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Measuring the knot of non-Hermitian 
degeneracies and non-commuting braids

Yogesh S. S. Patil1 ✉, Judith Höller1,2, Parker A. Henry3, Chitres Guria1, Yiming Zhang1, 
Luyao Jiang1, Nenad Kralj1,4, Nicholas Read1,3,5 & Jack G. E. Harris1,3,5 ✉

Any system of coupled oscillators may be characterized by its spectrum of resonance 
frequencies (or eigenfrequencies), which can be tuned by varying the system’s 
parameters. The relationship between control parameters and the eigenfrequency 
spectrum is central to a range of applications1–3. However, fundamental aspects of this 
relationship remain poorly understood. For example, if the controls are varied along a 
path that returns to its starting point (that is, around a ‘loop’), the system’s spectrum 
must return to itself. In systems that are Hermitian (that is, lossless and reciprocal), 
this process is trivial and each resonance frequency returns to its original value. 
However, in non-Hermitian systems, where the eigenfrequencies are complex, the 
spectrum may return to itself in a topologically non-trivial manner, a phenomenon 
known as spectral flow. The spectral flow is determined by how the control loop 
encircles degeneracies, and this relationship is well understood for N= 2 (where N  is 
the number of oscillators in the system)4,5. Here we extend this description to arbitrary N. 
We show that control loops generically produce braids of eigenfrequencies, and for 
N> 2 these braids form a non-Abelian group that reflects the non-trivial geometry of 
the space of degeneracies. We demonstrate these features experimentally for N= 3 
using a cavity optomechanical system.

A very wide range of physical systems are described by first-order dif-
ferential equations of motion that are linear in the system’s coordinates. 
This includes classical systems near to mechanical equilibrium (for 
example, coupled oscillators and linear wave systems), closed quantum 
systems and open quantum systems that can be brought to Lindblad 
form. In these descriptions, the system’s state is an N-dimensional 
complex vector whose time evolution is generated by an N N×  complex 
matrix H (which we take to be traceless without loss of generality). The 
qualitative behaviour of such a system depends on the form of H, which 
reflects the relevant symmetries and conservation laws. For example, 
in the quantum description of closed systems, H is Hermitian. On the 
other hand, Newtonian mechanics and Maxwellian electromagnetism 
both allow for linear elements having non-reciprocity, gain and loss, 
and so the classical equations of motion for N  coupled oscillators 
(whose positions and momenta are encoded as N complex numbers) 
may have H of any form.

Recent years have seen considerable interest in features that distin-
guish non-Hermitian systems from their Hermitian counterparts. These 
include non-orthogonal eigenvectors, complex eigenvalues and a type 
of degeneracy, known as an exceptional point (EP), at which H  is 
non-diagonalizable. In addition, non-Hermitian systems respond to 
perturbations of H in a qualitatively different manner than Hermitian 
systems do4,6,7. These differences offer practical routes to new forms 
of control, sensing and robustness, and have been explored in optics, 
microwaves, electronics, acoustics, optomechanics and qubits1–3,5,8–15.

Despite rapid progress, some fundamental aspects of non-Hermitian 
systems remain poorly understood. For example, when a system’s 
parameters are varied around a closed loop (with this ‘control loop’ 
chosen so that the spectrum is non-degenerate throughout), the 
eigenvalues may move around one another in the complex plane.  
The way in which they do so, viewed topologically, is what we will 
describe below as ‘spectral flow’. It is determined by the manner in 
which the control loop encloses degeneracies; however, the specific 
relationship between the loop, the degeneracies and the resulting 
spectral flow is well known only for N = 2. For N > 2, studies of spectral 
flow have focused on special cases in which H  is constrained or on 
numerical simulations of specific systems, rather than on a general 
description of the spectral flow16–24.

Control loops and spectral flow
For any N, the spectral flow can be described by regarding the spectrum 
of H  as an unordered set λ of N points in the complex plane. We take 
the parameters controlling λ to be the N − 1 complex coefficients in pH, 
the characteristic polynomial of H. These coefficients define the ‘con-
trol space’ ≅CLN

N−1. They smoothly parameterize the space of spectra, 
and have simple expressions in terms of the elements of H. NL  can be 
partitioned into two subspaces NV  and NG , corresponding respectively 
to whether or not the spectrum is degenerate. NV  consists of the points 
where D, the discriminant of pH, vanishes (Methods).
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Although LN is topologically trivial, this need not be the case for NG  
and VN. To describe these two subspaces, we note that varying the con-
trol parameters along a smooth curve GC⊂ N  causes the N points in λ 
to be smoothly transported in the complex plane4. Throughout, we 
take C to be a closed curve (or ‘loop’); we also fix a basepoint in NG  and 
consider only loops starting and ending at that point. In this case, tra-
versing a loop C causes the initial spectrum to be smoothly transported 
back to itself. Such an evolution of N  distinct points in the complex 
plane is called a braid of N strands (for example, ref. 25). We will say that 
two braids are isotopic to one another if one of them can be continu-
ously deformed into the other, keeping its endpoints fixed and its 
strands non-intersecting during the deformation. We define the spec-
tral flow produced by a control loop C to be the isotopy equivalence 
class b of the corresponding braid of eigenvalues. Braids with the com-
mon basepoint can be concatenated to produce another such braid, 
and with that operation the bs form a group BN, the Artin braid group26.

Two isotopic braids arise from two control loops C1, C2 that can be 
continuously deformed into each other within GN, and hence each b 
corresponds to a homotopy class27 ℓ of based loops C⊂ NG . Concatenat-
ing Cs gives a group operation on the ℓs, which thus form the funda-
mental group27 π1 of the space NG . It follows from this discussion that 

≅π B( )N N1 G  (refs. 28–30). Because NL  is topologically trivial, the non-trivial 
Gπ ( )N1  arises solely because NV  (consisting of the points at which the 

spectrum is degenerate) was removed from LN to produce GN, leaving 
a hole that control loops can wind around in various (non-homotopic) 
ways that correspond to the elements of π1.

To give a concrete picture of GN and NV  (and the ways in which loops in 
the former may encircle the latter), we note that for N = 2, the reasoning 
above returns the familiar result ≅ \{0}2 CG  (the complex plane  
without the origin). The fundamental group of this space, π ( )1 2G , is iso-
morphic to  Z≅B2  (the group of integers under addition), reflecting the 
fact that each loop in 2G  belongs to the ℓ determined by its winding num-

ber and concatenating loops results in a new loop whose winding num-
ber is the sum of the winding numbers of the concatenated loops.

For N = 3, we have −3
2

3≅CG V  and Cπ B( − )1
2

3 3V ≅ . From the equa-
tion D= 0 we show in the Methods that 3V  is a connected hypersurface  
that includes a singular point at the origin (0,0) corresponding to 
threefold degeneracy; the rest of 3V  consists of the twofold degen-
eracies. The twofold degeneracies form the space R× >0K , where K 
is the trefoil knot and R>0 plays the role of the radial distance from 
the threefold degeneracy. Therefore, if we identify C2 with 4R , inter-
secting V3 with a real hypersphere 3S  centred at the origin gives K. 
This structure (which is shown in Extended Data Fig. 1) agrees with 
the fact that S K ≅π B( − )1

3
3.

This description highlights two important features common to all 
non-Hermitian systems with N > 2, but absent in the well-studied case 
N = 2. The first is that the subspace VN has a non-trivial geometry. The 
second is that this geometry makes loops in GN  non-commutative (as 
BN is non-Abelian for N > 2). This rich behaviour reflects the fact that λ 
consists of the roots of pH, and non-Hermitian systems can realize any 
complex polynomial as pH. In the mathematical context of complex 
polynomial equations, the braid and knot structures described here 
are well-known features of the relation between a polynomial’s coef-
ficients and its roots.

Here, we provide an experimental demonstration of these two fea-
tures. We use a three-mode mechanical system in which H  is tuned 
by control parameters ΨΨ that span 3L  and so provide access to a three-
fold degeneracy and all the spectra in its neighbourhood6. We meas-
ure spectra on a hypersurface surrounding the threefold degeneracy, 
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Fig. 1 | Experimental schematic and susceptibility measurement.  
a, Two lasers (red and blue paths) address two modes of an optical cavity 
(white) in a cryostat (grey). The cavity contains a Si3N4 membrane whose  
three mechanical modes are shown in the dashed box. AOM, acousto-optic 
modulator; LO, local oscillator; LIA, lock-in amplifier; AM-in, amplitude 
modulation input. b, The optical spectrum, showing the three control beams 
(green, light blue, orange) and the cavity mode (blue). The non-degeneracy of 
the bare modes in R is set by η π= −2 × 100 Hz. c, The complex response 

∼
V  

measured at frequencies ωAM͠  near ω͠ 1
(0) (top), ω͠ 2

(0) (centre) and ω 3
(0)͠  (bottom). 

Here π μ μ μΨΨ = (2 × 50 kHz, 125 W, 364 W, 426 W). The left column shows 
V ω| ( )|AM͠∼

 and the right column shows a parametric plot of V ω( )AM͠∼
. The data 

points are coloured by ωAM͠  (the 1 − σ  confidence intervals are smaller than the 
plotted points). A global fit (black lines) gives the system’s eigenvalues. The 
magnitude of each mode’s contribution (determined from the fit) is shown as 
the orange, light blue and green curves in the left column.
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Fig. 2 | Locating EP2 points on the hypersurface S . The complex-valued 
quantities D and E measured on a typical 2D sheet in the hypersurface S. Abs 
and Arg denote the magnitude and argument of a complex number. The units 
of D are π10 × (2 Hz)10 6. For this sheet, P = 78 μ3 W and δ π= 2 × 60 kHz. Left 
column, raw data. Middle column, data after outlier rejection and smoothing 
(Supplementary Information). Cyan circles show algorithmically identified 
ΨΨEP2. Right column, D and E calculated from optomechanics theory. Cyan 
squares, ΨΨEP2 determined from this calculation. Data from the other 60 sheets 
are shown in the Supplementary Information.
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and find the trefoil knot K formed by the twofold degeneracies. We show 
that varying ΨΨ around a loop produces an eigenvalue braid whose spec-
tral flow is determined by how the loop encircles K. We demonstrate 
braids that can be concatenated to produce any element of B3, and show 
the non-commutation of these braids. These features are demonstrated 
using a cavity optomechanical system, although we emphasize that they 
are generic to oscillators realized in any physical domain.

Experimental system
The experiment is shown schematically in Fig. 1a. It uses three vibra-
tional modes of a Si3N4 membrane. The dynamical matrix H governing 
these modes is controlled by placing the membrane in an optical cav-
ity and using the dynamical back-action (DBA) effect of cavity opto-
mechanics31. In the absence of DBA, the three modes have resonance 
frequencies ∼ ∼ ∼ω ω ω( , , ) = 2π × (352, 557, 705)1

(0)
2
(0)

3
(0)  kHz and optome-

chanical coupling rates g g g= ( , , ) = 2π × (0.198, 0.304, 0.300)1 2 3g   Hz. 
The cavity linewidth κ= 2π × 190 kHz. Three tones produced from a 
single laser (‘control’ in Fig. 1a) drive the cavity with powers P1,2,3. The 
tones’ relative detunings are fixed (Fig. 1b), and their beatnotes define 
a rotating frame R in which the three modes’ eigenvalues are almost 
degenerate for P = 0i . Within R, the control parameters δ P P PΨΨ = ( , , , )1 2 3  
(where δ is the tones’ common detuning, Fig. 1b) can tune the system 
to a threefold degeneracy. They also provide linearly independent 
control of the coefficients of pH (Methods and Supplementary Infor-
mation), and hence span L3. H  is otherwise unconstrained, so it 
accesses degeneracies of the most generic type (for a given order): 
that is, at an m-order degeneracy, the Jordan normal form of H contains 
a Jordan block of dimension m (we call such a point EPm).

The modes’ eigenvalue spectrum λ is determined by measuring the 
membrane’s mechanical susceptibility. This is accomplished using a 
second laser (‘probe’ in Fig. 1a) to exert an oscillatory force on the mem-
brane (at frequency ∼ωAM), and to record a heterodyne signal V

∼
 propor-

tional to the membrane’s response. Figure  1c shows a typical 
measurement of ∼ ∼V ω( )AM , along with a fit of these data to standard  
optomechanics theory. This fit returns the complex eigenvalues λi, as 
well as the amplitudes si j,  (denoting the contribution of the jth mode 
to the peak near ∼ωi

(0)). In the remainder of this paper, λ is determined 
from data and fits as in Fig. 1c.

Locating degeneracies
The system’s EP3 is identified by measuring λ(ΨΨ) and converting  
each λ  to d = |λ − λ | + |λ − λ | + |λ − λ |1 2 2 3 3 1  (Methods). As shown in 
Extended Data Figs.  2 and 3, measurements of d ΨΨ( ) give ΨΨ =EP3
(2π × 54(7) kHz, 128(8) μW, 428(3) μW, 304(15) μW),  in good agree-
ment with the value calculated from the independently measured 
device parameters (Methods).

To study the spectrum on a hypersurface surrounding ΨΨEP3 ,  
we measured λ on the boundary of a four-dimensional (4D) hyper-
rectangle S  centred close to ΨΨEP3 . Specifically, S  bounds the  
region: δ−10 kHz ≤ /2π ≤ 106 kHz,  P22 μW ≤ ≤ 240 μW1 , P289 μW ≤ 2 
≤675 μW, P78 μW ≤ ≤ 702 μW3 . It consists of eight three-dimensional 
(3D) ‘faces’, each corresponding to fixing the value of one control 
parameter. ΨΨ was densely rastered over 61 distinct two-dimensional 
(2D) ‘sheets’ within S  (Extended Data Fig. 4). Data from a typical sheet 
are shown in Fig. 2. For each value of ΨΨ (that is, for each pixel in the 
sheet), V ω( )AM

∼ ∼  was measured and fit as in Fig. 1c.
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Fig. 3 | Measurements of the EP2 knot K and the eigenvalue braids. a, All of 
the EP2 locations (ΨΨEP2) shown in a stereographic projection of S. X, Y and Z are 
dimensionless combinations of the control parameters. b, The data from a in a 
projection where each of the six ‘faces’ of S  that contains ΨΨEP2 is linearly 
mapped to one of the hexahedrons surrounding the central cube. The solid 
curve in a and b is the best fit to the data. Details of the projections and fit  
are in the Methods. The coordinate θ is described in the Supplementary 
Information. Additional views of these data are in Extended Data Fig. 5.  
c–e, Three control loops (green (c), red (d), blue (e)) in S, each from a different  
ℓ and sharing a common basepoint (black sphere). The measured knot K 

(yellow circles) and the best-fit knot (orange curve) are shown for reference. 
The projection is the same as in a. f–h, The eigenvalue spectrum ΨΨ( )λ  as ΨΨ is 
varied around the corresponding loop from c–e. ξ  indexes the values of ΨΨ along 
each loop. The black crosses show λ at the basepoint. The dashed lines are 
guides to the eye. The 1 − σ  confidence intervals for λ are comparable to the size 
of the plotted points. The measured λ traces out the braids: I (f), σ1 (g) and σ σ2 1 
(h). Extended Data Fig. 10 shows the control loops, and Extended Data Fig. 6 
shows a comparison with theory. Animations of this figure are shown in 
Supplementary Videos 3 and 4.
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To locate the EP2 points in S  we considered two quantities derived 
from these fits: D= (λ − λ ) (λ − λ ) (λ − λ )1 2

2
2 3

2
3 1

2  and E S= (det[ ]) −2   
where S is the matrix formed by the si j, . Both D and E  vanish at EP2, and 
both exhibit a phase winding of 2π around EP2. However, they provide 
complementary information: D= 0 reflects eigenvalue degeneracy, 
whereas E = 0 reflects eigenvector degeneracy (Supplementary  
Information). Furthermore, D and E are derived from different aspects 
of the fits to ∼ ∼V ω( )AM , and so reflect partially independent features of 
the data. The locations (ΨΨEP2) of the zeroes and phase windings in D 
and E  are identified algorithmically (Supplementary Information) and 
are shown in Fig. 2 as cyan circles.

The knot of twofold degeneracies
Figure 3a,b show all of the ΨΨEP2  identified in this way. For ease of  
visualization, they are depicted using two projections of S, both of 
which generically preserve knot equivalence classes. Figure 3a uses a 
stereographic projection, whereas Fig. 3b uses a projection isomorphic 
to the one in Fig. 3a, but which is more easily connected to the control 
parameters. In both projections, the experimentally identified EP2s 
are seen to trace out a curve that forms a trefoil knot K. Each point in 
Fig. 3a,b is coloured according to the value of θ measured at the cor-
responding ΨΨEP2 (θ is derived from λ as defined in the Supplementary 
Information, and serves as a coordinate along K).

Figure 3a,b also show the best fit of the measured ΨΨEP2 to standard  
optomechanics theory (Methods). This fit uses g  and κ as parameters and  
returns g = 2π × (0.1979, 0.3442, 0.3092) Hz and κ= 2π × 173. 84 kHz 
(these values are also used to generate the plots of D and E (labelled 
‘theory’) in the right-hand column of Fig. 2). These values of g  and κ 
extracted by fitting the knot K in the three-mode spectrum agree well 
with the values given earlier (in the section ‘Experimental system’), 
which are determined independently from measurements of the DBA 
(Extended Data Fig. 9 and Supplementary Information).

Non-commuting eigenvalue braids
When ΨΨ is varied around a loop C from a given ℓ, ΨΨ( )λ  is expected to 
form a braid whose equivalence class b  is determined by ℓ. To demon-
strate this, we selected pixels from the dataset described above  
(the 61 sheets) that trace out three loops with a common basepoint, as 
shown in Fig. 3c–e. The corresponding λ ΨΨ( ) for each loop is shown in 
Fig. 3f–h. The loops belong to different ℓ, and result in eigenvalue braids 
from Ib = , σ σ σ,1 2 1 (Fig. 3f–h, respectively). Here, I is the identity, σi (σi

−1) 

indicates that strand i has crossed over (under) strand i + 1, the strands 
are counted from the left (in the view used for the figures), and opera-
tions are written symbolically from right to left as the braid is read from 
bottom to top25. As σ1 and σ σ2 1 together generate the group B3, the loops 
in Fig. 3d,e can be concatenated to produce any braid of eigenvalues. 
The correspondence between a loop’s ℓ and the b it produces is a robust 
feature of the data; this is illustrated in Fig. 4 and Extended Data Fig. 7, 
which show the braids produced by several other loops.

The non-Abelian character of the group formed by these braids 
is demonstrated in Fig. 4. Figure 4a shows two loops (red, blue) 
belonging to different ℓ. Figure 4b shows λ ΨΨ( ) as Ψ is stepped first 
around the red loop and then around the blue loop, whereas Fig. 4c 
shows ΨΨ( )λ  as ΨΨ  is stepped first around the blue loop and then 
around the red loop. The former gives b σ σ= 2

−1
1
−1, whereas the latter 

gives b σ σ= 1
−1

2
−1. The inequivalence of these braids, which can be seen 

directly from the fact that they result in different permutations of 
the eigenvalues, demonstrates that encircling a degeneracy is not 
characterized by a number (as is the case for N = 2), but by a braid 
equivalence class.

Future directions
Looking ahead, one may ask if the braids demonstrated here may play 
a role in the system’s dynamics. For example, if one eigenmode of the 
system is initially excited, and then the system is slowly evolved 
around a control loop, it might be expected that the excitation would 
remain in the eigenmode that is smoothly connected with the original 
one, in analogy with adiabatic transport in Hermitian systems. If this 
were the case, a control loop would permute excitations among the 
normal modes, with the specific permutation determined by the 
loop’s ℓ. Such a control scheme—in which the outcome is determined 
by a topological property of the input—would be of considerable 
interest. However, in non-Hermitian systems adiabatic control loops 
do not transport excitations in this manner32. On the other hand, 
real-time loops have been shown to produce similar transport in spe-
cial cases13,14,33,34, and it remains an open question whether control 
schemes such as ‘shortcuts to adiabaticity’35–37 or tailored nonlinear-
ities12,38–40 can stabilize such transport more generally. Exploration 
of these possibilities may open new means for achieving robust 
topological control in oscillator systems.
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Fig. 3a. b, The spectrum λ ΨΨ( ) as ΨΨ is varied around the loop formed by 
concatenating the two loops in a. Specifically, the red loop is traversed first 
( ξ1 ≤ ≤ 59), and then the blue loop ( ξ60 ≤ ≤ 116). The black crosses show λ at the 
basepoint. The dashed lines are guides to the eye, and the 1 − σ  confidence 
intervals for λ are comparable to the size of the plotted points. c, The spectrum 

ΨΨλ( ) as ΨΨ is varied first around the blue loop ( ξ1 ≤ ≤ 57), and then the red loop 
( ξ58 ≤ ≤ 116). In both cases, the loops are traversed in the sense indicated by the 
arrows in a.
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Methods

Characteristic polynomial, discriminant and the trefoil knot
For an N N×  matrix H, the eigenvalues are the solutions of the charac-
teristic equation I Hdet(λ − ) = 0, which can be written as

⋯a a aλ − λ + λ + + (−1) = 0.N N N N
N1

−1
2

−2

The coefficients ai are invariants of H  under similarity transforms 
(change of basis), and in particular a = tr1  H and a H= detN . The char-
acteristic polynomial on the left-hand side of this equation can be 
factored as ∏ (λ − λ )i

N
i=1  in which the roots λi may be repeated. The coef-

ficients ai are the elementary symmetric polynomials in the roots λi, 
namely a = ∑ λi

N
i1 =1 , a = ∑ λ λi j i j i j2 , : < , ..., a = ∏ λN i

N
i=1 .

The discriminant of the polynomial is defined as D= ∏ (λ − λ )i j i j<
2; it 

vanishes if any two roots of the polynomial are equal. Being a sym-
metric polynomial, it can be expressed algebraically in terms of the 
elementary symmetric polynomials ai (for example, ref. 41). The explicit 
expressions are simpler if we shift H  by a multiple of the identity so 
that a H= tr = 01 . Then for the quadratic, N = 2, the discriminant is the 
familiar expression D a= −4 2, and the roots are a± − 2 . Focusing here-
after on the cubic, N = 3, its discriminant is41

D a a= −4 − 27 ,2
3

3
2

which enters the formulas for the roots.
Defining x a= 3, y a= − 2 as our coordinates in 2C  (so that the charac-

teristic polynomial is p y x= λ − λ −H
3 ), the solutions to the equation 

D x y y x( , ) = 4 − 27 = 03 2  form an algebraic variety (a hypersurface) in  
C2 that has a singularity at x y= = 0. D has a (weighted) scaling property, 
such that rescaling x ax→ , y by→ , where a, b are real and positive and 
a b=2 3, changes D by a factor; this maps any non-zero solution to D= 0 
to another. Thus the variety resembles a cone in C R≅2 4, and it is suffi-
cient to consider a cross section, that is the intersection of the variety 
with a hypersurface that (1) has the topology of a hypersphere S 3,  
(2) surrounds the origin without passing through it or intersecting itself 
and (3) is everywhere transverse to the local action of an infinitesimal (say, 
by a ε= 1 + , ε small) scaling. Any two such hypersurfaces are isotopy equiv-
alent (through a rescaling that depends on position on the hypersurface). 
A particular such hypersurface42 results from considering the unit hyper-
sphere defined by x y| | + | | = 12 2 . The points x y( , ) on the hypersphere  
that satisfy D x y( , ) = 0 can be parameterized as x y r e r e( , ) = ( , )x

iθ
y

iθ3 2 , 
where rx, ry are real positive constants and θ0 ≤ < 2π is a variable. These 
points lie on a two-torus T 2 embedded in 3S , and form a closed curve 
that is a trefoil knot in this 3S  (ref. 42). This is illustrated in Extended Data 
Fig. 1, as described in the Supplementary Information.

For any knot or link in R3 or S 3, the fundamental group of its comple-
ment is an isotopy invariant of the knot or link called the knot group. 
The knot group of the trefoil is well known to be the braid group B3, or 
this can be inferred by reasoning as in the main text.

Experimental setup
As described in the main text, this experiment focuses on three vibra-
tional modes of a Si3N4 membrane. The membrane’s dimensions are  
1 mm × 1 mm × 50 nm. These modes’ bare eigenvalues (that is, in the 

absence of optomechanical effects) are 
∼ ∼ ∼∼

= (λ , λ , λ ) =
(0)

1
(0)

2
(0)

3
(0)

λ
2π × (352 243 − 2.2i, 557217 − 1.9i, 704 837 − 1.8i) Hz, where the real 
(imaginary) parts give each mode’s oscillation frequency (amplitude 
damping rate). Frequencies related to the mechanical modes are 
denoted with a tilde when given in the laboratory frame, and without 
a tilde in the frame R described below.

The dynamical matrix H͠  governing these modes is controlled 
using the DBA effect of cavity optomechanics31 .The membrane  
is placed in an optical cavity with linewidth κ /2π = 190 kHz, input 
coupling rate κ κ= 0.267in  and optomechanical coupling rates 

g g g g= ( , , ) =1 2 3 2π × (0.198, 0.304, 0.300) Hz. Further details of the 
apparatus are in the Supplementary Information, Extended Data 
Fig. 8 and ref. 43.

The cavity is driven with three tones produced from a single laser (‘con-
trol’, Fig. 1a). The DBA from each tone induces a complex-valued shift in 
each mechanical mode’s eigenvalue31. In addition, each pair of tones gives 
rise to an intracavity beatnote, which induces a complex-valued coupling 
between pairs of modes whose frequency difference is comparable to 
the beatnote frequency44,45. In the resolved sideband regime ( ≪∼κ ω1,2,3

(0) , 
where 

∼∼ω ≡ Re(λ )i i
(0) (0)

) these shifts and couplings can be tuned over the 
complex plane by varying the tones’ powers Pk  and detunings ∆k  
k( ∈ {1, 2, 3}) . An expression for H͠  in terms of Pk, ∆k, κ, κin, g  and 

(0)
λ
∼

 is 
given in the Supplementary Information. For the experiments described 
here, the tones’ common detuning δ (Fig. 1b) is varied. Their relative 
detunings are fixed, and are chosen to produce beatnote frequencies 
close to the differences between the ωi

(0)∼ .
The beatnote frequencies are chosen so that there is a rotating frame 

R (defined in the Supplementary Information) in which the dynamical 
matrix H  is time-independent (in the rotating wave approximation), 
and in which the bare eigenvalues (0)λ  are almost degenerate (their 
non-degeneracy in R is set by η = −2π × 100 Hz (Fig. 1b)).

Thus, within R, the mechanical modes can be described by the equa-
tion of motion

t H t tΨΨ˙( ) = − i ( ) ( ) + ( )x x f

Here x t x t x t x t( ) = ( ( ), ( ), ( ))1 2 3
T  and t( ) =f  f t f t f t( ( ), ( ), ( ))1 2 3

T  are the 
modes’ complex-valued amplitudes and the external forces driving them. 
Whereas the above equation is the generic equation of motion for any 
linear system, we emphasize the form of H ΨΨ( ) realized here: specifically, 
that the controls ΨΨ completely and smoothly parametrize all of the com-
plex eigenspectra in a neighbourhood that includes EP3 (ref. 6).

Locating the EP3
This section gives the protocol for experimentally identifying the EP3. 
Approaches to identifying threefold degeneracies are also given in 
refs. 16–24,46–48.

We identify the value of control parameters (ΨΨEP3) that corresponds 
to EP3 through the quantity d = |λ − λ | + |λ − λ | + |λ − λ |1 2 2 3 3 1 , which may 
be visualized as the perimeter of the triangle formed by the system’s 
three eigenvalues λ in the complex plane. At ΨΨEP3 the three eigenvalues 
are equal, and so d = 0.

The search for the EP3 point starts with the estimate:

μ μ μΨΨ = (2π × 49.7 kHz, 115 W, 387 W, 285 W).EP3
(thy)

We proceed by fixing three of the control parameters to these values, 
and scanning the fourth (say, Ψi). At each value of ΨΨ in this one- 
dimensional sweep, λ is measured (as described in the Supplementary 
Information) and converted to d ΨΨ( ). The experimental estimate ΨΨEP3

(est) 
is then revised with the value of Ψi that minimizes d over that sweep. 
This process is then repeated for different choices of Ψi. The estimate 
resulting from these one-dimensional sweeps is:

μ μ μΨΨ = (2π × 49.7 kHz, 125 W, 435 W, 300 W).EP3
(est)

To further refine the estimate of ΨΨEP3, we then measure d ΨΨ( ) on 2D 
sheets that pass through ΨΨEP3

(est). For each 2D sheet, two control param-
eters are scanned while the other two are fixed, resulting in a total of 
six sheets. The d ΨΨ( ) measured on these sheets are shown in Extended 
Data Fig. 2. For visualization purposes, Extended Data Fig. 3 shows the 
same sheets, but arranged in 3D to illustrate that d ΨΨ( ) is minimized in 
the neighbourhood of ΨΨEP3

(est). In Extended Data Figs. 2, 3, the middle row 
shows the filtered data (see the Supplementary Information for details 
of the filtering) and the bottom row shows the values of d ΨΨ( ) calculated 



from H (Supplementary Information) using the best-fit optomechan-
ical parameters determined by fitting the knot, as shown in Fig. 3a,b 
and described in detail in the Supplementary Information.

Near to ΨΨEP3  the quantity d ΨΨ( )  is expected to scale as4 
d ΨΨ ΨΨ ΨΨ( ) ≈ | − |EP3

1/3, but in practice the sharp cusp in d ΨΨ( ) is broad-
ened by fluctuations in ΨΨ. Nevertheless, clear minima are visible in the 
measured d ΨΨ( ), and their locations are given in the Supplementary 
Information (Supplementary Table 1). Details of the algorithm used to 
identify the minima are also in the Supplementary Information. The mean 
location of these minima is taken as the experimentally identified EP3:

δ P P PΨΨ = ( , , , )EP3
(exp)

EP3
(exp)

1,EP3
(exp)

2,EP3
(exp)

3,EP3
(exp)

=(2π × 54(7)kHz, 128(8) μW, 428(3) μW, 304(15) μW)

This compares well with the location of EP3 that is obtained from the 
best-fit parameters returned by fitting the measured knot:

μ μ μΨΨ = (2π × 60.2 kHz, 116 W, 477 W, 329 W).EP3
(knot)

Projections of the hypersurface S
Here we describe the two projections that are used in Fig. 3a,b of the 
main text (as well as Extended Data Fig. 4) to represent data acquired 
on the hypersurface S, which is the surface of a 4D hyperrectangle.

Standard stereographic projection. Stereographic projection is a 
standard means for representing a sphere (typically of one, two or three 
dimensions) in a Euclidean space with the same number of dimensions. 
In Fig. 3a of the main paper, we represent S  by first projecting it onto 
the unit three-sphere S 3 and then applying the standard stereograph-
ic projection of 3S  onto 3R .

The map is constructed by first adimensionalizing the control 
parameter as

δ

δ

P

P

P

P

P

P
ΨΨ

ΨΨ

ΨΨ
′ := − := − 1, − 1, − 1, − 1

EP3
(exp)

EP3
(exp)

1

1,EP3
(exp)

2

2,EP3
(exp)

3

3,EP3
(exp)�











and then normalizing it as ΨΨ′′ := ΨΨ
ΨΨ

′
‖ ′‖

, where ||·|| is the conventional L2 
norm. Note here the implicit use of the fact that ΨΨEP3

(exp) lies inside the 
four-volume bounded by S.

Next, we act on ΨΨ′′ with a 4D rotation R (specified below). The new 
unit vector R x z w yΨΨ′′ ≡ ( , , , ) is then stereographically projected onto 
the 3D cartesian coordinates X Y Z( , , )  as X Y Z= , = , =x

w
y
w

z
w1 − 1 − 1 − . 

Thus, the choice of R  corresponds to choosing the pole 
x z w y( , , , ) = (0,0,1,0)  for the stereographic projection.

The same pole is chosen for all the stereographic projections shown 
in this work (except for Extended Data Fig. 1, whose generation is 
described in the Supplementary Material). It is chosen so as to  
optimize the visualization of the experimentally identified knot,  
and corresponds to ΨΨ′′ = (0.1, − 0.83, 0.55, 0) , or equivalently, 
ΨΨ = (2π × 55 kHz, 22 μW, 596 μW, 304 μW).

‘Rectilinear stereographic’ projection. The projection shown in 
Fig. 3b of the main text is isomorphic to the projection just described. 
However, it is intended to provide a more intuitive representation of 
the dimensionful experimental parameters ΨΨ. Animations that describe 
this projection are shown in Supplementary Videos 1 and 2.

This projection consists of five steps.
(1) We select one of the eight 3D hyperrectangles that constitute S.
(2) �We simply rescale its axes so that it forms a cube (this is the central 

cube in Fig. 3b).
(3) �Each of the six 3D hyperrectangles adjacent to the first one is also 

rescaled to form a cube, which is then attached to the first cube 

on their common 2D face. The resulting ‘six-way cross’ faithfully 
represents the connections of the central cube to its six neighbours.

(4) ��To faithfully represent the connections among these six neighbours, 
a bilinear transformation43 is applied to each, deforming each cube 
into a truncated square pyramid. The transformation is chosen so 
that the 2D faces that are common to any two of these neighbours 
are made to touch. These seven hexahedrons (the central cube and 
the six truncated square pyramids surrounding it) can readily be 
labelled by their original dimensionful axes, as in Fig. 3b. Together 
they form the bounding box of Fig. 3b.

(5) ��The final 3D hyperrectangle is mapped to the exterior of the 
bounding box through a nonlinear mapping, and extends to in-
finity (as does the standard stereographic projection described 
above).

As described in the Supplementary Information, there are no EP2s 
in the two 3D hyperrectangles that correspond to constant P1. We 
choose these to be the interior (cubical) hexahedron and the exterior 
region. This choice places all of the EP2s in the six truncated square 
pyramids, facilitating a clear view of the knot. Supplementary Video 2 
gives animated views of the data and fit shown in this projection.

Fitting the EP2 locations to the optomechanical model
This section describes the fit of the three-mode optomechanical model 
to the 291 experimentally identified EP2 points shown in Fig. 3a,b of the 
main text. These locations are denoted as ℓΨΨEP2

(exp, ), with ℓ1 ≤ ≤ 291.
The best-fit parameters λ and κ for the model are obtained by mini-

mizing the cost function

ℓ

ℓ ℓg g∑C κ κΨΨ ΨΨ( , ) = | − ( , )|EP2
(exp, )

EP2
(thy, ) 2

where the summands define a distance between the experiment  
and theory, which is adimensionalized by the EP3 coordinates 

δ P P PΨΨ = ( , , , )EP3
(exp)

EP3
(exp)

1,EP3
(exp)

2,EP3
(exp)

3,EP3
(exp) .

In particular, for

δ P P PΨΨ = ( , , , )EP2
(exp, )

EP2
(exp, )

1,EP2
(exp, )

2,EP2
(exp, )

3,EP2
(exp, )ℓ ℓ ℓ ℓ ℓ

and

ℓ ℓ ℓ ℓ ℓδ P P PΨΨ = ( , , , )EP2
(thy, )

EP2
(thy, )

1,EP2
(thy, )

2,EP2
(thy, )

3,EP2
(thy, )

this dimensionless distance (squared) is

κΨΨ ΨΨ| − ( , )|EP2
(exp, )

EP2
(thy, ) 2gℓ ℓ

δ δ

δ

P P

P

P P

P

P P

P

−
+

−
+

−

+
−

EP2
(exp, )

EP2
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EP3
(exp)

2

1,EP2
(exp, )
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1,EP3
(exp)

2

2,EP2
(exp, )
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2,EP3
(exp)

2
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(exp, )
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(exp)

2
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Here, g κΨΨ ( , )EP2
(thy, )ℓ  is the EP2 point found numerically (as a root of the 

discriminant D κΨΨ( , , )g , see the Supplementary Information) in a  
neighbourhood of ℓΨΨEP2

(exp, )  and in its 2D data sheet. For example, if 
ΨΨEP2

(exp, )ℓ  is identified in a data sheet that rasters P1 and P2 while holding 
δ and P3 fixed, the numerical root is found in the neighbourhood

ℓ ℓ ℓ ℓP P P P(0 . 65 , 1 . 35 ) × (0 . 65 , 1 . 35 )1,EP2
(exp, )

1,EP2
(exp, )

2,EP2
(exp, )

2,EP2
(exp, )

at the same fixed values of δ  and P3. κΨΨ ( , )EP2
(thy, ) gℓ  is evaluated with 

κ κ/ = 0.267in , and λ
∼(0)

 held equal to the values determined from the 
single-tone DBA measurements described in the Supplementary 
Information.
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The minimization of C κ( , )g  is implemented numerically on a 

high-performance cluster. The best-fit parameters so obtained are:

g
κ

= 2π × (0.1979, 0.3442, 0.3092)Hz
= 2π × 173.84 kHz

These parameters are used to produce the ‘best-fit knot’ shown as 
the continuous curve in Fig. 3a,b in the main text. This curve is gener-
ated by using the best-fit values of g  and κ given just above to calculate 
λ on 16,000 2D sheets in S. On each sheet, the EP2 points are identified 
as the roots of the discriminant D (found numerically as described in 
the Supplementary Information). At each of these EP2 points, θ is also 
calculated. Finally, these points are coloured according to θ and are 
connected by straight line segments.

The values of the parameters g  and κ given just above are also used 
to generate the theory plots in Fig. 2 of the main text, and in Extended 
Data Figs. 2, 3, 5 and 6 and Supplementary Video 5.

Relation of the present work to studies of non-Hermitian band 
structure (NHBS)
Topics related to those described in this work have been considered 
in the context of a NHBS22,49–59. However, there are several qualitative 
differences between NHBS and the non-Hermitian oscillators consid-
ered here: in the physical systems being described, the mathematical 
concepts relevant to the description, and the genericness of the result-
ing topological structures.

The physical system under consideration in NHBS is a wave prop-
agating in an L-dimensional lattice (in which L is typically 1, 2 or 3) 
that possesses a combination of non-reciprocity, gain and loss. 
Propagation in such a lattice can be characterized by bands whose 
dispersion is given by the complex eigenvalues of a matrix (which 
plays the role of H  in the present paper). A central question in NHBS 
is how these eigenvalues depend on the quasimomentum k (whose 
vector components play the role of the control parameters consid-
ered in the present paper). Theoretical51,56,57 and experimental22,58 
work has shown that varying k  in a closed loop may result in 
non-trivial eigenvalue braids. Theoretical work has shown that, for 
some lattices with L= 3, two-band systems described by 2 × 2 matri-
ces may exhibit a trefoil knot of twofold degeneracies within the 
Brillouin zone53,54,59. However, we emphasize that these results are 
distinct from those presented here.

This is because in NHBS, the number of control parameters is limited 
to L, and the control space they span (the analogue of NL  in the present 
work) is topologically non-trivial by assumption (because the Brillouin 
zone is an L-torus). By contrast, for non-Hermitian oscillators the con-
trol space ( NL ) is topologically trivial, and the number of controls (that 
is, the dimensionality of NL ) is sufficient to span the full space of com-
plex eigenspectra. This results in the direct connection—described in 
the main text—between non-Hermitian oscillators and general complex 
polynomials. In particular, the non-trivial structure of the degenerate 
subspace (which establishes the correspondence between control 
loops and the non-Abelian group of eigenvalue braids) is a generic 
feature of N N×  matrices. This is in contrast to NHBS, in which these 
features are not generic, but only appear on fine tuning.

Last, we note that experiments on NHBS so far22,58 have been limited 
to braids realized by two eigenvalues. Thus, they correspond to the 
N = 2 case, for which the subspace of degeneracies has a trivial geom-
etry, and the group formed by the eigenvalue braids is Abelian. By 
contrast, for the N = 3 case explored in the experiments described  
here, the subspace of degeneracies has a non-trivial geometry, and the 
eigenvalue braids form a non-Abelian group.

Another approach to studying the propagation of linear excitations 
in non-Hermitian lattices is provided by gyroscopic metamaterials60,61. 

However, these systems possess purely real eigenvalues (because of 
the symplectic symmetry of their dynamical matrix), and so do not 
exhibit the behaviour considered in this work.

Data availability
The experimental data and numerical calculations are available from 
the corresponding authors upon reasonable request.

Code availability
The code used for data analysis is available from the corresponding 
author upon reasonable request.
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Extended Data Fig. 1 | The trefoil knot of degeneracies and the eigenvalue 
braids for a three-mode system. a, At a fixed distance from the three-fold 
degeneracy, the control space for the spectrum is S 3 (shown here in 
stereographic projection). The degeneracies in this space are all two-fold and 
form a trefoil knot (orange). Three control loops (green, red, blue), each 

parameterized by s0 ≤ ≤ 1 share a common basepoint (black cross). 
b–d, Evolution of the eigenvalues as s is varied around each loop in a. The black 
crosses show λλ at the basepoint. The dashed lines are guides to the eye. This 
figure is calculated from the characteristic polynomial of a three-mode system 
(see the Supplementary Information).
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Extended Data Fig. 2 | Locating EP3. The quantity ΨΨd ( )  (which ideally 
vanishes at ΨΨEP3), measured on six 2D sheets passing through ΨΨ ,EP3

(est)  the location 
of the EP3 that is estimated from scanning individual components of ΨΨ  
(Methods). Top row: raw data. Middle row: data after outlier rejection and 

smoothing described in the Supplementary Information. The black circles 
show the minima that are located using the algorithm described in 
the Supplementary Information. Bottom row: the values of d calculated from 
the optomechanical model.



Extended Data Fig. 3 | Locating EP3 (perspective view). The data of Extended Data Fig. 2 arranged in 3D to illustrate the minimum of ΨΨd ( )  in the neighbourhood 
of the experimentally estimated location of the EP3.
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Extended Data Fig. 4 | The locations of the sixty-one 2D sheets within S . The 
sheets are colour-coded by the 3D face in which they lie. a, The sheets are shown 
within each of the eight 3D faces of S. b, The same sheets as in a, shown using 
the ‘rectilinear stereographic’ projection of Fig. 3b. Note that in this projection, 
all of the sheets are contained within the plot’s bounding box. c, The same 

sheets, shown using the stereographic projection of Fig. 3a. The thin black lines 
show the boundary of each sheet. Thin grey lines show where a sheet exits the 
plot’s bounding box. The projections are described in Methods. The data from 
these sheets are shown in Video 5 of the Supplementary Information.



Extended Data Fig. 5 | The knot of EP2 via four different signatures. The 
same data as in Fig. 3a, b, but in separate plots for the EP2 locations determined 
by each of the four different signatures. a, Zeroes of the discriminant D.  
b, Phase vortices of the discriminant D. c, Zeroes of the eigenvector indicator E. 

d, Phase vortices of the eigenvector indicator E. The quantities D and E  are 
defined in the main text, and additional discussion of E  is in the Supplementary 
Information. The projections used here are the same as in Fig. 3a, b. The solid 
curve is the same in all eight panels, and is the best-fit knot shown in Fig. 3a, b.
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Extended Data Fig. 6 | Comparison of measured and calculated braids.  
a–f, The same panels as in Fig. 3c–h. They show the control loops (green, red, 
and blue in a–c) in relation to the measured knot (yellow circles) and the best-fit 

knot (orange curve). d–f, The resulting eigenvalue braids. g–i, The eigenvalue 
spectrum as calculated using the optomechanical parameters determined 
from fitting the knot of EP2. The dashed lines are guides to the eye.



Extended Data Fig. 7 | Additional braids of eigenvalues. a–c, Three loops 
(green, red, blue), each from a different homotopy class. They share a common 
basepoint (black sphere) and are non-self-intersecting. The measured knot K 
(yellow circles) and the best-fit knot (orange curve) are shown for reference. 
The projection used here is the same as in Fig. 3a. d–f, The eigenvalue spectrum 

ΨΨλλ( ) as ΨΨ  is varied around a loop. The variable ξ  indexes the values of ΨΨ  (along 
each loop) at which λλ is measured. The black crosses show λλ at the start and 
stop of the loop. The dashed lines are guides to the eye. The 1σ  confidence 
intervals for λλ are comparable to the size of the plotted points. The braids 
realized are: σ 1

2 (d), σ 1
3 (e), and σ σ2 1

2 (f).
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Extended Data Fig. 8 | Details of the experimental setup. a, The optical and 
electronic layout. Red arrows: beam path from the ‘probe’ laser. Blue arrows: 
beam path from the ‘control’ laser. Purple arrows: overlapped beam path of the 
two lasers. Black arrows: electronic lines. Grey region: cryostat containing  
the optical cavity and membrane. The various components are described in 

the Supplementary Information. b, The optical spectrum. Red lines: tones 
produced from the probe laser. Blue lines: tones produced from the control 
laser. The tones and their generation are described in Methods and 
the Supplementary Information. Grey curves: the two cavity modes used 
in this work.



Extended Data Fig. 9 | Characterizing the optomechanical coupling. Here 
the cavity is driven with a single control tone, whose detuning (from the cavity 
resonance) is Δ. Each panel shows the measured deviation of the (real or 
imaginary part of the) mechanical mode’s eigenvalue from its bare value (that 
is, from the relevant component of 

∼
λλ

(0)
, whose numerical value is written in the 

panel). The error bars show the 1σ  confidence interval for each data point.  
A global fit to standard optomechanical theory gives the bare resonance 

frequencies 
∼
λλ

(0)
 and the optomechanical couplings gg . A detailed description of 

this procedure is in the Supplementary Information.
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Extended Data Fig. 10 | Control loops from Fig. 3c–e. The three control loops 
in Fig. 3c–e were assembled from data taken in the two 2D sheets shown here. 
The two sheets’ common border is shown as the dashed grey line. Each small 
grey disc represents a value of ΨΨ  at which λλ  was measured (that is, a ‘pixel’ in the 
2D sheet). The black crosses show the location of the EP2 in these sheets as 
determined by the minima-finding algorithm described in the Supplementary 
Information.
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