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Any system of coupled oscillators may be characterized by its spectrum of resonance
frequencies (or eigenfrequencies), which can be tuned by varying the system’s
parameters. The relationship between control parameters and the eigenfrequency

spectrumis central to arange of applications'>. However, fundamental aspects of this
relationship remain poorly understood. For example, if the controls are varied along a
path that returns toits starting point (thatis, around a ‘loop’), the system’s spectrum
must return toitself. In systems that are Hermitian (that is, lossless and reciprocal),
this processis trivial and each resonance frequency returns to its original value.
However, in non-Hermitian systems, where the eigenfrequencies are complex, the
spectrum may return toitselfinatopologically non-trivial manner, a phenomenon
known as spectral flow. The spectral flow is determined by how the control loop
encircles degeneracies, and this relationship is well understood for N=2 (where N is
the number of oscillators in the system)*®. Here we extend this description to arbitrary N.
We show that control loops generically produce braids of eigenfrequencies, and for
N>2thesebraids form anon-Abelian group that reflects the non-trivial geometry of
the space of degeneracies. We demonstrate these features experimentally for N=3
using a cavity optomechanical system.

Avery widerange of physical systems are described by first-order dif-
ferential equations of motion that arelinearin the system’s coordinates.
This includes classical systems near to mechanical equilibrium (for
example, coupled oscillators and linear wave systems), closed quantum
systems and open quantum systems that can be brought to Lindblad
form. In these descriptions, the system’s state is an N-dimensional
complexvector whose time evolutionis generated by an N x Ncomplex
matrix H (which we take to be traceless without loss of generality). The
qualitative behaviour of suchasystem depends onthe form of H, which
reflects the relevant symmetries and conservation laws. For example,
in the quantum description of closed systems, H is Hermitian. On the
other hand, Newtonian mechanics and Maxwellian electromagnetism
both allow for linear elements having non-reciprocity, gain and loss,
and so the classical equations of motion for N coupled oscillators
(whose positions and momenta are encoded as N complex numbers)
may have H of any form.

Recentyears have seen considerableinterestin features that distin-
guishnon-Hermitian systems from their Hermitian counterparts. These
include non-orthogonal eigenvectors, complex eigenvalues and atype
of degeneracy, known as an exceptional point (EP), at which H is
non-diagonalizable. In addition, non-Hermitian systems respond to
perturbations of H in a qualitatively different manner than Hermitian
systems do*®’. These differences offer practical routes to new forms
of control, sensing and robustness, and have been explored in optics,
microwaves, electronics, acoustics, optomechanics and qubits' 385,

Despite rapid progress, some fundamental aspects of non-Hermitian
systems remain poorly understood. For example, when a system’s
parameters are varied around a closed loop (with this ‘control loop’
chosen so that the spectrum is non-degenerate throughout), the
eigenvalues may move around one another in the complex plane.
The way in which they do so, viewed topologically, is what we will
describe below as ‘spectral flow”. It is determined by the manner in
which the control loop encloses degeneracies; however, the specific
relationship between the loop, the degeneracies and the resulting
spectral flow is wellknown only for N=2.For N> 2, studies of spectral
flow have focused on special cases in which H is constrained or on
numerical simulations of specific systems, rather than on a general
description of the spectral flow'*,

Controlloops and spectral flow

Forany N, the spectral flow canbe described by regarding the spectrum
of Has an unordered set A of N points in the complex plane. We take
the parameters controllingA to be the N - 1complex coefficientsin Py
the characteristic polynomial of H. These coefficients define the ‘con-
trol space’ £ = CV~1 They smoothly parameterize the space of spectra,
and have simple expressions in terms of the elements of H. £, can be
partitioned into two subspaces }j, and G, corresponding respectively
towhether or not the spectrumis degenerate.)), consists of the points
where D, the discriminant of p,, vanishes (Methods).
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Fig.1| Experimental schematic and susceptibility measurement.

a, Twolasers (red and blue paths) address two modes of an optical cavity
(white) inacryostat (grey). The cavity contains a Si;N, membrane whose
three mechanical modes are shownin the dashed box. AOM, acousto-optic
modulator; LO, local oscillator; LIA, lock-in amplifier; AM-in, amplitude
modulationinput. b, The optical spectrum, showing the three control beams
(green, lightblue, orange) and the cavity mode (blue). The non-degeneracy of
thebaremodesinRissetbyn=-2mx100 Hz.c, The complex responsel7
measured at frequencies @y, near @\” (top), @5 (centre) and @’ (bottom).
HereW = (2m x50 kHz, 125 uW, 364 uW, 426 uW). The left column shows

| |7(07Am)| and theright column shows a parametric plot ofV(aTAM). Thedata
pointsare coloured by @y (the1-o confidenceintervals are smaller than the
plotted points). A global fit (black lines) gives the system’s eigenvalues. The
magnitude of each mode’s contribution (determined from the fit) is shown as
theorange, light blue and green curvesintheleft column.

Although £, is topologically trivial, this need not be the case for Gy
and V. Todescribe these two subspaces, we note that varying the con-
trol parameters along a smooth curve C c Gy causes the N pointsinA
to be smoothly transported in the complex plane®. Throughout, we
take C to be a closed curve (or ‘loop’); we also fix abasepointin Gy and
consider only loops starting and ending at that point. In this case, tra-
versing aloop C causes theinitial spectrum to be smoothly transported
back to itself. Such an evolution of N distinct points in the complex
planeis called abraid of Nstrands (for example, ref.*). We will say that
two braids are isotopic to one another if one of them can be continu-
ously deformed into the other, keeping its endpoints fixed and its
strands non-intersecting during the deformation. We define the spec-
tral flow produced by a control loop C to be the isotopy equivalence
class bof the corresponding braid of eigenvalues. Braids with the com-
mon basepoint can be concatenated to produce another such braid,
and with that operation the bs formagroup By, the Artin braid group®.

Two isotopic braids arise from two control loops C;, C, that can be
continuously deformed into each other within Gy, and hence each b
corresponds to ahomotopy class? # of based loops C c G,.Concatenat-
ing Cs gives a group operation on the #s, which thus form the funda-
mental group? 1i; of the space G,,. It follows from this discussion that
m(Gy) = By (refs. %), Because £, is topologically trivial, the non-trivial
m(Gy) arises solely because V), (consisting of the points at which the
spectrum is degenerate) was removed from £, to produce Gy, leaving
aholethat controlloops canwind around in various (non-homotopic)
ways that correspond to the elements of rz;.

Togiveaconcrete picture of Gy and ), (and the waysin whichloopsin
the former may encircle the latter), we note that for N=2, thereasoning
above returns the familiar result G,~C\{0O} (the complex plane
without the origin). The fundamental group of this space, m(G,), is iso-
morphicto B, = Z(thegroup ofintegers under addition), reflecting the
factthateachlooping,belongstothe# determined by its winding num-
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Fig.2|Locating EP,points on the hypersurfaceS.The complex-valued
quantities Dand Emeasured onatypical 2D sheetin the hypersurface S. Abs
and Arg denote the magnitude and argument of acomplex number. The units
of Dare10' x (2ir Hz)®. For this sheet, P;=78 pW and 6= 2T x 60 kHz. Left
column, raw data. Middle column, data after outlier rejection and smoothing
(Supplementary Information). Cyan circles show algorithmically identified
Wpp,. Right column, D and £ calculated from optomechanics theory. Cyan
squares, Wy, determined from this calculation. Datafrom the other 60 sheets
areshowninthe Supplementary Information.

ber and concatenatingloops results in anew loop whose winding num-
ber is the sum of the winding numbers of the concatenated loops.

For N=3,we have ;= C?- V;and i, (C? - V3) = B;. From the equa-
tion D=0 weshowinthe Methodsthat V;isaconnected hypersurface
that includes a singular point at the origin (0,0) corresponding to
threefold degeneracy; the rest of V; consists of the twofold degen-
eracies. The twofold degeneracies form the space K xR, ,, where
is the trefoil knot and R, , plays the role of the radial distance from
the threefold degeneracy. Therefore, if we identify C2with R, inter-
secting V; with a real hypersphere 83 centred at the origin gives K.
This structure (which is shown in Extended Data Fig. 1) agrees with
the fact that m,(S3- K) = Bs.

This description highlights two important features common to all
non-Hermitian systems with N> 2, but absentin the well-studied case
N=2.Thefirstis that the subspace ), has a non-trivial geometry. The
second is that this geometry makes loops in Gy non-commutative (as
By isnon-Abelian for N> 2). This rich behaviour reflects the fact that A
consists of theroots of p,, and non-Hermitian systems can realize any
complex polynomial as p,,. In the mathematical context of complex
polynomial equations, the braid and knot structures described here
are well-known features of the relation between a polynomial’s coef-
ficients and its roots.

Here, we provide an experimental demonstration of these two fea-
tures. We use a three-mode mechanical system in which H is tuned
by control parametersW thatspan £;and so provide access toathree-
fold degeneracy and all the spectrain its neighbourhood®. We meas-
ure spectraonahypersurface surrounding the threefold degeneracy,



Fig.3|Measurements of the EP, knot /Cand the eigenvalue braids. a, All of
the EP,locations (Wgp,) showninastereographic projectionof S. X, Yand Zare
dimensionless combinations of the control parameters.b, Thedatafromaina
projection where each of the six ‘faces’ of S that contains Wy, is linearly
mapped to one of the hexahedrons surrounding the central cube. The solid
curveinaandbisthebest fitto the data. Details of the projections and fit
areinthe Methods. The coordinate @is described in the Supplementary
Information. Additional views of these data are in Extended Data Fig. 5.

c-e, Three controlloops (green (c), red (d), blue (e)) in S, each from a different
¢ and sharing acommon basepoint (black sphere). The measured knot £

and find the trefoil knot K formed by the twofold degeneracies. We show
thatvaryingW around aloop produces an eigenvalue braid whose spec-
tral flow is determined by how the loop encircles K. We demonstrate
braids that can be concatenated to produce any element of B;, and show
the non-commutation of these braids. These features are demonstrated
usinga cavity optomechanical system, although we emphasize that they
are generic to oscillators realized in any physical domain.

Experimental system

The experiment is shown schematically in Fig. 1a. It uses three vibra-
tional modes of a Si;N, membrane. The dynamical matrix H governing
these modesis controlled by placing the membrane in an optical cav-
ity and using the dynamical back-action (DBA) effect of cavity opto-
mechanics®. In the absence of DBA, the three modes have resonance
frequencies ((5(0), 6(20), (5(30)) =2mnx(352,557,705) kHzand optome-
chanical couplingrates g= (g, g,,8,;) =21 x (0.198, 0.304, 0.300) Hz.
The cavity linewidth k=21x 190 kHz. Three tones produced from a
single laser (‘control’in Fig.1a) drive the cavity with powers P, , 5. The
tones’ relative detunings are fixed (Fig. 1b), and their beatnotes define
arotating frame R in which the three modes’ eigenvalues are almost
degenerate for P,= 0. Within R, the control parametersW = (6, P, P,, P3)
(where § is the tones’ common detuning, Fig. 1b) can tune the system
to athreefold degeneracy. They also provide linearly independent
control of the coefficients of p, (Methods and Supplementary Infor-
mation), and hence span £;. H is otherwise unconstrained, so it
accesses degeneracies of the most generic type (for a given order):
thatis, atan m-order degeneracy, the Jordan normal form of H contains
aJordan block of dimension m (we call such a point EP,,).

240
80 o\ g

-120 \(“\M

(yellow circles) and the best-fit knot (orange curve) are shown for reference.
The projectionisthesameasina.f-h, The eigenvalue spectrumA(W)asWis
varied around the correspondingloop from c-e. § indexes the values of W along
eachloop. Theblack crosses showA at the basepoint. The dashed lines are
guidestotheeye.Thel-o confidenceintervalsfor A are comparableto the size
of the plotted points. The measured A traces out the braids: 1(f), o, (g) and 0,0,
(h). Extended Data Fig.10 shows the control loops, and Extended Data Fig. 6
shows acomparisonwith theory. Animations of this figure are shownin
Supplementary Videos 3 and 4.

The modes’ eigenvalue spectrumA is determined by measuring the
membrane’s mechanical susceptibility. This is accomplished using a
second laser (‘probe’inFig.1a) to exert anoscillatory force on the mem-
brane (at frequency @), and to record a heterodyne signal ¥ propor-
tional to the membrane’s response. Figure 1c shows a typical
measurement of V((T)AM), along with a fit of these data to standard
optomechanics theory. Thisfit returns the complex eigenvaluesA;, as
well as the amplitudes s; ; (denoting the contribution of the jth mode
to the peak near (7)}0)). In the remainder of this paper, A is determined
from data and fits as in Fig. 1c.

Locating degeneracies

The system’s EP; is identified by measuring A(W) and converting
each A to d=I\— Ayl + [A,= A5l +]A;— N (Methods). As shown in
Extended Data Figs. 2 and 3, measurements of d(¥) give Wgp;=
(21t x 54(7) kHz, 128(8) pW, 428(3) pW, 304(15) uW), in good agree-
ment with the value calculated from the independently measured
device parameters (Methods).

To study the spectrum on a hypersurface surrounding Wgps,
we measured A on the boundary of a four-dimensional (4D) hyper-
rectangle S centred close to Wgp;. Specifically, S bounds the
region: -10 kHz < §/2m <106 kHz, 22 pW < P,<240 pW,289 pW <P,
<675 pW, 78 pW < P, < 702 pW. It consists of eight three-dimensional
(3D) ‘faces’, each corresponding to fixing the value of one control
parameter. W was densely rastered over 61 distinct two-dimensional
(2D) ‘sheets’ within S (Extended DataFig. 4). Data from a typical sheet
are shown in Fig. 2. For each value of W (that is, for each pixel in the
sheet), V((T)AM) was measured and fit as in Fig. 1c.
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Fig.4 |Non-commutation of controlloops. a, Two loops (red, blue) belonging
todifferent#. They are non-intersecting, except that they haveacommon
basepoint (black sphere). The measured knot K (yellow circles) and the best-fit
knot (orange curve) are shown for reference. The projectionis the sameasin
Fig.3a.b, ThespectrumA(W)asWisvaried around theloop formed by
concatenating the twoloopsina. Specifically, thered loopis traversed first
(1<£<59),and thentheblueloop (60 < £<116). Theblack crosses show A at the
basepoint. Thedashedlinesare guidesto the eye, and the1-o confidence
intervals for A are comparable to the size of the plotted points. ¢, The spectrum
AMW)asWisvaried firstaround the blueloop (1< £<57),and thentheredloop
(58<£<116).Inboth cases, theloopsare traversed in the sense indicated by the
arrowsina.

To locate the EP, points in S we considered two quantities derived
from these fits: D= (\,~A,)*(\,-A3) 23—\ > and E = (det[S])
where Sis the matrix formed by thes; ;. Both Dand £ vanish at EP,, and
both exhibita phase winding of 2rtaround EP,. However, they provide
complementary information: D= O reflects eigenvalue degeneracy,
whereas £=0 reflects eigenvector degeneracy (Supplementary
Information). Furthermore, Dand £ are derived from different aspects
of the fits to /(@ ,\y), and so reflect partially independent features of
the data. The locations (Wp,) of the zeroes and phase windings in D
and F areidentified algorithmically (Supplementary Information) and
areshowninFig. 2 as cyancircles.

The knot of twofold degeneracies

Figure 3a,b show all of the Wy, identified in this way. For ease of
visualization, they are depicted using two projections of S, both of
which generically preserve knot equivalence classes. Figure 3a uses a
stereographic projection, whereas Fig. 3b uses a projectionisomorphic
totheoneinFig.3a,but whichis more easily connected to the control
parameters. In both projections, the experimentally identified EP,s
are seen to trace out a curve that forms a trefoil knot . Each pointin
Fig.3a,bis coloured according to the value of @ measured at the cor-
responding W, (Ois derived from A as defined in the Supplementary
Information, and serves as a coordinate along K).

Figure 3a,b also show the best fit of the measured W, to standard
optomechanicstheory (Methods). Thisfit uses g and k as parameters and
returns g =21 x (0.1979, 0.3442,0.3092) Hz and k =21 x 173. 84 kHz
(these values are also used to generate the plots of D and £ (labelled
‘theory’) in the right-hand column of Fig. 2). These values of g and k
extracted by fitting the knot K in the three-mode spectrum agree well
with the values given earlier (in the section ‘Experimental system’),
which are determined independently from measurements of the DBA
(Extended Data Fig. 9 and Supplementary Information).

Non-commuting eigenvalue braids

WhenW is varied around a loop C from a given Z, A\(W) is expected to
form abraid whose equivalence classb isdetermined by #. To demon-
strate this, we selected pixels from the dataset described above
(the 61sheets) that trace out three loops withacommon basepoint, as
shownin Fig.3c-e. The corresponding A(W) for each loop is shown in
Fig.3f-h.Theloopsbelongto different#, and resultin eigenvalue braids
fromb =1,0,, 0,0, (Fig. 3f-h, respectively). Here, Tis the identity, g; (5} ")

274 | Nature | Vol 607 | 14 July 2022

indicates thatstrandi has crossed over (under) strandi + 1, the strands
are counted from the left (in the view used for the figures), and opera-
tions are written symbolically fromright to left asthe braidisread from
bottomto top®. As 0;and 0,0, together generate the group B,, theloops
inFig. 3d,e can be concatenated to produce any braid of eigenvalues.
The correspondence between aloop’s#andtheb it producesisarobust
feature of the data; thisisillustrated in Fig. 4 and Extended DataFig. 7,
which show the braids produced by several other loops.

The non-Abelian character of the group formed by these braids
is demonstrated in Fig. 4. Figure 4a shows two loops (red, blue)
belonging to different #. Figure 4b shows A(W) as W is stepped first
around theredloop and then around the blue loop, whereas Fig. 4c
shows A(W) as W is stepped first around the blue loop and then
around the red loop. The former gives b = 65'07", whereas the latter
gives b = 0;'0;". The inequivalence of these braids, which can be seen
directly from the fact that they result in different permutations of
the eigenvalues, demonstrates that encircling a degeneracy is not
characterized by a number (as is the case for N=2), but by a braid
equivalence class.

Future directions

Looking ahead, one may ask if the braids demonstrated here may play
aroleinthe system’s dynamics. For example, if one eigenmode of the
system is initially excited, and then the system is slowly evolved
around a controlloop, it might be expected that the excitation would
remaininthe eigenmode thatis smoothly connected with the original
one, inanalogy with adiabatic transportin Hermitian systems. If this
were the case, a control loop would permute excitations among the
normal modes, with the specific permutation determined by the
loop’s Z.Such a control scheme—in which the outcome is determined
by a topological property of the input—would be of considerable
interest. However, in non-Hermitian systems adiabatic control loops
do not transport excitations in this manner®. On the other hand,
real-time loops have been shown to produce similar transportin spe-
cial cases™*333* and it remains an open question whether control
schemes such as ‘shortcuts to adiabaticity’®* or tailored nonlinear-
ities>**° can stabilize such transport more generally. Exploration
of these possibilities may open new means for achieving robust
topological controlin oscillator systems.
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Methods

Characteristic polynomial, discriminant and the trefoil knot
Foran N x N matrix H, the eigenvalues are the solutions of the charac-
teristic equationdet(A/ - H) = 0, which can be written as

N =a XN+ a N+ o+ (-1, =0.

The coefficients g; are invariants of H under similarity transforms
(change of basis), and in particular a; = tr H and ay = det H. The char-
acteristic polynomial on the left-hand side of this equation can be
factored asﬂﬁl(k -\, inwhich theroots\; may berepeated. The coef-
ficients g; are the elementary symmetric polynomials in the rootsA;,
namelya, =Y\, a,= 2ijisj NiNjs oo Oy = M2

Thediscriminant of the polynomialis definedasD = ﬂi<j ;- I\j)z; it
vanishes if any two roots of the polynomial are equal. Being a sym-
metric polynomial, it can be expressed algebraically in terms of the
elementary symmetric polynomials a; (for example, ref.*!). The explicit
expressions are simpler if we shift H by a multiple of the identity so
thata; =trH=0. Then for the quadratic, N=2, the discriminant is the
familiar expression D =-4a,, and therootsare +./~=a,.Focusing here-
after on the cubic, N=3, its discriminant is*

D=-4a3-27a3,

which enters the formulas for the roots.

Defining x=a;, y=-a,as our coordinates in C? (so that the charac-
teristic polynomlal isp, =N -y\-x), the solutions to the equation
D(x,y)=4y>-27x%*=0 form an algebraic variety (a hypersurface) in
C?thathas asingularity at x = y = 0. Dhas a (weighted) scaling property,
such that rescaling x > ax, y > by, where a, b are real and positive and
a*=b’ , changes D by a factor; this maps any non-zero solutiontoD=0
to another. Thus the variety resembles a cone in C2 = R*, and it is suffi-
cient to consider a cross section, that is the intersection of the variety
with a hypersurface that (1) has the topology of a hypersphere S,
(2) surrounds the origin without passing throughi it or intersecting itself
and (3)iseverywheretransversetothelocalactionof aninfinitesimal (say,
bya =1+ g ,esmall) scaling. Any two suchhypersurfaces areisotopy equiv-
alent (througharescaling thatdepends on position on the hypersurface).
Aparticular such hypersurface* results from considering the unit hyper-
sphere defined by |x|%+ Wl 2=1.The points (x,y) on the hypersphere
that satisfy D(x, ) = 0 can be parameterized as (x, ) = (r,e*’, r,e*®) ,
wherer,,rarereal posmve constantsandO < 6 < 2misavariable. These
points lie on a two-torus T2 embedded in S, and form a closed curve
thatisatrefoil knotinthis S> (ref.*?). Thisisillustrated in Extended Data
Fig.1,as described in the Supplementary Information.

Foranyknotor linkin R>or S? the fundamental group of its comple-
ment is an isotopy invariant of the knot or link called the knot group.
The knot group of the trefoil is well known to be the braid group B5, or
this can be inferred by reasoning as in the main text.

Experimental setup

As described in the main text, this experiment focuses on three vibra-
tional modes of a Si;N, membrane. The membrane’s dimensions are
1mm x1mm x 50 nm. These modes’ bare eigenvalues (that is, in the

absence of optomechanical effects) are A(O)— (X;O), X;O), X;O)) =
21 x (352243 - 2.2i, 557217 - 1.9i, 704837 - 1.8i) Hz, where the real
(imaginary) parts give each mode’s oscillation frequency (amplitude
damping rate). Frequencies related to the mechanical modes are
denoted with atilde when given in the laboratory frame, and without
atildein the frame R described below.

The dynamical matrix H governing these modes is controlled
using the DBA effect of cavity optomechanics® .The membrane
is placed in an optical cavity with linewidth x/21m=190 kHz, input
coupling rate k;,=0.267k and optomechanical coupling rates

g=(g,, 8, 8,)=2m1x(0.198,0.304, 0.300) Hz. Further details of the
apparatus are in the Supplementary Information, Extended Data
Fig.8andref.®

The cavityis driven with three tones produced fromasinglelaser (‘con-
trol’, Fig.1a). The DBA from each tone induces a complex-valued shiftin
eachmechanicalmode’s eigenvalue®. Inaddition, each pair of tones gives
risetoanintracavity beatnote, whichinducesacomplex-valued coupling
between pairs of modes whose frequency difference is comparable to
the beatnote frequency44 . Inthe resolved sideband regime (k < wioz) 3
wherew(O) = Re()\ )) these shifts and couplings can be tuned over the
complex plane by varying the tones’ powers P, and detunmgs Ak
(k< {1,2,3}). Anexpression for H interms of P,, Ay, K, k;,, g and 7\
giveninthe SupplementaryInformation. For the experiments descrlbed
here, the tones’ common detuning 6 (Fig. 1b) is varied. Their relative
detunings are fixed, and are chosen to g)roduce beatnote frequencies
close to the differences between thew

Thebeatnote frequencies are chosen sothatthereisarotatingframe
R (defined inthe Supplementary Information) in which the dynamical
matrix H is time-independent (in the rotating wave approximation),
and in which the bare eigenvalues X are almost degenerate (their
non-degeneracy in R is set by n = —21 x 100 Hz (Fig. 1b)).

Thus, within R, the mechanical modes can be described by the equa-
tion of motion

X(6) =—iH(W)x(¢) + £(¢)

Here X(8) = ((6), X;(6), x3(0)" and f(0) = (£ (¢), £, ()., (0))' are the
modes’ complex-valued amplitudes and the external forces driving them.
Whereas the above equation is the generic equation of motion for any
linear system, we emphasize the form of H(W)realized here: specifically,
that the controlsW completely and smoothly parametrize all of the com-
plex eigenspectrain aneighbourhood thatincludes EP; (ref. ).

Locating the EP;

This section gives the protocol for experimentally identifying the EP;.
Approaches to identifying threefold degeneracies are also given in
refS. 16724,46748‘

Weidentify the value of control parameters (Wp;) that corresponds
toEP; through the quantityd = [A;— A,| + A, — A3l + A3 — Ay, which may
be visualized as the perimeter of the triangle formed by the system’s
three eigenvalues A inthe complex plane. At W p; the three eigenvalues
areequal,andsod=0.

The search for the EP; point starts with the estimate:

WY = (2m x 49.7 kHz, 115 uW, 387 uW, 285 uW).

We proceed by fixing three of the control parameters to these values,
and scanning the fourth (say, ¥). At each value of W in this one-
dimensional sweep, A ismeasured (as described in the Supplementary
Information) and converted tod(W). The experimental estimate W &9
is then revised with the value of ¢, that minimizes d over that sweep.
This process is then repeated for different choices of .. The estimate
resulting from these one-dimensional sweeps is:

WD = (21 x 49.7 kHz, 125 uW, 435 uW, 300 uW).

To further refine the estimate of Wgp,, we then measure d(W) on 2D
sheets that pass through QJ(E?%‘). For each 2D sheet, two control param-
eters are scanned while the other two are fixed, resulting in a total of
six sheets. Thed(W) measured on these sheets are shown in Extended
DataFig.2.Forvisualization purposes, Extended Data Fig. 3 shows the
same sheets, but arrangedin3D toillustrate thatd(W)is minimizedin
the neighbourhood of WY, In Extended Data Figs. 2, 3, the middle row
shows the filtered data (see the Supplementary Information for details
ofthefiltering) and the bottom row shows the values of d(W)calculated



from H (Supplementary Information) using the best-fit optomechan-
ical parameters determined by fitting the knot, as shown in Fig. 3a,b
and described in detail in the Supplementary Information.

Near to Wgp; the quantity d(W) is expected to scale as*
d(W) = |W - W,,,[Y3, but in practice the sharp cusp in d(W) is broad-
ened by fluctuations inW. Nevertheless, clear minima are visible in the
measured d(W), and their locations are given in the Supplementary
Information (Supplementary Table 1). Details of the algorithm used to
identify the minimaarealso in the Supplementary Information. The mean
location of these minima is taken as the experimentally identified EP;:

(eXP) P(eXP) P(eXp)

exp) (exp)
(6EP3 LEP3, ¥ 2,EP3, 7 3,EP3.

EP3 -

=(2mx 54(7)kHz,128(8) pW, 428(3) pW, 304 (15) pw)

This compares well with the location of EP; that is obtained from the
best-fit parameters returned by fitting the measured knot:

Yoo = (21 x 60.2 kHz, 116 uW, 477 uW, 329 uW).

Projections of the hypersurface S

Here we describe the two projections that are used in Fig. 3a,b of the
main text (as well as Extended Data Fig. 4) to represent data acquired
onthe hypersurface S, whichis the surface of a4D hyperrectangle.

Standard stereographic projection. Stereographic projectionis a
standard means for representing asphere (typically of one, two or three
dimensions) inaEuclidean space with the same number of dimensions.
In Fig. 3a of the main paper, we represent S by first projecting it onto
the unitthree-sphere S>and then applying the standard stereograph-
ic projection of S®>onto R>,

The map is constructed by first adimensionalizing the control
parameter as

y 5 A P P
W= op 1| Sep -1 (eip) -1 (e>2<p) -1 (eip) B
Wep3 Op3 PiEp3 P Er3 P3Ep3

and then normalizingitas@’’ := “w T where |||| is the conventional L
norm. Note here the implicit use of the fact that WY lies inside the
four-volume bounded by S.

Next, we actonW”” with a4D rotation R (specified below). The new
unitvectorRY”’ = (x,z,w,y)isthen stereographicallyprojected onto
the 3D cartesian coordinates (X, Y,Z) as X=1Y=1 yw,Z— .
Thus, the choice of R corresponds to choosmg the pole
(x,z,w,y) = (0,0,1,0) for the stereographic projection.

Thesame poleis chosen for all the stereographic projections shown
in this work (except for Extended Data Fig. 1, whose generation is
described in the Supplementary Material). It is chosen so as to
optimize the visualization of the experimentally identified knot,

and corresEonds to W”’=(0.1, - 0.83, 0.55,0) , or equivalently,
W= (2nx55kHz, 22 pW, 596 pW, 304 pW).

‘Rectilinear stereographic’ projection. The projection shown in
Fig.3b of the main textisisomorphicto the projectionjust described.
However, itis intended to provide a more intuitive representation of
the dimensionful experimental parametersW. Animations that describe
this projection are shown in Supplementary Videos 1and 2.
This projection consists of five steps.
(1) We select one of the eight 3D hyperrectangles that constitute S.
(2) We simply rescale its axes so that it forms a cube (this is the central
cubeinFig.3b).
(3) Each of the six 3D hyperrectangles adjacent to the first one is also
rescaled to form a cube, which is then attached to the first cube

on their common 2D face. The resulting ‘six-way cross’ faithfully
represents the connections of the central cube to its six neighbours.

(4) Tofaithfully represent the connections among these six neighbours,
abilinear transformation* is applied to each, deforming each cube
into a truncated square pyramid. The transformation is chosen so
that the 2D faces that are common to any two of these neighbours
aremadetotouch. These seven hexahedrons (the central cube and
the six truncated square pyramids surrounding it) can readily be
labelled by their original dimensionful axes, as in Fig. 3b. Together
they form the bounding box of Fig. 3b.

(5) The final 3D hyperrectangle is mapped to the exterior of the
bounding box through a nonlinear mapping, and extends to in-
finity (as does the standard stereographic projection described
above).

As described in the Supplementary Information, there are no EP,s
in the two 3D hyperrectangles that correspond to constant P,. We
choose these to be the interior (cubical) hexahedron and the exterior
region. This choice places all of the EP,s in the six truncated square
pyramids, facilitating a clear view of the knot. Supplementary Video 2
gives animated views of the data and fit shown in this projection.

Fitting the ER, locations to the optomechanical model
Thissectiondescribes the fit of the three-mode optomechanical model
tothe 291 experimentally identified EP, points shownin Fig.3a,b of the
main text. These locations are denoted asWSP?), with1< £ <291,

The best-fit parameters A and k for the model are obtained by mini-
mizing the cost function

_ (exp,?) _ (th ,6) 2
cg, K= z Wepr " - Wepd (g, k)|
7

where the summands define a distance between the experiment
and theory, which is adimensionalized by the EP; coordinates

(EXP) (exp) (eXP) (exp) p(exp)
Wiy = (Ogp3 1EP3'P2,EP3' P3,EP3

In particular, for

exp ¢) _ ¢ clexp, /‘) (exp,f) (exp,?) (exp £)
(6EP2 lEPZ 'PZ,EPZ »"3,EP2 )

and

(th ,0) _ (o(thy,?) p(thy,#) plthy,#) p(thy,s)
|-:Pzy (5EP2 'PI,E¥2 'Pz E)l,>2 ,P3 E)I;Z )

this dimensionless distance (squared) is

|q,|l($§P,f) (th)’ L”)@ K)|2
2 2
(exp,?) (thy,?) (exp,?) (thy,?) (exp,?) (thy,?)
- 6El§§p 6 y + P EXFPZ Pl El%lZ P2 EPPZ PZ F.)I;Z
- (exp) (exp) (exp)
6EP3 Pl,EP3 P2 EP3

(exp,?) (th )
[Pae P
PR

Here, WY“Yg, k)is theEP, point found numerically (as aroot of the
discriminant D(W, g, k), see the Supplementary Information) in a
neighbourhood of WP * and in its 2D data sheet. For example, if
w &P js identified in a data sheet that rasters £, and P, while holding
6 and Psfixed, the numerical root is found in the neighbourhood

(0.65 PIP5”,1.35 P{Z5”) x (0.65 PR, 1.35 PSR”)

at the same fixed values of 6 and P;. ll’étp"zy Ag, k) is evaluated with

K;n/k=0.267,and ¢ held equal to the values determined from the
single-tone DBA measurements described in the Supplementary
Information.
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The minimization of C(g, k) is implemented numerically on a
high-performance cluster. The best-fit parameters so obtained are:

g=21x(0.1979,0.3442,0.3092)Hz
k=21 x173.84 kHz

These parameters are used to produce the ‘best-fit knot’ shown as
the continuous curve in Fig. 3a,b in the main text. This curve is gener-
ated by using the best-fit values of g and k given just above to calculate
Aon16,0002DsheetsinS.Oneach sheet, the EP, points are identified
as the roots of the discriminant D (found numerically as described in
the Supplementary Information). At each of these EP, points, 8is also
calculated. Finally, these points are coloured according to 8 and are
connected by straight line segments.

The values of the parameters g and k given just above are also used
to generate the theory plotsin Fig. 2 of the main text, and in Extended
DataFigs. 2,3, 5and 6 and Supplementary Video 5.

Relation of the present work to studies of non-Hermitian band
structure (NHBS)

Topics related to those described in this work have been considered
in the context of a NHBS**°%°, However, there are several qualitative
differences between NHBS and the non-Hermitian oscillators consid-
ered here: in the physical systems being described, the mathematical
conceptsrelevantto the description, and the genericness of the result-
ing topological structures.

The physical system under considerationin NHBS is a wave prop-
agating in an L-dimensional lattice (in which Lis typically 1, 2 or 3)
that possesses a combination of non-reciprocity, gain and loss.
Propagation in such a lattice can be characterized by bands whose
dispersion is given by the complex eigenvalues of a matrix (which
playstherole of Hinthe present paper). A central questionin NHBS
ishow these eigenvalues depend on the quasimomentumk (whose
vector components play the role of the control parameters consid-
ered in the present paper). Theoretical®****” and experimental?**®
work has shown that varying k in a closed loop may result in
non-trivial eigenvalue braids. Theoretical work has shown that, for
some lattices with L =3, two-band systems described by 2 x 2 matri-
ces may exhibit a trefoil knot of twofold degeneracies within the
Brillouin zone*****, However, we emphasize that these results are
distinct from those presented here.

Thisisbecause in NHBS, the number of control parametersis limited
to L, and the control space they span (the analogue of £ in the present
work) is topologically non-trivial by assumption (because the Brillouin
zoneisan L-torus). By contrast, for non-Hermitian oscillators the con-
trol space (L) istopologically trivial, and the number of controls (that
is, the dimensionality of £,) is sufficient to span the full space of com-
plex eigenspectra. This results in the direct connection—described in
the main text—between non-Hermitian oscillators and general complex
polynomials. In particular, the non-trivial structure of the degenerate
subspace (which establishes the correspondence between control
loops and the non-Abelian group of eigenvalue braids) is a generic
feature of N x N matrices. This is in contrast to NHBS, in which these
features are not generic, but only appear on fine tuning.

Last, we note that experiments on NHBS so far’>*® have been limited
to braids realized by two eigenvalues. Thus, they correspond to the
N=2case, for which the subspace of degeneracies has a trivial geom-
etry, and the group formed by the eigenvalue braids is Abelian. By
contrast, for the N=3 case explored in the experiments described
here, the subspace of degeneracies has anon-trivial geometry, and the
eigenvalue braids form a non-Abelian group.

Another approachtostudying the propagation of linear excitations
innon-Hermitian lattices is provided by gyroscopic metamaterials®®¢',

However, these systems possess purely real eigenvalues (because of
the symplectic symmetry of their dynamical matrix), and so do not
exhibit the behaviour considered in this work.

Data availability

The experimental data and numerical calculations are available from
the corresponding authors upon reasonable request.

Code availability

The code used for data analysis is available from the corresponding
author upon reasonable request.
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Extended DataFig.1| The trefoil knot of degeneracies and the eigenvalue
braidsforathree-modesystem. a, Atafixed distance from the three-fold
degeneracy, the control space for the spectrumis S3(shownherein
stereographic projection). The degeneraciesin this space are all two-fold and
formatrefoilknot (orange). Three controlloops (green, red, blue), each

parameterized by O <s<1shareacommon basepoint (black cross).

b-d, Evolution of the eigenvalues as sis varied around each loop ina. The black
crossesshow A at the basepoint. The dashed lines are guides to the eye. This
figureis calculated from the characteristic polynomial of a three-mode system
(see the Supplementary Information).
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Extended DataFig.2|Locating EP;. The quantity d (¥) (whichideally smoothing described in the Supplementary Information. The black circles
vanishes at ¥;p;), measured onsix 2D sheets passing through W&, thelocation ~ show the minimathat are located using the algorithm described in
of the EP; that is estimated from scanning individual components of ¢ the Supplementary Information. Bottom row: the values of d calculated from

(Methods). Top row: raw data. Middle row: data after outlier rejection and the optomechanical model.
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Extended DataFig. 3 |Locating EP, (perspective view). The data of Extended DataFig.2 arranged in 3D toillustrate the minimum of d (¥) in the neighbourhood

of the experimentally estimated location of the EP;.
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Extended DataFig.4|Thelocations of thesixty-one 2D sheets withinS. The
sheetsare colour-coded by the 3D face inwhich theylie. a, The sheets are shown
withineach of the eight 3D faces of S.b, The same sheets asina, shown using
the ‘rectilinear stereographic’ projection of Fig. 3b. Note thatin this projection,
all of the sheets are contained within the plot’s bounding box. ¢, The same
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sheets, shown usingthe stereographic projection of Fig. 3a. The thin black lines
showtheboundary of each sheet. Thin grey lines show where asheet exits the
plot’'sbounding box. The projections are described in Methods. The datafrom
these sheetsare showninVideo 5of the Supplementary Information.
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Extended DataFig.5| Theknot of EP,viafour different signatures. The d, Phase vortices of the eigenvector indicator E. The quantities D and E are
same dataasinFig.3a, b, butinseparate plots for the EP,locations determined defined in the main text, and additional discussion of £ isin the Supplementary
by eachof the four different signatures. a, Zeroes of the discriminant D. Information. The projections used here are the same asin Fig.3a, b. The solid

b, Phase vortices of the discriminant D. ¢, Zeroes of the eigenvectorindicator E.  curveisthesameinall eight panels, andis the best-fit knot showninFig.3a, b.
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Extended DataFig. 6| Comparison of measured and calculated braids.
a-f, The same panels asinFig.3c-h. They show the controlloops (green, red,
andblueina-c)inrelation tothe measured knot (yellow circles) and the best-fit

knot (orange curve). d-f, Theresulting eigenvalue braids. g-i, The eigenvalue
spectrumas calculated using the optomechanical parameters determined
from fitting the knot of EP,. The dashed lines are guides to the eye.
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Extended DataFig.7|Additional braids of eigenvalues. a-c, Three loops
(green, red, blue), each from a different homotopy class. They share acommon
basepoint (black sphere) and are non-self-intersecting. The measured knot X
(yellow circles) and the best-fit knot (orange curve) are shown for reference.
The projectionused hereis thesameasin Fig.3a.d-f, The eigenvalue spectrum

A(¥)as¥isvariedaroundaloop. Thevariable £ indexes the values of ¥ (along
eachloop) atwhich A ismeasured. The black crosses show A at the start and
stop of theloop. The dashed lines are guides to the eye. The 1o confidence
intervals for A are comparable to the size of the plotted points. The braids
realized are: 07 (d), 07 (e),and 6,07 (f).
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Extended DataFig. 8| Details of the experimental setup. a, The opticaland
electroniclayout. Red arrows: beam path from the ‘probe’laser. Blue arrows:
beam path from the ‘control’ laser. Purple arrows: overlapped beam path of the

two lasers. Black arrows: electronic lines. Grey region: cryostat containing
the optical cavityand membrane. The various components are described in

the Supplementary Information. b, The optical spectrum. Red lines: tones
produced fromthe probe laser. Blue lines: tones produced from the control
laser. The tones and their generation are described in Methods and

the Supplementary Information. Grey curves: the two cavity modes used
inthiswork.
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Extended DataFig. 9| Characterizing the optomechanical coupling. Here
the cavity is driven with asingle control tone, whose detuning (from the cavity
resonance) is A. Each panel shows the measured deviation of the (real or
imaginary part of the) mechanical nl%le’s eigenvalue fromits bare value (that
is, fromtherelevantcomponentofA ~,whose numerical valueiswritteninthe
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panel). Theerror bars show the 1o confidence interval for each data point.
Aglobalfit tostandard optomechanical theory gives the bare resonance
frequenciesx and the optomechanical couplings g. A detailed description of
thisprocedureisinthe Supplementary Information.
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Extended DataFig.10|Controlloops fromFig.3c-e. The three controlloops
inFig.3c-ewere assembled from data takenin the two 2D sheets shown here.
The two sheets’commonborder is shown as the dashed grey line. Each small
greydiscrepresents avalue of ¥ at which A was measured (that s, a ‘pixel’in the
2Dsheet). Theblack crosses show the location of the EP, in these sheets as
determined by the minima-finding algorithm described in the Supplementary
Information.
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