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Abstract

We establish the existence and uniqueness of a solution to the master equation for a mean field game
of controls with absorption. The mean field game arises as a continuum limit of a dynamic game of ex-
haustible resources modeling Cournot competition between producers. The proof relies on an analysis of a
forward-backward system of nonlocal Hamilton-Jacobi/Fokker-Planck equations with Dirichlet boundary
conditions. In particular, we establish new a priori estimates to prove that solutions are differentiable with
respect to the initial measure.
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1. Introduction

In [26], the authors introduced a dynamic game of exhaustible resource production model-
ing Cournot competition between producers of a good in finite supply, for instance oil, whose
Markov perfect (Nash) equilibrium was characterized there by a system of coupled nonlinear
PDEs. This built on the influential continuous-time study of the monopoly (single-player) ver-
sion of the problem by Hotelling from 1931 [27]. By Cournot competition, we mean that the
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decision or control variable of the players is their quantity (or rate) of production, the market
price or prices of the goods being determined by a decreasing function of the aggregate (or
average) production.

When the goods each player produces are homogeneous, there is a single price p of the good
which depends, in the Cournot framework, on the average % Ziv qj, where g; > 0 is player j’s
quantity, and there are N < oo players. When the goods are substitutable, for instance oil of
different grades from different suppliers, or consumer goods such as televisions, a typical model
has that the price p; that producer i receives for its good depends in a decreasing manner on
qi + §=7 2 ji 4j- That s, its price is influenced by the average of the other players’ quantities
(thereby viewing them as exchangeable), where € > 0 measures the degree of interaction. A
dynamic exhaustible resources problem in this case is analyzed in [31].

Mean field games, in which there is a continuum of players, have been much-studied in the
past 15 years. We refer, for instance, to [1] and [8], for surveys from PDE and probabilistic
perspectives respectively. In the context of the Cournot model, the homogeneous goods case leads
to a continuum approximation model whose optimal strategies are of (unrealistic) bang-bang
type: the players either produce nothing or as quickly as possible. The substitutable goods case
has a more reasonable mean field game model, as studied in [10] and [11]. As mean field games
of control, and because the state variable is absorbed at zero (exhaustion of the resource), they
differ from the vast majority of problems studied in the literature where interaction is through
the mean of the state variable, which lives on the full space. Rigorous existence results are thus
more recent and under various restrictions, for instance [19,22,23,20]. We refer the reader to
[7,17,18,28] for benchmark results on mean field games of controls.

There has been much recent interest in describing mean field games through a Master Equa-
tion [4,2,9]. The study of such equations now has a large body of literature, going back to
such works as [15,12]. Again the existing results in the literature concern mean field interac-
tion through the state. See the recent results found in [13,14,32,33]. As for boundary conditions,
most references contain results only for master equations on the whole space or with periodic
boundary conditions. See, however, the recent work by Ricciardi for Neumann boundary con-
ditions [35]. Here we introduce and analyze the Master Equation of Cournot mean field games
of control with absorption. Our main result is the existence and uniqueness of a classical solu-
tion.

Once one has a unique classical solution to the master equation, a natural application is to
the convergence problem for N-player games corresponding to a mean field game. Using the
arguments of [4, Chapter 6], one can hope to obtain estimates that prove the closed-loop Nash
equilibrium strategies for N-player games converge to the mean field equilibrium strategy. In our
case, the infinite time horizon, the dependence of the dynamics on the distribution of controls,
and especially the absorbing boundary conditions add technical obstacles to a straightforward
application of the arguments found in [4]. We leave this application to future research.

In the rest of this section, we introduce the main notation needed and give our main results. In
Section 1.1, we give the precise description of the Cournot model as a mean field game and write
the corresponding master equation. In Section 1.3, we define a metric on the space of measures
and introduce a notion of derivative for functions defined on this space. In Section 1.4, we give
the definition of a solution to the master equation and present Theorem 1.5, which gives precise
conditions under which a unique solution exists. Finally, in Section 1.5 we present the outline of
the rest of the paper, which is devoted to the proof of Theorem 1.5.

-
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1.1. Description of the model
Let P: [0, oo0) — R be a given price function, satisfying the following:

Assumption 1.1. P is continuous on [O, oo) with P(0) > 0. For some n > 4, P is n times
continuously differentiable on (0, 00), P™ is locally Lipschitz, and P’ < 0. In addition,
limsup,_, o P’(q) is strictly less than zero (it could be —00), and there exists a finite saturation
point 1 > 0 such that P(n) =0.

The profit function m : [0, oo)4 — R for an individual producer is given by

2e.q.0.a) = q (P(eQ +q) a) ?fq >0,
0 ifg=0.
Here ¢ is the rate of production chosen by the producer, Q is the market’s aggregate rate of
production, a is the marginal cost of production, and € > 0 is a fixed parameter that determines
the substitutability of goods.
It will be convenient to define the relative prudence

_ QPO
p(Q) = PO

Notice that by Assumption 1.1, p is continuously differentiable on (0, 00). If, for example, we
take P’'(g) = —q " for some fixed p € R (cf. [26]), then p(Q) = p (constant relative prudence).

Assumption 1.2 (Relative prudence). We assume

_ 2+ €
p:= sup p(Q)<-— =<2
0&(0,00) l+e

Assumptions 1.1 and 1.2 guarantee a Hamiltonian of the following continuous time game is
well-defined.

In the finite N-player differential game introduced in [26], each player i has remaining stock
(or reserves) x;(¢) at time r > 0 and we denote by g; () > O their chosen rate of production, so
x; () satisfies the stochastic differential equation

dx;(t) = (—cji (t)dt + o dW; (t)) ]I{x,-(t)>0}’

where each W;(¢) is an independent standard Brownian motion representing, for instance, uncer-
tainty in the extraction process. The producers start with initial (r = 0) reserves x € Rﬁ and each

maximizes expected discounted lifetime profit. The value function u; : Rﬁ — R of player i is
given by
T
00 =swpE [ ¢ (€200, 0-4(0.0) (1.1)
qi
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where t; is the first time x; hits (and is absorbed at) zero, r > 0 is the common discount rate on

future profits, Q_;(¢) is the mean production rate of the other producers:

_ 1 _
0= 5= 240
J#i

and we assume for simplicity that marginal costs of production are zero.
The Hamilton-Jacobi-Bellman equation corresponding to each player’s optimal control prob-
lem in (1.1) is as follows. Define

H(e, Q,a):=supn(e,q, Q,a) from which it follows
q=0

oH
argmax .o 7(e, q, Q,a) = —g(fv Q.a).

In a Markov perfect (Nash) equilibrium of the N-player differential game the associated system
of Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs) for the value functions
is

- ou; oH - ou;\ du; o? N 92u;
Hle 0" .(x), — — (e, 0% . (x), —L L ru+ — L—0, @12
(e 0%;(x) axi)+§aa (e 0" ;(x) axj>axj rui + = ;axlz (12)

coupled with

= 1 oH = ou

0%, (x)= N1 - 9a €, ij(X), ax. |
JF#i J

See [26, Equation (3.4)]; here we have additional diffusion terms due to the Brownian noise in

the dynamics.

The mean field game (MFG) version of this problem, corresponding to a continuum of players
with density of initial reserves m was introduced in [10] and further studied in [11], where it is
characterized by two PDEs and a fixed point condition (which are given here in Section 1.5). An
explicit solution of the deterministic MFG (o = 0) when the price function P is linear is given
in [24].

We next introduce the master equation formulation of this MFG.

1.2. Master equation heuristics

Let m be a measure representing the initial distribution of stock over all producers. Let
U (x, m) be the maximum discounted lifetime profit for an individual producer that starts with
a stock of x. If we assume that U is smooth with respect to both variables (see Definition 1.3
below for derivatives in the space of measures), then U will satisfy
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., oU OH [, dU 9 sU
H<€9Q 7_(m1x))+/_<er 7_(m7y)>__(m9x1y)dm(y)_rU(m9x)
x x dy ém
D

o2 [ 82U 9% U
+7 W(m,x)—i- a—yz%(m,%)’)dm()’) =0, (1.3)
D

where Q* is defined as the unique fixed solution of the equation

. 0H (. aU
0 =—/a—(e,Q ,—<m,y>>dm<y). (1.4)
a 0x
D

Equation (1.3) is called the master equation.

Formally, the master equation can be derived from the system of Hamilton-Jacobi-Bellman
(HJB) equations (1.2) for the N-player game. Letting N — oo, we formally interpret each sum
as an integral with respect to the population distribution. See [4,9] for a detailed interpretation of
the master equation.

1.3. Metric and derivative on a space of measures

Before we can state our main result, we will need to define a notion of derivative with respect
to a measure. Let M = M(D) be the space of all finite signed Radon measures . on D. We
denote by M the subset of M consisting only of positive measures. The topology on M is

that of narrow convergence. We say that a sequence {u,} in M converges narrowly if for every
bounded continuous function ¢ on D, we have

f(i)(X)d,un(x)—> /¢(X)d,u(x)-
D D

We now introduce the derivative on M (D).
Definition 1.3 (Differentiability with respect to measures). Let . be any dense subset of M.

Given a function F : .# — R, we say that F is continuously differentiable if there exists a
continuous function f : # x D — R, satistying

| f(m,x)| < C(m)Vx eD

for some constant C (m), such that

fim F(m+t(m—m)) — F(m)

=/f(m,x)d(rf1—m)(x) Vm,m e /. (1.5)
t—0+ t
D

§F
The function f(m, x) is unique, and we denote it f (m, x) = S—(m, X).
m

© O N o g A 0N =
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Definition 1.3 is essentially the classical Giteaux derivative, though we only take m, m from
the convex subset .# of the vector space M. Uniqueness follows from the fact that the measure
m —m in (1.5) can be taken to be an essentially arbitrary positive measure (by density of .# in
M ); contrast with the situation in which m, i must be probability measures (cf. [4]).

1.4. Statement of the main result

To state our main result, we will first define a set of measures on which the master equation
(1.3) is supposed to hold. Fix « € (0, 1) and let M denote the set of all positive measures m
on D = (0, co) satisfying the condition

/x_z_“ dm(x) < oc.
D

Definition 1.4. We say that a function U : D x M?T® — R is a (classical) solution of the master
equation (1.3)-(1.4) with absorbing boundary conditions provided it satisfies the following:

(1) U0, m) =0 for every m € M>*¢;
sU
(2) U and - are twice continuously differentiable with respect to x;
m

(3) for every m € M?*% and x > 0, Equation (1.3) is satisfied.

The Dirichlet boundary condition U (0, m) = 0 is an absorbing type boundary condition, rep-
resenting the fact that players exit the game as they run out of resources (cf. [10,25]). Theorem 1.5
is the first result, as far as we know, on the Master Equation with boundary conditions of this type.

Our main result in this paper is as follows.

Theorem 1.5. Under Assumptions 1.1 and 1.2, the following assertions hold.

(1) There exist constants r* > 0 (large) and €* > 0 (small) such that whenever r > r* and
0 < € < €*, the master equation (1.3) has a solution, which is unique under the condition
(6.7) (cf. Section 5.5).

(2) If P is linear, and in particular if (without loss of generality) P(q) = 1 — q, then there exists
a constant r* such that for every r > r* and € < 2, the master equation (1.3) has a solution,
which is unique under the condition (6.7) (cf. Section 5.5).

Remark 1.6. The precise conditions on r* and €* in Theorem 1.5 are contained in Assump-
tions 5.26 and 5.27. Although these two conditions are essentially in dichotomy, nevertheless in
this paper we make an attempt to utilize as much as possible a unified method of proof for both
cases. See Remark 4.17 for more details.

1.5. Structure of the proof

In a generalized sense, we use the method of characteristics to solve the master equation
(1.3)-(1.4). Consider the HIB/Fokker-Planck system
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0 ou n o2 9%u H 0* (1) ou 0
i —t — — €, ,— | —ru=0,
ot 2 9x2 dx

i) am o2 3%m N 9 (0H 0 () du 0
ii — = —t—|—1\¢€ oo Jm)=U
ot 2 9x2  9x \ da ox (1.6)

ou
a) dm(z),

OH .
(i) Q*(I)Z—/E <6, Q7 (1),
D

(iv) mly=o =uly=0 =0, m|;—o =mg € M, (D)

where D := (0, 0o0). We can think of System (1.6) as the characteristics of Equation (1.3). Indeed,
suppose U is a smooth solution to (1.3) and (u, m) is a smooth solution to (1.6). Then formally
the two are related by the equation u(x, t) = U (x, m(t)), and in particular U (x, mo) = u(x, 0).
In the proof of our main result, our strategy will be to define a function U in this way, then prove
that it satisfies (1.3). To do this, we follow these steps:

(1) Prove that (1.6) has a unique solution (u, m) for any my € M*. Define U (x, mg) = u(x, 0).
(2) Prove that U is differentiable with respect to the measure variable m:
(a) Formally differentiate (1.6) with respect to the measure variable to obtain a linearized
system.
(b) Prove that the linearized system has a unique solution.
(c) Prove that the unique solution thus obtained is indeed the derivative of U with respect to
the measure.
(3) Use the smoothness of U to establish that System (1.3)-(1.4) is satisfied.

The remainder of this paper is structured as follows. In Section 2 we establish notation and de-
fine function spaces as needed. In Section 3 we study the Fokker-Planck equation with absorbing
boundary conditions and establish some results that allow us to prove existence of solutions to
System (1.6); they may also have independent interest. In Section 4 we present existence, unique-
ness, and regularity results on System (1.6). Section 5 is the core this paper, in which we derive
all of the a priori estimates on linearized systems that will allow us to prove differentiability of
the master field U (x, m). Here the reader will find some parallels with a recent work by Graber
and Laurel that also deals with linearized systems in order to analyze sensitivity of solutions to
the parameter € [21]. In the present work, the analysis is considerably more sophisticated because
we are taking derivatives with respect to a measure and not a scalar parameter; this requires es-
timates on a linearized system in appropriate norms, in particular dual spaces that introduce a
great deal of technicalities. The main result is proved in Section 6, essentially as a corollary of
Section 5. Proofs of some technical results are left in the appendix.

2. Preliminaries
2.1. Function spaces

Let D = (0, 00). For n € N, we denote by C" =C" (D) the space of all n times continuously
differentiable functions on D such that the norm

n
(D) = Z sup

dkr
i
k=0x€D

171

8
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is finite; C" (D) is a Banach space endowed with this norm. In particular, C%(D) is simply the
space of all continuous functions, endowed with the supremum norm. We denote by C! = CZ (D)
the space of all n times continuously differentiable functions which have compact support
contained in D; this is a subspace of C" (D), and C(')’ (D) denotes its closure. We also denote
CX(D) =N, CH(D).

For any « € (0, 1), define the Holder seminorm

|f) = £

[f ]a = U] o
x,y€D,x#y |x - y|

Define C"T% = C"+*(D) to be the space of all n times continuously differentiable functions f
whose nth derivative is Holder continuous, such that the norm

darf
o[,

is finite. In particular, when n = 0 the space C%(D) is simply the space of all «-Holder continuous
functions with standard norm. We define C = C¢ (D) to be the space of all f € C* (D) such that
f(0)=0.

When o = 1, the quantity [ f], defined above is referred to as the Lipschitz constant of f,
denoted Lip(f) instead of [ f];. We define Lip(D) to be the space of all Lipschitz continuous
functions on D, with norm

|

eray = |/

Hf”up@) = ”f”co +Lip(f),
and the subspace Lip, (D) the set of all f € Lip(D) such that f(0) =0.
We now define Holder spaces of functions on space-time. Let I = [0, T] or I = [O, 00). For

any number 8 > 0 we define the space C#0(D x I to be the set of all functions u : D x I — R
such that the following norm is finite:

||M||cﬂ,0 = ”u”Cﬂ,O(ﬁX[) = SUP”M(', 1) ||Cﬂ(f) .
tel
For any « € (0, 1) define

uGx, 1) = u(y,s)|
o = y|" 1 =51

[ulao/p:=  sup
x,y€D,t,s€l,x#y,t#s

We denote by C%%/?(D x I) the subspace of C*°(D x I) such that the norm
”u”ca,a/Z(ﬁxl) = ”u”cﬂ,o(fxl) + [U]e.a/2
is finite. The space C%1(D x I) consists of functions such that

9%u
9x2

u
at

ou
0x

”u“szl(ﬁx[) = ”u”CO*O(ﬁxl) + ‘

CO9(DxI)

CO'O(fxl) C0’0(5><1) ‘

9
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is finite, and the subspace C>t%1+*/2(D x I such that

” ” ” ” 82u ou
Ulle2tat+ar2(Pypy = 1Ullc21 Dy 1) 2
X x 0x w2 ot a,0/2

is finite. Cf. [29, Section 1.1]. Note that there exist constants C, such that

82u ou
||u||62+a.l+a/2(§><1) =< Ca ||u||co,0(5><1) —+ ﬁ + E
o,a/2 a,a/2

We define the Lebesgue spaces L? in the usual way, and we write the norms || f ||p = || f || L
interchangeably.

2.2. Norms on the space of measures

We define the total variation norm ” I H Ty = | ,u,| (D), which can also be expressed as

Iy =sup] [ #8000 € D). 8o <1
D

Under this norm, M becomes a Banach space. On the other hand, it is not necessary to converge
in this norm in order to converge narrowly. For this it suffices to consider M as a subspace of
the dual of C¥, with norm

[l ey = sup /‘b(x)dﬂ(x)ifﬁecﬂp), 6] ca <1
D

We may also replace C¢ with Lip,,.

||TV is bounded, lf”u,, — y,” (o) ™ 0, and if

Un (D) — w(D), then w, converges narrowly to [

Lemma 2.1. Let {1, } be a sequence in M. If”un

Proof. Let ¢ be a bounded, continuous function on D, and let ¢ > 0. Choose ¥ € C¢ such that
”¢ —¢(0) — W”Co < ¢. Then

[ a0 =] <& (luallry +I1lry) + 0O ien) = w@)] +| [ 0an = 0.
D D

Using the fact that H n is bounded, we let n — oo and then € — 0 to conclude. O

lrv

10
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2.3. Remark on constants

Throughout this manuscript, C will denote a generic positive constant, whose precise value
may change from line to line. When C depends on the data from the problem, will attempt to
specify all the parameters on which C depends. In particular, we may write C(ay, ..., a,) to
denote a positive number which depends on given parameters ay, ..., a,. When no parameters
are specified, this means C depends only on the number of steps in the proof (and is generally an
increasing function thereof).

3. Fokker-Planck equation with absorbing boundary conditions

Recall D := (0, 00). In this section we study weak solutions to a Fokker-Planck equation with
Dirichlet boundary conditions:

Bt 2 ax2  ax (3.1)

for a given velocity function b = b(x, t). We want an interpretation of (3.1) that makes sense for
any mgy € M(D). Thus we say that m € 0 ([0, T, M(D)) is a weak solution of (3.1) provided
that, for all ¢ € C2°(D x [0, T)), we have

T

2
// (———0—a—¢+ba—¢)m(dx,t)dt:/d)(x,O)mo(dx). (3.2)
D

ot 2 9x2
0

Our main existence/uniqueness result is contained in the following lemma. Its proof is fairly
standard and is found in Appendix A.

Lemma 3.1. Let b be a bounded continuous function on D x [0, T], and let mg € M (D).
Then there exists a unique weak solution m of (3.1). It satisfies

|m@|yy <llmolizy vt =o0. (3.3)

It is also Holder continuous with respect to the C (D)* and Lip,(D)* metrics, and in particular

[m(®) | e pye <lmollzy / xmo(dn) +2 (1bI% + o) max {1, 14/2]

s (3.4)

[m(t) = m@)] ga ) < 2lmoliry (1611 +0)ltr =02 V1,10 2 05t |1y = 12] < 1,

where for o = 1 we replace Ci (D)* with Lip,(D)*. Its total mass function n(t) is continuous
and decreasing on [0, T].

Lemma 3.1 has the following straightforward corollary, whose proof we omit.

11
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Corollary 3.2. Let b be a bounded continuous function on D x [0, T], let mg € M (D), and
let mg and m, denote the positive and negative parts, respectively, of mo. Then there exists a
unique weak solution m of (3.1), whose positive part m™ is precisely the solution of (3.1) with
mo replaced by mg, and whose negative part m™ is the solution of (3.1) with mg replaced by
my . The estimates (3.4) still hold, with mq replaced by |my|.

3.1. The mass function

Let m be a weak solution to (3.1). We define the rotal mass function n : [0, T] — R by

n(t) :=/m(dx, 1).
D

Notice that n is in general not constant. Since the equations in System (1.6) depend on n, we
are motivated to study the regularity of n as a function of time, and in particular we would like
to know when it is Holder continuous in order to establish the existence of classical solutions
to the system. Note that it is insufficient to know how regular it is only for ¢+ away from zero,
because the behavior of the population mass as t — 0 influences the regularity of solutions to the
backward-in-time Hamilton-Jacobi equation.

As a first step, we analyze the case where b = 0, so that (3.1) reduces to the heat equation
with absorbing boundary conditions. Our goal is to determine whether the heat semigroup itself
produces a Holder continuous flow of total population mass. Recall that the heat kernel is given
by

2
S(x,t):(202nt)1/2exp[—ﬁ} (35)
o

and that the solution of the heat equation with absorbing boundary condition at x =0

am o2 92
W = TW’ mli=0 =mg, nlx=0=0 (3.6)
is given by
m(x,t):/(S(x—y,t)—S(x+y,t))mo(dy). 3.7
D

For a measure mg € M (D) the corresponding mass function generated by the heat equation is

n ol () := / / (SCx— y.1) = SCx + y. 1)) mo(dy) dx. (3.8)
D D

By Fubini’s theorem, one can reverse the order of integration in (3.8) and then write 0 m1(t)
explicitly in terms of the cdf of m:

12
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"mo(r) = 2 Ooex —ﬁ m (tl/zx oo) dx
0

To the question, “Is nh [mo](-) Holder continuous on [0, 7] for every measure mg € M(D)?”
the answer is a straightforward “no,” as the following example shows.

Example 3.3. Define m as a density

1
m(x) = Wﬂ(o,e—l)(ﬂ-

Note that m is a probability density on D with cdf

1
m(s)ds = ———T g 1) () + I[p1 ) (0).

Feo = Inx

o\x

Assume that n[m](-) is a-Holder continuous on [0, T'] for some « € (0, 1). Then there exists a
constant C such that

2
V202w

o
X2
1 — 9" [ml(s) = f F(/sx)e 27 dx <Cs® Vs > 0,
0

and so, by Fatou’s Lemma,

o0

2 _a%

liminfs ™ *F 22 dx < C.

o / imin (v/sx) <
0

But for any x > 0, we have

—1
lim s F(/sx) = lim +o00.
s—0+

s—>0+ 5% In(4/5x) -
This is a contradiction.
For 0 < o« < 1 we define .#, (D) to be the space of all m € M(D) on D such that nh[m] €
(o ([0, oo)), with norm

il =|n"tm1] , (000) HImlrv:

It is straightforward to see that .#,, is a Banach space. The heat equation (3.6) generates a semi-
group of contractions on .. Indeed, let m(¢) denote the (measure-valued) solution at time ¢.
First we deduce ||m(t) || rv <llmoll7y by integrating (3.7). Moreover, by the semigroup property

13
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(i.e. by uniqueness of solutions to the heat equation) we have nh[m ](s) = nh[mo](t +s), so
that

vVt > 0.

"t

= th[mo](t +) ”Ca (00

)< [ 1mo|

Co ([0,00)) Cco ([0,00))

Example 3.3 shows that measures which have a steep concentration of mass near 0 will fail
to be in .#,. We now show prove that the converse is true, i.e. an estimate on the concentration

of mass near zero will guarantee inclusion in .#,. For any « > 0, denote by M the set of all
m € M satisfying

‘/MF“Mme»<mm (3.9)
D

For instance, M contains all finite measures with support in [z, oo) for some z > 0. In particular,
M*® is dense in M. If we endow M?* with the norm

e =tmly + [ im0 = [ (14117l o).
D D

then it is straightforward to see that M is a Banach space. We will also denote MG = M* N
M, i.e. the set of all positive measures such that (3.9) holds.

Proposition 3.4. Let o € (0, 2). Then M® C .My 2, and there exists a constant C (o) such that
Imllz,, < C@)llmlrpe  Vm e M.
In particular, My is dense in M.

Proof. We can write

' m](t) = f O, Hmo(dy),
D

where
o0
f(y,t):/(S(x—y,t)—S(x+y,t))dx.
0
We observe that
af [ /a8 35S
E(y,n:/(8—t(x—y,r)—§<x+y,r>)dx
0

14
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00
02/ 325( N 325(+ b dx
= 5 5, X=Y, — 5> X ’
2 J N2 TP T g2t
0
N _2
= —0'2 —_— (y,t) = $e 2(72/‘
ox NEZ T

Let p > 1, y > 1. By a change of variables s = y?/f, we deduce
I/p

e¢]

/|fz(y, H|IPds|  =Cpy ™7, p'=p/(p—1.
0

Therefore

|f o) = FO, )| < C(py 2P — VP

We choose p =2/(2 — a), or equivalently p’ =2/a. Then we have

() = "l = [ 1700 = Fo|m)dy = C@in — 1 [y~ m@) .
0 0

The claim follows. O

Recall that the heat semigroup is a semigroup of contractions on .#,. It turns out that the heat
semigroup is also bounded on M* for arbitrary o > 0, as the following lemma implies.

Lemma 3.5. Let m be a positive measure satisfying (3.9) for some oo > 0. There exists a constant
C(a) such that if m is the solution of the heat equation (3.6), then

[ < c@ [ moa. (3.10)
D D
The proof of Lemma 3.5, which is found in Appendix A, relies on the following result, which
will be useful for other estimates on parabolic equations.

Lemma 3.6. Ler S(x, t) be the heat kernel, defined in (3.5). Foralln =0, 1,2, ..., there exists a
(Hermite) polynomial P, of degree n such that

S = (azr)fn/z Pn< x| )S(x,t). 3.11)

n

ax" Volt
As a corollary, foralln =0,1,2,...,and k=1,2,3, ... the constants

219"S
ax"

k/
. Mg = suplx|" Tk (azt)
x,t

my, == suplx|"*!
x,t

arlS ( t)
— (x,
ax"

(x,l)’

15
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are finite and depend only on n and k.

Proof. The proof of (3.11) is elementary using induction. The second claim follows from the
fact that sup, - x%e™" is finite for any « > 0. 0O

We conclude this section by generalizing our results to the Fokker-Planck equation for an
arbitrary bounded continuous drift term b(x, ¢). The proofs are found in Appendix A.

Lemma 3.7. Let b be a bounded continuous function on D x [0, T], let mg € M (D) N .y (D),
and let m be the unique weak solution m of (3.1), given by Lemma 3.1. Then the total mass
function n(t) := fDm(dx, t) is B-Holder continuous for f = min{wa, 1/2}, with

17l cs qo.77) = €@ (Imoll.z, +11blIoc) - (3.12)

Lemma 3.8. Let b be a bounded continuous function on D x [0, T], let mg € MY (D) for some
o > 0, and let m be the unique weak solution m of (3.1), given by Lemma 3.1. Then there exists
some constants C(a) and C(a, o) such that

/|x|_“ m(dx, 1) < C(a)eC@Nblot /|x|_°‘ mo(dx). (3.13)
D D

4. Forward-backward system

In this section we prove existence and uniqueness of solutions to infinite time horizon forward-
backward system (1.6). Many of the ideas in this section can already be found in [20]. Our result is
novel in that (i) the time horizon is infinite and (ii) the initial measure my need not be smooth nor
even a density. The proof is based on a priori estimates followed by an application of the Leray-
Schauder fixed point theorem (see e.g. [16, Theorem 11.3]). Most of the proofs in this section
involve either standard computations or ideas that can be found in the previous works [20,23,19],
and so we relegate them to Appendix B. However, in the sequel we will make frequent reference
to the estimates found in this section.

4.1. The Hamiltonian

In this subsection we deduce a number of structural features of the Hamiltonian, using only
Assumptions 1.1 and 1.2. The proofs can be found in Appendix B.1.

Lemma 4.1 (Unique optimal quantity). The function g™ : [O, c>o)3 — [O, o0) given by g* (¢, Q, a)
=argmax,.( (€, q, Q, a) is well-defined and locally Lipschitz continuous. It is non-increasing
in the variable a. With respect to € and Q, it satisfies

Igt _ p—1 9q* p—1

—e< <e€ ,—0< <Q——o. 4.1
00 T 2—-p Q_BE_QZ—,O @1
Define H(e, Q,a) =n (e, q* (0, a), ,a) > 0. Then H is locally Lipschitz, decreasing in all
oH
variables, and convex in a; its derivative i —q* is also locally Lipschitz.
a

16

© O N o g A 0N =



© 0O N o g A O N =

AR A B A OB B A B W W W W WWNNNDNDNNNRNDNDRN 2 o 42 s a2 o
N OO O A WD 4 O O 0N OO 0O A W0ONN 42 OO0 0 N o o P~ 0NN 4 0O 0 0o N o o P~ w NN = o

JID:YJDEQ AID:11744 /FLA [m1+; v1.357] P17 (1-94)

PJ. Graber and R. Sircar Journal of Differential Equations eee (eeee) see—see

Corollary 4.2 (Smoothness and uniform convexity). Let € > 0, Q >0, and a > 0 be constants
such that a < P(€ Q). Consider the restriction of H = H (¢, Q, a) to the domain [0, €] x [0, Q] x
[0, a]. Then H is n times continuously differentiable with Lipschitz continuous derivatives, where
n is the same as in Assumption 1.1. It is also uniformly convex in the a variable, and in particular
there exists a constant Cg = C (€, Q, a,a) > 1 such that

32H

Cil<—5(e,0,a)<Cy V(e Q,a)€[0,é] x [0, 0] x [a, al. 4.2)
H da?

Corollary 4.3 (Q dependence). We have the following estimates in the region where P(e Q) > a:

2

30da

§emax{p > ,1}::156. 4.3)

<€(P(0) —a),

00

Lemma 4.4 (Unique aggregate quantity). Let € > 0,¢ € L*°(D) and m € M4 (D) with
fD dm(x) <1 and ¢ >0 (a.e.). Then there exists a unique Q* = Q*(e, ¢, m) > 0 such that

Q =/61 (€, Q ,¢>(X))dm(X)=—/a—a(6, 0%, ¢(x)) dm(x). 4.4)
D D
Moreover, Q* satisfies the a priori estimate
Q* <c(p,€)q*(0,0,0), c(p,¢) '=max{i 1} 4.5)
=0T TRE T, A0 e 2te—(tep | ‘

Finally, Q* is locally Lipschitz in the following sense. If €1, €3 € [0, €], ¢1, ¢a Lipschitz functions
with ”‘Pi ”oo <M, and my,my € My (D) with fdei(x) <1, set Q7 = Q*(e;, ¢i,m;) to be
the solution of (4.4) corresponding to €;, ¢;, m; for i = 1,2. Then there exists a constant C =
C(e, p, M) such that

|07 - 03]

do;
<C |el—ez|+/\¢1(x>—¢z<x)|dm1<x>+g?>§ %H dl(ml,m2>+/d(m1—mz><x>
D *© D

<C|ler — el +| o1 — ¢ +if£?>§

do;
diH di(my,mp) + /d(ml —m2)(x)
X o0

D

(4.6)
Remark 4.5. The function c¢(p, €) in equation (4.5) is an increasing function of €.
Corollary 4.6. Let €, ¢, m, and Q* = Q*(€, ¢, m) be as in Lemma 4.4. Then
q* (e, 0%, ¢ () < (5, €)¢™ (0,0,0) 4.7
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fora.e. x €D.
4.2. Finite time horizon problem
In this section we fix a final time 7 > 0 and consider the forward-backward system only on

this time horizon. For technical reasons, we will need to replace the constant € with a function
€(t) such that €(T) = 0. System (1.6) becomes

. ou o 32 . I
) ﬁJFH(f(f)’Q (t),—> —ru=0,

ii a2 ax 3 € —0, s
(iii) Q*(t):— ( 1), O*(1), _> dm(1),

>iv) m|x=o=u|x:0—0, ml—o =mo € P(D), ul—r =ur € C*e,

We define (1, m) to be a solution to (4.8) provided that u is a smooth function on D x [0, T']
(twice continuously differentiable with respect to x, continuously differentiable with respect to
1), m € C([0, T]; P(D)), Equations (i) and (iii) are satisfied pointwise, the boundary conditions
for u in (iv) are satisfied pointwise, and Equation (ii) with the boundary conditions for m from

(iv) holds in the sense of distributions (see Section 3). Note that a solution (u, m) must satisfy

0
au > 0, because the domain of H is [O, oo)3. It is possible to relax this somewhat by extending

X
the domain of H (e, Q, a) to include all a > lim,_, o, P(g), but we need not do so here.

Assumption 4.7 (Structure of €(t)). We assume € is a smooth, non-negative, non-increasing
function on [0, T'] such that €(T) = 0 and | ¢’ ||(>o <1

Assumption 4.8 (Structure of ut ). For each T > 0, the function u7 is an element of C>+¢ (5)
that satisfies the following conditions:

(1) ug (0) =0;

(2) Gu.(0)+ H (0,0, u(0)) =

(3) 0<ur(x) <cy for all x € D, where ¢; > 0 is some constant;

(4) there exists a constant c3 > 0, independent of 7', such that 0 < u’T(x) <c3 forall x € D and
all T > 0;

(5) there exists a constant Cy, independent of 7', such that [[ur|| C2ta ( ) <Cqforal T > 0.

Remark 4.9. 1t is always possible to satisfy Assumption 4.8 for an arbitrary constant ¢z > 0.
Here we give one possible construction. Set & = %H (0,0, c3), so that condition (2) becomes
u7.(0) = —h.If h > 0, then Assumption 4.8 is satisfied by the function

23 k2 2¢3\°
ur(x) = 3 +12€3 x—— K

18
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where x_ := min {x, 0}. In the case where 7 = 0, Assumption 4.8 is satisfied by the function
cyc—%3 if x < (c3)'2,
w0 =1 1) +4 (x 2<c3)1/2) . if ()2 <x = 2(e9)',
3(c3)*2, if 2(c3)'/? < x.

Note also that these examples can be slightly modified to produce globally C* functions satisfy-
ing Assumption 4.8.

4.3. Estimates on the Hamilton-Jacobi equation

Lemma 4.10 (A priori estimates for HJ equation). Let Q*(t) be any bounded, non-negative
function. Let u be a solution of the Hamilton-Jacobi equation

8”+0 O I T 0. xeD, te[0.T) (4.9)
— € — ) —ru=0,x .
ot 2 ox? : " ox = : :

with Dirichlet boundary conditions u(0, t) = 0 and final condition u(x, T) = ut (x), which sat-
isfies Assumption 4.8. Then for all x € D and t € [0, T], we have

1
0<u(x,t) <-H(,0,0)+ci, O0<uy(x,t)<M, (4.10)
r
where
2\/2111(000) 5(000)+rc1) if s <\/ZH(O 0.0)
3+ = H(OOO)2 2” H(OOO) th3>‘/ H(OOO)
4.11)

Proof. See Appendix B.2. Cf. [20, Section4]. O
4.4. Estimates on the coupling

Lemma 4.11. Let (u, m) be a solution of (4.8). Then Q*, given by (4.8)(iii), satisfies the following
bounds:

oH
0< Q*(r) <c(p, €(0)g™(0,0,0) = —c(p, €(0)) 3a 0,0,0), (4.12)
where c(p, €) is defined in (4.5).

Suppose, moreover, that mg € My for some o € (0, 1]. Then Q*(t) is Holder continuous on
[0, T] with

9%u
9x?
o

ou

+1], (4.13)
0x C

[Q* ¢ <€

19
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forsome C =C (,5, €(0),0, M, ||mo||,///a/2>, where M is the constant from Lemma 4.10 that gives
d

u
ax

an upper bound on ‘
o0

Proof. See Appendix B.3. O
4.5. Parabolic estimates

Before stating our result on the existence of smooth solutions to the system, we present some
estimates on solutions to parabolic problems that do not depend on the time horizon. These

estimates will be useful in study of the linearized system (Section 5).

Lemma 4.12. Let T > 0,r > 0 be given. For any f € C%*/2(D x [0, T]), and ug € C*T% (D),
there exists a unique solution u € C>**1%/2(D x [0, T]) of

ou o2 9%u
—4ru———=f,VxeD,t>0,u0,t) =0Vt >0; u(x,0)=uox) Vx e D (4.14)
ot 2 9x2
satisfying
||u||(/'2+a,l+a/2(§><[0’7‘]) E C(O', r, a) (”f”ca,aﬂ(ﬁx[ojﬂ]) +||u0||c2+ot(5)> . (4’]5)

The constant C(o,r, ) in (4.15) does not depend on T. More specifically, we can say that if
r=1,

el 2401025 [0, 7] = C (0 @) ([f]w/2 +7r7| o+ [u0]ypy + 712 ||uo||o) . (416)

Proof. The result follows from potential estimates found in [29, Chapter IV]. See Ap-
pendix B.4. O

4.6. Existence of solutions
Lemma 4.13. Let mg € My > and 0 < a < 1. Then there exists a constant
C=C(p,e0),0, M. c1lmollg,, )

such that for any solution (u, m) of (4.8),

lttll 2142 5C<1+r% +Ca+r1+%c1>, (4.17)
where M is the constant from Lemma 4.10 and c1, c3, Cy are the constants from Assumption 4.8.
Remark 4.14. The constant on the right-hand side of (4.17) does not depend on 7.

For the proof of Lemma 4.13, see Appendix B.5.
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Theorem 4.15 (Existence of classical solutions for (4.8)). Let mo € My > and 0 < o < 1. Then
there exists a solution (u, m) satisfying the finite time horizon problem (4.8) and having the fol-

lowing regularity: u € C>+e1+e/2 (5 x [0, T]), m e CY2([0,TT; M +(D)). Thus, Equation
(4.8)(i) is satisfied in a classical sense, while Equation (4.8)(ii) is satisfied in the weak sense
defined in (3.2), and Equation (4.8)(iii) holds pointwise.

Proof. We use the Leray-Schauder fixed point theorem in a more or less standard way, cf. [20,
23,19]. The details are given in Appendix B.5. O

Theorem 4.16 (Existence of solutions to the infinite horizon problem (1.6)). Let mg € M2 and
0 < « < 1. Then there exists a solution (u,m) € C>T1+¢/2 <5 X [O, oo)) X € Cl/2< [0, 00);

My 4 (D)) solving the infinite time horizon problem (1.6) and satisfying the following estimates:

lullgziarsarn < C (5, €0 M. llmoll g , ) (1475 +Ca)

di (m(t1), m()) <2(M + o)t —02|'/? V|t — 2] < 1,
du(x,t)
0x

1 _
r

0<0*n <0,

oH ou -
0<—— <e, 0" (1), — (x,t)> <Q V(x,1) €D x[0,00)
da ox

where M and Q are defined by

/2 - _ oH
M =2 TH(O, 0,0), Q:=-—c (,o, e) —(0,0,0) 4.19)
o°r da

Proof. For each T > 0, we will let €(t) be a function satisfying Assumption 4.7 as well as
€(0) = ¢, and we let ur be a function satisfying Assumption 4.8. By Theorem 4.15 there exists a
solution of (4.8), which we denote (u”, m”). Fix an arbitrary Ty > 0. By Lemmas 4.13 and 3.1,

(u”, mT) is uniformly bounded in C2* 1+2/2 (5 X [O, To]) x C1/2 ([0 To] ; M1,+(D)) for all
T > Tp, with norms bounded by a constant that does not depend on Ty. Thus, by standard diag-
onalization, we may pass to a subsequence, still denoted (uT, mT), that converges to some fixed

(u, m), where the convergence is in C>! (5 x [0, To]> x CO0 ([O, To); M1,+(D)) for every Tp.
By the uniform estimates on (u”, m”) it also follows that (u, m) € C2T%1+e/2 (5 x [0, oo)) X

cl/2 ([O, 00); M1,+(D)). To see that (u, m) is indeed a solution to (1.6), it suffices to pass to

the limit in the equations satisfied by (u”,m”) on arbitrary time horizons. Finally, note that the
following estimates hold:

lullgziarsarn < C(5. €0, 0. M, er e limoll gy ) (1475 + Co 415y,
di (m(n). m(12)) <2(M + o)l —n|'? Vi — o] < 1,
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- du(x,t)

1 _
O0<u(x,t)<-H(0,0,0)4+c¢;, 0< 5 <M(o,r,ci,c3)VxeD,t >0,
r X

_ \O0H
0<0*t) <—c(p,e) = (0:0.0),
oH d oH
05 — a (6, Q*(t), % (x,t)> S —C (;57 6) % (Oa 0’ 0) V(xvt) ED X [Oa OO)

where M = M(o, r, c1, c3) is defined in (4.11). This follows because they hold for (u”, mT)
uniformly in 7 (Lemmas 3.1, 4.10, and 4.11, also Corollary 4.6). Now by Remark 4.9, c1, ¢ and
c3 can be made arbitrarily close to zero. Letting ¢y, c3 — 0 and using the continuity of H and
%—g, we deduce the estimates (4.18). O

4.7. Uniqueness and smoothness of the Hamiltonian

When the demand schedule is linear, uniqueness of solutions to (1.6) follows with no further
conditions on the data, cf. [23]. In the case of a general, nonlinear demand schedule satisfying
Assumptions 1.1 and 1.2, we can prove uniqueness of solutions for small enough parameter €.
Cf. [20]. The smallness of € makes two contributions. First, it ensures that the Hamiltonian H
is a smooth, uniformly convex function on the domain where solutions exist. Second, it ensures
that certain “energy estimates” a la Lasry-Lions (see [30]) hold, which prove uniqueness. The
case where € is small has independent interest, aside from being a technical condition that yields
uniqueness. (Cf. Remark 4.17.)

Remark 4.17. The inspiration for taking € > 0 small is taken from the basic idea that Chan and
Sircar use to compute solutions [10,11] Namely, it is natural to try take a formal Taylor expansion
of the solution with respect to € around zero, since at € = 0 the system of equations is decoupled.
(See [21] for a justification of this technique.) Now when € > 0 is small enough, one might think
to simplify our approach by devising a contraction mapping argument. In the present work, we
do not take this approach, but instead seek to unify as much as possible with the case where
the demand schedule is linear. For in this latter case, it is essentially from the structure of the
Hamiltonian that one obtains the “propagation of monotonicity” (cf. [14]) that is needed to prove
uniqueness. We show that the same is true when € is small, and we do so by proving the same
type of estimates as we do for the linear demand schedule. One could, in principle, generalize
this idea to other “smallness” conditions; for example, if the demand schedule is “close enough
to linear” in a suitable sense, then our arguments for uniqueness will go through for a wide range
of parameters €. In the present work, however, we do not pursue this direction, so as to avoid a
multiplication of technicalities.

In this section we consider both the smoothness of the Hamiltonian and uniqueness of solu-
tions separately. The former can at first be viewed as a tool for proving the latter, in the case
of a nonlinear demand schedule. However, when we prove the regularity of the master field in
Sections 5 and 6, the smoothness of the Hamiltonian will be required even when the demand
schedule is linear. Therefore we address it in a separate subsection.

4.7.1. Assumptions ensuring that the Hamiltonian is smooth
The following assumption ensures in general that H can be treated as a smooth, uniformly

convex function in System (1.6).
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Assumption 4.18. We assume that M < P (6 Q), where M and Q are defined in (4.19).

Remark 4.19. [Sufficient conditions to give Assumption 4.18] There necessarily exists r* large

enough so that
[ 2
2,/ —-H(0,0,0) < P(O) Vr= r.
ocr

Then, since € — P (e Q) is a continuous, decreasing function of €, there exists €* > 0 such that

Assumption 4.18 holds for all 0 < € <¢* and all r > r*.

Under Assumption 4.18, it follows from Corollary 4.2 and the a priori estimates (4.18) from
Theorem 4.16 that in System (1.6) (or (4.8), provided c¢; from Assumption 4.8 is chosen small
enough), H can be treated as n times continuously differentiable with Lipschitz continuous
derivatives, and moreover it is uniformly convex. In particular, from (4.2) there exists a constant
Cyg > 1 such that

2 ou

C;,l < 887[;1 (e, o), o (x, t)) <Cx V(x,t) €D x(0,00) (4.20)

whenever u is a solution of (1.6).

An interesting special case is when the demand schedule is linear; without loss of generality
we take P(q) =1 — g. In this case (and in general when p < 1) we have c(p,¢) =1, and a
simple computation shows Q = 1/2 and M = (20>r)~ /2. For any €* < 2, it is possible to take
r* sufficiently large so that Assumption 4.18 holds for any » > r* and any € < €*. In this case,
the smoothness of H on the domain where solutions lie implies that the solution to (1.6) is the
same as the solution to

0 au+a2 82u+1 —eorm -2 z 0
i — 4 ——4+—-(1-¢€ —— ) —ru=0,
a2 Ixz 4 0x

i) am o2 *m 3 (1 —e0*® du 0
i —_— - - = —€ ——|m] =0,
at 2 9x2  9x \2 ax 4.21)

1 N ou
(i) Q*(f)=—/§<1—€Q (f)—a—(',l‘)> dm(1),
x
D

((v)  mlx=0 =ulx=0 =0, mli=0 =mo
4.7.2. Uniqueness

Theorem 4.20. In addition to Assumption 4.18, suppose that
_ _ _ 2
r> IOOOmax{1+c(,5,e)Pe,l+c(,5,e)Q, O +eP(0) + 1} and (4.22)

¢ < <4ch(/3, €) (1 + Q) (CH (PO)+1)+ 13))_1 , (4.23)

23

© O N o g A 0N =

-
o

11



© 0O N o g A O N =

AR A B A OB B A B W W W W WWNNNDNDNNNRNDNDRN 2 o 42 s a2 o
N OO O A WD 4 O O 0N OO 0O A W0ONN 42 OO0 0 N o o P~ 0NN 4 0O 0 0o N o o P~ w NN = o

JID:YJDEQ AID:11744 /FLA [m1+; v1.357] P24 (1-94)

PJ. Graber and R. Sircar Journal of Differential Equations eee (eeee) see—see

where Cp is the constant from (4.20). Then there is at most one solution (u m, Q%) of (4.8), and
likewise there is at most one solution (u, m, Q*) of (1.6) such that u and are bounded.

Proof Suppose that (u, m, Q*) and (&, m, Q ) are both solutions of (4.8), or of (1.6) with
u, a o, and 2 35 bounded. We will employ the results of Sections 5.3 and 5.4, which are proved
independently. Equation (4.22) (which is surely an overestimate, see Remark 5.13) implies that
Assumption 5.12 holds. Then Equation (4.23) implies that Lemma 5.15 holds. Since the initial
conditions are the same, i.e. mgy = mg, we have

T
du du
// e —” (m(dx, 1)+ rir(dx, 1)) dr =
ax
0
where T is the (finite or infinite) time horizon. It follows that g” g 5= on the support of m and

m, and so by Lemma 4.4 we deduce that Q* = Q* Then by standard uniqueness for parabolic
equations, it follows that m = m; we also get u = # in a straightforward way if T < oo.
For the infinite time horizon case, let w(x, 1) = e™"" (u(x, 1) — ii(x,)) and note that it satis-

fies
dw  o?Pw (e 00 du i (e 0% au <c dw
a2 ax2 ¢ © e © vax ) ) = ax |

since g” and g—)‘: are bounded. Let ¢ > 0. Multiply by (w — ¢)+ := max {w — ¢, 0} and integrate

to get

00 02 T
/(w—c)+(x,t)2dx+7/
0

t

dxdr

7‘a(w e
0

T oo
S/(w—C)+(x,T)2d)c+c“//‘8(w—C)+
0 0

t

(w —c)4 dxdr,

from which we deduce

t

00 00 T oo
/(w—c)+(x,t)2dxgf(w—c)+(x,T)2dx+C/f(w—c)idxdr.
0 0

By Gronwall’s inequality (applied backward in time), we obtain

/(w — )4 (x, t)2 dx < CT=0 /(w — )4 (x, T)2 dx.
0 0
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Since u, it are bounded, taking T large enough we deduce w(x,T) < ¢, and thus the right-
hand side is zero. We deduce that w < ¢ everywhere. Since c is arbitrary, it follows that w <0,
i.e. u < i. By reversing the roles of # and iz we see thatu = i1. O

The following result does not require any of the assumptions made in this section, but simply
imposes a linear demand schedule.

Theorem 4.21. Under the assumption P(q) = 1 — g (but no additional assumptions), there is
at most one solution to the finite horizon problem (4 8) and likewise at most one solution to the
infinite time horizon problem (1.6) such that u and are bounded.

be two solutions to the PDE system (1.6), then set g™ :=

Proof. Let (u, m, Q%) and (i, i, Q%)
g—) Following the calculations in [23], we derive

q*(e, 0*, 14 and §* = g* (e, 0%,

T

T oo

N 2
//e (@* —q*)’ (m+rh)dxdz+e/e*”(Q*(t)—Q*(z)) dt
00

0

o
/ _rT u—u (x T)(m m)(x T) — (u—ﬁ)(x,O)(m—n%)(x,O))dx
0
Because the initial/final data are the same, the right-hand side is zero, and we conclude using the
same arguments as in the proof of Theorem 4.20. O
5. A priori estimates on the linearized system

In this section our goal is to prove a priori estimates and existence of solutions for a system
of the form

dw o2 9w
(@) §+ 5 o TV t)—+Vz(x NQW) —rw=f,
o293 9 9 w
(i) 5 ey Rl (V3(x, ) + ™ (<V4(x,t) Fra Vs(x,t)Q(t))m+v> =0,

-1

(i) Q) = 1+fv5(-,r>dm<r)
D

X —/dV(l)—/V3(-,t)dM(t)—/V4( 1) — ( ndm() |,
D D D

(1v) plx=0 =wlx=0 =0, uli=0 = wo.

(5.1
It is useful to study System (5.1) at a sufficiently high level of abstraction because our estimates
will serve three purposes:

25

© O N o g A 0N =



© 0O N o g A O N =

AR A B A OB B A B W W W W WWNNNDNDNNNRNDNDRN 2 o 42 s a2 o
N OO O A WD 4 O O 0N OO 0O A W0ONN 42 OO0 0 N o o P~ 0NN 4 0O 0 0o N o o P~ w NN = o

JID:YJDEQ AID:11744 /FLA [m1+; v1.357] P26 (1-94)

PJ. Graber and R. Sircar Journal of Differential Equations eee (eeee) see—see

(1) proving that U is Lipschitz with respect to the measure variable,

sU
(2) proving the existence of a candidate for —, and
m
(3) proving that the candidate is indeed a derivative in the sense of Definition 1.3.

To see this, let (u, m, Q*) and (i, m, Q*) be the solutions of (1.6) corresponding to initial con-
ditions m¢ and g, respectively. For s € [0, 1] define

ug=si+1—s)u, QO =s0*+(1—-2s0"

fw=i—u,pu=r—m,and Q= 0% — Q*, then (5.1) is satisfied with

Bus>
, ds,
dax

1

0H
Vilx,t) =/—<6,
da

(=}

Vs(x, 1) = H (g, 0*(), a—”) (5.2)
a 0x

FH o Qs
wu,n:/m (e, 0r (), o )ds,

0

: 92H
Vs(x,t) /aQaa (G,Q () ) ,

0

with f =0and v =0.
Next, we formally take the derivative of System (1.6) with respect to the measure. The result
is System (5.1) if we define

X
u
x> , (5.3)
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with f =0 and v = 0. If (w, i) is the solution to System (5.1) assuming (5.3) and initial

conditions g = dy, then w(x,0) = 8—(m x,y) is the candidate derivative of the master field
m

U (mo, x) with respect to mg, where my is a given 1n1t1al condition in System (1.6).
Finally, let w =0t —u —w,i=m —m — u, 0= O* — 0* — Q. Then (¥, /i, 0) satisfies
(5.1) with Vi, ..., V5 defined as in (5.3) and with

N oH du\ _OH (. du\Y (9 du)
f(x,)——/ £< Qr (), ) o (G,Q(),a) (a_a) i
: oH oH
_/<8Q< Qi 0. ) 3Q< Q" (), —)) (00 -0®)ds
0

02H 92H an du\ .
v(t) = (e, 0* (1), )(Q Q) (m — m)+ < 0* (1), —) <a_ — —) (M —m)
X Jx

+A/1 *H dug _32H " du (A*t— *t>d
" 8Q3a( Q() X> aQaa<E’Q()’ax) Q() Q() )
0
0°H dus 0°H o ou
+m/(3a ( 0:(), >_—3a2( Q()—))(a—a)ds. (5.4)
0

Our a priori estimates on (w, ji, @) will allow us to conclude that our candidate satisfies the
definition of derivative given in Definition 1.3.

Conceptually, the a priori estimates are organized in the following progression. A crucial point
is to obtain energy estimates, which are derived by developing (?_t (w, ,u) using the equations and
isolating positive terms. However, it was already noticed in [21] that the integral terms appearing
in system such as (5.1) interfere with the energy estimates. Because of this, we first introduce a
set of technical estimates on the Fokker-Planck equation, which require substantial preliminary
results on parabolic equations. Once this major step is accomplished, we are then to proceed to
the energy estimates, followed by Holder regularity in time, and concluded by full Schauder type
estimates. Combining the a priori estimates with the Leray-Schauder fixed point theorem, we

also deduce an existence result for System (5.1).

5.1. Preliminaries: global-in-time interior estimates

In the context of our study of System (5.1), the main purpose of this section is to introduce
some function spaces which, together with their dual spaces, will be useful for technical reasons
in the sequel. There is a more general motivation, however, which is to find higher-order estimates
on parabolic equations with Dirichlet boundary conditions, while bypassing the compatibility
conditions on the boundary. So as not to distract the reader from the main purpose of this section,
we have moved all the proofs to the appendix.
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5.1.1. Interior estimates on the heat equation
Define d(x) := min{x, 1}. Let n be a non-negative integer and let k > 0. For a function ¢ :
[0, 00) = R, we define the seminorm

dn+k¢(n)

| =supd ()" | (x)|

x>0

(6], =

and the norm

[, 5 = max [#];-

When k = 0 we will simply write [¢]n’0 = [¢>]n and ||¢||n’0 = ||¢||n We will define X, x to be

the space of all function ¢ : [O, o0) — R such that H¢ ||n r is finite, and X, := X, 0.
We will also make use of the following norm: ’

0<

lol;.= sup | [ 66 d€] +[ol,,,
|0

Consider now the following potentials:

u(x,t):/S(x—y,t)uo(y)dy,
0
r o0

v(x,t):f/S(x—y,t—s)f(y,s)dyds, 5.5)
00

t

N
w(x,t) = —2/ — (x,t —5)¥(s)ds.
ax

0

Proposition 5.1. Let ug € X, f € C([0,T1; Xp—1,1), and ¥ € C([0, T]). Then there exists a
constant M,,, depending only on n, such that for u, v, w defined as in (5.5), we have

luC o), < Malluoll,
t
O B R FIOR 56)
0
JwC. o), < My sup [ ()] .
<s<t

Proof. See Appendix C.1.1. O
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A corollary of Proposition 5.1 is an estimate of solutions to the Dirichlet problem:

ou _02 8%u 0.1) = 0) — 57
E_Tw—i_f(xvt)’ u( 5t)_1/f(t)5 M(x, )—MO(x) ( . )

Theorem 5.2. Let ug € X, f €C ([0, TI; Xn_l,l), and ¥ € C([0, T]). Let u be the solution of
(5.7). Then there exists a constant M, depending only on n, such that

Juc. o), < M, (uuonn +1'2 sup [ £ 9)|p_y + sup |w<s>|>. (5.8)
0<s<t 0<s<t

Proof. See Appendix C.1.1. O
5.1.2. Application to MFG system

Here and in what follows we will let n be a positive integer such that P is n + 2 times
differentiable; by Assumption 1.1 it is possible to take n = 2. Then we deduce that H is n + 1

times differentiable. A corollary of the results in Section 5.1.1 is the following:

Proposition 5.3. Let (u, m) be the solution to the mean field games system on a finite or infinite
time horizon T, i.e. either of System (4.8) or (1.6). Suppose

r > max {(2QMn)2, 1] In(2M,), (5.9)

where Q is defined in Equation (4.19) and M, is the constant from Theorem 5.2. Then for any n
such that H is n + 1 times differentiable, we have
< Dy (r), (5.10)

OH T
3_d<E,Q ()1a_x(v )) )

8_H *(t a_u t
20 (G’Q()’ax(" )) )

where D(r), Dn (r) = 1 are constants that decrease as r increases.

<eD,(r), (5.11)

Proof. See Appendix C.1.2. O

Remark 5.4 (Constants for n = 0). It is worth noting that in the case n = 0, the constants used

in this Section are already known. In particular, Mo = 1, Do(r) = Q (see Equation (4.7)), and
Do(r) = P(0) (see Corollary 4.3).

5.2. Assumptions on the data
We will study (5.1) on a time horizon 7" which could be finite or infinite. When 7" < oo we
take a final condition w(x, T) = 0 and assume that € = €(¢) satisfies Assumption 4.7. We will

denote €(0) = €. If T = oo then € is assumed to be constant, and we assume that
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. —Ly . — Ly 8 w — Ly .
lim e 2 ||w(~,t)|| =lime 2'||— (-, 1) =0, tr—>e 2 ||u(t) || is bounded.
t—00 n t—o0 ox " —-n

(5.12)
In addition, we will state many of the following results in terms of an arbitrary positive integer
n, which satisfies the restriction that P is n + 2 times differentiable and therefore H is n + 1
times differentiable. Assumption 4.18 and Equation (5.9) will be in force throughout this section.
Hence Proposition C.1 and its corollaries (5.10) and (5.11) apply.
We now state assumptions on the coefficients Vi, ..., Vs, which are abstracted from the par-
ticular cases (5.3) and (5.2).

Assumption 5.5.

M V¢, ” < D, (r) for all ¢, where D,,(r) is the same as in Equation (5.10), and we assume
without loss of generality that D, (r) > 1;
2) ” Vo(:,t) || < eD (r) for all ¢, where D (r) is the same as in Equation (5.11);

3) ||Va(: ,t)”n < D, (r) for all t;
, 1} =: Pe.

4) Cy' < Va(x,1) < Cpy for all (x,1);
1
Lemma 5.6. Let V1, ..., V5 be given using formula (5.3) or (5.2). Then Assumption 5.5 holds.

(5) Vs(x, t)e[ 15 e] for all (x, 1), and thus | Vslo < € max Hﬂ—z

it

Proof. This follows from Corollaries 4.2, 4.3, and 4.6; Equations (5.10) and (5.11); and the a
priori estimates from Theorem 4.16. O

Notation: If g = g(y, ) is a function depending on ¢ and other variables y and p is a real
number, we will denote by g, the function

gp(y.1)=e"""g(y,1).

The energy with parameter p is denoted

E(r)—/‘ L

This quantity will appear often in our estimates, and we will prove a priori bounds on fOT E,(t)de
in Section 5.4.

2
dm(t). (5.13)

w
(7t)
X

9
dm(t): / e 2! 3
D

5.3. Estimates in X, and X!

We will denote by X the dual of the space X, and by ||| _,, the dual norm

lie]l_, = sup (¢, n).
le], =<1

Note that || " H 0= || I H v by the Riesz representation theorem:
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Inlo= swp [ oerdue =ll,
l#o=15)

In this subsection we provide a priori estimates on p(f) in X', where (w, ) is a solution of the

linearized system. First, we introduce a technical lemma, somewhat reminiscent of Gronwall’s
inequality. Cf. [21, Lemma 2.1].

Lemma 5.7. Let A, B, § > 0 be given constants. Suppose f, g : [O, 00) — [O, o0) are functions
that satisfy

1
ft) < Af(to) + f (t1 —5)" 2 (Bf(s)+g(s))ds YO<ty<t; <tg+8 (5.14)
1o

Then for any A > % In(A), we have

r T
2812B oy A 251/2 .
S By peY; /6 fdr = mf(o) + m]e g()dr. (5.15)

0 0

Proof. See Appendix C. O

Lemma 5.8. Let (w, w) be a solution of (5.1). Fix p > k(r), where

K(r) =32 (1 + e, e)ﬁe)z Dy (r)* M2 InSM>). (5.16)
Then we have
T T
Jlo@? ar <lol?, + [ (V413 Es0) + o), ) . (517
0 0

Proof. Step 1: Fix 71 > 1o > 0 and let ¢; € X,,. Define ¢ to be the solution of the Dirichlet
problem

a2 9%¢
— =S #0,1)=0, ¢, T)=a1(x).

By the reflection principle, a formula for ¢ is

e ¢]

é(x.1) =fs<x vt = D1 () dy.

0
By applying Theorem 5.2, we get
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lo¢.o|, <Ma|¢r1], Vrelo.nl (5.18)

Moreover, by the same argument as in 5.1, we get

< Mu| g1, (1 =712 (5.19)

n

3¢
HE

Now use ¢ as a test function in (5.1)(ii) to get

1

9
<¢1,u(t1))=(¢>(to),u(to))+/<a—f(-,t)Va(-,t),u(t)>dt

fo

1
—/<a—¢(-,r), (v4(-,r)a—w<~,t>+v5(~,r)Q<r>)m<r)+u(r)>dr.
0x 0x

4]

Applying (5.18) and (5.19) as well as the Cauchy-Schwartz inequality, recalling that Hm(t) || v <
1, we get

13
o1 we) < ol o), + Mool [ =072 vacol, fuo]|_, d
0]

3]
+ My ¢ ||,,f(n =072 (1Vallo Eo®) 2 +11Vsllo| Q)] + v, ) dr. (5.20)
0]

Step 2: Next, we need to estimate Q(¢) using (5.1)(iii). We get

Q0| =c3. o) (v, +[VsC. 0[], +1Valo Eo)'?) . 521)

Plugging (5.21) into (5.20) and using Assumption 5.5, we deduce
(@1, 100)| = M1 ], 0],

3
n (1 +c(ﬁ,e>ﬁe) Dy ()M 1], f =072 |u@]_, de
1

0

n
+ (14 e@.ope) Mol @ -0 (1Valo Eo 2+ oo, )ar
o

Taking the supremum over all ¢; € X,,, we get
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3
lw@|_, <Ma|n@o)|_, + (1 +c(/3,e)i>e) Dy (r)M, f =072, de
I

0

131
n (1 +e(p, e)ﬁe) M, f(;l —_12 <||V4||0 Eo)'2 +|v(0)] 7}1) dt, VO<ity<ty. (522)

0]

Step 3: Square both sides of (5.22) and use Cauchy-Schwartz to get
5]
2 2 ~ - 2
lwal?, =amlue), + B =0 [ @ =07 2o, a
fo
131
+ B(n —10)1/2/(t1 =072 (il By + v |2, ) ar. Vo=t <nn
to

~ _ 2
where B :=8 (1 + (@, e)Pe) Dy (r)> M2. Now we will apply Lemma 5.7 with

A=4M2, B=Bs"?, 5=8B)", ft)=|u®]’,

80 =B (1V4ll3 Eo®) +|v|,) , and 2 =2p.

Comparing the definition in Equation (5.16), we see that

1
A>2c(r)=86""In2A)>5"'n(4A) = 1-Ae™M< 5
We also have 28'/2B =28 B < 1/4, and thus (5.15) implies
1 ; A p
—At 172 —At
— Hydt < —f(0) + 48 t)de.
s [ < 5 O+ [
0 0

By comparing the constants defined above, we deduce

T T

/e—“f(t)dz5f(0)+3—1/e—“g(z)dz,

0 0

which implies (5.17), as desired. O

Corollary 5.9. Let (w, ) be a solution of (5.1), and suppose p > «k(r) with k(r) defined in
(5.16). Then
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. 1/2 . 1/2 . 1/2
2 A 2
0P| <o ol + | [lnwl?,a | +| [Ewa
0 0 0

where Dy (r) = c(p, €) (1 + Dy (r)).
Proof. Multiply (5.21) by e**, take the L>(0, T') norm and then apply Lemma 5.8. O

Lemma 5.10. Let (w, ) be a solution of (5.1) with time horizon T. There exists a constant k1 (r),
which depends only on n, o, and r and is decreasing with respect to r, such that if

p=r—kir) (5.23)

and if

Haw‘)( Nl >0 as 1T, (5.24)

then the following a estimate holds:

flzzes

where Dy (r) = c(p, €) (1 + Dy (r)).

T
a2 Byl + a7 [ (B0 + o, #1100 o
0

(5.25)

Proof. Step 1: Fix some T’ < T, where T € (0, oo] is the time horizon. For any function g =
g(y, 1) depending on ¢ and possibly other variables, let g(y, ) = g(y, T’ — ). By reversing time
in Equation (5.1)(i), we see that w, satisfies

AW, o 9%,

wy ~ ~
ar 2 ax2 ax ® = fr.

Since w, (0, t) = 0, we have

o0

wr(xﬂt) Z/Gl(xvyat_to)wr(yvto)dy
0

00 i 5 ~r i _ i
+/fG1(x,y,t—S) <V1(y,S)%(y,S)+Vz(y,S)Qr(S)—fr(y,5)>dyds Vt>1 >0

where we define
Gy (x,y, ) =(=D"S(x —y, 1) — S(x + y, 7).
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Using an argument similar to the proof of Theorem 5.2, we deduce

Bwr
.0 S Ap
t 8 -
~ w ~ ~
+ Buo (Dn(r)JreDn(r)Jr1)/(t—s)*‘/2 <Ha—x’(~,s) +‘Q,(s)’+‘f,(-,s)H )ds,
n
1) "
(5.26)
where A, depends oany on the constants my,...,m,, B, , depends only on the constants
Mlg,...,My 1, and D, (r) is the constant from (5.11).

Step 2: Square both sides of (5.26) to get

sﬁn

oW,
1%

aw,(t)z
ax 70

n

2 . 2
+\Qr(s>\ +\
n

~ 2
oo

t
~ _ oW,
+Bn<t—to>1/2f(r—s> 172 (H == 9
X
0]

where
~ 2 ~ 2 ~ 2
An ::4An, Bn ::SBn,O' (D,,(r)+eDn(r)+l) .

We will apply Lemma 5.7 with

n \—1 A n sl/2 ) 2
b=@B) " A=A, B=B8"% g)=B (|| +]

~ 2
eofl)

We deduce that for every A > §~!In(24,,),

’ !

T - T
W A W 2 ~ 2
—at || OWr n r —At
(-, 1) dt<7H -,0) +/e <‘Q (t)‘ +‘
/ ax . " 4B,In(2) 0 '
0 0
Define

- 2
o)

k1 (r) := 4B, In(24,) = 32B2 (D,, (r) + €D (r) + 1)2 InQ24,).

which satisfies the hypotheses given in the statement of the lemma. Then set p =r — %; we have

define «1(r) so that p <r — k1 (r) is equivalent to A > 8§ 'In(24,,). Now make the substitution
t+— T —t,thenlet T’ — T and use (5.24) to get
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IE

Finally, we use Corollary 5.9 to get (5.25). O

T
dtf/(’Qp(l)}z+pr('vt)”i>dt
0

We can also estimate H Mo(t) “ _, bointwise, provided we are willing to include some depen-

Wp

X

, which will be estimated below.
0

dence on

Lemma 5.11. Let (w, w) be a solution of (5.1). Suppose

p =36 (1+c(p, ) Dp(r)*M2 =: ko (r). (5.27)
Then
1/4
Jw 1/2 r /
sup [uo®|_, <2Mu o] _, + sup [vo(@)]_, +Cu|| =" /Ep(s)ds :
0<t<T 0<t<T 0 0
(5.28)

where

1/2

Ch=4(14c(p, )" M,

Proof. Take (5.22) with ty =0, #; = ¢, multiply by e~ "’ to get

t

lo®]_, = Mu|ro] _, + (1 +c(p. ) Du(r) M, / e = )T )], ds
0

t

+(1Jrc(/s,e))Mn/e*f’(’*s)(t—s)*l/2 (Ep(s)1/2+||vp(s)||_n) ds. (5.29)
0

We first use Holder’s inequality to estimate

t 12 t
/e—P”—S)(r —5)"V2E ()2 ds < —au;" /e_p(l_s)(t—s)_l/zEp(s)1/4ds
0
3/4 1/4
aw, |'/? t 4 p
H —2 e ZP(’—S)(t—s)_2/3ds /Ep(s)ds
0 0
(5.30)

36

© O N o g A 0N =



© 0O N o g A O N =

AR A B A OB B A B W W W W WWNNNDNDNNNRNDNDRN 2 o 42 s a2 o
N OO O A WD 4 O O 0N OO 0O A W0ONN 42 OO0 0 N o o P~ 0NN 4 0O 0 0o N o o P~ w NN = o

JID:YJDEQ AID:11744 /FLA [m1+; v1.357] P.37 (1-94)
PJ. Graber and R. Sircar Journal of Differential Equations eee (eeee) see—see

Using the substitution s > ¢ — %, we find

t t
/e—gp(z—m(t —5)"2Bds :p—1/3/e—§ss—2/3 ds
0 0
(5.31)
1 (o)
<p 13 /s_2/3ds+/‘e_%s ds | <4p~1/3
0 1
and also
t
/e_p(t_s)(t — )" V24s <3p7 172, (5.32)
0
Using (5.30), (5.31), and (5.32) in (5.29), we get
o @], < Ma|pol_, +307"2(1+ c(p. ) DuGI)M, sup |pp()]_,
0<t<T
+3p7 2 (14 c(p. ) My sup |v,(D)_,
0<t<T
1/4
w. 172
+4p7 4 (1 +c(p, ) My a—x" /E,,(s)ds . (5.33)
o \bo
By the assumption (5.27), (5.33) simplifies to
1
lo ], = Mal o], + 5 sup [[u, @],
0<t<T
1/4
1 172, 172[ 9wy 2 (g
+§ sup v ()| _, +2(1+c(p. €)' M, - /Ep(s)ds
0<r<T X o 0

Take the supremum and rearrange to deduce (5.28). O
From now on we make the following assumption:

Assumption 5.12. We assume r > 2max {« (r), k1 (r), ko(r) } with «(r) defined in (5.16), k1 (r)
defined in (5.23), and xo(r) defined in (5.27).

Importantly, Assumption 5.12 can always be obtained by choosing r large enough, because
k(r), k1(r), and ko(r) are all decreasing functions of r.
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Remark 5.13. When n = 0, Remark 5.4 shows us that « (), x1(r), and x¢(r) no longer depend
on r. In fact, they have the following formulas, more or less explicit:

k(r) =32 (1 +c(p, e)ﬁe)2 0% In(8),
_ 2 -
k1 (r) = 32B2 (Q +eP(0) + 1) In(2A0),
ko(r) =36 (1+ c(p, 6))2 0%

Only the constant By and Ag from the proof of Lemma 5.10 are left undefined, but upon inspec-
tion of the proof we can see that Ag and By are constants no greater than, say, 10. Therefore
(4.22) is surely an overestimate.

Corollary 5.14 (Summary of this subsection). Let (w, u) be a solution of (5.1). Under Assump-
tion 5.12, we have the following a priori estimates:

T

T
[l @1? ot <luol”, + [ (1315 B2 + a0, )
0 0

1/2 1/2 1/2

T

T T
/ Q0P dr | <Dt [ |10l _, + / @, |+ / E,pp(t)dt ,
0 0

0
; d
Wy /2
/H 9x ('7t)
0

sup w20, < 2Mafuo]_, + sup furp2@]_, +C
0=<t=<T 0<t<T

2 T
dr < Dy (?| o, + Da(r)? / (o + o2, + fr2C 07 ) i,
n 0

1/4
2 T
[ B
0 0

w2
0x

where Dy(r) = c(p, €) (14 Da(r)), Cu =4 (1 +c(p, €)"> My'%, and D, (r) is the constant

appearing in Equation (5.10).

Proof. It suffices to observe that the hypotheses of Lemmas 5.8, 5.10, and 5.11 are all satisfied
with p=r/2. O

5.4. Energy estimates

In some mean field games, known as “potential mean field games,” the Nash equilibrium
can be computed by minimizing a certain energy functional [30,3,5,6]. Because of a formal
resemblance, we keep the name “energy estimates” for the estimates derived in this subsection.
We divide our results into two lemmas. The first deals with differences of solutions to System
(1.6), in which case we assume (5.2) with f = v =0, and the second deals with the case (5.3),
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with no restriction on f, v. Although it is tempting to view the former as a special case of the
latter, there are technical points in the proof in which it is not convenient to do so, and thus the
proofs are treated separately. Nevertheless, their basic outline is similar: differentiate the duality
pairing (w, u) with respect to time and use the PDE system to write an identity, then use the

assumption on the uniform convexity of H to derive an estimate of the integral fOT Eypp(t)de.
(Recall that E, 5 is defined by (5.13).)

Lemma 5.15 (Energy estimates, differences). Let (u, m, Q*) and (i1, m, Q*) be solutions to Sys-
tem (1.6) with initial conditions mq and my, respectively.

(1) Assume that € satisfies the smallness condition

4CuDa(r) (Cu (PO +1)+ P)e <1, (5.34)

where, as in (4.3), P = max {E 1}. Then

=2’
T
f/e—rt
0 D

2
(m(dx, ) + m(dx, t)) dr

ou Ju
0x 0x

<o = mo|2,, +2Cu ¢, 0) = uC, 0)], o = mo]| . (5.35)

—n’

(2) Assume instead that the demand schedule is linear, i.e. P(q) =1 — q, and that € < 2. Then

we have
[ du dal|’
/fe*” = — == (m(dx.0) + (. 0) dr < 8. 0) = u( 0)], [svo —mo]_, .
0 D

(5.36)

Proof. Step 1: For a small parameter €. In this first step, we make no further assumptions on
the demand schedule P but instead assume condition (5.34) holds. Multiply (1.6);(ii) by u — &
and integrate by parts, then subtract. (See [30, Theorem 2.4].) After rearranging we get

T

/e_”(u(x, 1) —u(x,t))(m—m)(dx,t)

D 0

—rt H( ol @)—H( “ a—”)—ﬁ< “G a-”)(a—”—a—”) x.0)di
¢ E’Q()’ax G’Q()’ax da 6’Q()’E)x ox ox )" 1)

o H( 0" (1) a—”)—H( 0% (1) a—ﬁ)—a—H< 0" (1) 3—”) (a—”—a—”) i(dx, ) dr
¢ B S )T a0 e J o T ) )P
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By Equation (4.2), we deduce

2

du  9i
228 (m(dx, 1)+ m(dx, 1) dr

ax  ox

T
+//e‘” (H (e, 0*(1), a—“) —H (e, 0*(1), a—“)) m(dx, t)dt
0x 0x
0D

n fe—rt(u(x’t)_ﬁ(x,;))(m_yﬁ)(dx,t) . (5.37)

D 0

Since u, u are bounded and fD m;(dx, T) <1 forall T, it follows that

Tlim fe_rT(u(T, x)—u(T,x))(m —m)(dx, T)=0.

We can rewrite the remaining terms on the right-hand side using the fundamental theorem of
calculus. Thus (5.37) becomes, after letting T — oo,

173[ L

0

du il .
PP (m(dx,t) + m(dx, t)) dt<Ilp+ 11+ I, (5.38)

where I := |fD(u(0, X)

gl “(t) - O #)(dx, 1) dt d d
[ 3Q< 0: (0, —)(Q (1) = 0" () (m =i (@r, drds, an

5 N
/e—rt 9 Ha< Q (1), 8uy) <§_’; _3_14) (Q (1) — Q*(t))m(dx,t)dtdsdE,

0
where Q¥ (1) :=s0" (t)+(l—s)Q @), ug :=siu+ (1 —s)u.

By using Corollary 4.3 and (4.18), we can estimate

oH
BQ( 0% (), —) < (PO) + 1),

40
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32H duz\ (94 du
8Q8a< 05 ), )(5_5)

Pe, Vs,5€]0,1],

IA

where P :=max {‘ g—é 1} is defined in Corollary 4.3. Thus
o
= (PO +1)e [ 7|070 = 00| mt = |, .
0
(5.39)

8u ou

(1) — Q*(t)‘m(dx,t)dt.

b < Pef/ —r

Recalling the definitions w =& — u, u =m — m, and Q = Q — Q, using the Cauchy-Schwartz
inequality and the fact that m is a sub-probability measure, we deduce the following from (5.39):

~ 12 /o 1/2
L < (PO) +1)e / 10,0 ar / Il de |
0 ‘ (5.40)
~ 12 /o 12 ’
|| < Pe / Q)| dt f Eqp(t)dt
0 0

We now apply Corollary 5.14 and Assumption 5.5; here we can assume v =0 and f = 0. Thus
(5.40) implies

o0
11 =2D,0)Ch (PO + 1)e [ ol + [ Eporar |,
0
(5.41)
o
A 5 2
|| <2D,(r) Pe ||| o, + / E, (1) dt
0
Plugging (5.41) into (5.38), we deduce
T 12 00
—rt ou ~ A 2
e (m(dx, 1) +m(dx,0))dt < CyCe || mo|”, + | Erpp®)dt | + Crlo,
0 D 0
(5.42)

where C =2D, (r) <CH (P(O) + 1) + }_’). Equation (5.34) can be written

20 Ce < 1.

41

© O N o g A 0N =



© 0O N o g A O N =

AR A B A OB B A B W W W W WWNNNDNDNNNRNDNDRN 2 o 42 s a2 o
N OO O A WD 4 O O 0N OO 0O A W0ONN 42 OO0 0 N o o P~ 0NN 4 0O 0 0o N o o P~ w NN = o

JID:YJDEQ AID:11744 /FLA [m1+; v1.357] P42 (1-94)

PJ. Graber and R. Sircar Journal of Differential Equations eee (eeee) see—see

Since the left-hand side of (5.42) dominates fooo E,>(t) dt, we use (5.34) and rearrange to deduce
(5.35).

Step 2: For a linear demand schedule. Now we consider the case where P(g) =1 — ¢ and
€ < 2. In this case the same series of computations (cf. the proof of Theorem 4.21, see also
Equation (5.51) below) now leads to

T T’
1 dw, 2
Z//( g)x” +eQr/2> d(m+m)(t)dz+e/Q,/2(t)2dt
0 D 0

=T u Tl o+ w0, fuol - 543)

Let T’ — T, rearrange the square term in (5.43) and perform standard estimates to deduce

T

dwrn\2 .
/f(%) doiv +m) (@) dt < 8[w(-, 0], [ ol _, .
D

0

which is the same as (5.36). O

Lemma 5.16 (Energy estimates, all other cases). Let (w, ) be a solution of the system (5.1),
and assume that Vi, ..., Vs, f, v satisfy (5.3).

(1) Assume that € is sufficiently small, namely

4D, (r)? (Dn(r) + 13) C <@dcy . (5.44)
Then
T T
2 IS 2 2
fEr/z(ﬂdf S4CHHw('70>||nHM0||7n+4”M0||7,1+C/ (Hfr/zﬂf)Un +Hv”/2(t)”7n) dr,
0 0
(5.45)

where C = 4C%1 (ﬁn(r)2 + C%) + 1.
(2) Assume instead that the demand schedule P is linear, i.e. P(q) =1 — g, and that € < 2.
Then

T T

[ Ep©as 161w 0l Il +Hlnol, +¢ [ (1O, +1sae.012) d

0 0
(5.46)

N A 2
where C = <32max {D,,(r), CH} + 17).

Proof. Note that the case when (w, ) is a difference of two solutions to System (1.6), so that
(5.2) holds with f = v =0, is already proved in Section 4.7.
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Step 1: For a small parameter €. In this first step, we make no further assumptions on the
demand schedule P but instead assume condition (5.44) holds. Note that when
Differentiate e~ fD w with respect to ¢ and integrate by parts to get

d
m /wr/zu«r/z =/fr/2ur/2— Qr/z(f)/Vzur/z
D D

D
Jw 0
+/wwaf m+gﬂm/% 22 +f
D D

Let T’ € (0, T) and integrate (5.47) from 0 to 7’. Recalling that V4 > C;Il from Assumption 5.5,
we get

2. (547)

T/

C;/,ﬂmm<wm(0mmn /wm<wummw,m
0
T/

/mmmanwmmL,wmmde2m+fH

r/2

|- de

Then let T/ — T and recall that by assumption (5.12), lim;_ 7 <wr/2(-, 1), /L,/z(t)) =0. Thus,

T

T
it [ £ <loc ol bl + [Lae.ol, sl o

0

r/2

f@mmmwnwmmmfwmmdwwzm+fu G| vr2®]_, d.

(5.48)
Now using Corollary 5.14, recalling || V4|l < Cy (Assumption 5.5), we derive
T
[ (1ot ool + |52 o o,
0
T T
-1 —1 2 2 2
<QCp) /mmmw@@>Mww+a/@mxmm+wmwﬂwr
0 0

where C| := Cy ([),, r)? + c%,). Thus (5.48) yields
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T
e [ Bpwa <fuc.ol il +¢ [ (15ae0l+neol, ) o
0

0

+@Cw) o, +

Also, again using Corollary 5.14 and also Assumption 5.5, we get

T
/|Qr/2(t)] (||V2||n||ur/2(t)|| AN Er/Z(t)l/2> d&t
0

< 4D, () (Dur) + P) | o],

where P = max {’2 o=l

0

T

,1 } Then by (5.44), Equation (5.49) yields

T

0

T
@ci™ [ Epdt <[ut 0], luol_, +C1 [ (Ifa¢0l+ a0l )a
0

0

+Cy' o2, +

We rearrange (5.50) to conclude with (5.45).

Step 2: For a linear demand schedule. Now we consider the case where P(g) =1 — ¢ and
€ < 2, so that the system has the form (4.21). After doing integration by parts and canceling like

terms, we get

—1
qw |?
2+e(t)/dm(t) / o
D D

d

dr
D

-1

ow Jw
+ 2+e(t)/dm(t) /dv(t)[adm(t)—/‘adv(t)+/f(-,t)d,u(t), (5.51)
D D D D

D

dm(t) +2 2+e(t)/dm(t)

44

—1

-1

D

/q*(~, 1) du(t)
D

=e't — e_”/w(-,t)du(t) +2 2+6(t)/dm(t) /dv(t)/q*(~,t)du(t)

T
/ Q20| (IVall[1r20)] _, +1Vsllo Erja0)'/2) dr. (5.49)

f”vr/z(t)” dt+cH/ E, (1) dt

T
“cm™! f [vr 2@, dr. (5.50)
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from which we deduce

—1

ow
2+e(t)/dm(t) /‘E
D

D

< — e_”/w(',t)d,u(t) +
D

€2+ 2¢
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-1 2

2
dm(r) + 2+e(t)/dm(t) /q*(~,t)du(t)
D

D
-1 2

2+E(t)/dm(t) /dv(t)
D

-

D

D

g—fdv(mr/f(-,z)du(t). (5.52)
D

Multiply (5.52) by e, integrate from 0 to 7’ and let T/ — T to get

T T

2 2
[ Enwas <2+ w0, luol, + 25 [Ina0)], s
0 0

dw,/2
aIx

('7 S)

T
+2(2+e)/
0

T
dw,
4<2+e)/ (H%w)
0

P

n

T

]y Ll bl a5

nwmw%+wmunwmmmmgw

<|lmo)?, + f Eyp () dr

0

T
A 2
+<3max{Dn<r>,cH] (2+e)2+1> [ (20l #1501} e
0

Using Corollary 5.14 and rearranging (5.53), we deduce

T

0

T
[ s <4@+ 0wt ol ol + ol + @+ [ s
0

T
A 2
= (gmaX{Dn(r),cH} <2+e>2+1) / (lor 2], + 1 fr2¢- 0] )
0

which can be rewritten as (5.40), using € < 2.

O
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We now introduce the following condition on €:

Assumption 5.17. We assume either that

€ max {16[),,@)2 ([),,(r) n 13) C3,.4CH Dy (r) (CH (PO) +1) + P)} <1, (554
where P :max[%, 1}, orelse P(q)=1—gq and € < 2.

Corollary 5.18. Let (w, i) be a solution of (5.1), where either (5.3) or (5.2) holds. Define

T
B(o) = w0, luol _, +[uolZ, + f (Ifocolr +wp@]2, ) ds. 559
0
dwy 12 1/4
Kn(o):=[nol_, + sup [vo@|_, +| =5 Ja(0) (5.56)
0<t<T X o

Let Assumptions 5.12 and 5.17 hold. Then there exists a constant C, depending on the data but
not on T, such that the following three estimates hold:

T
fE,/z(s) ds < CJ,(r/2), (5.57)
0
T
/ |22, dt < Cau(r/2), (5.58)
0
r 2
dwy 2
/H G, )| dt <CJ,(r/2), (5.59)
0x n
0
T
[1020F <o (5.60)
0
sup [|a(®)]_, < CKn(r/2). (5.61)
t€l0,T]

Proof. By Assumption 5.12, taking (5.12) into account, we can apply Lemmas 5.8 and 5.10 with
p =r/2. Apply Lemmas 5.15 and 5.16, we deduce (5.57). Then Equations (5.58), (5.59), (5.60),
and (5.61) follow from applying Lemma 5.8, Lemma 5.10, Corollary 5.9, and Lemma 5.11,
respectively, using Equation (5.57). O
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5.5. Holder estimates
Recall that Y144 := C<1>+D‘ (D) is the space of all ¢ € C'T% (D) with the compatibility condition

¢(0)=0.Set ¥ (x) =1—e*. Forn > 2 we will define Y, to be the space of all ¢ € C}f"‘ (D)
such that Y/ ¢ € C.T*(D) for j =2, ..., n, with norm given by

loly,., = > |wi s
j=1

cita’

This defines a Banach space. The following two lemmas provide estimates on solutions to
parabolic equations in the spaces Y4, forn =1,2, 3.

Lemma 5.19. Let u be a the solution of

" of 8% +V( z) —F, uw(0,0)=0, u(x,0)=uo(x) (5.62)
— u— X, o u(0,0)=0, ulx,0)=uplx .
31 2 ax? 0

where A is any _positive constant, F is a bounded continuous function, and uo € C}f‘”(D)
(i.e. ug € 1t (D) with ug(0) =0). Then

ou

2 C(IVlp.a.2) (IFllo +lluolicrsa)

[[uell

coal?(Dx[0,71) coal2(Dx[0,7)

where C (|| Vg, o, A) is independent of T .
Proof. See [21,Lemma2.7]. O

Lemma 5.20. Let u be a solution of (5.62), in which F, 2£, v, 2V e c*2/2(D x [0, T)). Assume

> x 0V  ox
also that ug € Ypyq for n =2 or n = 3; that is, assume I~ (()J) C}f"‘(D) for j=1,...,n
Then

[ru ch+a,l+a/2(5>< [0.7])

= C(Vliguern 3. 0,@) ([0 gove +luollgree + [ F | gup +11Flo) . and  (5.63)

2 du
ox

v

C2el+a/2(Dx[0,T]) i

q(i

\%
<C{IVigear, Ao,
Co{,ot/Z

23F

C2+a

+ [ Wuo] pore + Hw , + ¥ F || car +||F||0> . (5.64)
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Proof. Multiply (5.62) by ¥ to see that v(x, t) = ¥ (x)u(x, t) is the solution to

av o 3% av 5, 0u
— 4+ iv— +V —=yF -0y —

2
- - _ U_w// _"_ V,(p/
ot 2 ax2 " ax ax 27" v

v(0,1) =0, v(x,0)=1vx)up(x).

Note that the compatibility conditions of order 0 and 1 are satisfied. Indeed, the condition of
order 0 is trivial: ¥ (0)uo(0) = 0. The condition of order 1 is

o2 d? d

A (0)ug(0) — S ol (Yuo)(0) 4+ V(0,0) i (Yuo)(0)
2

=Y (0)F(0,0) — oy (0)ug(0) — %W(O)uo(o) + V(0,0)¢'(0)uo(0),

which can be verified by expanding the derivatives and using the fact that 1 (0) = 0. Now observe
that

where C dependson|| V||, @, and A asin Lemma 5.19. Here we have used the fact that ” Y

ou
2.1 9%
Gwax

ou
<C(IVligaar +1) <||u||ca.a/2 —l—‘ )
Ca,ot/2

_ G—zwﬁu—i- Vl/f/u
2 0x

Ca,a/Z
< C(IVligaar 4+ 1) (I Fllo +lluollcr+«) ,

0

1 for all n. From Lemma 4.12 we have

” v ||C2+"‘11+"/2(§><[0,T])

v
0x

S C (”‘/”CO‘-"‘/2 ’ )\'7 o, a) (”1/”40 ||cZ+ot +||u0||cl+” + H‘Q/IFHCO(,D(/Z +||F||O + H

Cot,a/Z) ’
and Equation (5.63) follows from interpolation.
To derive Equation (5.64), take the derivative with respect to x of (5.62) and multiply by v2.
Rearrange to see that w(x, ) = I/I(x)zg—’;(x, t) is the (weak) solution to

2 42
3_w=¢23_F_(1//23_‘/_,_02(1#/)2_’_021/“///)2_;!

o
w JR—
ot 2 9x2 dx ax
82
- (1//2V +202¢¢/) —5 :
w(0,6) =0, w(x,0) =y (x)’uy(x).

Notice that, thanks to the fact that v (0) = 0, the compatibility conditions of order 0 and 1 are
satisfied, by the same reasoning as above. We also have, using Lemma 5.19,
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oF A%
sz——(x/ﬁ +o? (W) +o W’)— (v?v+20 w)

2
ax ax 057 | 1o

dF 3 32
<|y? = +c|= +Cly

0x || caar2 0X || caar2 ox a2

,dF du
< W o +C i con + Cllullcearz +C ” Yu ||Cz+u,1+a/2
o AT L2
- ox 2 cren
a2’ By Lemma 4.12 and Equation (5.63), we deduce
(5.64). O

Lemmas 5.19 and 5.20 have the following consequence in the case F = 0:

Corollary 5.21. Let u be the solution of (5.62) where A is any positive constant and where F = Q.
Then

Juc. 0] 0 2Dy
sup|\u(-,t + sup < uolly, . »
>0 Yita 1n#n [t — t2|ol/2 e

|54]...... (3 =3)
n+a> de-

x Ca.a/2
noting the dual of Y4, with regularity in time as well. Note that [|-[|, <|-[ly, e and thus

Il <I-ll-

where C depends on o, A, o, and on either |V ||y (if n = 1), ||V ||ca.er2 (if n =2), or |V | cae2 +
Next we wish to establish estimates on the Fokker-Planck equation in the spaces Y,*
Lemma 5.22. Let (w, i) be a solution of (5.1). Suppose Assumption 5.12 holds. Then

lr2llcerorrrs,,) < Clr o) /', n=1.2, (5.65)

where J, is defined in (5.55).

Proof. Step 1: Let A > 0 be such that A < r/2. Fix t; > 0, let ¢, € ¥, 1o with |¢;, ||YW <1,
and for any A > 0 let ¢» denote the solution of

9 2 2

agf +Arp— 7 a—d) —Vi(x, 1) —¢ =0, ¢0,0)=0, ¢x,1n)=d¢,x).

Note that we have the relation
¢(M+)»2)(x’ 1) = e)»z(t*tl)¢()~1)(x’ 7).
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can be estimated using the norm ||| p2+e.1+0/2, Which in turn is

NOW ”q* HCW*/z and H %Lx Cao./2

estimated by the a priori estimates in Theorem 4.16. By Corollary 5.21 we therefore have

6@ = 6@ 10)

Inte < C(a,n,0). (5.66)

pP w0

sup
1€[0,11]

sup
Yita toe[O,tl) (t1 — 19)*/2

For any t9 € [0, #1] we have, using integration by parts,

/ ¢ e 1) dx = / "1 (x 10)ra(x, 10) dx

e
/ |5 (v4( 0 202 (1) 4 Vs, I)Qr/z(t)>m+vr/2 dxdr. (5.67)

to D

Applying (5.66) and Corollary 5.18, using the identity ¢/ = ¢?*=7/201=0 M) e have

1
(r/2)

e (=
0x

o D

(x,1) 4+ Vs(x, t)Q,/z(t)) m + vr/2> dx dt

<C(a,4,0) f 00 (B2 [y 2], vr20] ) e

0]
o 1/2 " 1/2
<C(a,1,0) / e 22 gy /(Er/Z(t)‘i‘”:u'r/Z(t)”in+Hvr/2(t)H2,n) dr
0 fo

< C(a, A, 0)min {(r/z — 0712 — zo)l/z] Ja(r/2)\2.
(5.68)

Using (5.68) in (5.67) with fy = 0 and taking the supremum over all ¢,, we deduce the bound

On the other hand, subtracting f &1 1r2(t1) from both sides of (5.67), we have

v SC@ao) (/2= 072 (|uollye +5G/2Y2) Vo0, (5.69)

f Gn () (ira(x.11) = pra(x, 10)) dx = f (6772 . 10) = "2 e, 1)) a0 de
D D

b gt/ ( dw
—// <V4(x,t)—(x,t)+Vs(x,t)Q(t)>m+v dxdr. (5.70)
dx ax

o D
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Combining (5.66), (5.68), and (5.69) to estimate the right-hand side of (5.70), we deduce that

[e2@) = @y =€ @) (lnoly, + /22 (=" 571
It suffices to take A = r/4. Then recalling that | 11o|

(5.69) and (5.71) imply (5.65). O

ye,. <m0l = Ju(r/2)'/2, we see that

5.6. Holder regularity of the mass function

Let (w, n) solve (5.1). Our goal is to prove the Holder regularity of the following functional:
npm=e*"’<1,up<r>>=e*"’fu(x,t)dx.
D
This will allow us to estimate Q, in a Holder space.

We introduce the space .#; ", in analogy to the space .#, defined in Section 2. For any
€ X define the mass function

") := (e, l)—/<(S(x — ) —-Skx +-,t)),,u>dx, (5.72)
D

cf. (3.8). By Proposition 5.1, we deduce that

/(S(x—-,t)—S(x+~,t))dx SZMn”l”rLZZMns
D

n

and thus we can write (5.72) as

" [ul(0) =, 1) — </ (Sxr—-0—Skx+ -,t))dx,u>,
D

from which we also deduce
‘nh[u](t)‘ <Culn|_, Vvi=o.

Now we define ., " to be the set of all 1 € X} such that 5[] is «-Holder continuous. It is a
Banach space endowed with the norm

Il e =], +th[u] ce([0.00)) "
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Lemma 5.23. Let (w, @) solve (5.1), and suppose Assumption 5.12 holds. Assume that o <2/5.
There exists a constant C depending only on the data but not on T such that

lnr12]l garr 0.7y = € <|| 1ol g + Ko (r/2)> : (5.73)
where
N dw, )y |23
Kn(r/2) = Kn(r/2) + H a;/ Tu(r/2)V/8, (5.74)
0

and where J,(r/2) and K, (r/2) are defined in (5.55) and (5.56), respectively.
Proof. Observe that||1]|, = 1 for all n and ||| <2 forn =0, 1,2, so we have the bounds

[ 2O < rp @], |Gr2®] <[lmr2®]_,

It remains to prove estimates on the Holder seminorms.
Step 1: By Duhamel’s Principle, we can write

e, ) =hLhx,t)+Lx,t) + I3(x, 1) + 14(x, 1)

where

]

t
11<x,r>=—//(5(x—y,r—s)—S(x+y,r—s>)<v3u>y(y,s>dyds,
0 0

]

L(x,t)=— / (S(x —y,t—s5)—Sx+y,t— s)) (bm)y(y,s)dyds,
0

o

t

Ig(x,t):—//(S(x—y,t—s)—S(x+y,t—s)) vy (y,s)dyds,
00

o0

Iy(x, 1) = / (Sx—y.0) = S(x 4y, 1) uo(y) dy,
0

b(x,t) =Va(x,1) 2—: (x, 1) + Vs(x,)Q(1).

Using integration by parts, we deduce

4
@)=Y 0l (1)

j=1
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where

') =2 [ eS8, 1 —5)Valx, ) (x, 5)dx ds,

S —__

n2 (1) =2 e P Sk, — $)byja(x, s)m(x, s)dx ds,

—
—p S —g

0

g ©

n3(t)=2/fS(x,t—s)e_r/zsvr/g(x,s)dxds,

00
2 oo o0
4.8 —r/2t —x2
() =—e e po(y)dydx
0 (202t)1/2x

where we follow the usual convention defining b, /> (x, 1) = e /2 b(x,t). We use much the same
arguments as in Lemma 3.7 to establish Holder estimates.
Step 2: For the first term, we write

1 oo

n'(t1) —n' () =2 f / e 2= §(x, 11 — $)V3(x, $)tra(x, 5) dx ds
o 0

fh oo N

+2///%[e*r/z(””S(x,r—s)] V3(x, )it/ (x, s) de dx ds.

0 0 1

Use Corollary 5.18 and Assumption 5.5 to get

1
n'(t1) = n' (t0)| < Cn.r) K (r/2) / e IS 1 —s)], ds

fo

o N
+Cn K (r)2) / / dr ds.
0

n

51—[ [e_r/z(’_s)S(x, t— s)]

Use Lemma 3.6 to get

n

1
/e‘r”("‘” [SCn =9, ds < C(n)/(tl — ) ds = Cyn — 1),
fo

fo

On the other hand, from Lemma 3.6 we also have

53

© O N o g A 0N =



© 0O N o g A O N =

AR A B A OB B A B W W W W WWNNNDNDNNNRNDNDRN 2 o 42 s a2 o
N OO O A WD 4 O O 0N OO 0O A W0ONN 42 OO0 0 N o o P~ 0NN 4 0O 0 0o N o o P~ w NN = o

JID:YJDEQ AID:11744 /FLA
P.J. Graber and R. Sircar

[m1+; v1.357] P54 (1-94)

Journal of Differential Equations eee (eeee) see—see

2 2
sup|x"13/? oS (x,0)| <0 =|— (x,0)| <Cm)i3"?
.t 3xn+2 3x2 —
n
for any n. We use this to deduce
o 11
// 4 [e*’/ﬂ’ﬂ‘)S(x,z—s)] dr ds
0 % "
o 1
2 42
0°S
= e "/2=9) a——(x,t—s)—r/ZS(x,t—s) drds
2 9x2
0 1 n
o 11 o N

5C(n,a)//(t—s)_3/2dtds+C(n)r/2//(t—s)_l/zdtds§C(n,0,r)(t1—to)l/z
0 1 0 1o

(5.75)
so long as #; — f9p < 1. These estimates combine to give
') =" = Co.om K /20 — 102 VOt =1 +1. (5.76)
By the very same argument, we also have
[P =P w)| = CO o Ka (/20 = 10" YO0 =10+ 1. (577)

Step 3: Next we write

1 oo
n*(t1) — n*(to) = =2 / f

o 0

e_r/2(l_S)S(x, 1 —$)b2(x, s)m(x, s)dxds

fh o0 11

—2///(%[efr/z(“s)S(x,t—s)]br/z(x,s)m(x,s)dtdxds.
0 0 1w

Recall that b = V4 %—;’ + V5Q, and recall also the formula (5.1)(iii) for Q. Applying Lemma 5.11,
we have

b, )| mx, ) dx < CKn(r/2) + € [|222 (e )| mx, ) dx
/ 0x
0 0
2/3
< CKn(r/2) + cH CAZTEY PR

Using the same reasoning as in the previous step, we deduce
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0 = )| = 00 m K /20— | T2

2/3
/(t—s)_l/zEr/z(s)l/6ds
0
]

0
+C(n,o,r)| 2
0x

23 101

// (=724 @ =97) Epa(9)/0as,
0

0 fo

for 0 <1y <t <ty+ 1. (Cf. Equation (5.75).) By Holder’s inequality, we compute

" 1/6

n
[e-97PEpe s et -0'7 | [Epras|
fo

fo

o 11 5] 176
/ (=974 =97 2) Eyp9)/0ds = €t = 19)'F9 / Eypa(s)ds
0 1 1o
Combining this with Corollary 5.18, we have
2 2 o _ /5
@) = ()| = Cov o0 Ka (/2)(01 = 1), (5.78)

where 12,1 (r/2) is defined in (5.74).
Step 4: For the last term 7%(7), we use the definition of A" and the mass function (5.72) to
see that

n*(t) = e " [uol(0), (5.79)

—r/2t

and so, because ¢t — e is globally Lipschitz with constant /2 on the interval [0, 00), we

deduce
|

Putting together (5.76), (5.78), (5.77), and (5.79), we deduce (5.73). O

coro.7) < max { 1, r/2} ”MO”///({/Z .

Corollary 5.24. Let (w, 1) be a solution of (5.1) and suppose Assumption 5.12 holds. Assume
o <2/5. Then there exists a constant C, depending only on the data but not on T, such that, for
n=1,2,

~ dw,2
192 lar o,y = € | ntr/ +| =22 ) (5.80)
where
Iotr /2y =z ) o oy + /2 R/ 8D
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and J, and Ign are defined in (5.55) and (5.74), respectively.

—rt/2

Proof. Multiplying Equation (5.1)(iii) by e , we have

Qr2(1) = g1(1) (g2() + g3(t) + g4(1))
where
~1
€
gmw=1+5fmm) ,

D

82(1) 1=—/dvr/2(t),
D

83(1) 1=/61*(~,t)dur/2(t),
D

<ﬂ~—3/awﬂ(nd<n
gal):=m0 | Ty P ami:

D

Using the fact that m(¢) is a positive measure-valued process together with the Holder regularity
deduced from Lemma 3.7, we have

||g1 ||Ca/2([0,T]) S C (582)
On the other hand,
&2l cernqo.ry = (V720 1) 0Ty (5.83)
which is taken as given. Next, we analyze g3. Set
6()(7 t) = q*(xv t) - q*(ov t),
so that
g3() =/6?(', D dur2(t) +q* 0, )0 2(1) =: g3,1(t) + g3,2(1). (5.84)

D

Observe that, since §(0, 1) = 0 by construction, we have § € C*/%([0, T']; Y,+«), Where by com-
puting the derivatives of ¢* we deduce

ou

il g0 < Welcrescr + 4 5

<C, n=1,2.
0x

C2+a.1+a/2

Therefore, using Lemma 5.22, we get
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|83t corrgo,ry = Clitrrllcango ryve,,) < Canr/2). n=1.2. (5.85)
On the other hand,

la*©. ) garzo.ry =€
by the Holder regularity of g—)’: By Lemma 5.23, we deduce
lg32llcerzqo.ry =€ (||uon,/,a/é +Ki (r/2>) : (5.86)

Finally, we analyze g4 in a similar way. Write

1 [ (0w, wy w,
g4(t>=—§f< ;”2( n-?2 /2 ©, t))d (t)—— /2(0 r)/dm(t)
D

Using Lemmas 3.1 and 3.7 applies to the solution m of System (4.21), we deduce

4] <| Lz Imllcar o rpcecpy +| [ dm()
Hewrzqo.ry = | T | puups | ™IC 2O TRCED)
D Ce/2([0,7))
0
<c ” dwrp| (5.87)
dx Cca.a/2
Combining (5.82), (5.83), (5.84), (5.85), (5.86), and (5.87), we obtain (5.80). O
5.7. Full regularity of w
Multiply Equation (5.1)(i) by e™#’ to see that w), satisfies
dw, o2 82w dw,
& T3 e I)WJer(x,l)Qp(t)—(r—p)prfp- (5.88)

In this section we will derive an estimate on w, /2 in classical Holder spaces In particular, let us
define Z, (T) to be the set of all w € C>+*1+¢/2(D x [0, T) such that 1// L e ortolta/2(D
[0, T]) as well. (As usual, when T = co we replace [0, T'] with [0, oo).) It is a Banach space

with norm

Jw
lwlz, = ||w||cz+u.|+a/2(5x[0j]) + Hw I

C2+a,1+a/2 (5>< [0,T]

Theorem 5.25. Let (w, ) be a solution of (5.1), with V1, ..., Vs satisfying either (5.3) or (5.2).
Then there is a constant C (r, o, ), not depending on T, such that
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kuaSCOuxm<MmW%é+JWf%+NWO, (5.89)
where

) . 172
2 2
Nq%#Mﬂkwrwwaﬁ + /Mm@nhm (5.90)
X Co./2
0

and

1/2

N =] (2. 1)

T
2
corgory T / Porp®Zds |+ sw @], 69D
0

Proof. Step 1: We will first apply the maximum principle to find a bound on w;,>. Let

T

@w0=m@ﬁ—/@%M@MﬂWﬁhmmw

and differentiate to see that

By the maximum principle, using the fact that w(0, #) <0 for all r and w(x, T') = 0 for all x, we
have

T

020 = w e = [ (V]| +5.9)]) b

t

rt/2

Multiply by ¢"'/< and use the Cauchy-Schwartz inequality to get

T

wia(r0) = [ (1Vallo| Qo)+ a9 ) s
t

r 1/2

2
<r712 /<||V2||o|Qr/2(S)|+”fr/2("s)H0) ds
t

172 172

T T
<co)| flepla| +co| [Iracolia
0 0
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Applying Corollary 5.18 5.9, we see that
w2 (x, 1) < Cha(r)'2.
By the same argument applied that —w, we deduce

lwr 2]y < CR'2. (5.92)

Step 2: If we apply Lemma 5.20 to (5.88) with p =r/2, we obtain an estimate

o,
Co.a/2

| fr2 = V2 Qe a2 +

A%
0x

|wrpal,, =€ (II Villuarn -

d fr V.
v (ﬂ - Qr/2> (5.93)

0x

Co./2

The Holder norms of Vi, Va, % and 33% are already estimated by the estimates (4.18) from

Theorem 4.16. Moreover, f,2 is given. Using Equation (5.80) from Corollary 5.24 in (5.93), we

obtain

d fr)2 dwrn
0x

+ L(r/2) + H

Cw.0/2

w2 “z <C(r,0,a) (|| fr2 ||Caa/2 +”1ﬂ . /2>. (5.94)

By using the interpolation inequality

=¢ ” Wr/2 ”Cz‘*'“vl""’/z(fx[O,T]) +C(e) ” Wr/2 ”0

Co./2

0x

and applying (5.92), using the fact that J»(r/2)'/2 < J>(r/2), estimate (5.94) yields

9 fr2

|wrpa],, <C (o) (H Fr2 | a2 + Hl// N + fz(r/2)> . (5.95)

We now return to the definition of jz, Equation (5.81), which can be written

D (r/2) = ”MO”///J/% +H(Vr/2» 1)

Ce/2([0,T1) + OSSI‘:IS)T ” 1)"/2(‘[) ” -2

1/2
L/ +

2/3

L (r/2)'e.

a
+ D(r/2) 1 + H 2
ox

owy 2
ax

0 0

Now since ’ 81; 2
(5.81) to get

o is dominated by ”wr/z ||cz+a~'+a/2(§x[0,T])’ we apply Young’s inequality to
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D(r/2) < (m ”///*2 + v, 1) ”C“/z([o T T SUp lvo(@] _,
/2 ’ 0<t<T
+ C(S)Jz(i’/Z)l/Z + & || wr/2||Cz+a’1+a/2(5x[0’7-]) .
Applying (5.81) to (5.95), we derive, using the definition of J> in (5.55),

o2l = € .0 (Il g+ ol Ly . O 1 o] 3+ 5 )+ 601 ).

(5.96)
where N(f) and N*(v) are defined in (5.90) and (5.91), respectively. Using the fact that
H w(-,0) || , is dominated by |[w|| z, , we apply Young’s inequality to (5.96) and rearrange to deduce
(5.89). O
5.8. An existence theorem for the linearized system

Before formulating the main result of this section, let us collect assumptions on r and € so
that all of the a priori estimates of this section hold. We will formulate two alternatives, one for

a linear demand schedule, and one for a more general case where € must be small.

Assumption 5.26 (r big, € small). Let r* be a number large enough to satisfy Assumption 5.12,

Equation (5.9) for n =2, and
2 k
2,/ —-H(0,0,0) < P(O) Vr=>r".
o?r

Let €* > 0 be small enough to satisfy (5.54) and

M=2,/%H(0,0,0) < P(E*Q).

We assume that r > r* and 0 < € < €*.

We remark that Assumption 5.26 implies Assumption 4.18; see Remark 4.19.
An alternative assumption is as follows.

Assumption 5.27 (r big, P linear). We assume that P(¢g) =1 — g and that 0 < € < 2. Let r* be
a number large enough to satisfy Assumption 5.12, Equation (5.9) for n = 2, and

2 €
2,/ —-H(0,0,0)<1—= Vr>r*
o2r 2

Theorem 5.28. Let T > 0 be a fixed time horizon. Suppose that Assumption 5.26 or 5.27 holds.
Then System (5.1) has a unique solution (w, u) satisfying w(x, T) = 0 with regularity

We assume that r > r*.
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o wy o € Zy(T),
o wrp€C?([0,T1; Y5 y) NL®((0,T); X3) =: Zo(T).

There exists a constant C(r, o, &), not depending on T, such that

1/2

+ N*(n)

T
Jw /2 2
er/2”za + Z“ a; (-, 1) 2df +“M"/2HC¢1/2

(10.71:73,,)
<C(r,0,a) <||Mo||j,a_/§ +N(f)+ N*(v)) , (5.97)

where N (f) and N*(v) are defined in (5.90) and (5.91), respectively.

Proof. First we assume the data are smooth. Then existence of solutions follows from the Leray-
Schauder fixed point theorem, along the same lines as in the proof of Theorem 4.15. The a priori
estimates (5.97) follow from Lemmas 5.25 and 5.22 (Equations (5.89) and (5.65)). A similar
argument is also found in [4, Lemma 3.3.1]. To see that the solution is unique, note that the
system is linear, so the a priori bounds also imply uniqueness. O

Theorem 5.29. Suppose that Assumption 5.26 or 5.27 holds. Then System (5.1) has a unique
solution (w, w) satisfying

® Wy € Zy(00),

o o2 €€ ([0,00): Y5, ) N L (0, 00); X3) =i Zo(o0),

awr/2
ox

=0.
2

(" t)

o im0 =
The estimate (5.97) holds with T = o0.

Proof. For each T > 0, let (w7, MT) be the solution to the finite time horizon problem
on [0, T] given by Theorem 5.28. We extend (w”, u”) in time such that w’ (x,7) = 0 for
all + > T and such that the a priori estimate (5.97) implies that (er/z, ,urT/z) is bounded in

(Zy(00), Za (00)). Then by standard compactness arguments there exists a subsequence 7, — oo

such that (er;'z,erT;’z) converges to some (w2, fr/2) in Zg(00) X ch/2 ([O, T1; Y2*+a> for

B < a. Moreover, (w, p) satisfies (5.97) with T = oo. Passing to the limit in the system sat-
isfied by (w’", uI7), we deduce that (w, i) satisfies System (5.1). It follows that (w, i) is a
dwy 2 .0

=0, we observe that since
2

— % inC([O, 00) ; Xz).

Then the fact that w™ (x,7) =0 for all + > T, implies the desired limit. Finally, the a priori
bounds together with the linearity of the system imply uniqueness. O

solution. To see that limy_ oo || w2 (-, )|, = lim;_ ‘

T, . . T, 811):}12
W, 7, = Wr2 in Zg(00), it follows that w, /5 = w2 and
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6. The solution to the master equation

For each mg, define U (mg, x) = u(x,0) where (u,m) is the solution of (1.6) given initial
condition mq. We refer to U (mo, x) as the master field. We will prove that it satisfies the master
equation (1.3). All the hypotheses of Theorem 4.16 plus Assumption 5.26 or 5.27 are in force.

6.1. Continuity and differentiability of the master field

In this subsection we show that U (mg, x) is Lipschitz continuous and differentiable with
respect to the measure variable mg. To do this, we appeal to the estimates found in Section 5.

Theorem 6.1. There exists a constant C such that

|| U (o, -) — U (my, )H Yosisa < C”rﬁ() — m()”///;/% Vg, mg € .///a_/%

Proof. We may assume that ri1g, mg € .#2; then by density of this set in //la_/%, we deduce
the result. We have U (mg, x) = u(x, 0) and U (mg, x) = ui(x, 0), where (u, m) is the solution of
(4.21) given initial condition mq and (i, m) is the solution of (1.6) given initial condition 1.

Let (w, u) = (4 — u, m —m). Then (w, ) solves the linearized system (5.1) with f =0, v =0,
and Vi, ..., Vs defined in (5.2). Observe that

H U(rﬁ07 ) - U(m()s ) ” V34a = ” w('ﬂ 0) H Viia = ”w”Za .
We conclude by appealing to Theorem 5.25. O

Before proving that U is differentiable with respect to m, we provide a candidate for the
derivative in the following lemma.

Lemma 6.2. Let f =0 and v =0. There exists a map K (mq, x, y) such that K is thrice differ-
entiable with respect to x and twice differentiable with respect to y, such that

14

K —a—t
Tyt oY) 5Cmax{|y| « ,1}, 6.1)

Y3ia

and such that if (w, u) is the solution of System (5.1), then

w(x,0) = (K (mo, x, ), 1o). (6.2)

Moreover, K and its derivatives in (x,y) are continuous with respect to the topology on

Mo (D) x D x D.

Proof. The proof is very similar to that of [4, Corollary 3.4.2]: for £ =0,1,2 and y > O let
the pair (w® (-, -, y), ¥ (., -, y)) be the solution of (5.1) with f =0,v =0, Vi,..., Vs given
by (5.3) and initial condition o = DKBy, where §, is the Dirac delta mass concentrated at y
and DKSy is its £th derivative in the sense of distributions. Then set K (mg, x, y) = w© (x,0,y).
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Notice that by the density of empirical measures, (6.2) follows for any solution (w, @) of System
(5.1). Moreover, one can check by induction that

'K ¢ @
W(m07x7y)=(_1) w (-xaovy)'

To prove (6.1), we use the estimates (5.97) from Theorem 5.29, which imply in particular that

< CH D's,

[ ®¢.0.5)

Y3iq M

It remains only to estimate Dt dy in M (;/% First, we see that

<¢,D[8y>=jl;yqj(y)§||¢||2maxi|y‘_€,l} voexs = |p'e|  =max{y| 1],

Next, we plug u = DK(Sy into (5.72) to get

o0
ats ats at-1g
h L _ +1 —
n"'[D 8)7](t)—/<(—1) W(x—y,t)+W(ery,t))dx——ZW(y,t), (6.3)
0

where we define

a7ls r
— (y,t):/S(x,t)dx.
ay-!L

0

Taking the derivative with respect to ¢ in (6.3), we get

£+1

d
g I =0 T

dt

., 0).

Let p > 1. Applying Lemma 3.6 we estimate

b EAM py?
dr<C t*P([+2)/2P [y ——Z 4gr.
=< (0)/ i\ XP) 7552
0

2 .
P2 we obtain

fld 4o
/‘dt” [D"8,]1(1)
0

Here P, is a polynomial of degree £ 4 1. Using the substitution s =

1/p

p
dt

fld
/‘dtﬂ [D"5,1(r)
0
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. 1/p
2_ (€+2) N
£+2 plets)
<C(o, pyyr /S E 2Pe+1(sl/2)pexp{—m}ds ,
0

where the integral on the right-hand side converges; hence

l/p

/

o

d 5o P -2

E"[D Syl(0)| dt <C(o,py ¥ ., p=p/p—1.
0

By Holder’s inequality,
,%,[ /
[7"1D8, 1) — ' (D812 | = Clo, 1y 7 1y — o]V
Cf. the proof of Lemma 3.4. Choosing p = ﬁ, we now deduce

th[D‘fay] <C(o,a)yt.

C“/2<[O,oo))

Therefore,
HDZS}, ” L =Coamaxfly[ 1],
///a/z

from which we deduce (6.1). The remaining details are the same as in [4, Corollary 3.4.2]. O

Lemma 6.3. Let (u, m) and (it, m) be the solutions of (1.6) with initial conditions mq and my,
respectively. Let (w, () be the solution of (5.1) with initial condition mo — mg. Then

| 0) = u(.0) = w0, =Clo— mou%/g : (6.4)

As a corollary, U (my, x) is differentiable with respect to mo with

sU
m (mg, x,y) = K(@mo, x, y), (6.5)
m

where K is defined in Lemma 6.2. Moreover, (6.4) reads

sU
U (o, -) — U(mo, -) — / %(mo,?@ ¥) d(itg —mo)(y) < Cljmo — MO’E/,H—/% . (6.6)

D Y3 +a

Proof. Let f and v be defined by (5.4). We follow the same steps as in [4, Chapter 3] to find an
estimate
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Nuv+NWw§ch—mﬂ;$.
By Theorem 5.29, this proves (6.4). Combined with Lemma 6.2, we deduce (6.5) and (6.6). O
6.2. The master field satisfies the master equation
In this subsection we prove Theorem 1.5.

Theorem 6.4. Suppose that Assumption 5.26 or 5.27 holds. For all mg € M**®, x € D, System
(1.3)-(1.4) is satisfied. Moreover, U is the unique continuously differentiable function satisfying

< cmax [y "1}, 6.7)

Y314

such that System (1.3)-(1.4) holds for all mg € M, x € D.

Proof. Let (1, m) be the solution to the mean field game system with initial condition mg €
M Set my :=sm(t) + (1 — s)mg for 0 < s < 1. Then for any 7 > 0 we have

1
sU
u(x,t)—u(x,O)ZU(m(l),X)—U(rno,X)Z//%(ms,x,y)d(ma)—mo)(y)dS

1

o2 9% sU
///(28%8(5”y)

0 0

oH a sU
+—3 ( 0" (T) (y T)) — —(my, x, y)) dm(r)(y)drds, (6.8)
a dy ém

using the Fokker-Planck equation satisfied by m. To see that the last integral converges, first
note that (6.7) holds by Lemmas 6.2 and 6.3. Then we note that by the assumption mq € M3
together with Lemma 3.8,

/(1+x_(2+°‘))m(dx,t)SCeC'f(1+x_(2+“)> mo(dx).
D D

Combining this with (6.7), we deduce that (6.8) holds. Now divide by ¢ and let r — 0 to get

u
5(-"‘30)
o 98U 0H oy
D

d ,
By substituting for 8_? (x, 0) using Equation (1.6)(i), we get
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o2 9%u
-5 @0 —-Hle O (0) (x 0) ) +ru(x,0)

2 9x2

/ 2 e+ 2 (e 070 2 (3.0)) 2 2 g ) ) o)

= » Xy —\& s - W, —— o _Ungp, x, m >

2 02 om0t YT, ax ) By s 0o ) JEMOLY
D

which becomes Equation (1.3) after defining Q* = 0*(0). Equation (1.4) follows from (1.6)(iii).

To see that U is unique, we follow the same argument as in [4]. By using the Leray-Schauder
fixed point theorem and the estimates we have established, it is straightforward to show the
existence of a solution to the Fokker-Planck equation

am o2d*m 9 [0H
a_t_?W+ax( <Q((t)) (m(t)x)))

where Q*(m) is defined using (1.4). Set u(x,t) = U(m(t), x). Using condition (6.7) together
with Lemma 3.8, as above, we can differentiate # with respect to time. Then using the fact that
(1.3) holds, we deduce that (u, m) is the solution of (1.6), which is unique. It follows that U (m, x)
is uniquely determined. O

Data availability

No data was used for the research described in the article.
Appendix A. Proofs of results from Section 3
Proof of Lemma 3.1. Uniqueness: Let us start by observing that uniqueness of weak solutions
holds. This follows from a proof by duality, cf. [23, Proposition B.1] and [34, Corollary 3.5],
which also provide the basic estimate (3.3).

Existence: We thus turn our attention to existence and estimates. By linearity we can assume
that mo(D) = 1, i.e. my is a probability measure, without loss of generality.

Assume for now that b is inﬁnitely_ smooth and bounded, and that my € P;(D) is in fact
a smooth density such that my € C2°(D). Then classical theory [29, Theorems 1V.5.2, IV.9.1]

implies that (3.1) has a smooth solution m whose derivatives are also in L? for arbitrarily large
p. We have the following probabilistic interpretation: for any continuous function on D satisfying

lp(x)| < C (1 +]x]),

we have
/ ¢ Omx. 1) dx = E [$(X)1,-] (A1)

where X; is the diffusion process given by
dX; = —b(X,,t)dt + o dW;, Xo~ mo, (A2)
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W; is a standard Brownian motion with respect to a filtered probability space (€2, P, F;), and
t:=min {inf{t > 0: X; <0},T}.
In particular the complementary mass function 7(¢) can be written
nt) =P <1).

The continuity of this function follows from probabilistic arguments, which can be found in [25]
and [23].

It remains to establish (3.4). Fix 1,1, € [0, T] with #; < t,. Pick any ¢ : D — R that is a-
Holder continuous (or Lipschitz, in the case « = 1) such that ¢ (0) =0 and [¢]c« < 1. Let X; be
a solution to (A.2). Then by (A.1) we have

[ o) (1) = mr. 1)) x| = [E [60X )11 < = 0 X 1<)
0

<E |:|th |C‘ ]lfl<Tsz +in] - Xt2|a ]ltz<ri|

o -
T

=E —/b(Xt,t)dt+a(W,—W,]) 14 <r<n

n

o
9}

+E —fb(xt, Ddi+0 (W, = Wi)| Tyer

n

<E[IbI%17 = 11" 1y <ezn] + 0" [[We = Wy [“ 1y < |
bl = 1 + o E[| ey = Wiy [°]

<20b|% |t — 11]* +20% |2 — 11]%72.

Taking t; =t and 1, =0, we get

/qb(x)m(x,t)dx < /(]b(x)mo(x)dx +2|1b|1%, 1% 4 20%1%/?
0 0

o
< /x“mo(x) dx 4 2[|b|1%, 1% 4+ 20%1%/2.
0
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Finally, to get existence for general data, let b, be a sequence of smooth functions converging
uniformly to b and let mg , be a sequence of measures with smooth densities converging to mg
in M 4. Letting m, be the solution corresponding to b,, mg ,, we have that m,, is uniformly
Holder continuous in the Lip,, (D)* metric, hence by Arzela-Ascoli we have a subsequence con-
verging to m in ([0, T1; M 1). We deduce that m is a weak solution, i.e. it satisfies (3.2). O

Proof of Lemma 3.5. For each n € N define

nx if0<x<n’l,
¢Aﬂ={_a. - (A3)
X ifx>n"".
Set CID,(P) (x) = ¢n(x), and inductively define
X
oV (x) = / oY Viyd, j=1,2,3,....
0
By induction we have that
‘dJ,(zj)(x)) <C(j, )/ Vx>0. (A4)
Since ¢, is a bounded, continuous function, we have
/¢n(X)m(dx,t) Z/d)n(X)/ (S(x —y.1) = S(x 4y, 1)) mo(dy) dx
D D D
(A.5)
= //¢n(X) (S(x —y.1) = S(x 4+ y, 1)) dx mo(dy)
D D
using Fubini’s Theorem. Our goal now is to prove that
/qbn(x) (S(x —y,t)—Sx+y, t)) dx <C(a)y ™™ Vy>D0. (A.6)

D

By plugging (A.6) into (A.5) and then applying the Monotone Convergence Theorem, (3.10)
follows.
To prove (A.6), start by noting

/¢n(x) (S(x—y,t)—S(x-i-y,t))dxSf(l)n(x)S(x—y,t)dx
D 0

y/2

ff%awu—»wm (A7)
0
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+(y/2)_“/¢n(x)5(x—y,t)dx

y/2
v/2
< f G (1) S(x — y, 1) dx + 2%y,
0

using the fact that S(-,7) is a probability density. Now for any j > o — 1, integrate by parts j
times to get

y/2

/ Oon(x)S(x —y, t)dx

j—1 y/2
=> (-1 <1><'+”<y/2> ( /2.0 + (=1 / <1><”<x) (x—y,ndx (A8)
i=0 0

Applying (A.4) and Lemma 3.6 to Equation (A.8), we obtain

y/2 y/2
f¢n(x)s(x_y’t)dx<c(] a) Zyl-l—l o —(l+l)+/xj—a|x_y|_(j+l)dx
pard (A.9)
0
<C(j,a)y "

Take j = |o] and combine (A.9) with (A.7) to obtain (A.6), which completes the proof. O

Proof of 3.7. First, note that |n(1)| <|Imollzy <llmoll_4, for all > 0, using Lemma 3.1. Thus,
it suffices to prove estimates of the Holder constant for n. We will assume the data are sufficiently
regular so that the solution is smooth. The claim then follows from a density argument.

We have, by Duhamel’s principle,

o0

m(x,1) = / (SGx—y,0) = S(x +y, 1) mo(y)dy
0

! o0
+//(S(x—y,t—s)—S(x+y,t—s))(bm)y(y,s)dyds,
00

which becomes

o0

mx, 1) = / (SCc— y.1) = S(x + v, ) mo(y) dy
0
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t o0
—1—//(—()5 y,t—s)+g(x+y,t—s)>(bm)(y,s)dyds, (A.10)
0

using integration by parts. Integrating in x and using Fubini’s Theorem, we get

n(t) =n"[mol(t) + na (1),
where nh[mo](t) is defined in (3.8) and
t o0

nz(t)_///(—(x y,t—s)+g(x+y,t—s)>(bm)(y,s)dxdyds
00

oo

-2 /S(y t —s)(bm) (y s)dyds
0

O\N

By definition of the norm in .,
h
[mo] H <llmo . A1l
ol 7, =m0l (A1)
It remains to derive Holder estimates for 1,. Let t, > ¢1 > 0. Then ny(t2) —na(t1) = =2 (11 + Ip)

where

h oo

=//S(y,t2—s)b(y s)m(dy, s)ds,
n 0

1 oo

=//(S(y,t2 —85)—SO,n —s)) b(y,s)m(dy, s)ds.
00

In the first place, we have

1] < <2azn>—1/2||b||oof(tz —5)V2ds =220 7) V2|l oy (12 — 1) /2.

n

In the second place, we write

1 oo Iy 8S
Izszfg(y,t—s)df by, sym(dy, ) ds.
0 0 1
9S8 o2 9%s o
Since — = — —, Lemma 3.6 implies
ot 2 9x2
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n n
|| < C(0)1bllo / f(r —$)73 2 dr ds. (A.12)
0 n
By Fubini’s Theorem,
Hnh t 4]
f(r — )" drds = 2/ ((r —)12 o r_l/z) dr <4ty — 11)\/2. (A.13)
0 n 1

Combining (A.12) and (A.13), we get
m2(11) = m(22)| < C@)Ibllogltr — 121"/ (A.14)
Equation (3.12) follows from combining (A.11) and (A.14). O

Proof of Lemma 3.8. We start from Equation (A.10) and multiply by ¢, (x), which is defined
in (A.3). Then integrate and use Lemma 3.5 to get

/ $n(0Om(dx, 1) < C(@) / e mo(dx)
D D

crl T 3s 35S
+||b||00// /qbn(x) <a (x—y,t—s)+£(x+y,t—s)>dx m(dy,s)ds. (A.15)
0 D |0

Let j = |«]. Integrating by parts j times as in the proof of Lemma 3.5, we get

y/2

35S SN L
/‘Pn(x)g(XiYJ—S)dXZZ(—l) , (y/Z)E(y/Z:l:y,t—s)
0 i=1

y/2 .
i gl 2t
+ D () PP, (xxy,t—s)dx.
0

Using Lemma 3.6 and Equation (A.4), we deduce

y/2 ;

s ! i
/ff’n(X)a(x:I:y,t—s)dx 52C(i,a)|y|l a|y’ ol —s5)71?
0

i=1

y/2
+C(j,a)/lej_“|x:l:y|_ja_l(t—s)_l/zdx. (A.16)
0
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For 0 <x < y/2 we have |x £ y| > y/2, and thus (A.16) yields

y/2
/ b (x) g_s (x£y,t—s)dx| < CG,a)o |y @ -5V (A.17)
X

On the other hand, using Lemma 3.6 it follows that fooo tl/z‘ % (x,1) ‘ dx < C for all ¢, and thus

/tbn(x)g—f(xiy,t—S)dx <Cly|™@—-5"" (A.18)
/2

Combining (A.17) and (A.18) into (A.15), then letting n — oo, we derive

t
/|x|—“m<dx, H < C(a>f|x|—°‘ mo(dx) + C(a, o)||b||oo/f|y!‘“m<dy, )t —5) 2 ds.
D D

0 D
(A.19)
For A > 0 let
£ =e*“/|x|*“m(dx,t>.
Multiply (A.19) by e to derive
t
£(6) < C@) f(0) + C (e, o) [1blloo / e —5)7V2 £ (5) ds
0 (A.20)
< C@) £3.(0) + C(ar, o) [|b]| oo 1~/ sup fu(7)

where by a change of variables we have computed

t At 00
/‘e_)‘(’_s)(t —s)_l/zds:A_l/zfe_ss_l/zds <A b2 / l/zds—f—/e_s ds | <3,7V2
0 0 1

(As usual, the value of C (¢, o) might have changed from line to line.) Let A = (2C (o, 0) D] 00)2.
Take the supremum in (A.20) to deduce

1
sup /(1) = C() £,(0) + 25 Sllp H = sug F1(@) =2C(a) £.(0). (A.21)
=

>0

Equation (A.21) implies (3.13), as desired. O
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Appendix B. Proofs of results from Section 4
B.1. Proofs of results from Section 4.1

We will actually show that all of the results of this section hold on a larger domain. Set p, :=
limy 0 P(q). Note that po, < 0 because there exists a finite saturation point (Assumption 1.1).
Recall that the profit function = is defined as

(P(eQ+q)—a) ifg >0,

(e, q,0,a)= { ifg=0

In the following the domain of 7 is defined to be [O, oo)3 X (Poo, 00). Thus the domain of

H(e, Q,a):= supqzorr(e, q,0,a)is [O, oo)2 X (Poo, 00). All the statements about the regular-
ity of H hold on this larger domain. This remark will be useful in Lemma B.1 below.

Proof of Lemma 4.1. We first compute

)
% (€.4.0.a):=qP'(€Q+q)+ P(cQ+q)—a

and

3% (qp(EQJrq)

B—(ﬁ(e,q,Q,a)=qP (€Q+q)+2P(eQ+q)=— 0+4q —2>P(6Q+q)~

By Assumption 1.2 we deduce

277,'
53 (€q.0.0)=—(p—2) P'€Q+q) <0,

i.e. 7 is strictly concave with respect to ¢. On the other hand, since P’ < 0 we also have

l1msup (eq 0,a) < hm P(eQ+q)—a=ps—a<0.

g—00

0
Thus if a—n(e,O, Q,a) = P(eQ) — a > 0 there must exist a unique g* > 0 such that
q

0
8_7T (e,¢*, Q,a) =0, and hence ¢g* maximizes 7 (¢, -, Q, a). We also compute
q

8277” i /
aQ(,jq(e,q,Q,a)=€qP (€0+q)+€P'(€Q+q)
peQ+q) /
= — 7—1
6(61 0+q )P(6Q+q),
—8271( Q,a)=-1
dagg Y= Th
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8%
0€dq

(6,9.0,a)=QqP"(€Q+q)+ OP'(cQ +¢q)

_ p(EQ+Q)_ /
= Q<q76Q+q 1>P(EQ+6])

By the implicit function theorem, we deduce that ¢* is differentiable function of (e, Q, a) in the
region where P (e Q) > a, with

N 827 * % N —1
BL:_aQaq(E,q vQ,a):_e 1_<2_q p(eQ+q ))
8Q ngg(E,q*,Q,a) €Q+q* ’

0q* 1
L A
da iS5 q*.0.0)

a2
b _ i€ 00, - (-t )
€ fEeq.0a €0+q*

<0, (B.1)

Note that (4.1) follows from (B.1).
In this region we also compute

dH dg* dq*

= 4 (P(€Q+q*)—a)+q*P’(eQ+q*)(Q+ q ):Qq*P’(eQJrq*), (B.2)

€ de de

OH dq* o % pt * 0q"\ __ ipr .

30 =30 (P(eQ+q*)—a)+q*P'(cQ+q )<e+ aQ)—eq P(Q+q7), (B3)

and

I _ 4 (pegtqy—a)+q" (P/(6Q+q*) 09" _ 1) =—q" (B.4)
da da da . .

On the other hand, if P(eQ) < a it follows that the unique maximizer is ¢* = 0. Because P
is continuous and monotone decreasing, the interior of this region is the set where P(eQ) <
a, while its boundary is where P(e Q) = a. It remains to show that as (e, Q, a) approaches
this boundary set, the derivative of ¢* remains bounded. By (B.1) it is enough to show that

2 . .
ngf(e, q*(Q, a), Q, a) remains bounded away from zero. For this we observe that as (¢, Q, a)

approaches the set where P(e Q) = a, g*(¢, O, a) — 0 and thus g%(e, q*, Q,a) = 2P'(eQ),
which is bounded away from zero for bounded values of Q. O

Proof of Corollary 4.2. For (¢, Q,a) € [0, €] x [0, Q] x [0, a] we have that a <a < P(EQ) <
P(eQ), since P is decreasing. By differentiating (B.2), (B.3), and (B.4) in the proof of
Lemma 4.1, and using (B.1), we see that H is n times continuously differentiable in this region.
These derivatives are Lipschitz on this domain because P is locally Lipschitz by Assump-
tion 1.1. In particular,
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82H( 0.2) ag*
—5 e, ¢,a)=—
da? da

(e,0,a)>0.
The claim follows from compactness of the region. O

Proof of Corollary 4.3. From Equation (B.3) and the first-order condition for optimality, using
the fact that P’ < 0, we have

aH * p/ * *
'@‘z—eq P(eQ+q")=€e(P(eQ+q") —a),

from which the first estimate in (4.3) follows. The second estimate follows from (4.1) and
(B.3). O

Proof of Lemma 4.4. Let f(Q)= Q0 — fD q*(e, Q, p(x))dm(x). We claim that f(Q*) =0 for
a unique Q* > 0. Note that f(0) < 0 because ¢* > 0. By Lemma 4.1 and Assumption 1.2 we
have

f’(Q>=1—/@@,Qw(x))dm(x)z1—eﬁ‘f/dm(x>z“€_—w>o
00 2—-p 2—-p
D D

if p > 1; otherwise we get simply f/(Q) > 1. The claim follows, and we deduce (4.4). To derive
estimate (4.5), we use the lower bound on f” to deduce

Q" <c(p,€) (f(Q%) — f(O) =c(p, 6)/q*(6, 0, ¢ (x)) dm(x). (B.5)
D

Now because 7 (€,q,0,a) = (0, q,0,a) for all €, a, it follows that g*(¢, 0, ¢ (x)) = ¢*(0, 0,
¢ (x)). Then, since g™ is decreasing in the last variable and fD dm(x) <1, we use (B.5) to deduce
4.5).

We now prove (4.6). Without loss of generality we will assume Q7 > Q3. First, observe that

07— 03 =c(p.e) /61*(61, 03, ¢1(x)) dm (x) —/q*(ez, 05, $2(x))dma(x) | . (B.6)
D D

To see this, note that (4.1) implies

07 — Q§=/q*(61, QT,¢1(X))dM1(X)—/q*(62, 03, $2(x)) dma(x)

D D
L
<-a3 _E(QT— Qé)/dm1<x>+/q*<el, 0.1 (x))dml(x)—/q*@z, 03, ¢2(x)) dma ().
D D D
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Then one obtains (B.6) by rearranging and using the fact that fD dmi(x) <1 and c(p,€) is
increasing in €. Next, appealing to (4.5) and the fact that ¢* is locally Lipschitz, recalling once
more that [, dm(x) < 1, (B.6) becomes

07— 05 =<C|le1 — e +/|¢1(X) — $2(x)| dmy (x)
D

+C/q*(€2, 03, ¢2(x)) dim — m2)(x)
D

dg* d
Y (e, 03,0200 % )| d1 (1, ma)

= C(les —eal +[¢1 92 ) + Csup
X

g (e Q§,¢z(0))/d(m1 — (),
D

which implies (4.6). O

Proof of Corollary 4.6. We use Lemma 4.1 to get

0 —1
q*(e, 0%, ¢(x)) < g (€. 0, 0)+€§ ,5Q*' (B.7)

We recall that g* (e, 0, 0) = ¢*(0, 0, 0). To derive (4.7), it suffices to plug (4.5) into (B.7) and use
the definition of c¢(p,€). O

B.2. Proofs of results from Section 4.3
Proof of Lemma 4.10. First let v =e~""u. Then v satisfies

v o2, " , 0V
54_7@4_6 rH<6(t),Q (t),er 5)20, xeD, t>0.

Using the fact that H > 0 and v(0, ) = 0, the maximum principle (see [36, Proposition 2.1])
implies

min  v(x,t) =minv(x,T) = e T minu(x,T)=0 =v>0=u>0. (B.8)
x€D,0<t<T xeD xeD

It also follows that u(0, t) = minu and so u, (0, t) > 0.
We now use the fact that H is decreasing in all variables to deduce

0<H <e(t), 0*(t),e" g—;)) < H(0,0,0)
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and thus
—— — — — <¢ "H(0,0,0).
X

Set #(x, 1) = v(x, 1) — [T e H(0,0,0)ds = v(x, 1) + L H(0,0,0) (e*rT - e*”). It follows
that

dt 2 9x2
and thus
max O(x,f)= max O(x,7)<cje T
x€D,0<t<T t=T or x=0

since #(x, T) = e~ Tuz(x) < cie~'7 and 5(0,1) = LH(0,0,0) (e_’T - e—”) < 0. Together
with (B.8) we deduce that

1 1
0<v(x,t) < (—H(0,0, 0) ~|—cl> e = 0<u(x,t) <-H(0,0,0)+cy. (B.9)
r r

To get an estimate on u,, we now use a Bernstein type argument, cf. [29, Section VI.3]. Notice
that

—5—7@§H(0,0,0).

Setii(x,t) =u(x,t)+ Mye ™, where M) > 0and A > 0 are defined below in (B.12) and (B.14).
The constants M, and A have to be chosen so that, for all t < T and all x € [0, £] for £ > 0 to be
specified later, we have
o2
H(0,0,0) — 7A2M;Le_“ <0,
c3 < Myre ™™, (B.10)

1

~H(0,0,0) + c| + Mye ™ < M.

r
Then one can check that

2924
— o~ g g S0 0.0 % (0.7),
X

u(x,T) < M, for all x € [0, £] (using the fact that maxu’T <c3), u(l,t) < M, (using (B.9)),
and (0, t) = M, . By the maximum principle, it follows that it (x, ) < M, for all x € [0, £],¢ €
[0, T]. This means #(0, ) = maxo<y<¢ i (x, t), which implies 7, (0, ) < 0 and thus u,(0, 1) <
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M; A. Finally, we can take the derivative of Equation (4.9) to see that the maximum principle
applies to u,, and thus

max uy(x,t)= max u,(x,t) <max{M,A,c3}. (B.11)
xeD,0<t<T t=T or x=0

To satisfy (B.10), we choose

2 e C3 oy 1 1
MA:max[mH(O,O,O)e ,76 ,m ;H(0,0,0)-{-Cl . (BIZ)

If we set J = max {#H(O, 0,0), %3 }, then (B.12) becomes

1 1
1‘4)L :maXiJEAZ,l_—eM<;H(O,0,O)+C]>}. (B13)

To minimize the value of M)A, we first choose the constant £ so as to minimize the maximum
appearing in (B.13); it suffices to choose it so that the two maximands are equal, because the first
is increasing in £ while the second is decreasing. This is achieved by setting

1 1 1
£=—1In 1+—H(O,O,0)+c—l>=>MA=JeM=J+—H(0,O,O)+C1.
A rJ J r

We therefore have
2 A
M; ). = max TH(O,O,O),C3 + —H(0,0,0) + Ac;.
oA r
The minimum possible value of the right-hand side is attained by setting

. V2rH(0,0,0)
A = min ,
o/H(©0,0,0) +rc; o2c3

H(0,0, 0)} ; (B.14)

and its minimum value is given by M, A = M where M is defined in (4.11).
Put together (B.9), and (B.11) to get (4.10). O

B.3. Proof of result from Section 4.4

Proof of Lemma 4.11. Estimate (4.12) follows from Lemmas 4.4, 4.1, 4.10, and 3.1. Note that
a direct application of Lemma 4.4 would put the constant c(p, €(¢)) in place of c(p, €(0)); how-
ever, c(p, €) defined in (4.5) is an increasing function of €, and since Assumption 4.7 implies
€(t) < €(0), we have replaced c(p, €(¢)) with c(p, €(0)) to get an upper bound that is uniform in
time.
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Now we turn to estimate (4.13). By Lemma 4.4, there exists a constant C = C(e(0), p, M)

such that
Oo)

di (m(n), m(12)) + / dom(1) — m(12))(x)
o D

0 0
|0* (1) — Q*(n)| < C <|€(t1) —e(t)] +H —au (1) — 2 (-, )
X 0x

2

Podl I s
+ ax2

Now suppose m € .#,. Appealing to Lemma 3.1 and also Assumption 4.7, we have

du
|0*(t) — 0* ()| = C |1t — 12l + | — |ty — 1p|%/?
0x | caar2
2
+C||55] (bl + o)l =021+ @) (Imoll g, + 16l )11 = 1212
o0

da
we deduce there exists C = C(p, €(0), M) such that ||b||o, < C. We deduce that there exists

C=C(p,e(0), M, O',||mo||(//[a/2) such that

for any |f; — 1| < 1. Here b = oH (e, o, 3—)’?) By Lemmas 4.1 and 4.10 together with (4.12),

9%u
ax2

ou

|a/2
ax

|0* (1) — Q*()| = C +1]t—n

e8]

, In—nl=1,

Ccoe/2
and since Q* is bounded according to (4.12), Equation (4.13) follows. O

B.4. Proofs of results from Section 4.5

Proof of Lemma 4.12. We begin by taking u = 0. First we let g(x, ) = €'’ f(x, t) and consider

] 2 52
a—:—%a—;}:g, VxeD,t>0;v(0,1) =0Vt >0: v(x,0)=0Vx € D. (B.15)
X

By [29, Theorem IV.6.1], (B.15) is uniquely solvable in C>**1+¢/2(D x [0, T]) for arbitrary
T > 0. Also, by the maximum principle, we have

00| = 2| fleno Ve D1 €[0,00).

er/

To see this, first let 9(x, 1) = v(x, 1) — &1 ||f||co,0 and observe that

r

9t o2 9%%
— —— — <0, 9(0,1) <0, v(x,0)<0.
ar 2 9xZz v(0.1) Ve 0)
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By the maximum principle, v < 0, which implies v(x, t) < %e” H f ” co.0- The opposite inequality
is similarly proved.
Now we let u(x,t) = e ""v(x, t). Then u satisfies (4.14) and

1
lullooso.con = 71 lcoo- (B.16)

Moreover, appealing again to [29, Theorem IV.6.1], we have an estimate

ax?

= 7 B.17
ox> /2 i |:8_]a,a/2 = C(U) ([f]a,c{/Z +r [u]a,a/z) s ( . )

where C (o) does not depend on 7. By interpolation, see [29, Lemma I1.3.2], we can find a
constant C («) such that for arbitrary § > 0 we have

_ 02u ou
[l,ar2 < Cl@) [ Il goois) + 87 | | 2= +| = . (B.18)
ox ot |, )2
o,0/2 ’

Combining (B.16), (B.17), and (B.18) with 8 a sufficiently small multiple of »~!/2, we deduce
that (4.16) holds for ug = 0.

Now suppose f =0 and let ug € C>T% (D) be given. Then appealing to [29, Theorem IV.5.1],
(4.14) is uniquely solvable, and moreover by the potential estimates from [29, Section IV.2] we
have

> |:8 ] <C(0)(”“ Il +r[u]
= 0llc2+a Flily, 2) s
0x? a,a/2 ot a,a/2 ) el

where again C (o) does not depend on time. Using the maximum principle, we get||u|lo <|luollo-
Arguing as before, we deduce (4.16) for f =0.
The general case now follows from linearity.

B.5. Proofs of results from Section 4.6

0
Proof of Lemma 4.13. Let f = f(x,1) = H (e(t), 0*(1), a_u (x, t)). From Lemma 4.12 we
X

have
||u||cz+a.1+a/2(§x[0j]) <C(o,a) <[f]a,a/2 +r2 “f”O +Co + VH_%CI) . (B.19)
We now estimate f in C*%/2_ First, because H is decreasing in all variables, we (again) deduce

0< f(x,t) < H(0,0,0).
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Because H is locally Lipschitz by Lemma 4.1, and because €, O*, and g—)’: are bounded with
estimates given in Assumption 4.7, Lemma 4.10 and Lemma 4.11, we have a constant C =
C(p,€(0),0, M, @) such that

Cm,a/Z) ’

where || €]|ce/2 is also estimated using Assumption 4.7. Using Lemma 4.11 and interpolation on
Holder spaces, we see that for an arbitrary § > 0, there exists Cs = C (8, p, €(0), o, M, |moll_,
o) such that

ou

0x

lewr =€ (141070

/2’

|/ |l a2 < Slluellg2sat+arz + Cs.
Taking § > 0 small enough, (B.19) becomes
lull2tat o (o, < €@ @) (CS S+ rSH(0.0,0)+ Cy + r1+“7c1) ,
which proves (4.17). O

Before getting to the proof of Theorem 4.15, we establish the following lemma:

Lemma B.1. Let Q* € ce/? ([O, T, [O, oo)) be given, and let Assumptions 4.7 and 4.8 hold.
Then there exists a unique solution u to the PDE

du o’ d%u v, .. ou
— 4+ ——=+H[e(®),0"®), — | —ru=0, u,t)=0, ulx,T)=ur(x). (B.20)
a2 ox? ax

. . : du o
This solution satisfies P > 0 and the a priori estimate
X

ll2sersar = € (0,0 H(0,0,0)) (14 Qo +llur g2 ). (B.21)

Proof. As above we set po, 1= limy—.o P(g) < 0. Fix a C* function ¥ : R — (pso, 00) such
that p(a) = a for all a > 0. Define X = C>! (5x [0, T]). Let v € X and A € [0, 1]. By

Lemma 4.12, Assumption 4.8, and the local Lipschitz property of H, we get a unique solution u
to the equation

ou  od%u

" av _ _ .
o1 + DTS +AH (e(t), o ),y (£>> —ru=0, u,t)=0, ulx,T)=Aiur(x),

(B.22)
Yot

81
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0x

ov
0x

lullg2+atvars < C (H 0% .-
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This defines a map 7 : X x [0, 1] = X. We claim that 7 is continuous and compact. Suppose
{vn, An} is a bounded sequence in X x [0, 1] and let u, = T (v, A,). Then {u,} is bounded in
C>te1+e/2 which is compactly embedded in X, so it has a subsequence that converges to some
u in X. To conclude that 7 is both continuous and compact, it is enough to show that whenever
(Vs An) = (v, A) in X x [0, 1], then u = T (v, A). But this can be deduced from plugging v, A,
into (B.22) in place of v, A, then passing to the limit using the local Lipschitz property of H.
Notice that 7 (v, 0) = 0. To apply the Leray-Schauder fixed point theorem, it remains to find
an a priori bound on solutions to the fixed point equation u = 7 (u, A). Note that for any such

. u . .
fixed point, w = P satisfies, in a weak sense,
X

dw o2 3w du\ dw

ABH * ou / -0 T) = A /
3—I+TW+ 9 €, Q (0»#’(5) 14 (a)a_rW— o wx, T) = Aup(x).

0
Since u/T > 0, by the maximum principle we deduce a—u = w > 0. It follows that u satisfies
X

ou  o2d%u
— +

" ou _ _ _
VIR +AH <e(t), o* (1), a) —ru=0, u,t)=0, ulx,T)=Aiur(x),

Lemma 4.10 establishes an a priori bound on #; combined with Lemma 4.12 and using interpola-
tion, we deduce that (B.21) holds for any u satisfying u = 7 (u, 1). By the Leray-Schauder fixed
point theorem [16, Theorem 11.6], there exists u € X such that u = T (u, 1), which means u is a
solution to (B.20). Uniqueness follows from the maximum principle by standard arguments. 0O

Proof of Theorem 4.15. Set X to be the set of all (v, Q) € C>! (5 x [0, T]) x CO([0, T1) such
d
that 8_v >0and Q > 0, and define 7 : X x [0, 1] - X as follows. Let (v, Q) € X, 1 € [0, 1].
x

oH d
From Lemma 4.1 we know that the function 37 (e 1), O@), 8_v> is bounded and continuous
a X

J

( 8H< 8v> )
A—|€@®),0@), — |m | =0, m|ly=0 =0, m|;=o =mp, (B.23)
da ox

with

v
0x

oH ov
a—(E(t),Q(t),—)H §C<6(0)7”Q”oo»
a 0x -

By Lemma 3.1, there exists a unique solution m satisfying

am o2 3%m d
ot 2 dx 0x

and moreover we have Holder estimates (3.4) and (3.12). Now by Lemma 4.4 we can define

Q*(1) by

0% (1) = —/Aa— (e(r), 0* (1),
a

0

v

8_) dm(t), (B.24)
0x
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and combining (4.5), (4.6), (3.4) and (3.12), we have

ax

,Ilmoll,///a/z,d,a> (lvllczr +1). (B.25)

HOO

10* ]l e .7y = <e<0) 100 »

0
Setting f(x,t) =AH (e(t), 0*(1), 8—v>, we have, as in the proof of Lemma 4.13,
X

Jv
ox |, 1+ 0% gure + :

Thus, by Lemma B.1 there exists a unique solution u of

ov
ax

nfmwusc@gww

u o Uy . 0* (1), A 0, ulyeo =0, ul A (B.26)
rvs €l), sy 7| U=V, Ulx=0=Y, Ul;=T =AU .

or 2 ax? ox =0 ==

satisfying (B.21), which in this case can be written

lllgziarsarn < C (€01l IVl s Imol s - 0.t (B.27)

Then we set 7 (v, @, 1) = (u, Q*) € X. We need to show that 7 is continuous and compact.
Suppose {(vy, On, An)} is a sequence in X x [0, 1], and let (u,, Q}) =T (vy, On, A,). Note that
by (B.25) and (B.27), (u,, Q;) must have a subsequence converging to (1, Q*) € X, because
cralta/2 o ca/2 ig compactly embedded in C%1 x 0. We now show that if (v,, Qn, Ap) —
(v, Q, A), then (u, Q*) =T (v, Q, A). First let m, be the solution of (B.23) corresponding to
(vn, On, An). By Lemma 3.1 we have that m, is uniformly Holder in the d; metric, hence

oH
by passing to a subsequence it converges to some m in C ([0, T]; M1,+). Since 2a is lo-
a

oH oH v i
cally Lipschitz, we have that A,, v (e(t) 0,(1), ) — A 37 (e(t), o), 8_> uniformly.
a X

Combining these facts we deduce that m is really the solution to (B.23) and Q* is the solution
of (B.24). Finally, we deduce that u is really the solution to (B.26) by taking the corresponding
equation for u, and passing to the limit. We have thus proved that 7 is continuous and compact.

It remains to show there exists a constant C such that whenever T (1, Q*, 1) = (u, Q*), then

J@ 09y =c.

But this is a consequence of Lemmas 4.11 and 4.13, since AH and Aur satisfy all the same
estimates as H and ur. Now we can apply the Leray-Schauder fixed point theorem, which says
that there exists (#, Q*) such that 7 (u, Q*, 1) = (u, Q*). Letting m now be defined by solving
(4.8)(i1), we deduce that (u, m) solves the system (4.8). The regularity of this solution follows by
once more appealing to Lemmas 3.1 and 4.13. O
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Appendix C. Proof of the integral estimate used in Section 5

The following proof is more or less the same as that of [21, Lemma 2.1]. We include it for
completeness.

Proof of Lemma 5.7. Set h(t) = Bf () + g(t), so that (5.14) reads simply

ft) < Af(to) + /(n —)"2h(s)ds YO<ty<t; <to+$ (C.1)

fo
For arbitrary t > O letn = EJ Use (C.1) n + 1 times to get

n t—jé
@ =A™+ ) A / (t = j8 =) 2h(s)ds. (C2)

=0 =G+19),

where s := max{s, 0}. Note that

l‘_
t—(j+1)8<s§t—j8=>j={ SSJ

172
So we define ¢ (s) = (s — L%J 8) . Then (C.2) implies

t

f(t)<A6+1f(0)+Z f AT ¢(t—s)h(s)ds— 5+1f(0)+/A%¢(t—s)h(s)ds.
I=0—(j+1s) 0
(C.3)
Let A > %1n(A) and setk = A — % In(A) > 0. Multiply (C.3) by e/, then integrate from 0 to T
to get

T

T
/ Tf(ndr <= (0)+//e‘“<’—s>¢(t—s)e—“h(s)ds dr
0 0
T

t

0 (C.4)

—

T
= %f(o) +/ / e @ (t)e " h(s)dt ds.

We now observe that
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00 0 (n+1)8
/ eyt = / et —nd) V2 ar
0 n=0 5

)
- K(S/eﬂcttflﬂdt
0

(C.5)

Applying (C.5) to (C.4), we get

T T

—At 251/2
[ Faydr =20+ 2 i [ B0+ o) as

0 0

which implies (5.15). O
C.1. Proofs of results from Section 5.1
C.1.1. Proofs of results from Section 5.1.1

Proof of Proposition 5.1. Step 1: For a fixed x > 0 set z = d(x)/2. We have chosen z so that
x —y>zforall y € [0, z]. Integrate by parts n times to get

"u
Sy
Z . e ¢]
S -is GD) o
=] @ y”)”()(y)dwz oy =z 0ug @+ [ Sy, 0ug” () dy.
0 Z
Now multiply by z”":
a" 1 Z gn— j— IS
u
n P (x,t)= z/ (x — vy, Dug(y)dy +Zzn J Py (x —z, Z)Z]um(z)
0 j=0

o0

+/S(x —y,t)z"u(()”)(y) dy.

Z

By Corollary 3.6 and the fact that S(x — -, 7) is a density, we get
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n (n)
d"u

n—1
<malicollo +3 a1 |#/u”],+]
/:

Taking the supremum over all x, we get

0"u l e
’d" S| =20 [ malwolly+ Y ma-joa|dlul?| +|amug”| (C6)
0 =0
Step 2: We proceed similarly to estimate v, but first we define
y
Fouo)= [ fende.
0
By integration by parts we have
t oo
N
v(x,t) = 8—(x—y,t—s)F(y,s)dyds.
X
00
Calculating as before, we get
| gntlg
7" an()c t)—/ / nt PP (x—y,t—5)F(y,s)dyds
e 3 F r Tas
n—j ) = (x —
+/Zz Py (x—2z,t—9)z r] (Z,S)ds-i-/f ™ (x
o /=0 0z
(C7
Now applying Corollary 3.6 in (C.7), we get
t
"v —-1,2
o D) = (g +m) [ 97 sup [FGro)]ds
d 0<y<I
12) 4 o=t f
+]Zl/-mn ]U(t_s) 8]1(S)
0

Thus,
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B"v( "
axn

dn

0<y<1

t y
<2 (mn+1,g+mn,1)f(r—s>—”2 sup /f@,s)ds ds
0
0 0

no L ) 8j—1f
42 Y [ so-97 Pl TF ] e
0

j=1y

Step 3: Finally,

n n+1
d(x)" 27”’ (x,1) = —2/d(x)” O S et — () ds,

gxn+tl
0
By induction we can establish a formula
n+l
" tls LZJz‘ 1 1-2j
T (6D =500 > (@) ey T
Jj=0

where ¢, ; are coefficients defined recursively with respect to n. Multiply by x" to get, using
(3.5),

n+lg 12, 2.3/2 |x|2 2 x2 n=J
n_- = — - — v .
x ppES (x,1) =(Q2m) (o°t) " “xexp 292 E . Cntl,j P
J=

and thus

ntl
e'e! an+1S L 2 J o8] e Ve x2 n—j |x|2
n . _ 3 X _
/x ppnt D= X(:) |Cn+1,1|/(2n) @0 x| o) el
0 J= 0
Use the substitution 7 = - to get
UZS
00 n—j
’ bik
27) "2 (6 2) 732 X expi— dr
/( ) (O' ) X 02t P 2021
0
oo
:0—2/(2n)—1/2sn—j—1/2 exp {—%}ds .
0

We deduce that for some constant ¢,,, not depending on x,
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< n+1
n
2/ X W(X,[) dtfln,
0
and thus
" w
‘d" — 0| < sup [p(s)]. (C9)
ox 0 0<s<t

The estimates (C.6), (C.8), and (C.9) result in (5.6). O

Proof of Theorem 5.2. Define

o8]

up(x, 1) = / S(x =y, Duo(y)dy,
0

t o0
uz(x,t)=//S(x—y,t—s)f(y,s)dyds,
0 0

t

as
uz(x,t) = —2] — (x,t—5) (1//(5) —u1(0,s) — u2(0,s)) ds.

ax
0
Then by classical arguments (cf. [29, Section IV.1]) we see that u = u| 4 uy + u3 is a solution to

(5.7). By the maximum principle, this solution is unique.
By Proposition 5.1, we have

lur . 0)|, < Malluoll,
t
Jual, <M 6= 2Ll as .10
0
lwC. 0, <M, sup ¥ (5) —u1(0,s) — u2(0, 5)] .
<s<t

It also follows from Proposition 5.1 that

sup [u1(0,5)| < Mylluoll, ,

0<s<t
N

sup [u2(0,9)| < sup M, [ (s =52 FC, 8N
0

0<s<t O<s<t

&
n—1,1

ds’ =2M,1'/* sup ||f(-,s)||z_1 |-
0<s<t ’
(C.11)
Combining (C.10) and (C.11), then modifying the constant M,,, we deduce (5.8). O
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C.1.2. Proofs of results from Section 5.1.2

Let (u, m) be the solution to the finite or infinite time-horizon problem, i.e. to System (4.8)
or (1.6). For a finite time-horizon we assume u(x, T) = ur (x) satisfies Assumption 4.8. In ad-
dition, we will impose that ||ur||cn < C, foreachn=1,2,.... (For n = 1, 2, this is not a new
assumption. For larger n, it is always possible to impose this restriction at the same time as
Assumption 4.8.) We again take Assumption 4.7, and we denote € = €(0).

If H is n + 1 times differentiable, then, under Assumption 4.18, by Corollary 4.2 we have

aZ-HH

W(E,Q,a)

5 <oo V¢<n, (C.12)

Cp = max_
0=é=<e,0=0=<0.0<a<M

where Q is given by (4.19), M is given in Lemma 4.10, and ¢; is the constant from Assump-
tion 4.8 and can be made arbitrarily small. In particular, by Corollary 4.6, we have that Cy can
be made arbitrarily close to Q. By the a priori bounds proved in Section 4 (see Theorem 4.16),
we have the following point-wise bound:

attlH du
S \ & 0% (1), —
da ax

Proposition C.1. Let (u, m) be the solution to the mean field games system on a finite or infinite
time horizon T, i.e. either of System (4.8) or (1.6). Suppose (5.9) holds. Then for any n such that
H is n + 1 times differentiable, we have

< Cy.

0
sup | om (1) < Bu(r) (C.13)
refo,71 90X n
where B, (r) is a decreasing function of r that depends on the constants Cy for £ =0,1,...,n.

Proof. Assume first that (u#, m) solves the finite horizon problem. We proceed by induction. In
the first step we prove the base case n = 1, and in the second step we prove the inductive step.
In the final step we extend the result to the infinite-horizon case. Note that, by taking ¢, small
enough in (C.12), the condition (5.9) implies

r > max l(ZCOMn)Z, 1} In(2M,).

Step 1: Define

re OU re 0 < < * du ))
wx,H)=e" —x, T—1), fx,n)=e —|H|eT—-1),0T—-0,—T-1])].
0x 0x 0x

Then w satisfies

ow _ o2 9%w

E—;w‘i‘f(x,l).
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We first calculate

ff(y,t)dy

(e(T—t)Q(T—t) (xT—t)> (e(T—t)Q(T—t) (OT—t))‘

<2¢""H(0,0,0),

(C.14)
using the fact that H is decreasing in all its variables (Lemma 4.1). Next, since
e B ) F
we have
|d(x) f(x,0)| < Col|w(-. D), (C.15)

By (C.14) and (C.15), we deduce
| £C0g, < Co w0, +2¢ H(©,0,0).

We also know that |w(O, t)| < Me". Now we apply Theorem 5.2 to get

lwC. 0|, <M (Hw(-,to)Hl +(t—10)"Co sup |w(-, )], +A1e”)
to<s<t

forall 0 <y <t <ty+ 1, where
A1:=2H(0,0,0)+ M,

which can be made arbitrarily close to 2H (0, 0, 0) 4+ M. Set § = min {(ZCOMl )72, 1}. Then for
any 0 <ty <t <tp+ 4, we deduce

sup w9, =201 (Jwc, )], +Are). (C.16)

to<s<t

By using (C.16) repeatedly, we deduce
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i)
|Jwi, ), < <2M1>M“Hw<-,0) [+ eM)/ T At
j=0
1= @ayerny 0
1 —2Me~"3

= (2M1)BJ+1H1/T”1 +2M A€

We use the assumption

In(2M))
> — =

; ax [(2C0M1)2, 1} In(2M))

and divide by "’ to deduce

2M1 A

<2M
<2Millurl + 1 — 2Mye—r@CoM) 2

H—( T—1)

1

and since ||u’T ||1 <llurllez < C, we deduce

2M Ay
1 —2M e~ 2CoM)~?

<2M,C, +

2 t) =:B1(r),

sup

1€[0,T] ax

which is the base case.

Step 2: Suppose for now that (C.13) holds for n — 1; we will prove it holds for n. By using
the chain and product rules, we have

am-lf o O . du
o= — | H 6(T—t),Q(T—t),—(x,T—t)>
X X 0x

oxm— oxm
m_l Z_l . .
ki — 1\ oki—kj+1+1y ket
:er[ Z <] )7()(? T—t)—(x T_[)
i kji—kji1+1 Y77 ol K
=0 1<k¢<k¢—y<---<ki<ko=m j=0 k/+1 oxti TR+ oxke
gl+1 (T —1). O*(T — 1) au T —1) v X
* et O T —bD oL m=1,...,n,
dat+l o

where we interpret an empty product as equal to 1. Then using Equation (C.12) we have

m—lf
d" () o= (| =
(S = kj—1 gkj—kjrit+ly, gketly,
o1 ; 1<k/<2;kong Jl_!)(kjo )d(x)kj—kj+1 P o, T—0d(x)" —— SR Y. T—1)

_u (., T—t)

x(T) 0x

0

< Colwe. ], +€”mi > Celﬁ<kj~_l>‘

t=1 1<ky<--<ko=m  j=0 ki1 kj—kj+1 ke
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We deduce that there exists some constant A, (r), depending only on Cy and By (r) for £ <n — 1
as well as the constant appearing in estimate (C.14), such that

[£C0lh = Colwe. D], + (An@r) = M)e".

Since By (r) is decreasing with respect to r for £ <n — 1, the same holds for A, (r). We apply
Theorem 5.2 again to get

lwC. 0, < M, (nw(-,ro)u,, +(t - to)l/zcotsupt||w(ns)||n + An<r)e”>
0=s=<

forall 0 <ty <t <19+ 1. We will now use the assumption (5.9), and the exactly same argument
as before yields

2M, Ay (r)

<2M,C.
nCnt1t+ 1 — 2M, e~ (2CoMu)~>

—( t)

sup =: B, (r).

1e[0,T]

Since A, (r) is decreasing with respect to r, so is B, (r).

For the infinite horizon case, if (u”, m?) denotes the solution to the finite time-horizon prob-
lem, then its limit as 7 — oo is the solution (u,m) to System (1.6). We deduce that (u, m)
satisfies (C.13), with [0, T'] replaced by [O, 00). O

As a corollary, we derive (5.10) and (5.11). To prove (5.10), observe that

o (0H ([ .  ou
X ) t [P ’t
ax" (811 (E Q'™ ax * )>)
akj—kj+1+lu ak[-‘rl

kj—1
_Z > ]_[( ) ST D) 8xk€+bf (x,1)

=0 1<ky <--<kj <kg=n j=0 kj+1
Ot (e 04, 2 e
X €, s — X, )
datt? x

so that

LY . du
d(x) 9xn (% (6’ Q (t)7 a (xvt)>>

n—1 —1 ki —1
> r oaal(}
':O Jj+

=0 1<ky<---<ky<ko=n

RS> cmn( -

=0 1 <kg<-<ky <ko=n ks
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Thus (5.10) follows from (C.13). The proof of (5.11) is similar: use the formulas (B.3) and (B.4),
taking successive derivatives and applying Equation (5.10).
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