clusters and their nearest GMC. The angle is defined 
from the GMC to the young cluster with 0 ◦ pointing towards galactic centre. 
The mean random angular distribution from the 100 random young cluster 
positions is shown as a red line. The red shaded region shows the standard 
deviation in the 100 random angular distributions. The angular bins are 20 ◦
wide. The vertical dashed lines indicate 90 ◦ and 270 ◦. The real angular 
distribution of the young clusters is slightly different from random clustering. 
nothing in the analysis fa v ours these directions. Even after varying 
the bin positions and widths, the peak at 270 ◦ is persistent. Ho we ver, 
the strength of the peak at 90 ◦ is diminished in some variations of 
binning. 
3.5 Molecular cloud lifetimes 
Using our cluster ages, we make an estimate of the total molecular 
cloud lifetime following a similar procedure as used in Kawamura 
et al. ( 2009 ). If we assume clusters are formed at a constant rate, the 
fraction of clusters in a phase represent the time spent in that phase. 
We divide cloud lifetime into two stages: τ dark where a cloud shows 
no association with any potential disrupting cluster and τ fb where a 
stellar source could be providing feedback. Then, τGMC = τ dark + 
τ fb . 

To determine the length of τ fb we only use the young clusters 
( ≤10 Myr) from Johnson et al. ( 2022 ) that are believed to be long- 
lived. We find the fraction of our youngest clusters o v erlapping with 
their parent GMC. We use this fraction of association to estimate 
how long clusters spend with their GMC. This fraction of 10 Myr 
will be known as τ fb , the feedback phase. We find that N o v erlap = 
23 out of N total = 60 young clusters are associated with molecular 
clouds. Based on the fraction of associated young clusters, we have 
τfb = 10 Myr (N o v erlap 

N total 
)

≈ 4 Myr . (4) 
Ho we ver, due to visual extinction, we are likely missing some 
clusters younger than 3 Myr. If we assume we are missing every 
deeply embedded cluster < 3 Myr ( ≈30 per cent), then τ fb ≈ 6 Myr. 
Therefore, we estimate the feedback phase to be 4–6 Myr. 

We can now estimate the total lifetime of the GMCs by finding 
the fraction of GMCs in the feedback phase. This fraction of GMCs 
must include not only the long-lived clusters but also other sites of 
high-mass star formation that are visible but not classified as clusters 

in Johnson et al. ( 2022 ) (e.g. OB associations). Then we have 
τfb 

τdark + τfb = N GMC , fb 
N GMC , (5) 

where N GMC, fb is the total number of GMCs experiencing feedback. 
Koch et al. (in preparation) identified 217 GMCs associated with 
recent high-mass star formation through a visual inspection that 
includes many of the clusters from Johnson et al. ( 2022 ). Ho we ver, 
this inspection was done without the Wainer et al. ( 2022 ) ages for the 
long-lived clusters. We visually inspect the 217 GMCs with visible 
clusters and find that 56 contain only an old cluster ( > 10 7 yr). These 
clusters that are much older than τ fb are likely not in the same plane 
as the GMC and do not represent a GMC in the feedback phase. 
The Koch et al. (in preparation) GMCs without the old clusters leave 
N GMC, fb = 161 out of N GMC = 444 GMCs in the feedback phase. 
Therefore, the feedback phase represents ≈35 per cent of the total 
lifetime of GMCs in M33, giving a lifetime of τGMC = τ dark + τ fb = 
N GMC τ fb / N GMC, fb = 11–15 Myr. Ho we ver, this lifetime estimate is 
sensitive to the visual cluster identification and the removal of older 
clusters. If the old clusters are not remo v ed, the lifetime estimate 
would be 8–12 Myr. Regardless of this sensitivity, our GMC lifetime 
estimate is consistent with the short lifetimes found by previous 
studies (e.g. Blitz et al. 2007 ; Kawamura et al. 2009 ; Miura et al. 
2012 ; Corbelli et al. 2017 ; Kruijssen et al. 2019 ; Che v ance et al. 
2020 ; Kim et al. 2021 , 2022 ; Pan et al. 2022 ). 
4  C L O U D – C L U S T E R  P O P U L AT I O N  IN  M 3 1  
We now analyse the clusters (PHAT) and GMCs (CARMA) in M31 
and compare these results to those found in M33. Ho we ver, the 
different conditions of M31 only allow for certain results to be 
compared. M31 has a greater inclination (Table 1 ) than M33, making 
photometry more complex and limiting the age estimates for clusters. 
In addition, the limited surv e y area and the more defined rings of 
M31 make creating random catalogues more difficult. Despite these 
differences, we find the separations between the clusters and GMCs 
in M31 and compare them to M33’s separations, which depend on 
cluster age. We then find the two-point correlation of the individual 
objects, which can confirm some of the properties of our methods. 
Finally, we find the cross-correlation between the clusters and GMCs 
in M31 to confirm that cross-correlation depends on cluster age. 
4.1 Cloud–cluster spatial offsets 
Similar to M33, in Section 3.1 , we want to find the positions of 
the clusters and GMCs on the disc where the surv e y areas o v erlap. 
Including objects where PHAT and CARMA data o v erlap leav es 480 
of 1249 clusters and all 251 GMCs. We can then use the orientation 
parameters of M31 from Table 1 , to convert the celestial coordinates 
to galactocentric coordinates. 

The radial distribution of M31 in Fig. 9 looks very different than 
the radial distributions of M33 (Fig. 3 ). The GMCs and the clusters 
split into age categories follow a double peak structure offset from 
zero. The double peak comes from the odd shape of the CARMA 
surv e y area and because the surv e y area is centred on the star-forming 
rings of M31. It is also notable that M31 is much larger than M33. 
Therefore, the clusters and GMCs span a much larger area. The 
analysis of cluster ages in M31 restricted age values to be between 
10 7 and 10 8.5 yr. Therefore, we choose only two age groups the 
96 medium-aged clusters have ages ≤10 7.5 yr and the 384 oldest 
clusters with ages > 10 7.5 yr. This more limited age range prevents a 
completely parallel analysis of M33. 
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Figure 9. The normalized count per area of the clusters, GMCs, and the 
generated random clusters. The count is found in galactocentric radial bins 
and then divided by the area contained in the o v erlapping surv e y re gion in that 
radial bin. The clusters are split into the two age categories: medium-aged 
(blue triangles) and oldest (yellow tripoints). The GMC radial distribution 
(dark pink line with crosses) is found from the coordinates of the CO peak of 
each cloud. The random cluster distribution (red line) results from averaging 
100 distributions generated from WISE . The random distribution traces a 
similar distribution to the clusters in M31. 

Generating random distributions in the same way as M33 by fitting 
an exponential distribution to the clusters in the surv e y area yields 
a flat distribution ( R d = ∞ ). This is likely a consequence of the 
defined ring structure present in the surv e y area. A flat distribution 
does not replicate the observed radial distributions of our clusters. To 
create a random distribution that matches the defined rings, we must 
sample a distribution with a similar structure. Therefore, we use the 
full-galaxy 22 µm image constructed by Leroy et al. ( 2019 ) using 
data from the Wide-field Infrared Survey Explorer ( WISE ) satellite 
(Wright et al. 2010 ). We azimuthally average the emission in the 
WISE filters to create a distribution that can be sampled. The filter 
W4 (22 µm) produces random distributions that best match the 
radial distributions of the clusters and GMCs in M31. The mean 
of 100 distributions produced from W4 is shown in Fig. 9 as a 
red line. 

Now that we have the positions of the clusters and GMCs in M31, 
we find the typical separations between clusters and GMCs. Fig. 10 
shows the separations between the centre of clusters split by age and 
the CO peaks of the nearest GMC presented in the same way as in 
Fig. 4 . In this section, we split the medium-aged clusters into two 
smaller age groups since this analysis is less sensitive to the number 
of objects than the two-point correlation and cross-correlation. The 
clusters ≤10 7.2 yr have the lowest median separation of 210 pc and 
the smallest IQR of 160 pc. The clusters > 10 7.2 and ≤10 7.5 yr have 
a median separation of 280 pc closer to random (270 pc) but with a 
smaller IQR of 180 pc than random (280 pc). The oldest clusters have 
median separations of 270–290 pc and IQRs of 260–300 pc, similar to 
random. Even with a more limited cluster age range, the same trends 
are visible in M31 that are seen in M33. We find that the younger 
clusters are closer to GMCs and the oldest clusters are similar to a 
random distribution. Ho we ver, the scale of the separations is larger 
in M31 because there are fewer objects in a larger area. In M31, the 
clusters have a density of ≈3 kpc −2 and the clouds have a density of 
≈1 kpc −2 . While in M33, the density of clusters is ≈36 kpc −2 and 
the density of clouds is ≈17 kpc −2 . 

Figure 10. The separation between the clusters and the GMCs based on the 
age of the clusters in M31. The boxes show the IQR for each age bin, with 
the medians marked with red lines. The error bars extending from the boxes 
indicate each bin’s minimum and maximum values, excluding the outliers. 
The outliers, marked with circles, are defined as points outside 1.5 times IQR. 
The age bins correspond to the youngest clusters (10 7 –10 7.2 yr), medium- 
aged clusters (10 7.3 –10 7.5 yr), and two bins for the oldest clusters both 10 0.5 
yr wide. The separation between clusters with random positions and the 
GMCs have their median (white line) and IQR (blue shaded region) plotted. 
The youngest clusters have a shorter median and a smaller IQR than random 
clusters. Clusters older than 10 7.5 yr have medians and IQRs consistent with 
the random distribution. 

Figure 11. The two-point correlation function, 1 + ω, at radial separations, 
r , for M31. The two-point correlation is shown for the GMCs as a dark pink 
line with crosses. The clusters have their two-point correlation shown for 
the medium-aged clusters (blue line with triangles) and the oldest clusters 
(yellow line with tripoints). These two-point correlations have been found 
with respect to the 100 random cluster distributions and averaged. The error 
bars show the standard deviation of 100 two-point correlations. The black line 
marks uncorrelated. This plot shows that medium-aged clusters are correlated 
at small radii. At larger radii, all the groups become uncorrelated. 
4.2 Two-point correlation and cross-correlation in M31 
We calculate the two-point correlation of the clusters and GMCs in 
M31. The two-point correlation is found in the same way described 
in Section 3.2 , showing the excess probability of clustering compared 
to 100 random distributions. The two-point correlation in different 
radial bins is shown in Fig. 11 for the GMCs and the clusters in their 
age categories. The GMCs are anticorrelated at small scales ( < 50 pc) 
due to the decomposition algorithm. The GMCs are then correlated 
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Figure 12. The cross-correlation function, 1 + ζ , at radial separations, r , 
between the clusters and GMCs in M31. The cross-correlation is shown for 
GMCs correlated with the medium-aged clusters (blue line with triangles) 
and the oldest clusters (yellow line with tripoints). These cross-correlations 
have been found with respect to 100 random cluster and GMC distributions 
that are both from WISE W4. The error bars show the standard deviation of 
100 cross-correlations. The black line marks uncorrelated. This plot shows 
that there is no significant correlation for clusters of any age in M31. 
until ≈1000 pc. The oldest clusters have a small amount of correlation 
until they become uncorrelated at ≈1000 pc. The medium-aged 
clusters have large correlation magnitudes at small separations 
that decrease until becoming uncorrelated at ≈1000 pc. Similar 
to what we found in M33 we see that the younger clusters have 
greater correlation magnitudes than the older clusters. The two-point 
correlation in M31 differs from M33 because the clusters become 
uncorrelated at much larger scales ( ≈1000 pc compared to ≈100 pc 
in M33). The two-point correlation in M31 looks more similar to 
NGC 7793 (Grasha et al. 2018 ), where objects become uncorrelated 
at 1000 pc, and the GMCs have small magnitudes of correlation. 
These two differences could indicate that our random distribution 
generated from WISE has failed to account for additional large-scale 
correlation present in M31’s defined ring structure. Therefore, WISE 
W4 may not be the best representative of the full cluster population. 

As we did for M33, we find the cross-correlation between clusters 
and GMCs in M31. The methods for finding cross-correlation are 
the same as presented in Section 3.3 , finding the excess probability 
that the clusters are associated with GMCs compared to 100 random 
distributions. The results of the cross-correlation analysis for M31 
are shown in Fig. 12 for the medium-aged clusters and the oldest 
clusters. There is no significant correlation for clusters at any age, 
which could be explained by the lack of clusters < 10 7 yr. Similar to 
what we find in M33 and consistent with Turner et al. ( 2022 ), there 
is no correlation for clusters > 10 7 yr. 
5  DISCUSSION  
5.1 Cluster drift speed estimates 
Our time-scale measurements support the idea that the star formation 
process occurs rapidly. Once a cluster is formed, it will spend ≈4–
6 Myr emitting radiation into its parent GMC. Our results also show 
that GMCs will only survive approximately 11–15 Myr. Therefore, a 
GMC will experience feedback from clusters for a significant fraction 
of its lifetime. Our correlation analysis shows that young clusters 
are correlated with GMCs for ≈18 Myr. This loss of correlation 

likely comes from the original cloud being dispersed and the clusters 
drifting. 

Based on the time-scales from our correlation analysis, we can 
estimate the drift speed, which represents the speed at which the 
young cluster population decouples from its birth molecular gas. 
From Fig. 6 , we see that the correlation of the youngest clusters 
and GMCs is no longer present at a scale of 200 pc. Then, from 
Fig. 7 , the correlation between clusters and GMCs disappears at an 
age of ≈18 Myr. Simply dividing this spatial scale by the temporal 
scale gives a velocity of ≈10 km s −1 . It is important to note that 
this estimate assumes that the lack of correlation at 200 pc is purely 
due to cluster drift. In reality, this lack of correlation is likely due 
to a combination of cluster drift and cloud destruction. If a cluster 
destroys its progenitor cloud, it may still be associated with a more 
distant GMC in the same complex, which would increase the spatial 
correlation scale. Therefore, this estimate of drift velocity should be 
seen as an upper limit. 

We can refine our simple drift model by trying to match the two- 
point correlation structure seen in M33. We start with a desired 
correlation model matching the two-point correlation of the young 
clusters in Fig. 5 . A power spectrum can then be generated from 
Fourier transformation of the model correlation using the relation 
P ( k) ∝ ∫ 

R 2 ω( r ) e i k ·r d r , (6) 
where k is the wav e v ector, r is the correlation scale, and ω( r ) is 
the model correlation at that scale. We then calculate the Fourier 
transform of the density field as 
A ( k ) ∝ √ 

P ( k) e i φ( k ) , (7) 
where φ( k ) is a uniformly distributed random phase factor. The 
density field is then generated and normalized so that, when sampled, 
it produces a cluster population with a similar correlation structure 
to the observations. These clusters are then given drift velocities 
drawn from three different velocity dispersions. These three velocity 
dispersions (measured in the 2D plane of the galaxy) are 20, 10, 
and 5 km s −1 . There are about 10 Myr between our youngest and 
medium-aged clusters and about 100 Myr between our youngest 
and oldest clusters. Therefore, we let the clusters drift for 10 and 
100 Myr and found the two-point correlation for each time and 
velocity dispersion. This process is repeated 100 times for each 
velocity dispersion. Fig. 13 shows the average two-point correlation 
for each time and velocity dispersion. The 10 Myr drift should have 
a similar two-point correlation to the medium-aged clusters from 
Fig. 5 , and the 100 Myr drift should be similar to the oldest clusters. 
All three velocity dispersions seem to replicate the correlation 
structure of the oldest cluster. Ho we ver, the magnitude of the 
correlation of the medium-aged clusters in M33 falls between the 
5 and 10 km s −1 models. Therefore, this simple model predicts a 
dispersion velocity of 5–10 km s −1 in M33, which is comparable to 
the upper limit from the simple model inferred from the age argument 
abo v e. 

In order to further test the effects of completeness, we assigned 
masses to our model clusters. We then remo v ed clusters after 10 and 
100 Myr of drifting to simulate decreasing completeness for older 
clusters. The clusters were remo v ed based on the completeness fits 
from Johnson et al. ( 2022 ). Including this simulated completeness 
has no noticeable effect on correlation magnitudes. Therefore, we 
conclude that it is cluster drift and not completeness that results in 
decreased correlation with cluster age. 

Soubiran et al. ( 2018 ) measured the velocities of open clusters in 
the Milky Way and found that young clusters (log(age) < 7.8) have a 
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Figure 13. Model two-point correlation function, 1 + ω, at radial separa- 
tions, r . The two-point correlation of the model clusters to match the youngest 
clusters in Fig. 5 is shown as a green line with squares. The different lines 
show the average two-point correlation of the different velocity dispersions 
given to the model clusters. The solid lines show a velocity dispersion of 
20 km s −1 , the dashed lines show a velocity dispersion of 10 km s −1 , and 
the dotted lines show a velocity dispersion of 5 km s −1 . The different colours 
and symbols show the clusters after 10 Myr (blue triangles) and 100 Myr 
(yellow tripoints) with their respectiv e v elocity dispersion. The black line 
marks uncorrelated. Our real two-point correlation in M33 falls between the 
model with a 5 km s −1 and a velocity 10 km s −1 dispersion. 
velocity dispersion of 10.6 km s −1 among the clusters. This velocity 
dispersion in the Milky Way increases with age, so this dispersion 
is consistent with our drift velocity estimation. In M33, Chandar 
et al. ( 2002 ) find that the velocity dispersion of clusters increases 
with cluster age and for a small sample of clusters < 10 8.1 yr find a 
velocity dispersion of 17 km s −1 . Therefore, for our larger sample 
of younger clusters, a lower velocity dispersion than 17 km s −1 is 
expected. 

Interpreting the physical meaning of this drift velocity can be 
complicated. Part of this motion represents the random motions of 
clusters as they are born in a turbulent medium. If the cluster velocity 
comes from the turbulent motions of the gas, then the dispersion 
velocity of the gas should be similar to the drift velocity. Koch 
et al. (in preparation) find that the typical line-of-sight velocity 
dispersion of CO in molecular clouds to be σ v, 1D ∼ 3 km s −1 (see also 
Rosolowsky et al. 2003 ; Gratier et al. 2014 ), which in 2D assuming 
isotrop y w ould equate to σ v, 2D ∼ 2 σ v, 1D ∼ 4.5 km s −1 , lower than 
but of a consistent scale than the drift speed inferred from correlation 
structure. 
6  C O N C L U S I O N  
In this paper, we analyse the correlation structure between clusters 
and GMCs in M33 and M31. We use the PHATTER cluster catalogue 
from Johnson et al. ( 2022 ) with measured CMD ages from Wainer 
et al. ( 2022 ) for M33. In M31, we have the PHAT cluster catalogue 
from Johnson et al. ( 2015 ) with measured CMD ages from Johnson 
et al. ( 2016 ). We use the SCIMES algorithm to find GMCs in the 35 pc 
resolution ALMA ACA 12 CO surv e y (Koch et al., in preparation) in 
M33 and the 20 pc resolution CARMA 12 CO surv e y in M31 (Cald ́u- 
Primo & Schruba 2016 ; Leroy et al. 2016 ; Schruba et al. 2019 ). 
We then generate random catalogues of clusters and GMCs that 
match the radial distributions of the real clusters and GMCs. Using a 
random catalogue that matches the radial distribution of clusters and 

clouds remo v es the spurious signal from large-scale correlations in 
the cloud–cluster analyses. 

In M33 and M31, we find that younger clusters ( ≤10 Myr) are 
found at a shorter distance from the nearest GMCs when compared 
to older clusters (Figs 4 and 10 ). We also find that clusters older 
than ≈30 Myr have separations from GMCs that matches a random 
distribution similar to what was found by Grasha et al. ( 2018 , 2019 ) 
and Turner et al. ( 2022 ). As seen in Fig. 8 , we find that clusters are 
marginally more likely to drift in the direction of galactic rotation 
and in the opposite direction of galactic rotation. 

The two-point correlation analysis for M33 shows that younger 
clusters ( < 10 7 yr) are correlated with each other at small scales 
( < 200 pc) but older clusters are not (Fig. 5 ). The same correlation 
analysis in M31 shows similar but weaker trends due to the more 
limited cluster age information in M31 (Fig. 11 ). The younger 
clusters likely show a stronger correlation because they have not 
had sufficient time to drift from other young clusters formed in 
nearby GMCs. Once the clusters are ≈18 Myr old, they no longer 
show correlation with GMCs. Because of the limited cluster ages, 
we find no cross-correlation between clusters and GMCs in M31. 
By comparing the 18 Myr temporal scale to our 200 pc spatial scale, 
we estimate the drift velocity of the clusters to be 10 km s −1 . This 
is consistent with the drift velocity of 5–10 km s −1 found from 
comparing our two-point correlation structure to a simple drift model 
applied to mock data. 

We estimate the time the clusters spend o v erlapping with GMCs 
(feedback phase) to be 4–6 Myr in M33. This estimate comes from 
finding the fraction of the youngest clusters ( ≤10 Myr) that o v erlap 
with GMCs. By finding the fraction of GMCs in the feedback phase, 
we estimate the total lifetime of GMCs to be 11–15 Myr in M33. 
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