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Abstract

We establish the existence and uniqueness of a solution to the master equation for a mean field game

of controls with absorption. The mean field game arises as a continuum limit of a dynamic game of ex-

haustible resources modeling Cournot competition between producers. The proof relies on an analysis of a

forward-backward system of nonlocal Hamilton-Jacobi/Fokker-Planck equations with Dirichlet boundary

conditions. In particular, we establish new a priori estimates to prove that solutions are differentiable with

respect to the initial measure.
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1. Introduction

In [26], the authors introduced a dynamic game of exhaustible resource production model-

ing Cournot competition between producers of a good in finite supply, for instance oil, whose

Markov perfect (Nash) equilibrium was characterized there by a system of coupled nonlinear

PDEs. This built on the influential continuous-time study of the monopoly (single-player) ver-

sion of the problem by Hotelling from 1931 [27]. By Cournot competition, we mean that the

2
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decision or control variable of the players is their quantity (or rate) of production, the market

price or prices of the goods being determined by a decreasing function of the aggregate (or

average) production.

When the goods each player produces are homogeneous, there is a single price p of the good

which depends, in the Cournot framework, on the average 1
N

∑N
j qj , where qj ≥ 0 is player j ’s

quantity, and there are N < ∞ players. When the goods are substitutable, for instance oil of

different grades from different suppliers, or consumer goods such as televisions, a typical model

has that the price pi that producer i receives for its good depends in a decreasing manner on

qi + ǫ
N−1

∑
j 6=i qj . That is, its price is influenced by the average of the other players’ quantities

(thereby viewing them as exchangeable), where ǫ > 0 measures the degree of interaction. A

dynamic exhaustible resources problem in this case is analyzed in [31].

Mean field games, in which there is a continuum of players, have been much-studied in the

past 15 years. We refer, for instance, to [1] and [8], for surveys from PDE and probabilistic

perspectives respectively. In the context of the Cournot model, the homogeneous goods case leads

to a continuum approximation model whose optimal strategies are of (unrealistic) bang-bang

type: the players either produce nothing or as quickly as possible. The substitutable goods case

has a more reasonable mean field game model, as studied in [10] and [11]. As mean field games

of control, and because the state variable is absorbed at zero (exhaustion of the resource), they

differ from the vast majority of problems studied in the literature where interaction is through

the mean of the state variable, which lives on the full space. Rigorous existence results are thus

more recent and under various restrictions, for instance [19,22,23,20]. We refer the reader to

[7,17,18,28] for benchmark results on mean field games of controls.

There has been much recent interest in describing mean field games through a Master Equa-

tion [4,2,9]. The study of such equations now has a large body of literature, going back to

such works as [15,12]. Again the existing results in the literature concern mean field interac-

tion through the state. See the recent results found in [13,14,32,33]. As for boundary conditions,

most references contain results only for master equations on the whole space or with periodic

boundary conditions. See, however, the recent work by Ricciardi for Neumann boundary con-

ditions [35]. Here we introduce and analyze the Master Equation of Cournot mean field games

of control with absorption. Our main result is the existence and uniqueness of a classical solu-

tion.

Once one has a unique classical solution to the master equation, a natural application is to

the convergence problem for N -player games corresponding to a mean field game. Using the

arguments of [4, Chapter 6], one can hope to obtain estimates that prove the closed-loop Nash

equilibrium strategies for N -player games converge to the mean field equilibrium strategy. In our

case, the infinite time horizon, the dependence of the dynamics on the distribution of controls,

and especially the absorbing boundary conditions add technical obstacles to a straightforward

application of the arguments found in [4]. We leave this application to future research.

In the rest of this section, we introduce the main notation needed and give our main results. In

Section 1.1, we give the precise description of the Cournot model as a mean field game and write

the corresponding master equation. In Section 1.3, we define a metric on the space of measures

and introduce a notion of derivative for functions defined on this space. In Section 1.4, we give

the definition of a solution to the master equation and present Theorem 1.5, which gives precise

conditions under which a unique solution exists. Finally, in Section 1.5 we present the outline of

the rest of the paper, which is devoted to the proof of Theorem 1.5.

3
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1.1. Description of the model

Let P :
[
0,∞)→ R be a given price function, satisfying the following:

Assumption 1.1. P is continuous on
[
0,∞) with P(0) > 0. For some n ≥ 4, P is n times

continuously differentiable on (0,∞), P (n) is locally Lipschitz, and P ′ < 0. In addition,

lim supq→0+ P
′(q) is strictly less than zero (it could be −∞), and there exists a finite saturation

point η > 0 such that P(η)= 0.

The profit function π :
[
0,∞)

4 → R for an individual producer is given by

π(ǫ, q,Q,a)=
{
q
(
P(ǫQ+ q)− a

)
if q > 0,

0 if q = 0.

Here q is the rate of production chosen by the producer, Q is the market’s aggregate rate of

production, a is the marginal cost of production, and ǫ ≥ 0 is a fixed parameter that determines

the substitutability of goods.

It will be convenient to define the relative prudence

ρ(Q) := −QP
′′(Q)

P ′(Q)

Notice that by Assumption 1.1, ρ is continuously differentiable on (0,∞). If, for example, we

take P ′(q)= −q−ρ for some fixed ρ ∈ R (cf. [26]), then ρ(Q)= ρ (constant relative prudence).

Assumption 1.2 (Relative prudence). We assume

ρ̄ := sup
Q∈(0,∞)

ρ(Q) <
2 + ǫ

1 + ǫ
≤ 2.

Assumptions 1.1 and 1.2 guarantee a Hamiltonian of the following continuous time game is

well-defined.

In the finite N -player differential game introduced in [26], each player i has remaining stock

(or reserves) xi(t) at time t ≥ 0 and we denote by q̄i(t) ≥ 0 their chosen rate of production, so

xi(t) satisfies the stochastic differential equation

dxi(t)=
(
−q̄i(t)dt + σ dWi(t)

)
I{xi (t)>0

},

where eachWi(t) is an independent standard Brownian motion representing, for instance, uncer-

tainty in the extraction process. The producers start with initial (t = 0) reserves x ∈ R
N
+ and each

maximizes expected discounted lifetime profit. The value function ui : R
N
+ → R of player i is

given by

ui(x)= sup
q̄i

E

τi∫

0

e−rtπ
(
ǫ, q̄i(t), Q̄−i(t),0

)
dt, (1.1)

4
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where τi is the first time xi hits (and is absorbed at) zero, r ≥ 0 is the common discount rate on

future profits, Q̄−i(t) is the mean production rate of the other producers:

Q̄−i(t)=
1

N − 1

∑

j 6=i
q̄j (t),

and we assume for simplicity that marginal costs of production are zero.

The Hamilton-Jacobi-Bellman equation corresponding to each player’s optimal control prob-

lem in (1.1) is as follows. Define

H(ǫ,Q,a) := sup
q≥0

π(ǫ, q,Q,a) from which it follows

argmaxq≥0 π(ǫ, q,Q,a)= −∂H
∂a

(ǫ,Q,a).

In a Markov perfect (Nash) equilibrium of the N -player differential game the associated system

of Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs) for the value functions

is

H

(
ǫ, Q̄∗

−i(x),
∂ui

∂xi

)
+
∑

j 6=i

∂H

∂a

(
ǫ, Q̄∗

−j (x),
∂uj

∂xj

)
∂ui

∂xj
− rui +

σ 2

2

N∑

j=1

∂2ui

∂x2
j

= 0, (1.2)

coupled with

Q̄∗
−i(x)= − 1

N − 1

∑

j 6=i

∂H

∂a

(
ǫ, Q̄∗

−j (x),
∂uj

∂xj

)
.

See [26, Equation (3.4)]; here we have additional diffusion terms due to the Brownian noise in

the dynamics.

The mean field game (MFG) version of this problem, corresponding to a continuum of players

with density of initial reserves m was introduced in [10] and further studied in [11], where it is

characterized by two PDEs and a fixed point condition (which are given here in Section 1.5). An

explicit solution of the deterministic MFG (σ = 0) when the price function P is linear is given

in [24].

We next introduce the master equation formulation of this MFG.

1.2. Master equation heuristics

Let m be a measure representing the initial distribution of stock over all producers. Let

U(x,m) be the maximum discounted lifetime profit for an individual producer that starts with

a stock of x. If we assume that U is smooth with respect to both variables (see Definition 1.3

below for derivatives in the space of measures), then U will satisfy

5
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H

(
ǫ,Q∗,

∂U

∂x
(m,x)

)
+
∫

D

∂H

∂a

(
ǫ,Q∗,

∂U

∂x
(m,y)

)
∂

∂y

δU

δm
(m,x, y)dm(y)− rU(m,x)

+ σ 2

2



∂2U

∂x2
(m,x)+

∫

D

∂2

∂y2

δU

δm
(m,x, y)dm(y)


= 0, (1.3)

where Q∗ is defined as the unique fixed solution of the equation

Q∗ = −
∫

D

∂H

∂a

(
ǫ,Q∗,

∂U

∂x
(m,y)

)
dm(y). (1.4)

Equation (1.3) is called the master equation.

Formally, the master equation can be derived from the system of Hamilton-Jacobi-Bellman

(HJB) equations (1.2) for the N -player game. Letting N → ∞, we formally interpret each sum

as an integral with respect to the population distribution. See [4,9] for a detailed interpretation of

the master equation.

1.3. Metric and derivative on a space of measures

Before we can state our main result, we will need to define a notion of derivative with respect

to a measure. Let M = M(D) be the space of all finite signed Radon measures µ on D. We

denote by M+ the subset of M consisting only of positive measures. The topology on M is

that of narrow convergence. We say that a sequence {µn} in M converges narrowly if for every

bounded continuous function φ on D, we have

∫

D

φ(x)dµn(x)→
∫

D

φ(x)dµ(x).

We now introduce the derivative on M(D).

Definition 1.3 (Differentiability with respect to measures). Let M be any dense subset of M+.

Given a function F : M → R, we say that F is continuously differentiable if there exists a

continuous function f : M ×D → R, satisfying

∣∣f (m,x)
∣∣≤ C(m) ∀x ∈ D

for some constant C(m), such that

lim
t→0+

F
(
m+ t (m̂−m)

)
− F(m)

t
=
∫

D

f (m,x)d(m̂−m)(x) ∀m,m̂ ∈ M . (1.5)

The function f (m,x) is unique, and we denote it f (m,x)= δF

δm
(m,x).

6
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Definition 1.3 is essentially the classical Gâteaux derivative, though we only take m,m̂ from

the convex subset M of the vector space M. Uniqueness follows from the fact that the measure

m̂−m in (1.5) can be taken to be an essentially arbitrary positive measure (by density of M in

M+); contrast with the situation in which m,m̂ must be probability measures (cf. [4]).

1.4. Statement of the main result

To state our main result, we will first define a set of measures on which the master equation

(1.3) is supposed to hold. Fix α ∈ (0,1) and let M2+α denote the set of all positive measures m

on D = (0,∞) satisfying the condition

∫

D

x−2−α dm(x) <∞.

Definition 1.4. We say that a function U :D×M2+α → R is a (classical) solution of the master

equation (1.3)-(1.4) with absorbing boundary conditions provided it satisfies the following:

(1) U(0,m)= 0 for every m ∈M2+α ;

(2) U and
δU

δm
are twice continuously differentiable with respect to x;

(3) for every m ∈M2+α and x > 0, Equation (1.3) is satisfied.

The Dirichlet boundary condition U(0,m)= 0 is an absorbing type boundary condition, rep-

resenting the fact that players exit the game as they run out of resources (cf. [10,25]). Theorem 1.5

is the first result, as far as we know, on the Master Equation with boundary conditions of this type.

Our main result in this paper is as follows.

Theorem 1.5. Under Assumptions 1.1 and 1.2, the following assertions hold.

(1) There exist constants r∗ > 0 (large) and ǫ∗ > 0 (small) such that whenever r ≥ r∗ and

0 < ǫ ≤ ǫ∗, the master equation (1.3) has a solution, which is unique under the condition

(6.7) (cf. Section 5.5).

(2) If P is linear, and in particular if (without loss of generality) P(q)= 1 − q , then there exists

a constant r∗ such that for every r ≥ r∗ and ǫ < 2, the master equation (1.3) has a solution,

which is unique under the condition (6.7) (cf. Section 5.5).

Remark 1.6. The precise conditions on r∗ and ǫ∗ in Theorem 1.5 are contained in Assump-

tions 5.26 and 5.27. Although these two conditions are essentially in dichotomy, nevertheless in

this paper we make an attempt to utilize as much as possible a unified method of proof for both

cases. See Remark 4.17 for more details.

1.5. Structure of the proof

In a generalized sense, we use the method of characteristics to solve the master equation

(1.3)-(1.4). Consider the HJB/Fokker-Planck system

7
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



(i)
∂u

∂t
+ σ 2

2

∂2u

∂x2
+H

(
ǫ,Q∗(t),

∂u

∂x

)
− ru= 0,

(ii)
∂m

∂t
− σ 2

2

∂2m

∂x2
+ ∂

∂x

(
∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x

)
m

)
= 0,

(iii) Q∗(t)= −
∫

D

∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x

)
dm(t),

(iv) m|x=0 = u|x=0 = 0, m|t=0 =m0 ∈M+(D)

(1.6)

where D := (0,∞). We can think of System (1.6) as the characteristics of Equation (1.3). Indeed,

suppose U is a smooth solution to (1.3) and (u,m) is a smooth solution to (1.6). Then formally

the two are related by the equation u(x, t)= U(x,m(t)), and in particular U(x,m0)= u(x,0).

In the proof of our main result, our strategy will be to define a function U in this way, then prove

that it satisfies (1.3). To do this, we follow these steps:

(1) Prove that (1.6) has a unique solution (u,m) for any m0 ∈Mα . Define U(x,m0)= u(x,0).

(2) Prove that U is differentiable with respect to the measure variable m0:

(a) Formally differentiate (1.6) with respect to the measure variable to obtain a linearized

system.

(b) Prove that the linearized system has a unique solution.

(c) Prove that the unique solution thus obtained is indeed the derivative of U with respect to

the measure.

(3) Use the smoothness of U to establish that System (1.3)-(1.4) is satisfied.

The remainder of this paper is structured as follows. In Section 2 we establish notation and de-

fine function spaces as needed. In Section 3 we study the Fokker-Planck equation with absorbing

boundary conditions and establish some results that allow us to prove existence of solutions to

System (1.6); they may also have independent interest. In Section 4 we present existence, unique-

ness, and regularity results on System (1.6). Section 5 is the core this paper, in which we derive

all of the a priori estimates on linearized systems that will allow us to prove differentiability of

the master field U(x,m). Here the reader will find some parallels with a recent work by Graber

and Laurel that also deals with linearized systems in order to analyze sensitivity of solutions to

the parameter ǫ [21]. In the present work, the analysis is considerably more sophisticated because

we are taking derivatives with respect to a measure and not a scalar parameter; this requires es-

timates on a linearized system in appropriate norms, in particular dual spaces that introduce a

great deal of technicalities. The main result is proved in Section 6, essentially as a corollary of

Section 5. Proofs of some technical results are left in the appendix.

2. Preliminaries

2.1. Function spaces

Let D = (0,∞). For n ∈ N , we denote by Cn = Cn(D) the space of all n times continuously

differentiable functions on D such that the norm

∥∥f
∥∥
Cn(D)

=
n∑

k=0

sup
x∈D

∣∣∣∣∣
dkf

dxk
(x)

∣∣∣∣∣

8
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is finite; Cn(D) is a Banach space endowed with this norm. In particular, C0(D) is simply the

space of all continuous functions, endowed with the supremum norm. We denote by Cnc = Cnc (D)

the space of all n times continuously differentiable functions which have compact support

contained in D; this is a subspace of Cn(D), and Cn0 (D) denotes its closure. We also denote

C∞
c (D)= ∩∞

n=1C
n
c (D).

For any α ∈ (0,1), define the Hölder seminorm

[f ]α := sup
x,y∈D,x 6=y

∣∣f (x)− f (y)
∣∣

∣∣x − y
∣∣α .

Define Cn+α = Cn+α(D) to be the space of all n times continuously differentiable functions f

whose nth derivative is Hölder continuous, such that the norm

∥∥f
∥∥
Cn+α(D) =

∥∥f
∥∥
Cn(D)

+
[

dnf

dxn

]

α

is finite. In particular, when n= 0 the space Cα(D) is simply the space of all α-Hölder continuous

functions with standard norm. We define Cα⋄ = Cα⋄ (D) to be the space of all f ∈ Cα(D) such that

f (0)= 0.

When α = 1, the quantity [f ]α defined above is referred to as the Lipschitz constant of f ,

denoted Lip(f ) instead of [f ]1. We define Lip(D) to be the space of all Lipschitz continuous

functions on D, with norm

∥∥f
∥∥

Lip(D)
=
∥∥f
∥∥
C0 + Lip(f ),

and the subspace Lip⋄(D) the set of all f ∈ Lip(D) such that f (0)= 0.

We now define Hölder spaces of functions on space-time. Let I = [0, T ] or I =
[
0,∞). For

any number β ≥ 0 we define the space Cβ,0(D × I ) to be the set of all functions u : D × I → R

such that the following norm is finite:

‖u‖Cβ,0 =‖u‖
Cβ,0(D×I ) := sup

t∈I

∥∥u(·, t)
∥∥
Cβ (D)

.

For any α ∈ (0,1) define

[u]α,α/2 := sup
x,y∈D,t,s∈I,x 6=y,t 6=s

∣∣u(x, t)− u(y, s)
∣∣

∣∣x − y
∣∣α +|t − s|α/2

.

We denote by Cα,α/2(D × I ) the subspace of C0,0(D × I ) such that the norm

‖u‖
Cα,α/2(D×I ) :=‖u‖

C0,0(D×I ) + [u]α,α/2

is finite. The space C2,1(D × I ) consists of functions such that

‖u‖
C2,1(D×I ) :=‖u‖

C0,0(D×I ) +
∥∥∥∥
∂u

∂x

∥∥∥∥
C0,0(D×I )

+
∥∥∥∥∥
∂2u

∂x2

∥∥∥∥∥
C0,0(D×I )

+
∥∥∥∥
∂u

∂t

∥∥∥∥
C0,0(D×I )

9



ARTICLE IN PRESS
JID:YJDEQ AID:11744 /FLA [m1+; v1.357] P.10 (1-94)

P.J. Graber and R. Sircar Journal of Differential Equations ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

is finite, and the subspace C2+α,1+α/2(D × I ) such that

‖u‖
C2+α,1+α/2(D×I ) :=‖u‖

C2,1(D×I ) +
[
∂2u

∂x2

]

α,α/2

+
[
∂u

∂t

]

α,α/2

is finite. Cf. [29, Section 1.1]. Note that there exist constants Cα such that

‖u‖
C2+α,1+α/2(D×I ) ≤ Cα


‖u‖

C0,0(D×I ) +
[
∂2u

∂x2

]

α,α/2

+
[
∂u

∂t

]

α,α/2


 .

We define the Lebesgue spaces Lp in the usual way, and we write the norms
∥∥f
∥∥
p

=
∥∥f
∥∥
Lp

interchangeably.

2.2. Norms on the space of measures

We define the total variation norm
∥∥µ
∥∥
T V

=
∣∣µ
∣∣ (D), which can also be expressed as

∥∥µ
∥∥
T V

= sup





∫

D

φ(x)dµ(x) : φ ∈ C0(D),
∥∥φ
∥∥
C0 ≤ 1




.

Under this norm, M becomes a Banach space. On the other hand, it is not necessary to converge

in this norm in order to converge narrowly. For this it suffices to consider M as a subspace of

the dual of Cα⋄ , with norm

∥∥µ
∥∥(

Cα⋄
)∗ = sup





∫

D

φ(x)dµ(x) : φ ∈ Cα⋄ (D),
∥∥φ
∥∥
Cα

≤ 1




.

We may also replace Cα⋄ with Lip⋄.

Lemma 2.1. Let {µn} be a sequence in M. If
∥∥µn

∥∥
T V

is bounded, if
∥∥µn −µ

∥∥(
Cα⋄
)∗ → 0, and if

µn(D)→ µ(D), then µn converges narrowly to µ.

Proof. Let φ be a bounded, continuous function on D, and let ε > 0. Choose ψ ∈ Cα⋄ such that∥∥φ − φ(0)−ψ
∥∥
C0 < ε. Then

∣∣∣∣∣∣∣

∫

D

φ d(µn −µ)

∣∣∣∣∣∣∣
≤ ε

(∥∥µn
∥∥
T V

+
∥∥µ
∥∥
T V

)
+
∣∣φ(0)

∣∣∣∣µn(D)−µ(D)
∣∣+

∣∣∣∣∣∣∣

∫

D

ψ d(µn −µ)

∣∣∣∣∣∣∣
.

Using the fact that
∥∥µn

∥∥
T V

is bounded, we let n→ ∞ and then ε→ 0 to conclude. 2

10
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2.3. Remark on constants

Throughout this manuscript, C will denote a generic positive constant, whose precise value

may change from line to line. When C depends on the data from the problem, will attempt to

specify all the parameters on which C depends. In particular, we may write C(a1, . . . , an) to

denote a positive number which depends on given parameters a1, . . . , an. When no parameters

are specified, this means C depends only on the number of steps in the proof (and is generally an

increasing function thereof).

3. Fokker-Planck equation with absorbing boundary conditions

Recall D := (0,∞). In this section we study weak solutions to a Fokker-Planck equation with

Dirichlet boundary conditions:





∂m

∂t
− σ 2

2

∂2m

∂x2
− ∂

∂x
(bm)= 0,

m|x=0 = 0, m|t=0 =m0

(3.1)

for a given velocity function b= b(x, t). We want an interpretation of (3.1) that makes sense for

any m0 ∈ M(D). Thus we say that m ∈ C0
(
[0, T ];M(D)

)
is a weak solution of (3.1) provided

that, for all φ ∈ C∞
c (D ×

[
0, T )), we have

T∫

0

∫

D

(
− ∂φ

∂t
− σ 2

2

∂2φ

∂x2
+ b

∂φ

∂x

)
m(dx, t)dt =

∫

D

φ(x,0)m0(dx). (3.2)

Our main existence/uniqueness result is contained in the following lemma. Its proof is fairly

standard and is found in Appendix A.

Lemma 3.1. Let b be a bounded continuous function on D × [0, T ], and let m0 ∈ M1,+(D).
Then there exists a unique weak solution m of (3.1). It satisfies

∥∥m(t)
∥∥
T V

≤‖m0‖T V ∀t ≥ 0. (3.3)

It is also Hölder continuous with respect to the Cα⋄ (D)
∗ and Lip⋄(D)

∗ metrics, and in particular

∥∥m(t)
∥∥
Cα⋄ (D)∗

≤‖m0‖T V



∫

D

xαm0(dx)+ 2
(
‖b‖α∞ + σ α

)
max

{
tα, tα/2

}



∥∥m(t1)−m(t2)
∥∥
Cα⋄ (D)∗

≤ 2‖m0‖T V
(
‖b‖α∞ + σ α

)
|t1 − t2|α/2 ∀t1, t2 ≥ 0 s.t. |t1 − t2| ≤ 1,

(3.4)

where for α = 1 we replace C1
⋄(D)

∗ with Lip⋄(D)
∗. Its total mass function η(t) is continuous

and decreasing on [0, T ].

Lemma 3.1 has the following straightforward corollary, whose proof we omit.

11
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Corollary 3.2. Let b be a bounded continuous function on D × [0, T ], let m0 ∈ M1(D), and

let m+
0 and m−

0 denote the positive and negative parts, respectively, of m0. Then there exists a

unique weak solution m of (3.1), whose positive part m+ is precisely the solution of (3.1) with

m0 replaced by m+
0 , and whose negative part m− is the solution of (3.1) with m0 replaced by

m−
0 . The estimates (3.4) still hold, with m0 replaced by |m0|.

3.1. The mass function

Let m be a weak solution to (3.1). We define the total mass function η : [0, T ] → R by

η(t) :=
∫

D

m(dx, t).

Notice that η is in general not constant. Since the equations in System (1.6) depend on η, we

are motivated to study the regularity of η as a function of time, and in particular we would like

to know when it is Hölder continuous in order to establish the existence of classical solutions

to the system. Note that it is insufficient to know how regular it is only for t away from zero,

because the behavior of the population mass as t → 0 influences the regularity of solutions to the

backward-in-time Hamilton-Jacobi equation.

As a first step, we analyze the case where b = 0, so that (3.1) reduces to the heat equation

with absorbing boundary conditions. Our goal is to determine whether the heat semigroup itself

produces a Hölder continuous flow of total population mass. Recall that the heat kernel is given

by

S(x, t)= (2σ 2πt)−1/2 exp

{
− x2

2σ 2t

}
(3.5)

and that the solution of the heat equation with absorbing boundary condition at x = 0

∂m

∂t
= σ 2

2

∂2m

∂x2
, m|t=0 =m0, m|x=0 = 0 (3.6)

is given by

m(x, t)=
∫

D

(
S(x − y, t)− S(x + y, t)

)
m0(dy). (3.7)

For a measure m0 ∈M(D) the corresponding mass function generated by the heat equation is

ηh[m0](t) :=
∫

D

∫

D

(
S(x − y, t)− S(x + y, t)

)
m0(dy)dx. (3.8)

By Fubini’s theorem, one can reverse the order of integration in (3.8) and then write ηh[m](t)
explicitly in terms of the cdf of m:

12
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ηh[m0](t)=
2√

2σ 2π

∞∫

0

exp

{
− x2

2σ 2

}
m0

((
t1/2x,∞

))
dx.

To the question, “Is ηh[m0](·) Hölder continuous on [0, T ] for every measure m0 ∈ M(D)?”

the answer is a straightforward “no,” as the following example shows.

Example 3.3. Define m as a density

m(x)= 1

x(lnx)2
I(0,e−1)(x).

Note that m is a probability density on D with cdf

F(x)=
x∫

0

m(s)ds = − 1

lnx
I(0,e−1)(x)+ I[e−1,∞

)(x).

Assume that ηh[m](·) is α-Hölder continuous on [0, T ] for some α ∈ (0,1). Then there exists a

constant C such that

1 − ηh[m](s)= 2√
2σ 2π

∞∫

0

F(
√
sx)e

− x2

2σ2 dx ≤ Csα ∀s > 0,

and so, by Fatou’s Lemma,

2√
2σ 2π

∞∫

0

lim inf
s→0+

s−αF(
√
sx)

− x2

2σ2 dx ≤ C.

But for any x > 0, we have

lim
s→0+

s−αF(
√
sx)= lim

s→0+
−1

sα ln(
√
sx)

= +∞.

This is a contradiction.

For 0 < α < 1 we define Mα(D) to be the space of all m ∈ M(D) on D such that ηh[m] ∈
Cα
([

0,∞)
)

, with norm

‖m‖Mα
=
∥∥∥ηh[m]

∥∥∥
Cα
([

0,∞)
) +‖m‖T V .

It is straightforward to see that Mα is a Banach space. The heat equation (3.6) generates a semi-

group of contractions on Mα . Indeed, let m(t) denote the (measure-valued) solution at time t .

First we deduce
∥∥m(t)

∥∥
T V

≤‖m0‖T V by integrating (3.7). Moreover, by the semigroup property

13
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(i.e. by uniqueness of solutions to the heat equation) we have ηh[m(t)](s) = ηh[m0](t + s), so

that

∥∥∥ηh[m(t)]
∥∥∥
Cα
([

0,∞)
) =

∥∥∥ηh[m0](t + ·)
∥∥∥
Cα
([

0,∞)
) ≤

∥∥∥ηh[m0]
∥∥∥
Cα
([

0,∞)
) ∀t ≥ 0.

Example 3.3 shows that measures which have a steep concentration of mass near 0 will fail

to be in Mα . We now show prove that the converse is true, i.e. an estimate on the concentration

of mass near zero will guarantee inclusion in Mα . For any α > 0, denote by Mα the set of all

m ∈M satisfying

∫

D

|x|−α d|m| (x) <∞. (3.9)

For instance, Mα contains all finite measures with support in [z,∞) for some z > 0. In particular,

Mα is dense in M. If we endow Mα with the norm

‖m‖Mα =‖m‖T V +
∫

D

|x|−α d|m| (x)=
∫

D

(
1 +|x|−α

)
d|m| (x),

then it is straightforward to see that Mα is a Banach space. We will also denote Mα
+ = Mα ∩

M+, i.e. the set of all positive measures such that (3.9) holds.

Proposition 3.4. Let α ∈ (0,2). Then Mα ⊂ Mα/2, and there exists a constant C(α) such that

‖m‖Mα/2
≤ C(α)‖m‖Mα ∀m ∈Mα.

In particular, Mα/2 is dense in M.

Proof. We can write

ηh[m](t)=
∫

D

f (y, t)m0(dy),

where

f (y, t)=
∞∫

0

(
S(x − y, t)− S(x + y, t)

)
dx.

We observe that

∂f

∂t
(y, t)=

∞∫

0

(
∂S

∂t
(x − y, t)− ∂S

∂t
(x + y, t)

)
dx

14
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= σ 2

2

∞∫

0

(
∂2S

∂x2
(x − y, t)− ∂2S

∂x2
(x + y, t)

)
dx

= −σ 2 ∂S

∂x
(y, t)= y√

2σ 2πt3/2
e
− y2

2σ2 t .

Let p ≥ 1, y > 1. By a change of variables s = y2/t , we deduce




∞∫

0

∣∣ft (y, s)
∣∣p ds




1/p

= C(p)y−2/p′
, p′ := p/(p− 1).

Therefore

∣∣f (y, t1)− f (y, t2)
∣∣≤ C(p)y−2/p′ |t1 − t2|1/p

′

We choose p = 2/(2 − α), or equivalently p′ = 2/α. Then we have

∣∣∣ηh[m](t1)− ηh[m](t2)
∣∣∣≤

∞∫

0

∣∣f (y, t1)− f (y, t2)
∣∣m(y)dy ≤ C(α)|t1 − t2|α/2

∞∫

0

y−αm(y)dy.

The claim follows. 2

Recall that the heat semigroup is a semigroup of contractions on Mα . It turns out that the heat

semigroup is also bounded on Mα for arbitrary α > 0, as the following lemma implies.

Lemma 3.5. Letm0 be a positive measure satisfying (3.9) for some α > 0. There exists a constant

C(α) such that if m is the solution of the heat equation (3.6), then

∫

D

|x|−αm(dx, t)≤ C(α)
∫

D

|x|−αm0(dx). (3.10)

The proof of Lemma 3.5, which is found in Appendix A, relies on the following result, which

will be useful for other estimates on parabolic equations.

Lemma 3.6. Let S(x, t) be the heat kernel, defined in (3.5). For all n= 0,1,2, . . ., there exists a

(Hermite) polynomial Pn of degree n such that

∂nS

∂xn
(x, t)=

(
σ 2t

)−n/2
Pn

(
|x|√
σ 2t

)
S(x, t). (3.11)

As a corollary, for all n= 0,1,2, . . ., and k = 1,2,3, . . . the constants

mn := sup
x,t

|x|n+1

∣∣∣∣
∂nS

∂xn
(x, t)

∣∣∣∣ , mn,k := sup
x,t

|x|n+1−k
(
σ 2t

)k/2∣∣∣∣
∂nS

∂xn
(x, t)

∣∣∣∣

15
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are finite and depend only on n and k.

Proof. The proof of (3.11) is elementary using induction. The second claim follows from the

fact that supx≥0 x
αe−x is finite for any α ≥ 0. 2

We conclude this section by generalizing our results to the Fokker-Planck equation for an

arbitrary bounded continuous drift term b(x, t). The proofs are found in Appendix A.

Lemma 3.7. Let b be a bounded continuous function on D×[0, T ], letm0 ∈ M+(D)∩Mα(D),

and let m be the unique weak solution m of (3.1), given by Lemma 3.1. Then the total mass

function η(t) :=
∫
D
m(dx, t) is β-Hölder continuous for β = min{α,1/2}, with

∥∥η
∥∥
Cβ ([0,T ]) ≤ C(σ)

(
‖m0‖Mα

+‖b‖∞
)
. (3.12)

Lemma 3.8. Let b be a bounded continuous function on D × [0, T ], let m0 ∈ Mα
+(D) for some

α > 0, and let m be the unique weak solution m of (3.1), given by Lemma 3.1. Then there exists

some constants C(α) and C(α,σ ) such that

∫

D

|x|−αm(dx, t)≤ C(α)eC(α,σ )‖b‖∞t
∫

D

|x|−αm0(dx). (3.13)

4. Forward-backward system

In this section we prove existence and uniqueness of solutions to infinite time horizon forward-

backward system (1.6). Many of the ideas in this section can already be found in [20]. Our result is

novel in that (i) the time horizon is infinite and (ii) the initial measurem0 need not be smooth nor

even a density. The proof is based on a priori estimates followed by an application of the Leray-

Schauder fixed point theorem (see e.g. [16, Theorem 11.3]). Most of the proofs in this section

involve either standard computations or ideas that can be found in the previous works [20,23,19],

and so we relegate them to Appendix B. However, in the sequel we will make frequent reference

to the estimates found in this section.

4.1. The Hamiltonian

In this subsection we deduce a number of structural features of the Hamiltonian, using only

Assumptions 1.1 and 1.2. The proofs can be found in Appendix B.1.

Lemma 4.1 (Unique optimal quantity). The function q∗ :
[
0,∞)

3 →
[
0,∞) given by q∗(ǫ,Q,a)

= argmaxq≥0 π(ǫ, q,Q,a) is well-defined and locally Lipschitz continuous. It is non-increasing

in the variable a. With respect to ǫ and Q, it satisfies

−ǫ ≤ ∂q∗

∂Q
≤ ǫ ρ̄ − 1

2 − ρ̄
, −Q≤ ∂q∗

∂ǫ
≤Qρ̄ − 1

2 − ρ̄
. (4.1)

Define H(ǫ,Q,a)= π
(
ǫ, q∗(Q,a),Q,a

)
≥ 0. Then H is locally Lipschitz, decreasing in all

variables, and convex in a; its derivative
∂H

∂a
= −q∗ is also locally Lipschitz.

16
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Corollary 4.2 (Smoothness and uniform convexity). Let ǭ ≥ 0, Q̄ ≥ 0, and ā > 0 be constants

such that ā < P (ǭQ̄). Consider the restriction ofH =H(ǫ,Q,a) to the domain [0, ǭ]×[0, Q̄]×
[0, ā]. ThenH is n times continuously differentiable with Lipschitz continuous derivatives, where

n is the same as in Assumption 1.1. It is also uniformly convex in the a variable, and in particular

there exists a constant CH = C(ǭ, Q̄, a, ā)≥ 1 such that

C−1
H ≤ ∂2H

∂a2
(ǫ,Q,a)≤ CH ∀(ǫ,Q,a) ∈ [0, ǭ] × [0, Q̄] × [a, ā]. (4.2)

Corollary 4.3 (Q dependence). We have the following estimates in the region where P(ǫQ) > a:

∣∣∣∣
∂H

∂Q

∣∣∣∣≤ ǫ(P (0)− a),

∣∣∣∣∣
∂2H

∂Q∂a

∣∣∣∣∣≤ ǫmax

{∣∣∣∣
ρ̄ − 1

ρ̄ − 2

∣∣∣∣ ,1
}

=: P̄ ǫ. (4.3)

Lemma 4.4 (Unique aggregate quantity). Let ǫ ≥ 0, φ ∈ L∞(D) and m ∈ M+(D) with∫
D

dm(x)≤ 1 and φ ≥ 0 (a.e.). Then there exists a unique Q∗ =Q∗(ǫ,φ,m)≥ 0 such that

Q∗ =
∫

D

q∗(ǫ,Q∗, φ(x))dm(x)= −
∫

D

∂H

∂a

(
ǫ,Q∗, φ(x)

)
dm(x). (4.4)

Moreover, Q∗ satisfies the a priori estimate

Q∗ ≤ c(ρ̄, ǫ)q∗(0,0,0), c(ρ̄, ǫ) := max

{
2 − ρ̄

2 + ǫ − (1 + ǫ)ρ̄
,1

}
. (4.5)

Finally,Q∗ is locally Lipschitz in the following sense. If ǫ1, ǫ2 ∈ [0, ǫ], φ1, φ2 Lipschitz functions

with
∥∥φi

∥∥
∞ ≤M , and m1,m2 ∈ M1,+(D) with

∫
D

dmi(x) ≤ 1, set Q∗
i =Q∗(ǫi, φi,mi) to be

the solution of (4.4) corresponding to ǫi, φi,mi for i = 1,2. Then there exists a constant C =
C(ǫ, ρ̄,M) such that

∣∣Q∗
1 −Q∗

2

∣∣

≤ C


|ǫ1 − ǫ2| +

∫

D

∣∣φ1(x)− φ2(x)
∣∣dm1(x)+ max

i=1,2

∥∥∥∥
dφi

dx

∥∥∥∥
∞

d1(m1,m2)+

∣∣∣∣∣∣∣

∫

D

d(m1 −m2)(x)

∣∣∣∣∣∣∣




≤ C


|ǫ1 − ǫ2| +

∥∥φ1 − φ2

∥∥
∞ + max

i=1,2

∥∥∥∥
dφi

dx

∥∥∥∥
∞

d1(m1,m2)+

∣∣∣∣∣∣∣

∫

D

d(m1 −m2)(x)

∣∣∣∣∣∣∣


 .

(4.6)

Remark 4.5. The function c(ρ̄, ǫ) in equation (4.5) is an increasing function of ǫ.

Corollary 4.6. Let ǫ,φ,m, and Q∗ =Q∗(ǫ,φ,m) be as in Lemma 4.4. Then

q∗ (ǫ,Q∗, φ(x)
)
≤ c(ρ̄, ǫ)q∗ (0,0,0) (4.7)

17
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for a.e. x ∈D.

4.2. Finite time horizon problem

In this section we fix a final time T > 0 and consider the forward-backward system only on

this time horizon. For technical reasons, we will need to replace the constant ǫ with a function

ǫ(t) such that ǫ(T )= 0. System (1.6) becomes





(i)
∂u

∂t
+ σ 2

2

∂2u

∂x2
+H

(
ǫ(t),Q∗(t),

∂u

∂x

)
− ru= 0,

(ii)
∂m

∂t
− σ 2

2

∂2m

∂x2
+ ∂

∂x

(
∂H

∂a

(
ǫ(t),Q∗(t),

∂u

∂x

)
m

)
= 0,

(iii) Q∗(t)= −
∫

D

∂H

∂a

(
ǫ(t),Q∗(t),

∂u

∂x

)
dm(t),

(iv) m|x=0 = u|x=0 = 0, m|t=0 =m0 ∈P(D), u|t=T = uT ∈ C2+α.

(4.8)

We define (u,m) to be a solution to (4.8) provided that u is a smooth function on D × [0, T ]
(twice continuously differentiable with respect to x, continuously differentiable with respect to

t), m ∈ C([0, T ];P(D)), Equations (i) and (iii) are satisfied pointwise, the boundary conditions

for u in (iv) are satisfied pointwise, and Equation (ii) with the boundary conditions for m from

(iv) holds in the sense of distributions (see Section 3). Note that a solution (u,m) must satisfy
∂u

∂x
≥ 0, because the domain of H is

[
0,∞)

3
. It is possible to relax this somewhat by extending

the domain of H(ǫ,Q,a) to include all a > limq→∞ P(q), but we need not do so here.

Assumption 4.7 (Structure of ǫ(t)). We assume ǫ is a smooth, non-negative, non-increasing

function on
[
0, T

]
such that ǫ(T )= 0 and

∥∥ǫ′
∥∥

∞ ≤ 1.

Assumption 4.8 (Structure of uT ). For each T > 0, the function uT is an element of C2+α
(
D

)

that satisfies the following conditions:

(1) uT (0)= 0;

(2) σ 2

2
u′′
T (0)+H

(
0,0, u′

T (0)
)
= 0;

(3) 0 ≤ uT (x)≤ c1 for all x ∈D, where c1 > 0 is some constant;

(4) there exists a constant c3 > 0, independent of T , such that 0 ≤ u′
T (x)≤ c3 for all x ∈ D and

all T > 0;

(5) there exists a constant Cα , independent of T , such that‖uT ‖
C2+α

(
D

) ≤ Cα for all T > 0.

Remark 4.9. It is always possible to satisfy Assumption 4.8 for an arbitrary constant c3 > 0.

Here we give one possible construction. Set h = 2
σ 2H(0,0, c3), so that condition (2) becomes

u′′
T (0)= −h. If h > 0, then Assumption 4.8 is satisfied by the function

uT (x)=
2(c3)

2

3h
+ h2

12c3

(
x − 2c3

h

)3

−
,

18
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where x− := min {x,0}. In the case where h= 0, Assumption 4.8 is satisfied by the function

uT (x)=





c3x − x3

6
if x ≤ (c3)

1/2,

1
2
(c3)

3/2 + 1
3

(
x − 2(c3)

1/2
)3
, if (c3)

1/2 ≤ x ≤ 2(c3)
1/2,

1
2
(c3)

3/2, if 2(c3)
1/2 ≤ x.

Note also that these examples can be slightly modified to produce globally C∞ functions satisfy-

ing Assumption 4.8.

4.3. Estimates on the Hamilton-Jacobi equation

Lemma 4.10 (A priori estimates for HJ equation). Let Q∗(t) be any bounded, non-negative

function. Let u be a solution of the Hamilton-Jacobi equation

∂u

∂t
+ σ 2

2

∂2u

∂x2
+H

(
ǫ(t),Q∗(t),

∂u

∂x

)
− ru= 0, x ∈D, t ∈

[
0, T ) (4.9)

with Dirichlet boundary conditions u(0, t)= 0 and final condition u(x,T )= uT (x), which sat-

isfies Assumption 4.8. Then for all x ∈D and t ∈ [0, T ], we have

0 ≤ u(x, t)≤ 1

r
H(0,0,0)+ c1, 0 ≤ ux(x, t)≤M, (4.10)

where

M =M(σ, r, c1, c3) :=





2

√
2H(0,0,0)

(
H(0,0,0)+rc1

)

σ 2r
if c3 ≤

√
2
σ 2r
H(0,0,0)

c3 + 2
σ 2rc3

H(0,0,0)2 + 2c1

σ 2c3
H(0,0,0) if c3 ≥

√
2
σ 2r
H(0,0,0)

.

(4.11)

Proof. See Appendix B.2. Cf. [20, Section 4]. 2

4.4. Estimates on the coupling

Lemma 4.11. Let (u,m) be a solution of (4.8). ThenQ∗, given by (4.8)(iii), satisfies the following

bounds:

0 ≤Q∗(t)≤ c(ρ̄, ǫ(0))q∗(0,0,0)= −c(ρ̄, ǫ(0)) ∂H
∂a

(0,0,0) , (4.12)

where c(ρ̄, ǫ) is defined in (4.5).

Suppose, moreover, that m0 ∈ Mα/2 for some α ∈ (0,1
]
. Then Q∗(t) is Hölder continuous on[

0, T
]

with

∥∥Q∗∥∥
Cα/2

≤ C



∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2

+
∥∥∥∥∥
∂2u

∂x2

∥∥∥∥∥
∞

+ 1


 , (4.13)
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for some C = C
(
ρ̄, ǫ(0), σ,M,‖m0‖Mα/2

)
, whereM is the constant from Lemma 4.10 that gives

an upper bound on

∥∥∥ ∂u∂x
∥∥∥

∞
.

Proof. See Appendix B.3. 2

4.5. Parabolic estimates

Before stating our result on the existence of smooth solutions to the system, we present some

estimates on solutions to parabolic problems that do not depend on the time horizon. These

estimates will be useful in study of the linearized system (Section 5).

Lemma 4.12. Let T > 0, r > 0 be given. For any f ∈ Cα,α/2(D ×
[
0, T

]
), and u0 ∈ C2+α(D),

there exists a unique solution u ∈ C2+α,1+α/2(D ×
[
0, T

]
) of

∂u

∂t
+ ru− σ 2

2

∂2u

∂x2
= f, ∀x ∈ D, t > 0;u(0, t)= 0 ∀t > 0; u(x,0)= u0(x) ∀x ∈D (4.14)

satisfying

‖u‖
C2+α,1+α/2(D×

[
0,T

]
)
≤ C(σ, r,α)

(∥∥f
∥∥
Cα,α/2(D×

[
0,T

]
)
+‖u0‖C2+α(D)

)
. (4.15)

The constant C(σ, r,α) in (4.15) does not depend on T . More specifically, we can say that if

r ≥ 1,

‖u‖
C2+α,1+α/2(D×

[
0,T

]
)
≤ C(σ,α)

([
f
]
α,α/2

+ r
α
2

∥∥f
∥∥

0
+
[
u0

]
2+α + r1+ α

2 ‖u0‖0

)
. (4.16)

Proof. The result follows from potential estimates found in [29, Chapter IV]. See Ap-

pendix B.4. 2

4.6. Existence of solutions

Lemma 4.13. Let m0 ∈ Mα/2 and 0< α ≤ 1. Then there exists a constant

C = C(ρ̄, ǫ(0), σ,M,c1,‖m0‖Mα/2
, α)

such that for any solution (u,m) of (4.8),

‖u‖C2+α,1+α/2 ≤ C
(

1 + r
α
2 +Cα + r1+ α

2 c1

)
, (4.17)

where M is the constant from Lemma 4.10 and c1, c3,Cα are the constants from Assumption 4.8.

Remark 4.14. The constant on the right-hand side of (4.17) does not depend on T .

For the proof of Lemma 4.13, see Appendix B.5.
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Theorem 4.15 (Existence of classical solutions for (4.8)). Let m0 ∈ Mα/2 and 0< α ≤ 1. Then

there exists a solution (u,m) satisfying the finite time horizon problem (4.8) and having the fol-

lowing regularity: u ∈ C2+α,1+α/2
(
D × [0, T ]

)
, m ∈ C1/2

(
[0, T ];M1,+(D)

)
. Thus, Equation

(4.8)(i) is satisfied in a classical sense, while Equation (4.8)(ii) is satisfied in the weak sense

defined in (3.2), and Equation (4.8)(iii) holds pointwise.

Proof. We use the Leray-Schauder fixed point theorem in a more or less standard way, cf. [20,

23,19]. The details are given in Appendix B.5. 2

Theorem 4.16 (Existence of solutions to the infinite horizon problem (1.6)). Let m0 ∈ Mα/2 and

0 < α ≤ 1. Then there exists a solution (u,m) ∈ C2+α,1+α/2
(
D ×

[
0,∞)

)
× ∈ C1/2

([
0,∞) ;

M1,+(D)
)

solving the infinite time horizon problem (1.6) and satisfying the following estimates:

‖u‖C2+α,1+α/2 ≤ C(ρ̄, ǫ, σ,M,‖m0‖Mα/2
, α)

(
1 + r

α
2 +Cα

)
,

d1

(
m(t1),m(t2)

)
≤ 2 (M + σ)|t1 − t2|1/2 ∀|t1 − t2| ≤ 1,

0 ≤ u(x, t)≤ 1

r
H(0,0,0), 0 ≤ ∂u(x, t)

∂x
≤M ∀x ∈ D, t ≥ 0,

0 ≤Q∗(t)≤ Q̄,

0 ≤ − ∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x
(x, t)

)
≤ Q̄ ∀(x, t) ∈D ×

[
0,∞)

(4.18)

where M and Q̄ are defined by

M := 2

√
2

σ 2r
H(0,0,0), Q̄ := −c

(
ρ̄, ǫ

) ∂H
∂a

(0,0,0) (4.19)

Proof. For each T > 0, we will let ǫ(t) be a function satisfying Assumption 4.7 as well as

ǫ(0)= ǫ, and we let uT be a function satisfying Assumption 4.8. By Theorem 4.15 there exists a

solution of (4.8), which we denote (uT ,mT ). Fix an arbitrary T0 > 0. By Lemmas 4.13 and 3.1,

(uT ,mT ) is uniformly bounded in C2+α,1+α/2
(
D ×

[
0, T0

])
× C1/2

([
0, T0

]
;M1,+(D)

)
for all

T ≥ T0, with norms bounded by a constant that does not depend on T0. Thus, by standard diag-

onalization, we may pass to a subsequence, still denoted (uT ,mT ), that converges to some fixed

(u,m), where the convergence is in C2,1
(
D ×

[
0, T0

])
× C0

([
0, T0

]
;M1,+(D)

)
for every T0.

By the uniform estimates on (uT ,mT ) it also follows that (u,m) ∈ C2+α,1+α/2
(
D ×

[
0,∞)

)
×

C1/2
([

0,∞) ;M1,+(D)
)

. To see that (u,m) is indeed a solution to (1.6), it suffices to pass to

the limit in the equations satisfied by (uT ,mT ) on arbitrary time horizons. Finally, note that the

following estimates hold:

‖u‖C2+α,1+α/2 ≤ C(ρ̄, ǫ(0), σ,M,c1, c3,‖m0‖Mα/2
, α)

(
1 + r

α
2 +Cα + r1+ α

2 c1

)
,

d1

(
m(t1),m(t2)

)
≤ 2 (M + σ)|t1 − t2|1/2 ∀|t1 − t2| ≤ 1,
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0 ≤ u(x, t)≤ 1

r
H(0,0,0)+ c1, 0 ≤ ∂u(x, t)

∂x
≤M(σ, r, c1, c3) ∀x ∈ D, t ≥ 0,

0 ≤Q∗(t)≤ −c
(
ρ̄, ǫ

) ∂H
∂a

(0,0,0),

0 ≤ − ∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x
(x, t)

)
≤ −c

(
ρ̄, ǫ

) ∂H
∂a

(0,0,0) ∀(x, t) ∈D ×
[
0,∞)

where M = M(σ, r, c1, c3) is defined in (4.11). This follows because they hold for (uT ,mT )

uniformly in T (Lemmas 3.1, 4.10, and 4.11, also Corollary 4.6). Now by Remark 4.9, c1, c2 and

c3 can be made arbitrarily close to zero. Letting c1, c3 → 0 and using the continuity of H and
∂H
∂a

, we deduce the estimates (4.18). 2

4.7. Uniqueness and smoothness of the Hamiltonian

When the demand schedule is linear, uniqueness of solutions to (1.6) follows with no further

conditions on the data, cf. [23]. In the case of a general, nonlinear demand schedule satisfying

Assumptions 1.1 and 1.2, we can prove uniqueness of solutions for small enough parameter ǫ.

Cf. [20]. The smallness of ǫ makes two contributions. First, it ensures that the Hamiltonian H

is a smooth, uniformly convex function on the domain where solutions exist. Second, it ensures

that certain “energy estimates” à la Lasry-Lions (see [30]) hold, which prove uniqueness. The

case where ǫ is small has independent interest, aside from being a technical condition that yields

uniqueness. (Cf. Remark 4.17.)

Remark 4.17. The inspiration for taking ǫ > 0 small is taken from the basic idea that Chan and

Sircar use to compute solutions [10,11] Namely, it is natural to try take a formal Taylor expansion

of the solution with respect to ǫ around zero, since at ǫ = 0 the system of equations is decoupled.

(See [21] for a justification of this technique.) Now when ǫ > 0 is small enough, one might think

to simplify our approach by devising a contraction mapping argument. In the present work, we

do not take this approach, but instead seek to unify as much as possible with the case where

the demand schedule is linear. For in this latter case, it is essentially from the structure of the

Hamiltonian that one obtains the “propagation of monotonicity” (cf. [14]) that is needed to prove

uniqueness. We show that the same is true when ǫ is small, and we do so by proving the same

type of estimates as we do for the linear demand schedule. One could, in principle, generalize

this idea to other “smallness” conditions; for example, if the demand schedule is “close enough

to linear” in a suitable sense, then our arguments for uniqueness will go through for a wide range

of parameters ǫ. In the present work, however, we do not pursue this direction, so as to avoid a

multiplication of technicalities.

In this section we consider both the smoothness of the Hamiltonian and uniqueness of solu-

tions separately. The former can at first be viewed as a tool for proving the latter, in the case

of a nonlinear demand schedule. However, when we prove the regularity of the master field in

Sections 5 and 6, the smoothness of the Hamiltonian will be required even when the demand

schedule is linear. Therefore we address it in a separate subsection.

4.7.1. Assumptions ensuring that the Hamiltonian is smooth

The following assumption ensures in general that H can be treated as a smooth, uniformly

convex function in System (1.6).
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Assumption 4.18. We assume that M <P
(
ǫQ̄
)

, where M and Q̄ are defined in (4.19).

Remark 4.19. [Sufficient conditions to give Assumption 4.18] There necessarily exists r∗ large

enough so that

2

√
2

σ 2r
H(0,0,0) < P (0) ∀r ≥ r∗.

Then, since ǫ 7→ P
(
ǫQ̄
)

is a continuous, decreasing function of ǫ, there exists ǫ∗ > 0 such that

Assumption 4.18 holds for all 0< ǫ ≤ ǫ∗ and all r ≥ r∗.

Under Assumption 4.18, it follows from Corollary 4.2 and the a priori estimates (4.18) from

Theorem 4.16 that in System (1.6) (or (4.8), provided c2 from Assumption 4.8 is chosen small

enough), H can be treated as n times continuously differentiable with Lipschitz continuous

derivatives, and moreover it is uniformly convex. In particular, from (4.2) there exists a constant

CH ≥ 1 such that

C−1
H ≤ ∂2H

∂a2

(
ǫ,Q(t),

∂u

∂x
(x, t)

)
≤ CH ∀(x, t) ∈D × (0,∞) (4.20)

whenever u is a solution of (1.6).

An interesting special case is when the demand schedule is linear; without loss of generality

we take P(q) = 1 − q . In this case (and in general when ρ̄ ≤ 1) we have c(ρ̄, ǫ) = 1, and a

simple computation shows Q̄= 1/2 and M = (2σ 2r)−1/2. For any ǫ∗ < 2, it is possible to take

r∗ sufficiently large so that Assumption 4.18 holds for any r ≥ r∗ and any ǫ ≤ ǫ∗. In this case,

the smoothness of H on the domain where solutions lie implies that the solution to (1.6) is the

same as the solution to





(i)
∂u

∂t
+ σ 2

2

∂2u

∂x2
+ 1

4

(
1 − ǫQ∗(t)− ∂u

∂x

)2

− ru= 0,

(ii)
∂m

∂t
− σ 2

2

∂2m

∂x2
− ∂

∂x

(
1

2

(
1 − ǫQ∗(t)− ∂u

∂x

)
m

)
= 0,

(iii) Q∗(t)= −
∫

D

1

2

(
1 − ǫQ∗(t)− ∂u

∂x
(·, t)

)
dm(t),

(iv) m|x=0 = u|x=0 = 0, m|t=0 =m0

(4.21)

4.7.2. Uniqueness

Theorem 4.20. In addition to Assumption 4.18, suppose that

r ≥ 1000 max
{

1 + c(ρ̄, ǫ)P̄ ǫ,1 + c(ρ̄, ǫ)Q̄, Q̄+ ǫP (0)+ 1
}2

and (4.22)

ǫ ≤
(

4CH c(ρ̄, ǫ)
(

1 + Q̄
)(
CH

(
P(0)+ 1

)
+ P̄

))−1

, (4.23)
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where CH is the constant from (4.20). Then there is at most one solution (u,m,Q∗) of (4.8), and

likewise there is at most one solution (u,m,Q∗) of (1.6) such that u and ∂u
∂x

are bounded.

Proof. Suppose that (u,m,Q∗) and (û, m̂, Q̂∗) are both solutions of (4.8), or of (1.6) with

u, ∂u
∂x
, û, and ∂ û

∂x
bounded. We will employ the results of Sections 5.3 and 5.4, which are proved

independently. Equation (4.22) (which is surely an overestimate, see Remark 5.13) implies that

Assumption 5.12 holds. Then Equation (4.23) implies that Lemma 5.15 holds. Since the initial

conditions are the same, i.e. m̂0 =m0, we have

T∫

0

∫

D

e−rt
∣∣∣∣
∂u

∂x
− ∂ û

∂x

∣∣∣∣
2 (
m(dx, t)+ m̂(dx, t)

)
dt = 0,

where T is the (finite or infinite) time horizon. It follows that ∂u
∂x

= ∂ û
∂x

on the support of m and

m̂, and so by Lemma 4.4 we deduce that Q∗ = Q̂∗. Then by standard uniqueness for parabolic

equations, it follows that m= m̂; we also get u= û in a straightforward way if T <∞.

For the infinite time horizon case, let w(x, t)= e−rt
(
u(x, t)− û(x, t)

)
and note that it satis-

fies

− ∂w

∂t
− σ 2

2

∂2w

∂x2
= e−rt

(
H

(
ǫ,Q∗(t),

∂u

∂x

)
−H

(
ǫ,Q∗(t),

∂ û

∂x

))
≤ C

∣∣∣∣
∂w

∂x

∣∣∣∣ ,

since ∂u
∂x

and ∂ û
∂x

are bounded. Let c > 0. Multiply by (w − c)+ := max {w− c,0} and integrate

to get

∞∫

0

(w− c)+(x, t)
2 dx + σ 2

2

T∫

t

∞∫

0

∣∣∣∣
∂ (w− c)+

∂x

∣∣∣∣
2

dx dτ

≤
∞∫

0

(w− c)+(x, T )
2 dx +C

T∫

t

∞∫

0

∣∣∣∣
∂ (w− c)+

∂x

∣∣∣∣ (w− c)+ dx dτ,

from which we deduce

∞∫

0

(w− c)+(x, t)
2 dx ≤

∞∫

0

(w− c)+(x, T )
2 dx +C

T∫

t

∞∫

0

(w− c)2+ dx dτ.

By Gronwall’s inequality (applied backward in time), we obtain

∞∫

0

(w− c)+(x, t)
2 dx ≤ eC(T−t)

∞∫

0

(w− c)+(x, T )
2 dx.
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Since u, û are bounded, taking T large enough we deduce w(x,T ) ≤ c, and thus the right-

hand side is zero. We deduce that w ≤ c everywhere. Since c is arbitrary, it follows that w ≤ 0,

i.e. u≤ û. By reversing the roles of u and û we see that u= û. 2

The following result does not require any of the assumptions made in this section, but simply

imposes a linear demand schedule.

Theorem 4.21. Under the assumption P(q) = 1 − q (but no additional assumptions), there is

at most one solution to the finite horizon problem (4.8), and likewise at most one solution to the

infinite time horizon problem (1.6) such that u and ∂u
∂x

are bounded.

Proof. Let (u,m,Q∗) and (û, m̂, Q̂∗) be two solutions to the PDE system (1.6), then set q∗ :=
q∗(ǫ,Q∗, ∂u

∂x
) and q̂∗ = q∗(ǫ, Q̂∗, ∂ û

∂x
). Following the calculations in [23], we derive

T∫

0

∞∫

0

e−rt
(
q̂∗ − q∗)2 (m+ m̂)dx dt + ǫ

T∫

0

e−rt
(
Q∗(t)− Q̂∗(t)

)2
dt

≤
∞∫

0

(
e−rT

(
u− û

)
(x, T )

(
m− m̂

)
(x, T )−

(
u− û

)
(x,0)

(
m− m̂

)
(x,0)

)
dx.

Because the initial/final data are the same, the right-hand side is zero, and we conclude using the

same arguments as in the proof of Theorem 4.20. 2

5. A priori estimates on the linearized system

In this section our goal is to prove a priori estimates and existence of solutions for a system

of the form





(i)
∂w

∂t
+ σ 2

2

∂2w

∂x2
+ V1(x, t)

∂w

∂x
+ V2(x, t)Q(t)− rw = f,

(ii)
∂µ

∂t
− σ 2

2

∂2µ

∂x2
+ ∂

∂x

(
V3(x, t)µ

)
+ ∂

∂x

((
V4(x, t)

∂w

∂x
+ V5(x, t)Q(t)

)
m+ ν

)
= 0,

(iii) Q(t)=


1 +

∫

D

V5(·, t)dm(t)




−1

×


−

∫

D

dν(t)−
∫

D

V3(·, t)dµ(t)−
∫

D

V4(·, t)
∂w

∂x
(·, t)dm(t)


 ,

(iv) µ|x=0 =w|x=0 = 0, µ|t=0 = µ0.

(5.1)

It is useful to study System (5.1) at a sufficiently high level of abstraction because our estimates

will serve three purposes:
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(1) proving that U is Lipschitz with respect to the measure variable,

(2) proving the existence of a candidate for
δU

δm
, and

(3) proving that the candidate is indeed a derivative in the sense of Definition 1.3.

To see this, let (u,m,Q∗) and (û, m̂, Q̂∗) be the solutions of (1.6) corresponding to initial con-

ditions m0 and m̂0, respectively. For s ∈ [0,1] define

us = sû+ (1 − s)u, Q∗
s = sQ̂∗ + (1 − s)Q∗.

If w = û− u,µ= m̂−m, and Q = Q̂∗ −Q∗, then (5.1) is satisfied with

V1(x, t)=
1∫

0

∂H

∂a

(
ǫ,Q∗

s (t),
∂us

∂x

)
ds,

V2(x, t)=
1∫

0

∂H

∂Q

(
ǫ,Q∗

s (t),
∂us

∂x

)
ds,

V3(x, t)=
∂H

∂a

(
ǫ, Q̂∗(t),

∂ û

∂x

)
,

V4(x, t)=
1∫

0

∂2H

∂a2

(
ǫ,Q∗

s (t),
∂us

∂x

)
ds,

V5(x, t)=
1∫

0

∂2H

∂Q∂a

(
ǫ,Q∗

s (t),
∂us

∂x

)
ds,

(5.2)

with f = 0 and ν = 0.

Next, we formally take the derivative of System (1.6) with respect to the measure. The result

is System (5.1) if we define





V1(x, t)=
∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x

)
,

V2(x, t)=
∂H

∂Q

(
ǫ,Q∗(t),

∂u

∂x

)
,

V3(x, t)=
∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x

)
,

V4(x, t)=
∂2H

∂a2

(
ǫ,Q∗(t),

∂u

∂x

)
,

V5(x, t)=
∂2H

∂Q∂a

(
ǫ,Q∗(t),

∂u

∂x

)
,

(5.3)
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with f = 0 and ν = 0. If (w,µ) is the solution to System (5.1) assuming (5.3) and initial

conditions µ0 = δy , then w(x,0) = δU

δm
(m,x, y) is the candidate derivative of the master field

U(m0, x) with respect to m0, where m0 is a given initial condition in System (1.6).

Finally, let w̃ = û − u − w, µ̃ = m̂ − m − µ, Q̃ = Q̂∗ −Q∗ − Q. Then (w̃, µ̃, Q̃) satisfies

(5.1) with V1, . . . , V5 defined as in (5.3) and with

f (x, t)= −
1∫

0

(
∂H

∂a

(
ǫ,Q∗

s (t),
∂us

∂x

)
− ∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x

))(
∂ û

∂x
− ∂u

∂x

)
ds

−
1∫

0

(
∂H

∂Q

(
ǫ,Q∗

s (t),
∂us

∂x

)
− ∂H

∂Q

(
ǫ,Q∗(t),

∂u

∂x

))(
Q̂∗(t)−Q∗(t)

)
ds,

ν(t)= ∂2H

∂Q∂a

(
ǫ,Q∗(t),

∂u

∂x

)
(Q̂−Q)(m̂−m)+ ∂2H

∂a2

(
ǫ,Q∗(t),

∂u

∂x

)(
∂ û

∂x
− ∂u

∂x

)
(m̂−m)

+ m̂

1∫

0

(
∂2H

∂Q∂a

(
ǫ,Q∗

s (t),
∂us

∂x

)
− ∂2H

∂Q∂a

(
ǫ,Q∗(t),

∂u

∂x

))(
Q̂∗(t)−Q∗(t)

)
ds

+ m̂

1∫

0

(
∂2H

∂a2

(
ǫ,Q∗

s (t),
∂us

∂x

)
− ∂2H

∂a2

(
ǫ,Q∗(t),

∂u

∂x

))(
∂ û

∂x
− ∂u

∂x

)
ds. (5.4)

Our a priori estimates on (w̃, µ̃, Q̃) will allow us to conclude that our candidate satisfies the

definition of derivative given in Definition 1.3.

Conceptually, the a priori estimates are organized in the following progression. A crucial point

is to obtain energy estimates, which are derived by developing d
dt

〈
w,µ

〉
using the equations and

isolating positive terms. However, it was already noticed in [21] that the integral terms appearing

in system such as (5.1) interfere with the energy estimates. Because of this, we first introduce a

set of technical estimates on the Fokker-Planck equation, which require substantial preliminary

results on parabolic equations. Once this major step is accomplished, we are then to proceed to

the energy estimates, followed by Hölder regularity in time, and concluded by full Schauder type

estimates. Combining the a priori estimates with the Leray-Schauder fixed point theorem, we

also deduce an existence result for System (5.1).

5.1. Preliminaries: global-in-time interior estimates

In the context of our study of System (5.1), the main purpose of this section is to introduce

some function spaces which, together with their dual spaces, will be useful for technical reasons

in the sequel. There is a more general motivation, however, which is to find higher-order estimates

on parabolic equations with Dirichlet boundary conditions, while bypassing the compatibility

conditions on the boundary. So as not to distract the reader from the main purpose of this section,

we have moved all the proofs to the appendix.
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5.1.1. Interior estimates on the heat equation

Define d(x) := min {x,1}. Let n be a non-negative integer and let k ≥ 0. For a function φ :[
0,∞)→ R, we define the seminorm

[
φ
]
n,k

:=
∥∥∥dn+kφ(n)

∥∥∥
0
= sup
x≥0

d(x)n+k
∣∣∣φ(n)(x)

∣∣∣

and the norm

∥∥φ
∥∥
n,k

:= max
0≤j≤n

[
φ
]
j,k
.

When k = 0 we will simply write
[
φ
]
n,0

=
[
φ
]
n

and
∥∥φ
∥∥
n,0

=
∥∥φ
∥∥
n
. We will define Xn,k to be

the space of all function φ :
[
0,∞)→ R such that

∥∥φ
∥∥
n,k

is finite, and Xn :=Xn,0.

We will also make use of the following norm:

∥∥φ
∥∥∗
n,1

:= sup
0≤x≤1

∣∣∣∣∣∣∣

x∫

0

φ(ξ)dξ

∣∣∣∣∣∣∣
+
∥∥φ
∥∥
n,1
.

Consider now the following potentials:

u(x, t)=
∞∫

0

S(x − y, t)u0(y)dy,

v(x, t)=
t∫

0

∞∫

0

S(x − y, t − s)f (y, s)dy ds,

w(x, t)= −2

t∫

0

∂S

∂x
(x, t − s)ψ(s)ds.

(5.5)

Proposition 5.1. Let u0 ∈ Xn, f ∈ C
(
[0, T ];Xn−1,1

)
, and ψ ∈ C([0, T ]). Then there exists a

constant Mn, depending only on n, such that for u,v,w defined as in (5.5), we have

∥∥u(·, t)
∥∥
n

≤Mn‖u0‖n ,

∥∥v(·, t)
∥∥
n

≤Mn

t∫

0

(t − s)−1/2
∥∥f (·, s)

∥∥∗
n−1,1

ds,

∥∥w(·, t)
∥∥
n

≤Mn sup
0≤s≤t

∣∣ψ(s)
∣∣ .

(5.6)

Proof. See Appendix C.1.1. 2
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A corollary of Proposition 5.1 is an estimate of solutions to the Dirichlet problem:

∂u

∂t
= σ 2

2

∂2u

∂x2
+ f (x, t), u(0, t)=ψ(t), u(x,0)= u0(x). (5.7)

Theorem 5.2. Let u0 ∈ Xn, f ∈ C
(
[0, T ];Xn−1,1

)
, and ψ ∈ C([0, T ]). Let u be the solution of

(5.7). Then there exists a constant Mn, depending only on n, such that

∥∥u(·, t)
∥∥
n

≤Mn

(
‖u0‖n + t1/2 sup

0≤s≤t

∥∥f (·, s)
∥∥∗
n−1,1

+ sup
0≤s≤t

∣∣ψ(s)
∣∣
)
. (5.8)

Proof. See Appendix C.1.1. 2

5.1.2. Application to MFG system

Here and in what follows we will let n be a positive integer such that P is n + 2 times

differentiable; by Assumption 1.1 it is possible to take n= 2. Then we deduce that H is n+ 1

times differentiable. A corollary of the results in Section 5.1.1 is the following:

Proposition 5.3. Let (u,m) be the solution to the mean field games system on a finite or infinite

time horizon T , i.e. either of System (4.8) or (1.6). Suppose

r >max
{
(2Q̄Mn)

2,1
}

ln(2Mn), (5.9)

where Q̄ is defined in Equation (4.19) and Mn is the constant from Theorem 5.2. Then for any n

such that H is n+ 1 times differentiable, we have

sup
t≥0

∥∥∥∥∥
∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x
(·, t)

)∥∥∥∥∥
n

≤Dn(r), (5.10)

sup
t≥0

∥∥∥∥∥
∂H

∂Q

(
ǫ,Q∗(t),

∂u

∂x
(·, t)

)∥∥∥∥∥
n

≤ ǫD̃n(r), (5.11)

where D(r), D̃n(r)≥ 1 are constants that decrease as r increases.

Proof. See Appendix C.1.2. 2

Remark 5.4 (Constants for n= 0). It is worth noting that in the case n= 0, the constants used

in this Section are already known. In particular, M0 = 1, D0(r) = Q̄ (see Equation (4.7)), and

D̃0(r)= P(0) (see Corollary 4.3).

5.2. Assumptions on the data

We will study (5.1) on a time horizon T which could be finite or infinite. When T <∞ we

take a final condition w(x,T ) = 0 and assume that ǫ = ǫ(t) satisfies Assumption 4.7. We will

denote ǫ(0)= ǫ. If T = ∞ then ǫ is assumed to be constant, and we assume that
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lim
t→∞

e−
r
2 t
∥∥w(·, t)

∥∥
n

= lim
t→∞

e−
r
2 t

∥∥∥∥
∂w

∂x
(·, t)

∥∥∥∥
n

= 0, t 7→ e−
r
2 t
∥∥µ(t)

∥∥
−n is bounded.

(5.12)

In addition, we will state many of the following results in terms of an arbitrary positive integer

n, which satisfies the restriction that P is n + 2 times differentiable and therefore H is n + 1

times differentiable. Assumption 4.18 and Equation (5.9) will be in force throughout this section.

Hence Proposition C.1 and its corollaries (5.10) and (5.11) apply.

We now state assumptions on the coefficients V1, . . . , V5, which are abstracted from the par-

ticular cases (5.3) and (5.2).

Assumption 5.5.

(1)
∥∥V1(·, t)

∥∥
n

≤Dn(r) for all t , where Dn(r) is the same as in Equation (5.10), and we assume

without loss of generality that Dn(r)≥ 1;

(2)
∥∥V2(·, t)

∥∥
n

≤ ǫD̃n(r) for all t , where D̃n(r) is the same as in Equation (5.11);

(3)
∥∥V3(·, t)

∥∥
n

≤Dn(r) for all t ;

(4) C−1
H ≤ V4(x, t)≤ CH for all (x, t);

(5) V5(x, t) ∈
[
ǫ

1−ρ̄
2−ρ̄ , ǫ

]
for all (x, t), and thus‖V5‖0 ≤ ǫmax

{∣∣∣ ρ̄−1
ρ̄−2

∣∣∣ ,1
}

=: P̄ ǫ.

Lemma 5.6. Let V1, . . . , V5 be given using formula (5.3) or (5.2). Then Assumption 5.5 holds.

Proof. This follows from Corollaries 4.2, 4.3, and 4.6; Equations (5.10) and (5.11); and the a

priori estimates from Theorem 4.16. 2

Notation: If g = g(y, t) is a function depending on t and other variables y and ρ is a real

number, we will denote by gρ the function

gρ(y, t)= e−ρtg(y, t).

The energy with parameter ρ is denoted

Eρ(t)=
∫

D

∣∣∣∣
∂wρ

∂x
(·, t)

∣∣∣∣
2

dm(t)=
∫

D

e−2ρt

∣∣∣∣
∂w

∂x
(·, t)

∣∣∣∣
2

dm(t). (5.13)

This quantity will appear often in our estimates, and we will prove a priori bounds on
∫ T

0 Eρ(t)dt

in Section 5.4.

5.3. Estimates in Xn and X∗
n

We will denote by X∗
n the dual of the space Xn, and by‖·‖−n the dual norm

∥∥µ
∥∥

−n = sup∥∥φ
∥∥
n
≤1

〈
φ,µ

〉
.

Note that
∥∥µ
∥∥

−0
=
∥∥µ
∥∥
T V

by the Riesz representation theorem:
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∥∥µ
∥∥

−0
= sup∥∥φ

∥∥
0
≤1

∫

D

φ(x)dµ(x)=
∥∥µ
∥∥
T V
.

In this subsection we provide a priori estimates on µ(t) in X∗
n, where (w,µ) is a solution of the

linearized system. First, we introduce a technical lemma, somewhat reminiscent of Grönwall’s

inequality. Cf. [21, Lemma 2.1].

Lemma 5.7. Let A,B, δ > 0 be given constants. Suppose f,g :
[
0,∞)→

[
0,∞) are functions

that satisfy

f (t1)≤Af (t0)+
t1∫

t0

(t1 − s)−1/2
(
Bf (s)+ g(s)

)
ds ∀0 ≤ t0 ≤ t1 ≤ t0 + δ (5.14)

Then for any λ > 1
δ

ln(A), we have

(
1 − 2δ1/2B

1 −Ae−λδ

) T∫

0

e−λtf (t)dt ≤ A

λ− δ−1 ln(A)
f (0)+ 2δ1/2

1 −Ae−λδ

T∫

0

e−λtg(t)dt. (5.15)

Proof. See Appendix C. 2

Lemma 5.8. Let (w,µ) be a solution of (5.1). Fix ρ ≥ κ(r), where

κ(r) := 32
(

1 + c(ρ̄, ǫ)P̄ ǫ
)2
Dn(r)

2M2
n ln(8M2

n). (5.16)

Then we have

T∫

0

∥∥µρ(t)
∥∥2

−n dt ≤
∥∥µ0

∥∥2

−n +
T∫

0

(
‖V4‖2

0Eρ(s)+
∥∥νρ(s)

∥∥2

−n

)
ds. (5.17)

Proof. Step 1: Fix t1 > t0 ≥ 0 and let φ1 ∈ Xn. Define φ to be the solution of the Dirichlet

problem

− ∂φ

∂t
= σ 2

2

∂2φ

∂x2
, φ(0, t)= 0, φ(x,T )= φ1(x).

By the reflection principle, a formula for φ is

φ(x, t)=
∞∫

0

S(x − y, t1 − t)φ1(y)dy.

By applying Theorem 5.2, we get
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∥∥φ(·, t)
∥∥
n

≤Mn

∥∥φ1

∥∥
n

∀t ∈ [0, t1]. (5.18)

Moreover, by the same argument as in 5.1, we get

∥∥∥∥
∂φ

∂x
(·, t)

∥∥∥∥
n

≤Mn

∥∥φ1

∥∥
n
(t1 − t)−1/2. (5.19)

Now use φ as a test function in (5.1)(ii) to get

〈
φ1,µ(t1)

〉
=
〈
φ(t0),µ(t0)

〉
+

t1∫

t0

〈
∂φ

∂x
(·, t)V3(·, t),µ(t)

〉
dt

−
t1∫

t0

〈
∂φ

∂x
(·, t),

(
V4(·, t)

∂w

∂x
(·, t)+ V5(·, t)Q(t)

)
m(t)+ ν(t)

〉
dt.

Applying (5.18) and (5.19) as well as the Cauchy-Schwartz inequality, recalling that
∥∥m(t)

∥∥
T V

≤
1, we get

∣∣∣
〈
φ1,µ(t1)

〉∣∣∣≤Mn

∥∥φ1

∥∥
n

∥∥µ(t0)
∥∥

−n +Mn

∥∥φ1

∥∥
n

t1∫

t0

(t1 − t)−1/2
∥∥V3(·, t)

∥∥
n

∥∥µ(t)
∥∥

−n dt

+Mn

∥∥φ1

∥∥
n

t1∫

t0

(t1 − t)−1/2
(
‖V4‖0E0(t)

1/2 +‖V5‖0

∣∣Q(t)
∣∣+
∥∥ν(t)

∥∥
−n

)
dt. (5.20)

Step 2: Next, we need to estimate Q(t) using (5.1)(iii). We get

∣∣Q(t)
∣∣≤ c(ρ̄, ǫ)

(∥∥ν(t)
∥∥

−n +
∥∥V3(·, t)

∥∥
n

∥∥µ(t)
∥∥

−n +‖V4‖0E0(t)
1/2
)
. (5.21)

Plugging (5.21) into (5.20) and using Assumption 5.5, we deduce

∣∣∣
〈
φ1,µ(t1)

〉∣∣∣≤Mn

∥∥φ1

∥∥
n

∥∥µ(t0)
∥∥

−n

+
(

1 + c(ρ̄, ǫ)P̄ ǫ
)
Dn(r)Mn

∥∥φ1

∥∥
n

t1∫

t0

(t1 − t)−1/2
∥∥µ(t)

∥∥
−n dt

+
(

1 + c(ρ̄, ǫ)P̄ ǫ
)
Mn

∥∥φ1

∥∥
n

t1∫

t0

(t1 − t)−1/2
(
‖V4‖0E0(t)

1/2 +
∥∥ν(t)

∥∥
−n

)
dt.

Taking the supremum over all φ1 ∈Xn, we get

32



ARTICLE IN PRESS
JID:YJDEQ AID:11744 /FLA [m1+; v1.357] P.33 (1-94)

P.J. Graber and R. Sircar Journal of Differential Equations ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

∥∥µ(t1)
∥∥

−n ≤Mn

∥∥µ(t0)
∥∥

−n +
(

1 + c(ρ̄, ǫ)P̄ ǫ
)
Dn(r)Mn

t1∫

t0

(t1 − t)−1/2
∥∥µ(t)

∥∥
−n dt

+
(

1 + c(ρ̄, ǫ)P̄ ǫ
)
Mn

t1∫

t0

(t1 − t)−1/2
(
‖V4‖0E0(t)

1/2 +
∥∥ν(t)

∥∥
−n

)
dt, ∀0 ≤ t0 < t1. (5.22)

Step 3: Square both sides of (5.22) and use Cauchy-Schwartz to get

∥∥µ(t1)
∥∥2

−n ≤ 4M2
n

∥∥µ(t0)
∥∥2

−n + B̃(t1 − t0)
1/2

t1∫

t0

(t1 − t)−1/2
∥∥µ(t)

∥∥2

−n dt

+ B̃(t1 − t0)
1/2

t1∫

t0

(t1 − t)−1/2
(
‖V4‖2

0E0(t)+
∥∥ν(t)

∥∥2

−n

)
dt, ∀0 ≤ t0 < t1

where B̃ := 8
(

1 + c(ρ̄, ǫ)P̄ ǫ
)2
Dn(r)

2M2
n . Now we will apply Lemma 5.7 with

A= 4M2
n, B = B̃δ1/2, δ = (8B̃)−1, f (t)=

∥∥µ(t)
∥∥2

n
,

g(t)= B
(
‖V4‖2

0E0(t)+
∥∥ν(t)

∥∥2

−n

)
, and λ= 2ρ.

Comparing the definition in Equation (5.16), we see that

λ≥ 2κ(r)= δ−1 ln(2A) > δ−1 ln(A) ⇒ 1 −Ae−λδ ≤ 1

2
.

We also have 2δ1/2B = 2δB̃ ≤ 1/4, and thus (5.15) implies

1

2

T∫

0

e−λtf (t)dt ≤ A

δ−1 ln(2)
f (0)+ 4δ1/2

T∫

0

e−λtg(t)dt.

By comparing the constants defined above, we deduce

T∫

0

e−λtf (t)dt ≤ f (0)+B−1

T∫

0

e−λtg(t)dt,

which implies (5.17), as desired. 2

Corollary 5.9. Let (w,µ) be a solution of (5.1), and suppose ρ ≥ κ(r) with κ(r) defined in

(5.16). Then
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


T∫

0

∣∣Qρ(t)
∣∣2 dt




1/2

≤ D̂n(r)



∥∥µ0

∥∥
−n +




T∫

0

∥∥νρ(t)
∥∥2

−n dt




1/2

+




T∫

0

Eρ(t)dt




1/2



where D̂n(r)= c(ρ̄, ǫ)
(
1 +Dn(r)

)
.

Proof. Multiply (5.21) by e−ρt , take the L2(0, T ) norm and then apply Lemma 5.8. 2

Lemma 5.10. Let (w,µ) be a solution of (5.1) with time horizon T . There exists a constant κ1(r),

which depends only on n,σ , and r and is decreasing with respect to r , such that if

ρ ≤ r − κ1(r) (5.23)

and if

∥∥∥∥
∂wρ

∂x
(·, t)

∥∥∥∥
n

→ 0 as t → T , (5.24)

then the following a estimate holds:

T∫

0

∥∥∥∥
∂wρ

∂x
(·, t)

∥∥∥∥
2

n

dt ≤ D̂n(r)2
∥∥µ0

∥∥2

−n + D̂n(r)
2

T∫

0

(
Eρ(t)+

∥∥νρ(t)
∥∥2

−n +
∥∥fρ(·, t)

∥∥2

n

)
dt,

(5.25)

where D̂n(r)= c(ρ̄, ǫ)
(
1 +Dn(r)

)
.

Proof. Step 1: Fix some T ′ < T , where T ∈ (0,∞
]

is the time horizon. For any function g =
g(y, t) depending on t and possibly other variables, let g̃(y, t)= g(y,T ′ − t). By reversing time

in Equation (5.1)(i), we see that w̃r satisfies

∂ w̃r

∂t
= σ 2

2

∂2w̃r

∂x2
+ Ṽ1

∂ w̃r

∂x
+ Ṽ2Q̃r(t)− f̃r .

Since w̃r(0, t)= 0, we have

w̃r(x, t)=
∞∫

0

G1(x, y, t − t0)w̃r(y, t0)dy

+
t∫

t0

∞∫

0

G1(x, y, t − s)

(
Ṽ1(y, s)

∂ w̃r

∂y
(y, s)+ Ṽ2(y, s)Q̃r (s)− f̃r(y, s)

)
dy ds ∀t ≥ t0 ≥ 0

where we define

G(−1)n(x, y, t)= (−1)nS(x − y, t)− S(x + y, t).
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Using an argument similar to the proof of Theorem 5.2, we deduce

∥∥∥∥
∂ w̃r

∂x
(·, t)

∥∥∥∥
n

≤An
∥∥∥∥
∂ w̃r

∂x
(·, t0)

∥∥∥∥
n

+Bn,σ

(
Dn(r)+ ǫD̃n(r)+ 1

) t∫

t0

(t − s)−1/2

(∥∥∥∥
∂ w̃r

∂x
(·, s)

∥∥∥∥
n

+
∣∣∣Q̃r(s)

∣∣∣+
∥∥∥f̃r(·, s)

∥∥∥
n

)
ds,

(5.26)

where An depends only on the constants m1, . . . ,mn, Bn,σ depends only on the constants

m1,σ , . . . ,mn,1, and D̃n(r) is the constant from (5.11).

Step 2: Square both sides of (5.26) to get

∥∥∥∥
∂ w̃r

∂x
(·, t)

∥∥∥∥
2

n

≤ Ãn
∥∥∥∥
∂ w̃r

∂x
(·, t0)

∥∥∥∥
2

n

+ B̃n(t − t0)
1/2

t∫

t0

(t − s)−1/2

(∥∥∥∥
∂ w̃r

∂x
(·, s)

∥∥∥∥
2

n

+
∣∣∣Q̃r(s)

∣∣∣
2
+
∥∥∥f̃r(·, s)

∥∥∥
2

n

)
ds,

where

Ãn := 4A2
n, B̃n := 8B2

n,σ

(
Dn(r)+ ǫD̃n(r)+ 1

)2
.

We will apply Lemma 5.7 with

δ = (8B̃n)
−1,A= Ãn, B = B̃nδ

1/2, g(t)= B

(∣∣∣Q̃r(s)

∣∣∣
2
+
∥∥∥f̃r(·, s)

∥∥∥
2

n

)
.

We deduce that for every λ≥ δ−1 ln(2Ãn),

T ′∫

0

e−λt
∥∥∥∥
∂ w̃r

∂x
(·, t)

∥∥∥∥
2

n

dt ≤ Ãn

4B̃n ln(2)

∥∥∥∥
∂ w̃r

∂x
(·,0)

∥∥∥∥
2

n

+
T ′∫

0

e−λt
(∣∣∣Q̃r(t)

∣∣∣
2
+
∥∥∥f̃r(·, t)

∥∥∥
2

n

)
dt.

Define

κ1(r) := 4B̃n ln(2Ãn)= 32B2
n

(
Dn(r)+ ǫD̃n(r)+ 1

)2
ln(2Ãn),

which satisfies the hypotheses given in the statement of the lemma. Then set ρ = r − λ
2

; we have

define κ1(r) so that ρ ≤ r − κ1(r) is equivalent to λ ≥ δ−1 ln(2Ãn). Now make the substitution

t 7→ T ′ − t , then let T ′ → T and use (5.24) to get
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T∫

0

∥∥∥∥
∂wρ

∂x
(·, t)

∥∥∥∥
2

n

dt ≤
T∫

0

(∣∣Qρ(t)
∣∣2 +

∥∥fρ(·, t)
∥∥2

n

)
dt.

Finally, we use Corollary 5.9 to get (5.25). 2

We can also estimate
∥∥µρ(t)

∥∥
−n pointwise, provided we are willing to include some depen-

dence on

∥∥∥∥
∂wρ

∂x

∥∥∥∥
0

, which will be estimated below.

Lemma 5.11. Let (w,µ) be a solution of (5.1). Suppose

ρ ≥ 36
(
1 + c(ρ̄, ǫ)

)2
Dn(r)

2M2
n =: κ0(r). (5.27)

Then

sup
0≤t≤T

∥∥µρ(t)
∥∥

−n ≤ 2Mn

∥∥µ0

∥∥
−n + sup

0≤τ≤T

∥∥νρ(τ )
∥∥

−n +Cn

∥∥∥∥
∂wρ

∂x

∥∥∥∥
1/2

0




T∫

0

Eρ(s)ds




1/4

,

(5.28)

where

Cn = 4
(
1 + c(ρ̄, ǫ)

)1/2
M

1/2
n .

Proof. Take (5.22) with t0 = 0, t1 = t , multiply by e−ρt to get

∥∥µρ(t)
∥∥

−n ≤Mn

∥∥µ0

∥∥
−n +

(
1 + c(ρ̄, ǫ)

)
Dn(r)Mn

t∫

0

e−ρ(t−s)(t − s)−1/2
∥∥µρ(s)

∥∥
−n ds

+
(
1 + c(ρ̄, ǫ)

)
Mn

t∫

0

e−ρ(t−s)(t − s)−1/2
(
Eρ(s)

1/2 +
∥∥νρ(s)

∥∥
−n

)
ds. (5.29)

We first use Hölder’s inequality to estimate

t∫

0

e−ρ(t−s)(t − s)−1/2Eρ(s)
1/2 ds ≤

∥∥∥∥
∂wρ

∂x

∥∥∥∥
1/2

0

t∫

0

e−ρ(t−s)(t − s)−1/2Eρ(s)
1/4 ds

≤
∥∥∥∥
∂wρ

∂x

∥∥∥∥
1/2

0




t∫

0

e−
4
3ρ(t−s)(t − s)−2/3 ds




3/4


t∫

0

Eρ(s)ds




1/4

.

(5.30)
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Using the substitution s 7→ t − s
ρ

, we find

t∫

0

e−
4
3ρ(t−s)(t − s)−2/3 ds = ρ−1/3

t∫

0

e−
4
3 ss−2/3 ds

≤ ρ−1/3




1∫

0

s−2/3 ds +
∞∫

1

e−
4
3 s ds


≤ 4ρ−1/3

(5.31)

and also

t∫

0

e−ρ(t−s)(t − s)−1/2 ds ≤ 3ρ−1/2. (5.32)

Using (5.30), (5.31), and (5.32) in (5.29), we get

∥∥µρ(t)
∥∥

−n ≤Mn

∥∥µ0

∥∥
−n + 3ρ−1/2

(
1 + c(ρ̄, ǫ)

)
Dn(r)Mn sup

0≤τ≤T

∥∥µρ(τ )
∥∥

−n

+ 3ρ−1/2
(
1 + c(ρ̄, ǫ)

)
Mn sup

0≤τ≤T

∥∥νρ(τ )
∥∥

−n

+ 4ρ−1/4
(
1 + c(ρ̄, ǫ)

)
Mn

∥∥∥∥
∂wρ

∂x

∥∥∥∥
1/2

0




T∫

0

Eρ(s)ds




1/4

. (5.33)

By the assumption (5.27), (5.33) simplifies to

∥∥µρ(t)
∥∥

−n ≤Mn

∥∥µ0

∥∥
−n + 1

2
sup

0≤τ≤T

∥∥µρ(τ )
∥∥

−n

+ 1

2
sup

0≤τ≤T

∥∥νρ(τ )
∥∥

−n + 2
(
1 + c(ρ̄, ǫ)

)1/2
M

1/2
n

∥∥∥∥
∂wρ

∂x

∥∥∥∥
1/2

0




T∫

0

Eρ(s)ds




1/4

.

Take the supremum and rearrange to deduce (5.28). 2

From now on we make the following assumption:

Assumption 5.12. We assume r ≥ 2 max
{
κ(r), κ1(r), κ0(r)

}
with κ(r) defined in (5.16), κ1(r)

defined in (5.23), and κ0(r) defined in (5.27).

Importantly, Assumption 5.12 can always be obtained by choosing r large enough, because

κ(r), κ1(r), and κ0(r) are all decreasing functions of r .
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Remark 5.13. When n= 0, Remark 5.4 shows us that κ(r), κ1(r), and κ0(r) no longer depend

on r . In fact, they have the following formulas, more or less explicit:

κ(r) := 32
(

1 + c(ρ̄, ǫ)P̄ ǫ
)2
Q̄2 ln(8),

κ1(r) := 32B2
0

(
Q̄+ ǫP (0)+ 1

)2
ln(2Ã0),

κ0(r) := 36
(
1 + c(ρ̄, ǫ)

)2
Q̄2.

Only the constant B0 and Ã0 from the proof of Lemma 5.10 are left undefined, but upon inspec-

tion of the proof we can see that Ã0 and B0 are constants no greater than, say, 10. Therefore

(4.22) is surely an overestimate.

Corollary 5.14 (Summary of this subsection). Let (w,µ) be a solution of (5.1). Under Assump-

tion 5.12, we have the following a priori estimates:

T∫

0

∥∥µr/2(t)
∥∥2

−n dt ≤
∥∥µ0

∥∥2

−n +
T∫

0

(
‖V4‖2

0Er/2(t)+
∥∥νr/2(t)

∥∥2

−n

)
dt,




T∫

0

∣∣Qr/2(t)
∣∣2 dt




1/2

≤ D̂n(r)



∥∥µ0

∥∥
−n +




T∫

0

∥∥νr/2(t)
∥∥2

−n dt




1/2

+




T∫

0

Er/2(t)dt




1/2

 ,

T∫

0

∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
2

n

dt ≤ D̂n(r)2
∥∥µ0

∥∥2

−n + D̂n(r)
2

T∫

0

(
Er/2(t)+

∥∥νr/2(t)
∥∥2

−n +
∥∥fr/2(·, t)

∥∥2

n

)
dt,

sup
0≤t≤T

∥∥µr/2(t)
∥∥

−n ≤ 2Mn

∥∥µ0

∥∥
−n + sup

0≤τ≤T

∥∥νr/2(τ )
∥∥

−n +Cn

∥∥∥∥
∂wr/2

∂x

∥∥∥∥
1/2

0




T∫

0

Er/2(t)dt




1/4

,

where D̂n(r) = c(ρ̄, ǫ)
(
1 +Dn(r)

)
, Cn = 4

(
1 + c(ρ̄, ǫ)

)1/2
M

1/2
n , and Dn(r) is the constant

appearing in Equation (5.10).

Proof. It suffices to observe that the hypotheses of Lemmas 5.8, 5.10, and 5.11 are all satisfied

with ρ = r/2. 2

5.4. Energy estimates

In some mean field games, known as “potential mean field games,” the Nash equilibrium

can be computed by minimizing a certain energy functional [30,3,5,6]. Because of a formal

resemblance, we keep the name “energy estimates” for the estimates derived in this subsection.

We divide our results into two lemmas. The first deals with differences of solutions to System

(1.6), in which case we assume (5.2) with f = ν = 0, and the second deals with the case (5.3),
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with no restriction on f, ν. Although it is tempting to view the former as a special case of the

latter, there are technical points in the proof in which it is not convenient to do so, and thus the

proofs are treated separately. Nevertheless, their basic outline is similar: differentiate the duality

pairing
〈
w,µ

〉
with respect to time and use the PDE system to write an identity, then use the

assumption on the uniform convexity of H to derive an estimate of the integral
∫ T

0 Er/2(t)dt .

(Recall that Er/2 is defined by (5.13).)

Lemma 5.15 (Energy estimates, differences). Let (u,m,Q∗) and (û, m̂, Q̂∗) be solutions to Sys-

tem (1.6) with initial conditions m0 and m̂0, respectively.

(1) Assume that ǫ satisfies the smallness condition

4CH D̂n(r)
(
CH

(
P(0)+ 1

)
+ P̄

)
ǫ ≤ 1, (5.34)

where, as in (4.3), P̄ = max
{
ρ̄−1
ρ̄−2

,1
}

. Then

T∫

0

∫

D

e−rt
∣∣∣∣
∂u

∂x
− ∂ û

∂x

∣∣∣∣
2 (
m(dx, t)+ m̂(dx, t)

)
dt

≤
∥∥m̂0 −m0

∥∥2

−n + 2CH
∥∥û(·,0)− u(·,0)

∥∥
n

∥∥m̂0 −m0

∥∥
−n , (5.35)

(2) Assume instead that the demand schedule is linear, i.e. P(q)= 1 − q , and that ǫ < 2. Then

we have

T∫

0

∫

D

e−rt
∣∣∣∣
∂u

∂x
− ∂ û

∂x

∣∣∣∣
2 (
m(dx, t)+ m̂(dx, t)

)
dt ≤ 8

∥∥û(·,0)− u(·,0)
∥∥
n

∥∥m̂0 −m0

∥∥
−n .

(5.36)

Proof. Step 1: For a small parameter ǫ. In this first step, we make no further assumptions on

the demand schedule P but instead assume condition (5.34) holds. Multiply (1.6)i (ii) by u− û

and integrate by parts, then subtract. (See [30, Theorem 2.4].) After rearranging we get



∫

D

e−rt (u(x, t)− û(x, t))(m− m̂)(dx, t)




T

0

=
T∫

0

∫

D

e−rt
(
H

(
ǫ, Q̂∗(t),

∂ û

∂x

)
−H

(
ǫ,Q∗(t),

∂u

∂x

)
− ∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x

)(
∂ û

∂x
− ∂u

∂x

))
m(dx, t)dt

+
T∫

0

∫

D

e−rt
(
H

(
ǫ,Q∗(t),

∂u

∂x

)
−H

(
ǫ, Q̂∗(t),

∂ û

∂x

)
− ∂H

∂a

(
ǫ, Q̂∗(t),

∂ û

∂x

)(
∂u

∂x
− ∂ û

∂x

))
m̂(dx, t)dt.
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By Equation (4.2), we deduce

1

CH

T∫

0

∫

D

e−rt
∣∣∣∣
∂u

∂x
− ∂ û

∂x

∣∣∣∣
2 (
m(dx, t)+ m̂(dx, t)

)
dt

≤
T∫

0

∫

D

e−rt
(
H

(
ǫ,Q∗(t),

∂ û

∂x

)
−H

(
ǫ, Q̂∗(t),

∂ û

∂x

))
m(dx, t)dt

+
T∫

0

∫

D

e−rt
(
H

(
ǫ, Q̂∗(t),

∂u

∂x

)
−H

(
ǫ,Q∗(t),

∂u

∂x

))
m̂(dx, t)dt

+



∫

D

e−rt (u(x, t)− û(x, t))(m− m̂)(dx, t)




T

0

. (5.37)

Since u, û are bounded and
∫
D
mi(dx,T )≤ 1 for all T , it follows that

lim
T→∞

∫

D

e−rT (u(T , x)− û(T , x))(m− m̂)(dx,T )= 0.

We can rewrite the remaining terms on the right-hand side using the fundamental theorem of

calculus. Thus (5.37) becomes, after letting T → ∞,

1

CH

∞∫

0

∫

D

e−rt
∣∣∣∣
∂u

∂x
− ∂ û

∂x

∣∣∣∣
2 (
m(dx, t)+ m̂(dx, t)

)
dt ≤ I0 + I1 + I2, (5.38)

where I0 :=
∣∣∫
D
(u(0, x)− û(0, x))(m− m̂)(dx,0)

∣∣,

I1 :=
1∫

0

∞∫

0

∫

D

e−rt
∂H

∂Q

(
ǫ,Q∗

s (t),
∂ û

∂x

)(
Q∗(t)− Q̂∗(t)

)
(m− m̂)(dx, t)dt ds, and

I2 :=
1∫

0

1∫

0

∞∫

0

∫

D

e−rt
∂2H

∂Q∂a

(
ǫ,Q∗

s (t),
∂us̃

∂x

)(
∂ û

∂x
− ∂u

∂x

)(
Q∗(t)− Q̂∗(t)

)
m(dx, t)dt ds ds̃,

where Q∗
s (t) := sQ∗(t)+ (1 − s)Q̂∗(t), us := sû+ (1 − s)u.

By using Corollary 4.3 and (4.18), we can estimate

∣∣∣∣∣
∂H

∂Q

(
ǫ,Q∗

s (t),
∂ û

∂x

)∣∣∣∣∣≤
(
P(0)+ 1

)
ǫ,
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∣∣∣∣∣
∂2H

∂Q∂a

(
ǫ,Q∗

s (t),
∂us̃

∂x

)(
∂ û

∂x
− ∂u

∂x

)∣∣∣∣∣≤ P̄ ǫ, ∀s, s̃ ∈ [0,1],

where P̄ := max

{∣∣∣ ρ̄−1
ρ̄−2

∣∣∣ ,1
}

is defined in Corollary 4.3. Thus

|I1| ≤
(
P(0)+ 1

)
ǫ

∞∫

0

e−rt
∣∣∣Q∗(t)− Q̂∗(t)

∣∣∣
∥∥m(t)− m̂(t)

∥∥
−n dt,

|I2| ≤ P̄ ǫ
∞∫

0

∫

D

e−rt
∣∣∣∣
∂ û

∂x
− ∂u

∂x

∣∣∣∣
∣∣∣Q∗(t)− Q̂∗(t)

∣∣∣m(dx, t)dt.

(5.39)

Recalling the definitions w = û− u,µ= m̂−m, and Q = Q̂−Q, using the Cauchy-Schwartz

inequality and the fact that m is a sub-probability measure, we deduce the following from (5.39):

|I1| ≤
(
P(0)+ 1

)
ǫ




∞∫

0

∣∣Qr/2(t)
∣∣2 dt




1/2


∞∫

0

∥∥µr/2(t)
∥∥2

−n dt




1/2

,

|I2| ≤ P̄ ǫ




∞∫

0

∣∣Qr/2(t)
∣∣2 dt




1/2


∞∫

0

Er/2(t)dt




1/2

.

(5.40)

We now apply Corollary 5.14 and Assumption 5.5; here we can assume ν = 0 and f = 0. Thus

(5.40) implies

|I1| ≤ 2D̂n(r)CH
(
P(0)+ 1

)
ǫ



∥∥µ0

∥∥2

−n +
∞∫

0

Er/2(t)dt


 ,

|I2| ≤ 2D̂n(r)P̄ ǫ



∥∥µ0

∥∥2

−n +
∞∫

0

Er/2(t)dt


 .

(5.41)

Plugging (5.41) into (5.38), we deduce

T∫

0

∫

D

e−rt
∣∣∣∣
∂u

∂x
− ∂ û

∂x

∣∣∣∣
2 (
m(dx, t)+ m̂(dx, t)

)
dt ≤ CH Ĉǫ



∥∥µ0

∥∥2

−n +
∞∫

0

Er/2(t)dt


+CH I0,

(5.42)

where Ĉ = 2D̂n(r)
(
CH

(
P(0)+ 1

)
+ P̄

)
. Equation (5.34) can be written

2CH Ĉǫ ≤ 1.
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Since the left-hand side of (5.42) dominates
∫∞

0 Er/2(t)dt , we use (5.34) and rearrange to deduce

(5.35).

Step 2: For a linear demand schedule. Now we consider the case where P(q) = 1 − q and

ǫ < 2. In this case the same series of computations (cf. the proof of Theorem 4.21, see also

Equation (5.51) below) now leads to

1

4

T ′∫

0

∫

D

(
∂wr/2

∂x
+ ǫQr/2

)2

d(m̂+m)(t)dt + ǫ

T ′∫

0

Qr/2(t)
2 dt

≤ e−rT ′∥∥w(·, T ′)
∥∥

0

∥∥µ(T ′)
∥∥

−0
+
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n . (5.43)

Let T ′ → T , rearrange the square term in (5.43) and perform standard estimates to deduce

T∫

0

∫

D

(
∂wr/2

∂x

)2

d(m̂+m)(t)dt ≤ 8
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n ,

which is the same as (5.36). 2

Lemma 5.16 (Energy estimates, all other cases). Let (w,µ) be a solution of the system (5.1),

and assume that V1, . . . , V5, f, ν satisfy (5.3).

(1) Assume that ǫ is sufficiently small, namely

ǫ4D̂n(r)
2
(
D̃n(r)+ P̄

)
C2
H ≤ (4CH )−1. (5.44)

Then

T∫

0

Er/2(t)dt ≤ 4CH
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n+4

∥∥µ0

∥∥2

−n+ Ĉ
T∫

0

(∥∥fr/2(·, t)
∥∥2

n
+
∥∥νr/2(t)

∥∥2

−n

)
dt,

(5.45)

where Ĉ = 4C2
H

(
D̂n(r)

2 +C2
H

)
+ 1.

(2) Assume instead that the demand schedule P is linear, i.e. P(q) = 1 − q , and that ǫ < 2.

Then

T∫

0

Er/2(s)ds ≤ 16
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n +

∥∥µ0

∥∥2

−n + Ĉ

T∫

0

(∥∥νr/2(t)
∥∥2

−n +
∥∥fr/2(·, t)

∥∥2

n

)
dt,

(5.46)

where Ĉ =
(

32 max
{
D̂n(r),CH

}2
+ 17

)
.

Proof. Note that the case when (w,µ) is a difference of two solutions to System (1.6), so that

(5.2) holds with f = ν = 0, is already proved in Section 4.7.
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Step 1: For a small parameter ǫ. In this first step, we make no further assumptions on the

demand schedule P but instead assume condition (5.44) holds. Note that when

Differentiate e−rt
∫
D
wµ with respect to t and integrate by parts to get

d

dt



∫

D

wr/2µr/2


=

∫

D

fr/2µr/2 −Qr/2(t)

∫

D

V2µr/2

+
∫

D

V4

∣∣∣∣
∂wr/2

∂x

∣∣∣∣
2

m+Qr/2(t)

∫

D

V5

∂wr/2

∂x
m+

∫

D

∂wr/2

∂x
νr/2. (5.47)

Let T ′ ∈ (0, T ) and integrate (5.47) from 0 to T ′. Recalling that V4 ≥ C−1
H from Assumption 5.5,

we get

C−1
H

T ′∫

0

Er/2(t)dt ≤
〈
wr/2(·, t),µr/2(t)

〉∣∣∣
T ′

0
+

T ′∫

0

∥∥fr/2(·, t)
∥∥
n

∥∥µr/2(t)
∥∥

−n dt

+
T ′∫

0

∣∣Qr/2(t)
∣∣
(
‖V2‖n

∥∥µr/2(t)
∥∥

−n +‖V5‖0Er/2(t)
1/2
)

dt +
T ′∫

0

∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
n

∥∥νr/2(t)
∥∥

−n dt.

Then let T ′ → T and recall that by assumption (5.12), limt→T

〈
wr/2(·, t),µr/2(t)

〉
= 0. Thus,

C−1
H

T∫

0

Er/2(t)dt ≤
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n +

T∫

0

∥∥fr/2(·, t)
∥∥
n

∥∥µr/2(t)
∥∥

−n dt

+
T∫

0

∣∣Qr/2(t)
∣∣
(
‖V2‖n

∥∥µr/2(t)
∥∥

−n +‖V5‖0Er/2(t)
1/2
)

dt +
T∫

0

∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
n

∥∥νr/2(t)
∥∥

−n dt.

(5.48)

Now using Corollary 5.14, recalling‖V4‖0 ≤ CH (Assumption 5.5), we derive

T∫

0

(
∥∥fr/2(·, t)

∥∥
n

∥∥µr/2(t)
∥∥

−n +
∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
n

∥∥νr/2(t)
∥∥

−n

)
dt

≤ (2CH )−1

T∫

0

Er/2(t)dt + (2CH )
−1
∥∥µ0

∥∥2

−n +C1

T∫

0

(∥∥fr/2(·, t)
∥∥2

n
+
∥∥νr/2(t)

∥∥2

−n

)
dt,

where C1 := CH

(
D̂n(r)

2 +C2
H

)
. Thus (5.48) yields
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(2CH )
−1

T∫

0

Er/2(t)dt ≤
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n +C1

T∫

0

(∥∥fr/2(·, t)
∥∥2

n
+
∥∥νr/2(t)

∥∥2

−n

)
dt

+ (2CH )
−1
∥∥µ0

∥∥2

−n +
T∫

0

∣∣Qr/2(t)
∣∣
(
‖V2‖n

∥∥µr/2(t)
∥∥

−n +‖V5‖0Er/2(t)
1/2
)

dt. (5.49)

Also, again using Corollary 5.14 and also Assumption 5.5, we get

T∫

0

∣∣Qr/2(t)
∣∣
(
‖V2‖n

∥∥µr/2(t)
∥∥

−n +‖V5‖0Er/2(t)
1/2
)

dt

≤ ǫ4D̂n(r)
2
(
D̃n(r)+ P̄

)


∥∥µ0

∥∥2

−n +
T∫

0

∥∥νr/2(t)
∥∥2

−n dt +C2
H

T∫

0

Er/2(t)dt




where P̄ = max

{∣∣∣ ρ̄−1
2−ρ̄

∣∣∣ ,1
}

. Then by (5.44), Equation (5.49) yields

(4CH )
−1

T∫

0

Er/2(t)dt ≤
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n +C1

T∫

0

(∥∥fr/2(·, t)
∥∥2

n
+
∥∥νr/2(t)

∥∥2

−n

)
dt

+C−1
H

∥∥µ0

∥∥2

−n + (4CH )
−1

T∫

0

∥∥νr/2(t)
∥∥2

−n dt. (5.50)

We rearrange (5.50) to conclude with (5.45).

Step 2: For a linear demand schedule. Now we consider the case where P(q) = 1 − q and

ǫ < 2, so that the system has the form (4.21). After doing integration by parts and canceling like

terms, we get


2 + ǫ(t)

∫

D

dm(t)




−1 ∫

D

∣∣∣∣
∂w

∂x

∣∣∣∣
2

dm(t)+ 2


2 + ǫ(t)

∫

D

dm(t)




−1

∫

D

q∗(·, t)dµ(t)




2

= ert
d

dt


e−rt

∫

D

w(·, t)dµ(t)


+ 2


2 + ǫ(t)

∫

D

dm(t)




−1 ∫

D

dν(t)

∫

D

q∗(·, t)dµ(t)

+


2 + ǫ(t)

∫

D

dm(t)




−1 ∫

D

dν(t)

∫

D

∂w

∂x
dm(t)−

∫

D

∂w

∂x
dν(t)+

∫

D

f (·, t)dµ(t), (5.51)
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from which we deduce

1

2


2 + ǫ(t)

∫

D

dm(t)




−1 ∫

D

∣∣∣∣
∂w

∂x

∣∣∣∣
2

dm(t)+


2 + ǫ(t)

∫

D

dm(t)




−1

∫

D

q∗(·, t)dµ(t)




2

≤ ert d

dt


e−rt

∫

D

w(·, t)dµ(t)


+ ǫ2 + 2ǫ

2


2 + ǫ(t)

∫

D

dm(t)




−1

∫

D

dν(t)




2

−
∫

D

∂w

∂x
dν(t)+

∫

D

f (·, t)dµ(t). (5.52)

Multiply (5.52) by e−rt , integrate from 0 to T ′ and let T ′ → T to get

T∫

0

Er/2(s)ds ≤ 2(2 + ǫ)
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n + ǫ(2 + ǫ)2

2

T∫

0

∥∥νr/2(s)
∥∥2

−n ds

+ 2(2 + ǫ)

T∫

0

(∥∥∥∥
∂wr/2

∂x
(·, s)

∥∥∥∥
n

∥∥νr/2(s)
∥∥

−n +
∥∥fr/2(·, s)

∥∥
n

∥∥µr/2(s)
∥∥

−n

)
ds. (5.53)

4(2 + ǫ)

T∫

0

(∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
n

∥∥νr/2(t)
∥∥

−n +
∥∥fr/2(·, t)

∥∥
n

∥∥µr/2(t)
∥∥

−n

)
dt

≤
∥∥µ0

∥∥2

−n +
T∫

0

Er/2(t)dt

+
(

8 max
{
D̂n(r),CH

}2
(2 + ǫ)2 + 1

) T∫

0

(∥∥νr/2(t)
∥∥2

−n +
∥∥fr/2(·, t)

∥∥2

n

)
dt

Using Corollary 5.14 and rearranging (5.53), we deduce

T∫

0

Er/2(s)ds ≤ 4(2 + ǫ)
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n +

∥∥µ0

∥∥2

−n + ǫ(2 + ǫ)2

T∫

0

∥∥νr/2(s)
∥∥2

−n ds

+
(

8 max
{
D̂n(r),CH

}2
(2 + ǫ)2 + 1

) T∫

0

(∥∥νr/2(t)
∥∥2

−n +
∥∥fr/2(·, t)

∥∥2

n

)
dt,

which can be rewritten as (5.46), using ǫ < 2. 2
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We now introduce the following condition on ǫ:

Assumption 5.17. We assume either that

ǫmax

{
16D̂n(r)

2
(
D̃n(r)+ P̄

)
C3
H ,4CH D̂n(r)

(
CH

(
P(0)+ 1

)
+ P̄

)}
≤ 1, (5.54)

where P̄ = max
{
ρ̄−1
ρ̄−2

,1
}

, or else P(q)= 1 − q and ǫ < 2.

Corollary 5.18. Let (w,µ) be a solution of (5.1), where either (5.3) or (5.2) holds. Define

Jn(ρ) :=
∥∥w(·,0)

∥∥
n

∥∥µ0

∥∥
−n +

∥∥µ0

∥∥2

−n +
T∫

0

(∥∥fρ(·, s)
∥∥2

n
+
∥∥νρ(s)

∥∥2

−n

)
ds, (5.55)

Kn(ρ) :=
∥∥µ0

∥∥
−n + sup

0≤τ≤T

∥∥νρ(τ )
∥∥

−n +
∥∥∥∥
∂wρ

∂x

∥∥∥∥
1/2

0

Jn(ρ)
1/4. (5.56)

Let Assumptions 5.12 and 5.17 hold. Then there exists a constant C, depending on the data but

not on T , such that the following three estimates hold:

T∫

0

Er/2(s)ds ≤ CJn(r/2), (5.57)

T∫

0

∥∥µr/2(t)
∥∥2

−n dt ≤ CJn(r/2), (5.58)

T∫

0

∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
2

n

dt ≤ CJn(r/2), (5.59)

T∫

0

∣∣Qr/2(t)
∣∣2 dt ≤ CJn(r/2), (5.60)

sup
t∈[0,T ]

∥∥µn(t)
∥∥

−n ≤ CKn(r/2). (5.61)

Proof. By Assumption 5.12, taking (5.12) into account, we can apply Lemmas 5.8 and 5.10 with

ρ = r/2. Apply Lemmas 5.15 and 5.16, we deduce (5.57). Then Equations (5.58), (5.59), (5.60),

and (5.61) follow from applying Lemma 5.8, Lemma 5.10, Corollary 5.9, and Lemma 5.11,

respectively, using Equation (5.57). 2
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5.5. Hölder estimates

Recall that Y1+α := C1+α
⋄ (D) is the space of all φ ∈ C1+α(D) with the compatibility condition

φ(0)= 0. Set ψ(x)= 1 − e−x . For n≥ 2 we will define Yn+α to be the space of all φ ∈ C1+α
⋄ (D)

such that ψj−1φ ∈ C
j+α
⋄ (D) for j = 2, . . . , n, with norm given by

∥∥φ
∥∥
Yn+α

=
n∑

j=1

∥∥∥ψj−1φ

∥∥∥
Cj+α

.

This defines a Banach space. The following two lemmas provide estimates on solutions to

parabolic equations in the spaces Yn+α for n= 1,2,3.

Lemma 5.19. Let u be a the solution of

∂u

∂t
+ λu− σ 2

2

∂2u

∂x2
+ V (x, t)

∂u

∂x
= F, u(0, t)= 0, u(x,0)= u0(x) (5.62)

where λ is any positive constant, F is a bounded continuous function, and u0 ∈ C1+α
⋄ (D)

(i.e. u0 ∈ C1+α(D) with u0(0)= 0). Then

‖u‖
Cα,α/2

(
D×

[
0,T

]) +
∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2

(
D×

[
0,T

]) ≤ C
(
‖V ‖0 , α,λ

) (
‖F‖0 +‖u0‖C1+α

)
,

where C
(
‖V ‖0 , α,λ

)
is independent of T .

Proof. See [21, Lemma 2.7]. 2

Lemma 5.20. Let u be a solution of (5.62), in which F, ∂F
∂x
,V , ∂V

∂x
∈ Cα,α/2(D×[0, T ]). Assume

also that u0 ∈ Yn+α for n = 2 or n = 3; that is, assume ψj−1u
(j)

0 ∈ C1+α
⋄ (D) for j = 1, . . . , n.

Then

∥∥ψu
∥∥
C2+α,1+α/2(D×[0,T ])

≤ C
(
‖V ‖Cα,α/2 , λ, σ,α

)(∥∥ψu0

∥∥
C2+α +‖u0‖C1+α +

∥∥ψF
∥∥
Cα,α/2

+‖F‖0

)
, and (5.63)

∥∥∥∥ψ
2 ∂u

∂x

∥∥∥∥
C2+α,1+α/2(D×[0,T ])

≤ C
(
‖V ‖Cα,α/2 ,

∥∥∥∥
∂V

∂x

∥∥∥∥
Cα,α/2

, λ, σ,α

)

×
(∥∥∥ψ2u′

0

∥∥∥
C2+α

+
∥∥ψu0

∥∥
C2+α +

∥∥∥∥ψ
2 ∂F

∂x

∥∥∥∥
Cα,α/2

+
∥∥ψF

∥∥
Cα,α/2

+‖F‖0

)
. (5.64)
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Proof. Multiply (5.62) by ψ to see that v(x, t)=ψ(x)u(x, t) is the solution to

∂v

∂t
+ λv− σ 2

2

∂2v

∂x2
+ V

∂v

∂x
=ψF − σ 2ψ ′ ∂u

∂x
− σ 2

2
ψ ′′u+ Vψ ′u,

v(0, t)= 0, v(x,0)=ψ(x)u0(x).

Note that the compatibility conditions of order 0 and 1 are satisfied. Indeed, the condition of

order 0 is trivial: ψ(0)u0(0)= 0. The condition of order 1 is

λψ(0)u0(0)−
σ 2

2

d2

dx2
(ψu0)(0)+ V (0,0)

d

dx
(ψu0)(0)

=ψ(0)F (0,0)− σ 2ψ ′(0)u′
0(0)−

σ 2

2
ψ ′′(0)u0(0)+ V (0,0)ψ ′(0)u0(0),

which can be verified by expanding the derivatives and using the fact that ψ(0)= 0. Now observe

that

∥∥∥∥∥σ
2ψ ′ ∂u

∂x
− σ 2

2
ψ ′′u+ Vψ ′u

∥∥∥∥∥
Cα,α/2

≤ C
(
‖V ‖Cα,α/2 + 1

)
(
‖u‖Cα,α/2 +

∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2

)

≤ C
(
‖V ‖Cα,α/2 + 1

) (
‖F‖0 +‖u0‖C1+α

)
,

whereC depends on‖V ‖0 , α, and λ as in Lemma 5.19. Here we have used the fact that

∥∥∥ψ (n)
∥∥∥

0
=

1 for all n. From Lemma 4.12 we have

‖v‖
C2+α,1+α/2(D×[0,T ])

≤ C
(
‖V ‖Cα,α/2 , λ, σ,α

)
(
∥∥ψu0

∥∥
C2+α +‖u0‖C1+α +

∥∥ψF
∥∥
Cα,α/2

+‖F‖0 +
∥∥∥∥
∂v

∂x

∥∥∥∥
Cα,α/2

)
,

and Equation (5.63) follows from interpolation.

To derive Equation (5.64), take the derivative with respect to x of (5.62) and multiply by ψ2.

Rearrange to see that w(x, t)=ψ(x)2 ∂u
∂x
(x, t) is the (weak) solution to

∂w

∂t
+ λw− σ 2

2

∂2w

∂x2
=ψ2 ∂F

∂x
−
(
ψ2 ∂V

∂x
+ σ 2(ψ ′)2 + σ 2ψψ ′′

)
∂u

∂x

−
(
ψ2V + 2σ 2ψψ ′

) ∂2u

∂x2
,

w(0, t)= 0, w(x,0)=ψ(x)2u′
0(x).

Notice that, thanks to the fact that ψ(0) = 0, the compatibility conditions of order 0 and 1 are

satisfied, by the same reasoning as above. We also have, using Lemma 5.19,
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∥∥∥∥∥ψ
2 ∂F

∂x
−
(
ψ2 ∂V

∂x
+ σ 2(ψ ′)2 + σ 2ψψ ′′

)
∂u

∂x
−
(
ψ2V + 2σ 2ψψ ′

) ∂2u

∂x2

∥∥∥∥∥
Cα,α/2

≤
∥∥∥∥ψ

2 ∂F

∂x

∥∥∥∥
Cα,α/2

+C

∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2

+C

∥∥∥∥∥ψ
∂2u

∂x2

∥∥∥∥∥
Cα,α/2

≤
∥∥∥∥ψ

2 ∂F

∂x

∥∥∥∥
Cα,α/2

+C

∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2

+C‖u‖Cα,α/2 +C
∥∥ψu

∥∥
C2+α,1+α/2

≤
∥∥∥∥ψ

2 ∂F

∂x

∥∥∥∥
Cα,α/2

+C‖F‖0 +
∥∥ψu

∥∥
C2+α,1+α/2 ,

where C depends on‖V ‖Cα,α/2 and

∥∥∥ ∂V∂x
∥∥∥
Cα,α/2

. By Lemma 4.12 and Equation (5.63), we deduce

(5.64). 2

Lemmas 5.19 and 5.20 have the following consequence in the case F = 0:

Corollary 5.21. Let u be the solution of (5.62) where λ is any positive constant and where F = 0.

Then

sup
t≥0

∥∥u(·, t)
∥∥
Yn+α

+ sup
t1 6=t2

∥∥u(·, t1)− u(·, t2)
∥∥
Yn+α

|t1 − t2|α/2
≤ C‖u0‖Yn+α ,

where C depends on α,λ,σ , and on either ‖V ‖0 (if n= 1),‖V ‖Cα,α/2 (if n= 2), or ‖V ‖Cα,α/2 +∥∥∥ ∂V∂x
∥∥∥
Cα,α/2

(if n= 3).

Next we wish to establish estimates on the Fokker-Planck equation in the spaces Y ∗
n+α , de-

noting the dual of Yn+α , with regularity in time as well. Note that ‖·‖n ≤‖·‖Yn+α and thus

‖·‖Y ∗
n+α ≤‖·‖−n.

Lemma 5.22. Let (w,µ) be a solution of (5.1). Suppose Assumption 5.12 holds. Then

∥∥µr/2
∥∥
Cα/2

(
[0,T ];Y ∗

n+α
) ≤ C(α, r, σ )Jn(r/2)1/2, n= 1,2, (5.65)

where Jn is defined in (5.55).

Proof. Step 1: Let λ > 0 be such that λ < r/2. Fix t1 > 0, let φt1 ∈ Yn+α with
∥∥φt1

∥∥
Yn+α

≤ 1,

and for any λ > 0 let φ(λ) denote the solution of

− ∂φ

∂t
+ λφ − σ 2

2

∂2φ

∂x2
− V3(x, t)

∂φ

∂x
= 0, φ(0, t)= 0, φ(x, t1)= φt1(x).

Note that we have the relation

φ(λ1+λ2)(x, t)= eλ2(t−t1)φ(λ1)(x, t).
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Now
∥∥q∗∥∥

Cα,α/2
and

∥∥∥ ∂ q
∗

∂x

∥∥∥
Cα,α/2

can be estimated using the norm ‖u‖C2+α,1+α/2 , which in turn is

estimated by the a priori estimates in Theorem 4.16. By Corollary 5.21 we therefore have

sup
t∈[0,t1]

∥∥∥φ(λ)(t)
∥∥∥
Yn+α

+ sup
t0∈[0,t1)

∥∥∥φ(λ)(t1)− φ(λ)(t0)

∥∥∥
Yn+α

(t1 − t0)α/2
≤ C (α,λ,σ ) . (5.66)

For any t0 ∈ [0, t1] we have, using integration by parts,

∫

D

φ
(r/2)
t1

(x)µr/2(x, t1)dx =
∫

D

φ(r/2)(x, t0)µr/2(x, t0)dx

−
t1∫

t0

∫

D

∂φ(r/2)

∂x

((
V4(x, t)

∂wr/2

∂x
(x, t)+ V5(x, t)Qr/2(t)

)
m+ νr/2

)
dx dt. (5.67)

Applying (5.66) and Corollary 5.18, using the identity φ(r/2) = e(λ−r/2)(t1−t)φ(λ), we have

∣∣∣∣∣∣∣

t1∫

t0

∫

D

∂φ(r/2)

∂x

((
V4(x, t)

∂wr/2

∂x
(x, t)+ V5(x, t)Qr/2(t)

)
m+ νr/2

)
dx dt

∣∣∣∣∣∣∣

≤ C (α,λ,σ )
t1∫

t0

e(λ−r/2)(t1−t)
(
Er/2(t)

1/2 +
∥∥µr/2(t)

∥∥
−n +

∥∥νr/2(t)
∥∥

−n

)
dt

≤ C (α,λ,σ )



t1−t0∫

0

e−2(r/2−λ)t dt




1/2


t1∫

t0

(
Er/2(t)+

∥∥µr/2(t)
∥∥2

−n +
∥∥νr/2(t)

∥∥2

−n

)
dt




1/2

≤ C (α,λ,σ )min
{
(r/2 − λ)−1/2, (t1 − t0)

1/2
}
Jn(r/2)

1/2.

(5.68)

Using (5.68) in (5.67) with t0 = 0 and taking the supremum over all φt1 we deduce the bound

∥∥µr/2(t1)
∥∥
Y ∗
n+α

≤ C (α,λ,σ ) (r/2 − λ)−1/2
(∥∥µ0

∥∥
Y ∗
n+α

+ Jn(r/2)
1/2
)

∀t1 ≥ 0. (5.69)

On the other hand, subtracting
∫
φt1µr/2(t1) from both sides of (5.67), we have

∫

D

φt1(x)
(
µr/2(x, t1)−µr/2(x, t0)

)
dx =

∫

D

(
φ(r/2)(x, t0)− φ(r/2)(x, t1)

)
µr/2(x, t0)dx

−
t1∫

t0

∫

D

∂φ(r/2)

∂x

((
V4(x, t)

∂w

∂x
(x, t)+ V5(x, t)Q(t)

)
m+ ν

)
dx dt. (5.70)
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Combining (5.66), (5.68), and (5.69) to estimate the right-hand side of (5.70), we deduce that

∥∥µr/2(t1)−µr/2(t0)
∥∥
Y ∗
n+α

≤ C (α,λ,σ )
(∥∥µ0

∥∥
Y ∗
n+α

+ Jn(r/2)
1/2
)
(t1 − t0)

α/2. (5.71)

It suffices to take λ = r/4. Then recalling that
∥∥µ0

∥∥
Y ∗
n+α

≤
∥∥µ0

∥∥
−n ≤ Jn(r/2)

1/2, we see that

(5.69) and (5.71) imply (5.65). 2

5.6. Hölder regularity of the mass function

Let (w,µ) solve (5.1). Our goal is to prove the Hölder regularity of the following functional:

ηρ(t)= e−ρt
〈
1,µρ(t)

〉
= e−ρt

∫

D

µ(x, t)dx.

This will allow us to estimate Qρ in a Hölder space.

We introduce the space M −n
α , in analogy to the space Mα defined in Section 2. For any

µ ∈X∗
n define the mass function

ηh[µ](t) :=
〈
µ,1

〉
−
∫

D

〈(
S(x − ·, t)− S(x + ·, t)

)
,µ
〉
dx, (5.72)

cf. (3.8). By Proposition 5.1, we deduce that

∥∥∥∥∥∥∥

∫

D

(
S(x − ·, t)− S(x + ·, t)

)
dx

∥∥∥∥∥∥∥
n

≤ 2Mn‖1‖n = 2Mn,

and thus we can write (5.72) as

ηh[µ](t) :=
〈
µ,1

〉
−
〈∫

D

(
S(x − ·, t)− S(x + ·, t)

)
dx,µ

〉
,

from which we also deduce

∣∣∣ηh[µ](t)
∣∣∣≤ Cn

∥∥µ
∥∥

−n ∀t ≥ 0.

Now we define M −n
α to be the set of all µ ∈X∗

n such that ηh[µ] is α-Hölder continuous. It is a

Banach space endowed with the norm

∥∥µ
∥∥
M

−n
α

=
∥∥µ
∥∥

−n +
∥∥∥ηh[µ]

∥∥∥
Cα
([

0,∞)
) .
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Lemma 5.23. Let (w,µ) solve (5.1), and suppose Assumption 5.12 holds. Assume that α ≤ 2/5.

There exists a constant C depending only on the data but not on T such that

∥∥ηr/2
∥∥
Cα/2([0,T ]) ≤ C

(∥∥µ0

∥∥
M

−n
α/2

+ K̃n(r/2)

)
, (5.73)

where

K̃n(r/2)=Kn(r/2)+
∥∥∥∥
∂wr/2

∂x

∥∥∥∥
2/3

0

Jn(r/2)
1/6, (5.74)

and where Jn(r/2) and Kn(r/2) are defined in (5.55) and (5.56), respectively.

Proof. Observe that‖1‖n = 1 for all n and
∥∥ξ
∥∥
n

≤ 2 for n= 0,1,2, so we have the bounds

∣∣ηr/2(t)
∣∣≤
∥∥µr/2(t)

∥∥
−n ,

∣∣ζr/2(t)
∣∣≤
∥∥µr/2(t)

∥∥
−n .

It remains to prove estimates on the Hölder seminorms.

Step 1: By Duhamel’s Principle, we can write

µ(x, t)= I1(x, t)+ I2(x, t)+ I3(x, t)+ I4(x, t)

where

I1(x, t)= −
t∫

0

∞∫

0

(
S(x − y, t − s)− S(x + y, t − s)

)
(V3µ)y(y, s)dy ds,

I2(x, t)= −
t∫

0

∞∫

0

(
S(x − y, t − s)− S(x + y, t − s)

)
(bm)y(y, s)dy ds,

I3(x, t)= −
t∫

0

∞∫

0

(
S(x − y, t − s)− S(x + y, t − s)

)
νy(y, s)dy ds,

I4(x, t)=
∞∫

0

(
S(x − y, t)− S(x + y, t)

)
µ0(y)dy,

b(x, t)= V4(x, t)
∂w

∂x
(x, t)+ V5(x, t)Q(t).

Using integration by parts, we deduce

ηr/2(t)=
4∑

j=1

ηj (t)
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where

η1(t)= 2

t∫

0

∞∫

0

e−r/2(t−s)S(x, t − s)V3(x, s)µr/2(x, s)dx ds,

η2(t)= 2

t∫

0

∞∫

0

e−r/2(t−s)S(x, t − s)br/2(x, s)m(x, s)dx ds,

η3(t)= 2

t∫

0

∞∫

0

S(x, t − s)e−r/2sνr/2(x, s)dx ds,

η4(t)= 2√
π
e−r/2t

∞∫

0

∞∫

(
2σ 2t

)1/2
x

e−x
2

µ0(y)dy dx

where we follow the usual convention defining br/2(x, t)= e−r/2tb(x, t). We use much the same

arguments as in Lemma 3.7 to establish Hölder estimates.

Step 2: For the first term, we write

η1(t1)− η1(t0)= 2

t1∫

t0

∞∫

0

e−r/2(t−s)S(x, t1 − s)V3(x, s)µr/2(x, s)dx ds

+ 2

t0∫

0

∞∫

0

t1∫

t0

d
dt

[
e−r/2(t−s)S(x, t − s)

]
V3(x, s)µr/2(x, s)dt dx ds.

Use Corollary 5.18 and Assumption 5.5 to get

∣∣∣η1(t1)− η1(t0)

∣∣∣≤ C(n, r)Kn(r/2)
t1∫

t0

e−r/2(t−s)
∥∥S(·, t1 − s)

∥∥
n

ds

+C(n, r)Kn(r/2)

t0∫

0

t1∫

t0

∥∥∥∥ d
dt

[
e−r/2(t−s)S(x, t − s)

]∥∥∥∥
n

dt ds.

Use Lemma 3.6 to get

t1∫

t0

e−r/2(t−s)
∥∥S(·, t1 − s)

∥∥
n

ds ≤ C(n)
t1∫

t0

(t1 − s)−1/2 ds = C(n)(t1 − t0)
1/2.

On the other hand, from Lemma 3.6 we also have
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sup
x,t

∣∣∣∣∣x
nt3/2

∂n+2S

∂xn+2
(x, t)

∣∣∣∣∣<∞ ⇒
∥∥∥∥∥
∂2S

∂x2
(x, t)

∥∥∥∥∥
n

≤ C(n)t−3/2

for any n. We use this to deduce

t0∫

0

t1∫

t0

∥∥∥∥ d
dt

[
e−r/2(t−s)S(x, t − s)

]∥∥∥∥
n

dt ds

=
t0∫

0

t1∫

t0

e−r/2(t−s)
∥∥∥∥∥
σ 2

2

∂2S

∂x2
(x, t − s)− r/2S(x, t − s)

∥∥∥∥∥
n

dt ds

≤ C(n,σ )
t0∫

0

t1∫

t0

(t − s)−3/2 dt ds +C(n)r/2

t0∫

0

t1∫

t0

(t − s)−1/2 dt ds ≤ C(n,σ, r)(t1 − t0)
1/2

(5.75)

so long as t1 − t0 ≤ 1. These estimates combine to give

∣∣∣η1(t1)− η1(t0)

∣∣∣≤ C(r,σ,n)Kn(r/2)(t1 − t0)
1/2 ∀0 ≤ t0 ≤ t1 ≤ t0 + 1. (5.76)

By the very same argument, we also have

∣∣∣η3(t1)− η3(t0)

∣∣∣≤ C(r,σ,n)Kn(r/2)(t1 − t0)
1/2 ∀0 ≤ t0 ≤ t1 ≤ t0 + 1. (5.77)

Step 3: Next we write

η2(t1)− η2(t0)= −2

t1∫

t0

∞∫

0

e−r/2(t−s)S(x, t1 − s)br/2(x, s)m(x, s)dx ds

− 2

t0∫

0

∞∫

0

t1∫

t0

d
dt

[
e−r/2(t−s)S(x, t − s)

]
br/2(x, s)m(x, s)dt dx ds.

Recall that b= V4
∂w
∂x

+V5Q, and recall also the formula (5.1)(iii) for Q. Applying Lemma 5.11,

we have

∞∫

0

∣∣br/2(x, s)
∣∣m(x, s)dx ≤ C(n)Kn(r/2)+C

∞∫

0

∣∣∣∣
∂wr/2

∂x
(x, s)

∣∣∣∣m(x, s)dx

≤ C(n)Kn(r/2)+C

∥∥∥∥
∂wr/2

∂x

∥∥∥∥
2/3

0

Er/2(s)
1/6.

Using the same reasoning as in the previous step, we deduce
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∣∣∣η2(t1)− η2(t0)

∣∣∣≤ C(r,σ,n)Kn(r/2)(t1 − t0)1/2 +C(n)
∥∥∥∥
∂wr/2

∂x

∥∥∥∥
2/3

0

t1∫

t0

(t − s)−1/2Er/2(s)
1/6 ds

+C(n,σ, r)

∥∥∥∥
∂wr/2

∂x

∥∥∥∥
2/3

0

t0∫

0

t1∫

t0

(
(t − s)−3/2 + (t − s)−1/2

)
Er/2(s)

1/6 ds,

for 0 ≤ t0 ≤ t1 ≤ t0 + 1. (Cf. Equation (5.75).) By Hölder’s inequality, we compute

t1∫

t0

(t − s)−1/2Er/2(s)
1/6 ds ≤ C(t1 − t0)

1/3




t1∫

t0

Er/2(s)ds




1/6

,

t0∫

0

t1∫

t0

(
(t − s)−3/2 + (t − s)−1/2

)
Er/2(s)

1/6 ds ≤ C(t1 − t0)
1/5




t1∫

t0

Er/2(s)ds




1/6

.

Combining this with Corollary 5.18, we have

∣∣∣η2(t1)− η2(t0)

∣∣∣≤ C(r,σ,n)K̃n(r/2)(t1 − t0)
1/5, (5.78)

where K̃n(r/2) is defined in (5.74).

Step 4: For the last term η4(t), we use the definition of M −n
α and the mass function (5.72) to

see that

η4(t)= e−r/2tηh[µ0](t), (5.79)

and so, because t 7→ e−r/2t is globally Lipschitz with constant r/2 on the interval
[
0,∞), we

deduce

∥∥∥η4
∥∥∥
Cα/2([0,T ])

≤ max
{
1, r/2

}∥∥µ0

∥∥
M

−n
α/2
.

Putting together (5.76), (5.78), (5.77), and (5.79), we deduce (5.73). 2

Corollary 5.24. Let (w,µ) be a solution of (5.1) and suppose Assumption 5.12 holds. Assume

α ≤ 2/5. Then there exists a constant C, depending only on the data but not on T , such that, for

n= 1,2,

∥∥Qr/2

∥∥
Cα/2([0,T ]) ≤ C

(
J̃n(r/2)+

∥∥∥∥
∂wr/2

∂x

∥∥∥∥
Cα,α/2

)
, (5.80)

where

J̃n(r/2) :=
∥∥∥
〈
νr/2,1

〉∥∥∥
Cα/2([0,T ])

+
∥∥µ0

∥∥
M

−n
α/2

+ Jn(r/2)
1/2 + K̃n(r/2), (5.81)
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and Jn and K̃n are defined in (5.55) and (5.74), respectively.

Proof. Multiplying Equation (5.1)(iii) by e−rt/2, we have

Qr/2(t)= g1(t)
(
g2(t)+ g3(t)+ g4(t)

)

where

g1(t) :=


1 + ǫ

2

∫

D

dm(t)




−1

,

g2(t) := −
∫

D

dνr/2(t),

g3(t) :=
∫

D

q∗(·, t)dµr/2(t),

g4(t) := −1

2

∫

D

∂wr/2

∂x
(·, t)dm(t).

Using the fact that m(t) is a positive measure-valued process together with the Hölder regularity

deduced from Lemma 3.7, we have

∥∥g1

∥∥
Cα/2([0,T ]) ≤ C. (5.82)

On the other hand,

∥∥g2

∥∥
Cα/2([0,T ]) =

∥∥∥
〈
νr/2,1

〉∥∥∥
Cα/2([0,T ])

, (5.83)

which is taken as given. Next, we analyze g3. Set

q̃(x, t)= q∗(x, t)− q∗(0, t),

so that

g3(t)=
∫

D

q̃(·, t)dµr/2(t)+ q∗(0, t)ηr/2(t)=: g3,1(t)+ g3,2(t). (5.84)

Observe that, since q̃(0, t)= 0 by construction, we have q̃ ∈ Cα/2([0, T ];Yn+α), where by com-

puting the derivatives of q∗ we deduce

∥∥q̃
∥∥
Cα/2([0,T ];Yn+α) ≤‖u‖C2+α,1+α/2 +

∥∥∥∥ψ
∂u

∂x

∥∥∥∥
C2+α,1+α/2

≤ C, n= 1,2.

Therefore, using Lemma 5.22, we get
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∥∥g3,1

∥∥
Cα/2([0,T ]) ≤ C

∥∥µr/2
∥∥
Cα/2

(
[0,T ];Y ∗

n+α
) ≤ CJn(r/2), n= 1,2. (5.85)

On the other hand,

∥∥q∗(0, ·)
∥∥
Cα/2([0,T ]) ≤ C

by the Hölder regularity of ∂u
∂x

. By Lemma 5.23, we deduce

∥∥g3,2

∥∥
Cα/2([0,T ]) ≤ C

(∥∥µ0

∥∥
M

−n
α/2

+ K̃n(r/2)

)
. (5.86)

Finally, we analyze g4 in a similar way. Write

g4(t)= −1

2

∫

D

(
∂wr/2

∂x
(·, t)− ∂wr/2

∂x
(0, t)

)
dm(t)− 1

2

∂wr/2

∂x
(0, t)

∫

D

dm(t).

Using Lemmas 3.1 and 3.7 applies to the solution m of System (4.21), we deduce

∥∥g4

∥∥
Cα/2([0,T ]) ≤

∥∥∥∥
∂wr/2

∂x

∥∥∥∥
Cα,α/2


‖m‖Cα/2([0,T ];Cα⋄ (D)∗

) +

∥∥∥∥∥∥∥

∫

D

dm(·)

∥∥∥∥∥∥∥
Cα/2([0,T ])




≤ C
∥∥∥∥
∂wr/2

∂x

∥∥∥∥
Cα,α/2

. (5.87)

Combining (5.82), (5.83), (5.84), (5.85), (5.86), and (5.87), we obtain (5.80). 2

5.7. Full regularity of w

Multiply Equation (5.1)(i) by e−ρt to see that wρ satisfies

∂wρ

∂t
+ σ 2

2

∂2wρ

∂x2
+ V1(x, t)

∂wρ

∂x
+ V2(x, t)Qρ(t)− (r − ρ)wρ = fρ . (5.88)

In this section we will derive an estimate on wr/2 in classical Hölder spaces. In particular, let us

define Zα(T ) to be the set of all w ∈ C2+α,1+α/2(D×[0, T ]) such that ψ
∂w

∂x
∈ C2+α,1+α/2(D×

[0, T ]) as well. (As usual, when T = ∞ we replace [0, T ] with
[
0,∞).) It is a Banach space

with norm

‖w‖Zα =‖w‖
C2+α,1+α/2(D×[0,T ]) +

∥∥∥∥ψ
∂w

∂x

∥∥∥∥
C2+α,1+α/2(D×[0,T ])

.

Theorem 5.25. Let (w,µ) be a solution of (5.1), with V1, . . . , V5 satisfying either (5.3) or (5.2).

Then there is a constant C (r,σ,α), not depending on T , such that
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‖w‖Zα ≤ C (r,σ,α)
(∥∥µ0

∥∥
M

−2
α/2

+N(f )+N(ν)

)
, (5.89)

where

N(f ) :=
∥∥fr/2

∥∥
Cα,α/2

+
∥∥∥∥ψ

∂fr/2

∂x

∥∥∥∥
Cα,α/2

+




T∫

0

∥∥fr/2(·, s)
∥∥2

2
ds




1/2

(5.90)

and

N∗(ν) :=
∥∥∥
〈
νr/2,1

〉∥∥∥
Cα/2([0,T ])

+




T∫

0

∥∥νr/2(s)
∥∥2

−2
ds




1/2

+ sup
0≤τ≤T

∥∥νr/2(τ )
∥∥

−2
. (5.91)

Proof. Step 1: We will first apply the maximum principle to find a bound on wr/2. Let

w̃(x, t)=wr(x, t)−
T∫

t

(
‖V2‖0

∣∣Qr(s)
∣∣+
∥∥fr(·, s)

∥∥
0

)
ds

and differentiate to see that

− ∂ w̃

∂t
− σ 2

2

∂2w̃

∂x2
+ V1(x, t)

∂ w̃

∂x
≤ 0.

By the maximum principle, using the fact that w̃(0, t)≤ 0 for all t and w̃(x, T )= 0 for all x, we

have

w̃(x, t)≤ 0 ⇒ wr(x, t)≤
T∫

t

(
‖V2‖0

∣∣Qr(s)
∣∣+
∥∥fr(·, s)

∥∥
0

)
ds.

Multiply by ert/2 and use the Cauchy-Schwartz inequality to get

wr/2(x, t)≤
T∫

t

e
r
2 (t−s)

(
‖V2‖0

∣∣Qr/2(s)
∣∣+
∥∥fr/2(·, s)

∥∥
0

)
ds

≤ r−1/2




T∫

t

(
‖V2‖0

∣∣Qr/2(s)
∣∣+
∥∥fr/2(·, s)

∥∥
0

)2
ds




1/2

≤ C(r)




T∫

0

∣∣Qr/2(s)
∣∣2 ds




1/2

+C(r)




T∫

0

∥∥fr/2(·, s)
∥∥2

0
ds




1/2

.
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Applying Corollary 5.18 5.9, we see that

wr/2(x, t)≤ CJ2(r)
1/2.

By the same argument applied that −w, we deduce

∥∥wr/2
∥∥

0
≤ CJ2(r)

1/2. (5.92)

Step 2: If we apply Lemma 5.20 to (5.88) with ρ = r/2, we obtain an estimate

∥∥wr/2
∥∥
Zα

≤ C
(
‖V1‖Cα,α/2 ,

∥∥∥∥
∂V1

∂x

∥∥∥∥
Cα,α/2

, r, σ,α

)

×


∥∥fr/2 − V2Qr/2

∥∥
Cα,α/2

+
∥∥∥∥∥ψ

(
∂fr/2

∂x
− ∂V2

∂x
Qr/2

)∥∥∥∥∥
Cα,α/2


 . (5.93)

The Hölder norms of V1,V2,
∂V1
∂x

and ∂V2
∂x

are already estimated by the estimates (4.18) from

Theorem 4.16. Moreover, fr/2 is given. Using Equation (5.80) from Corollary 5.24 in (5.93), we

obtain

∥∥wr/2
∥∥
Zα

≤ C (r,σ,α)
(
∥∥fr/2

∥∥
Cα,α/2

+
∥∥∥∥ψ

∂fr/2

∂x

∥∥∥∥
Cα,α/2

+ J̃2(r/2)+
∥∥∥∥
∂wr/2

∂x

∥∥∥∥
Cα,α/2

)
. (5.94)

By using the interpolation inequality

∥∥∥∥
∂wr/2

∂x

∥∥∥∥
Cα,α/2

≤ ε
∥∥wr/2

∥∥
C2+α,1+α/2(D×[0,T ]) +C(ε)

∥∥wr/2
∥∥

0

and applying (5.92), using the fact that J2(r/2)
1/2 ≤ J̃2(r/2), estimate (5.94) yields

∥∥wr/2
∥∥
Zα

≤ C (r,σ,α)
(
∥∥fr/2

∥∥
Cα,α/2

+
∥∥∥∥ψ

∂fr/2

∂x

∥∥∥∥
Cα,α/2

+ J̃2(r/2)

)
. (5.95)

We now return to the definition of J̃2, Equation (5.81), which can be written

J̃2(r/2) :=
∥∥µ0

∥∥
M

−2
α/2

+
∥∥∥
〈
νr/2,1

〉∥∥∥
Cα/2([0,T ])

+ sup
0≤τ≤T

∥∥νr/2(τ )
∥∥

−2

+ J2(r/2)
1/2 +

∥∥∥∥
∂wr/2

∂x

∥∥∥∥
1/2

0

J2(r/2)
1/4 +

∥∥∥∥
∂wr/2

∂x

∥∥∥∥
2/3

0

J2(r/2)
1/6.

Now since

∥∥∥ ∂wr/2∂x

∥∥∥
0

is dominated by
∥∥wr/2

∥∥
C2+α,1+α/2(D×[0,T ]), we apply Young’s inequality to

(5.81) to get
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J̃2(r/2)≤
∥∥µ0

∥∥
M

−2
α/2

+
∥∥〈ν,1〉

∥∥
Cα/2([0,T ]) + sup

0≤τ≤T

∥∥νρ(τ )
∥∥

−2

+C(ε)J2(r/2)
1/2 + ε

∥∥wr/2
∥∥
C2+α,1+α/2(D×[0,T ]) .

Applying (5.81) to (5.95), we derive, using the definition of J2 in (5.55),

∥∥wr/2
∥∥
Zα

≤ C (r,σ,α)
(∥∥µ0

∥∥
M

−2
α/2

+
∥∥µ0

∥∥
−2

+
∥∥w(·,0)

∥∥1/2

2

∥∥µ0

∥∥1/2

−2
+N∗(ν)+N(f )

)
,

(5.96)

where N(f ) and N∗(ν) are defined in (5.90) and (5.91), respectively. Using the fact that∥∥w(·,0)
∥∥

2
is dominated by‖w‖Zα , we apply Young’s inequality to (5.96) and rearrange to deduce

(5.89). 2

5.8. An existence theorem for the linearized system

Before formulating the main result of this section, let us collect assumptions on r and ǫ so

that all of the a priori estimates of this section hold. We will formulate two alternatives, one for

a linear demand schedule, and one for a more general case where ǫ must be small.

Assumption 5.26 (r big, ǫ small). Let r∗ be a number large enough to satisfy Assumption 5.12,

Equation (5.9) for n= 2, and

2

√
2

σ 2r
H(0,0,0) < P (0) ∀r ≥ r∗.

Let ǫ∗ > 0 be small enough to satisfy (5.54) and

M = 2

√
2

σ 2r∗
H(0,0,0) < P

(
ǫ∗Q̄

)
.

We assume that r ≥ r∗ and 0< ǫ ≤ ǫ∗.

We remark that Assumption 5.26 implies Assumption 4.18; see Remark 4.19.

An alternative assumption is as follows.

Assumption 5.27 (r big, P linear). We assume that P(q)= 1 − q and that 0< ǫ < 2. Let r∗ be

a number large enough to satisfy Assumption 5.12, Equation (5.9) for n= 2, and

2

√
2

σ 2r
H(0,0,0) < 1 − ǫ

2
∀r ≥ r∗.

We assume that r ≥ r∗.

Theorem 5.28. Let T > 0 be a fixed time horizon. Suppose that Assumption 5.26 or 5.27 holds.

Then System (5.1) has a unique solution (w,µ) satisfying w(x,T )= 0 with regularity
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• wr/2 ∈Zα(T ),
• µr/2 ∈ Cα/2

(
[0, T ];Y ∗

n+α
)
∩L∞ (

(0, T );X∗
2

)
=: Z̃α(T ).

There exists a constant C(r,σ,α), not depending on T , such that

∥∥wr/2
∥∥
Zα

+




T∫

0

∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
2

2

dt




1/2

+
∥∥µr/2

∥∥
Cα/2

(
[0,T ];Y ∗

2+α
) +N∗(µ)

≤ C (r,σ,α)
(∥∥µ0

∥∥
M

−2
α/2

+N(f )+N∗(ν)

)
, (5.97)

where N(f ) and N∗(ν) are defined in (5.90) and (5.91), respectively.

Proof. First we assume the data are smooth. Then existence of solutions follows from the Leray-

Schauder fixed point theorem, along the same lines as in the proof of Theorem 4.15. The a priori

estimates (5.97) follow from Lemmas 5.25 and 5.22 (Equations (5.89) and (5.65)). A similar

argument is also found in [4, Lemma 3.3.1]. To see that the solution is unique, note that the

system is linear, so the a priori bounds also imply uniqueness. 2

Theorem 5.29. Suppose that Assumption 5.26 or 5.27 holds. Then System (5.1) has a unique

solution (w,µ) satisfying

• wr/2 ∈Zα(∞),

• µr/2 ∈ Cα/2
([

0,∞) ;Y ∗
2+α

)
∩L∞ (

(0,∞);X∗
2

)
=: Z̃α(∞),

• limt→∞
∥∥wr/2(·, t)

∥∥
2
= limt→∞

∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
2

= 0.

The estimate (5.97) holds with T = ∞.

Proof. For each T > 0, let (wT ,µT ) be the solution to the finite time horizon problem

on [0, T ] given by Theorem 5.28. We extend (wT ,µT ) in time such that wT (x, t) = 0 for

all t ≥ T and such that the a priori estimate (5.97) implies that (wTr/2,µ
T
r/2) is bounded in

(Zα(∞), Z̃α(∞)). Then by standard compactness arguments there exists a subsequence Tn → ∞
such that (w

Tn
r/2,µ

Tn
r/2) converges to some (wr/2,µr/2) in Zβ(∞) × Cβ/2

(
[0, T ];Y ∗

2+α

)
for

β < α. Moreover, (w,µ) satisfies (5.97) with T = ∞. Passing to the limit in the system sat-

isfied by (wTn ,µTn), we deduce that (w,µ) satisfies System (5.1). It follows that (w,µ) is a

solution. To see that limt→∞
∥∥wr/2(·, t)

∥∥
2
= limt→∞

∥∥∥∥
∂wr/2

∂x
(·, t)

∥∥∥∥
2

= 0, we observe that since

w
Tn
r/2 → wr/2 in Zβ(∞), it follows that w

Tn
r/2 → wr/2 and

∂w
Tn
r/2

∂x
→ ∂wr/2

∂x
in C

([
0,∞) ;X2

)
.

Then the fact that wTn(x, t) = 0 for all t ≥ Tn implies the desired limit. Finally, the a priori

bounds together with the linearity of the system imply uniqueness. 2
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6. The solution to the master equation

For each m0, define U(m0, x) = u(x,0) where (u,m) is the solution of (1.6) given initial

condition m0. We refer to U(m0, x) as the master field. We will prove that it satisfies the master

equation (1.3). All the hypotheses of Theorem 4.16 plus Assumption 5.26 or 5.27 are in force.

6.1. Continuity and differentiability of the master field

In this subsection we show that U(m0, x) is Lipschitz continuous and differentiable with

respect to the measure variable m0. To do this, we appeal to the estimates found in Section 5.

Theorem 6.1. There exists a constant C such that

∥∥U(m̃0, ·)−U(m0, ·)
∥∥
Yn+1+α

≤ C
∥∥m̃0 −m0

∥∥
M

−2
α/2

∀m̃0,m0 ∈ M
−2
α/2.

Proof. We may assume that m̃0,m0 ∈ Mα/2; then by density of this set in M
−2
α/2, we deduce

the result. We have U(m0, x)= u(x,0) and U(m̃0, x)= ũ(x,0), where (u,m) is the solution of

(4.21) given initial condition m0 and (ũ, m̃) is the solution of (1.6) given initial condition m̃0.

Let (w,µ)= (ũ− u, m̃−m). Then (w,µ) solves the linearized system (5.1) with f = 0, ν = 0,

and V1, . . . , V5 defined in (5.2). Observe that

∥∥U(m̃0, ·)−U(m0, ·)
∥∥
Y3+α

=
∥∥w(·,0)

∥∥
Y3+α

≤‖w‖Zα .

We conclude by appealing to Theorem 5.25. 2

Before proving that U is differentiable with respect to m, we provide a candidate for the

derivative in the following lemma.

Lemma 6.2. Let f = 0 and ν = 0. There exists a map K(m0, x, y) such that K is thrice differ-

entiable with respect to x and twice differentiable with respect to y, such that

∥∥∥∥∥
∂ℓK

∂yℓ
(m0, ·, y)

∥∥∥∥∥
Y3+α

≤ Cmax
{∣∣y
∣∣−α−ℓ

,1
}
, (6.1)

and such that if (w,µ) is the solution of System (5.1), then

w(x,0)=
〈
K(m0, x, ·),µ0

〉
. (6.2)

Moreover, K and its derivatives in (x, y) are continuous with respect to the topology on

M+(D)×D ×D.

Proof. The proof is very similar to that of [4, Corollary 3.4.2]: for ℓ = 0,1,2 and y > 0 let

the pair (w(ℓ)(·, ·, y),µ(ℓ)(·, ·, y)) be the solution of (5.1) with f = 0, ν = 0, V1, . . . , V5 given

by (5.3) and initial condition µ0 = Dℓδy , where δy is the Dirac delta mass concentrated at y

and Dℓδy is its ℓth derivative in the sense of distributions. Then set K(m0, x, y)=w(0)(x,0, y).
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Notice that by the density of empirical measures, (6.2) follows for any solution (w,µ) of System

(5.1). Moreover, one can check by induction that

∂ℓK

∂yℓ
(m0, x, y)= (−1)ℓw(ℓ)(x,0, y).

To prove (6.1), we use the estimates (5.97) from Theorem 5.29, which imply in particular that

∥∥∥w(ℓ)(·,0, y)
∥∥∥
Y3+α

≤ C
∥∥∥Dℓδy

∥∥∥
M

−2
α/2

.

It remains only to estimate Dℓδy in M
−2
α/2. First, we see that

〈
φ,Dℓδy

〉
= dℓφ

dyℓ
(y)≤

∥∥φ
∥∥

2
max

{∣∣y
∣∣−ℓ ,1

}
∀φ ∈X2 ⇒

∥∥∥Dℓδy
∥∥∥

−2
≤ max

{∣∣y
∣∣−ℓ ,1

}
.

Next, we plug µ=Dℓδy into (5.72) to get

ηh[Dℓδy](t)=
∞∫

0

(
(−1)ℓ+1 ∂

ℓS

∂xℓ
(x − y, t)+ ∂ℓS

∂xℓ
(x + y, t)

)
dx = −2

∂ℓ−1S

∂yℓ−1
(y, t), (6.3)

where we define

∂−1S

∂y−1
(y, t)=

y∫

0

S(x, t)dx.

Taking the derivative with respect to t in (6.3), we get

d

dt
ηh[Dℓδy](t)= −σ 2 ∂

ℓ+1S

∂yℓ+1
(y, t).

Let p > 1. Applying Lemma 3.6 we estimate

∞∫

0

∣∣∣∣
d

dt
ηh[Dℓδy](t)

∣∣∣∣
p

dt ≤ C(σ)
∞∫

0

t−p(ℓ+2)/2Pℓ+1

(∣∣y
∣∣

√
t

)p
exp

{
− py2

2σ 2t

}
dt.

Here Pℓ+1 is a polynomial of degree ℓ+ 1. Using the substitution s = py2

t
we obtain




∞∫

0

∣∣∣∣
d

dt
ηh[Dℓδy](t)

∣∣∣∣
p

dt




1/p
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≤ C(σ,p)y
2
p

−(ℓ+2)




∞∫

0

s
p(ℓ+2)

2 −2Pℓ+1(s
1/2)p exp

{
− s

2σ 2

}
ds




1/p

,

where the integral on the right-hand side converges; hence




∞∫

0

∣∣∣∣
d

dt
ηh[Dℓδy](t)

∣∣∣∣
p

dt




1/p

≤ C(σ,p)y− 2
p′ −ℓ, p′ := p/(p− 1).

By Hölder’s inequality,

∣∣∣ηh[Dℓδy](t1)− ηh[Dℓδy](t2)
∣∣∣≤ C(σ,p)y− 2

p′ −ℓ|t1 − t2|1/p
′

Cf. the proof of Lemma 3.4. Choosing p = 2
2−α , we now deduce

∥∥∥ηh[Dℓδy]
∥∥∥
Cα/2

([
0,∞)

) ≤ C(σ,α)y−α−ℓ.

Therefore,

∥∥∥Dℓδy
∥∥∥

M
−2
α/2

≤ C(σ,α)max
{∣∣y
∣∣−α−ℓ

,1
}
,

from which we deduce (6.1). The remaining details are the same as in [4, Corollary 3.4.2]. 2

Lemma 6.3. Let (u,m) and (û, m̂) be the solutions of (1.6) with initial conditions m0 and m̂0,

respectively. Let (w,µ) be the solution of (5.1) with initial condition m̂0 −m0. Then

∥∥û(·,0)− u(·,0)−w(·,0)
∥∥
Y3+α

≤ C
∥∥m̂0 −m0

∥∥2

M
−2
α/2
. (6.4)

As a corollary, U(m0, x) is differentiable with respect to m0 with

δU

δm
(m0, x, y)=K(m0, x, y), (6.5)

where K is defined in Lemma 6.2. Moreover, (6.4) reads

∥∥∥∥∥∥∥
U(m̂0, ·)−U(m0, ·)−

∫

D

δU

δm
(m0, x, y)d(m̂0 −m0)(y)

∥∥∥∥∥∥∥
Y3+α

≤ C
∥∥m̂0 −m0

∥∥2

M
−2
α/2
. (6.6)

Proof. Let f and ν be defined by (5.4). We follow the same steps as in [4, Chapter 3] to find an

estimate
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N(f )+N∗(ν)≤ C
∥∥m̂0 −m0

∥∥2

M
−2
α/2
.

By Theorem 5.29, this proves (6.4). Combined with Lemma 6.2, we deduce (6.5) and (6.6). 2

6.2. The master field satisfies the master equation

In this subsection we prove Theorem 1.5.

Theorem 6.4. Suppose that Assumption 5.26 or 5.27 holds. For all m0 ∈ M2+α , x ∈ D, System

(1.3)-(1.4) is satisfied. Moreover, U is the unique continuously differentiable function satisfying

∥∥∥∥∥
∂ℓ

∂yℓ

δU

δm
(m0, ·, y)

∥∥∥∥∥
Y3+α

≤ Cmax
{∣∣y
∣∣−α−ℓ

,1
}
, (6.7)

such that System (1.3)-(1.4) holds for all m0 ∈ M2+α , x ∈D.

Proof. Let (u,m) be the solution to the mean field game system with initial condition m0 ∈
M2+α . Set ms := sm(t)+ (1 − s)m0 for 0 ≤ s ≤ 1. Then for any t > 0 we have

u(x, t)− u(x,0)=U(m(t), x)−U(m0, x)=
1∫

0

∫

D

δU

δm
(ms, x, y)d

(
m(t)−m0

)
(y)ds

=
1∫

0

t∫

0

∫

D

(
σ 2

2

∂2

∂y2

δU

δm
(ms, x, y)

+ ∂H

∂a

(
ǫ,Q∗(τ ),

∂u

∂x
(y, τ )

)
∂

∂y

δU

δm
(ms, x, y)

)
dm(τ)(y)dτ ds, (6.8)

using the Fokker-Planck equation satisfied by m. To see that the last integral converges, first

note that (6.7) holds by Lemmas 6.2 and 6.3. Then we note that by the assumption m0 ∈ M2+α

together with Lemma 3.8,

∫

D

(
1 + x−(2+α)

)
m(dx, t)≤ CeCt

∫

D

(
1 + x−(2+α)

)
m0(dx).

Combining this with (6.7), we deduce that (6.8) holds. Now divide by t and let t → 0 to get

∂u

∂t
(x,0)

=
∫

D

(
σ 2

2

∂2

∂y2

δU

δm
(m0, x, y)+

∂H

∂a

(
ǫ,Q∗(0),

∂u

∂x
(y,0)

)
∂

∂y

δU

δm
(m0, x, y)

)
dm0(y).

By substituting for
∂u

∂t
(x,0) using Equation (1.6)(i), we get
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− σ 2

2

∂2u

∂x2
(x,0)−H

(
ǫ,Q∗(0),

∂u

∂x
(x,0)

)
+ ru(x,0)

=
∫

D

(
σ 2

2

∂2

∂y2

δU

δm
(m0, x, y)+

∂H

∂a

(
ǫ,Q∗(0),

∂u

∂x
(y,0)

)
∂

∂y

δU

δm
(m0, x, y)

)
dm0(y),

which becomes Equation (1.3) after definingQ∗ =Q∗(0). Equation (1.4) follows from (1.6)(iii).

To see that U is unique, we follow the same argument as in [4]. By using the Leray-Schauder

fixed point theorem and the estimates we have established, it is straightforward to show the

existence of a solution to the Fokker-Planck equation

∂m

∂t
− σ 2

2

∂2m

∂x2
+ ∂

∂x

(
∂H

∂a

(
ǫ,Q∗(m(t)),

∂U

∂x
(m(t), x)

))
= 0,

where Q∗(m) is defined using (1.4). Set u(x, t) = U(m(t), x). Using condition (6.7) together

with Lemma 3.8, as above, we can differentiate u with respect to time. Then using the fact that

(1.3) holds, we deduce that (u,m) is the solution of (1.6), which is unique. It follows thatU(m,x)

is uniquely determined. 2

Data availability

No data was used for the research described in the article.

Appendix A. Proofs of results from Section 3

Proof of Lemma 3.1. Uniqueness: Let us start by observing that uniqueness of weak solutions

holds. This follows from a proof by duality, cf. [23, Proposition B.1] and [34, Corollary 3.5],

which also provide the basic estimate (3.3).

Existence: We thus turn our attention to existence and estimates. By linearity we can assume

that m0(D)= 1, i.e. m0 is a probability measure, without loss of generality.

Assume for now that b is infinitely smooth and bounded, and that m0 ∈ P1(D) is in fact

a smooth density such that m0 ∈ C∞
c (D). Then classical theory [29, Theorems IV.5.2, IV.9.1]

implies that (3.1) has a smooth solution m whose derivatives are also in Lp for arbitrarily large

p. We have the following probabilistic interpretation: for any continuous function on D satisfying

∣∣φ(x)
∣∣≤ C (1 +|x|) ,

we have

∞∫

0

φ(x)m(x, t)dx = E
[
φ(Xt )1t<τ

]
(A.1)

where Xt is the diffusion process given by

dXt = −b(Xt , t)dt + σ dWt , X0 ∼m0, (A.2)
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Wt is a standard Brownian motion with respect to a filtered probability space (�,P ,Ft ), and

τ := min
{
inf{t ≥ 0 :Xt ≤ 0}, T

}
.

In particular the complementary mass function η̄(t) can be written

η̄(t)= P (t < τ).

The continuity of this function follows from probabilistic arguments, which can be found in [25]

and [23].

It remains to establish (3.4). Fix t1, t2 ∈ [0, T ] with t1 < t2. Pick any φ : D → R that is α-

Hölder continuous (or Lipschitz, in the case α = 1) such that φ(0)= 0 and [φ]Cα ≤ 1. Let Xt be

a solution to (A.2). Then by (A.1) we have

∣∣∣∣∣∣∣

∞∫

0

φ(x)
(
m(x, t1)−m(x, t2)

)
dx

∣∣∣∣∣∣∣
=
∣∣∣E
[
φ(Xt1)1t1<τ − φ(Xt2)1t2<τ

]∣∣∣

≤ E

[∣∣Xt1
∣∣α 1t1<τ≤t2 +

∣∣Xt1 −Xt2

∣∣α 1t2<τ
]

= E




∣∣∣∣∣∣∣
−

τ∫

t1

b(Xt , t)dt + σ(Wτ −Wt1)

∣∣∣∣∣∣∣

α

1t1<τ≤t2




+ E




∣∣∣∣∣∣∣
−

t2∫

t1

b(Xt , t)dt + σ(Wt2 −Wt1)

∣∣∣∣∣∣∣

α

1t2<τ




≤ E
[
‖b‖α∞|τ − t1|α 1t1<τ≤t2

]
+ σ αE

[∣∣Wτ −Wt1

∣∣α 1t1<τ≤t2
]

+‖b‖α∞|t2 − t1|α + σ αE

[∣∣Wt2 −Wt1

∣∣α
]

≤ 2‖b‖α∞|t2 − t1|α + 2σ α|t2 − t1|α/2 .

Taking t1 = t and t2 = 0, we get

∣∣∣∣∣∣∣

∞∫

0

φ(x)m(x, t)dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣

∞∫

0

φ(x)m0(x)dx

∣∣∣∣∣∣∣
+ 2‖b‖α∞ tα + 2σ αtα/2

≤
∞∫

0

xαm0(x)dx + 2‖b‖α∞ tα + 2σ αtα/2.
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Finally, to get existence for general data, let bn be a sequence of smooth functions converging

uniformly to b and let m0,n be a sequence of measures with smooth densities converging to m0

in M1,+. Letting mn be the solution corresponding to bn,m0,n, we have that mn is uniformly

Hölder continuous in the Lip⋄(D)
∗ metric, hence by Arzelá-Ascoli we have a subsequence con-

verging to m in C0([0, T ];M1,+). We deduce that m is a weak solution, i.e. it satisfies (3.2). 2

Proof of Lemma 3.5. For each n ∈ N define

φn(x)=
{
nαx if 0< x ≤ n−1,

x−α if x > n−1.
(A.3)

Set 8
(0)
n (x)= φn(x), and inductively define

8
(j)
n (x)=

x∫

0

8
(j−1)
n (t)dt, j = 1,2,3, . . . .

By induction we have that

∣∣∣8(j)n (x)

∣∣∣≤ C(j,α)xj−α ∀x > 0. (A.4)

Since φn is a bounded, continuous function, we have

∫

D

φn(x)m(dx, t)=
∫

D

φn(x)

∫

D

(
S(x − y, t)− S(x + y, t)

)
m0(dy)dx

=
∫

D

∫

D

φn(x)
(
S(x − y, t)− S(x + y, t)

)
dx m0(dy)

(A.5)

using Fubini’s Theorem. Our goal now is to prove that

∫

D

φn(x)
(
S(x − y, t)− S(x + y, t)

)
dx ≤ C(α)y−α ∀y > 0. (A.6)

By plugging (A.6) into (A.5) and then applying the Monotone Convergence Theorem, (3.10)

follows.

To prove (A.6), start by noting

∫

D

φn(x)
(
S(x − y, t)− S(x + y, t)

)
dx ≤

∞∫

0

φn(x)S(x − y, t)dx

≤
y/2∫

0

φn(x)S(x − y, t)dx (A.7)
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+ (y/2)−α
∞∫

y/2

φn(x)S(x − y, t)dx

≤
y/2∫

0

φn(x)S(x − y, t)dx + 2αy−α,

using the fact that S(·, t) is a probability density. Now for any j > α − 1, integrate by parts j

times to get

y/2∫

0

φn(x)S(x − y, t)dx

=
j−1∑

i=0

(−1)i8(i+1)
n (y/2)

∂ iS

∂xi
(−y/2, t)+ (−1)j

y/2∫

0

8
(j)
n (x)

∂jS

∂xj
(x − y, t)dx. (A.8)

Applying (A.4) and Lemma 3.6 to Equation (A.8), we obtain

y/2∫

0

φn(x)S(x − y, t)dx ≤ C(j,α)



j−1∑

i=0

yi+1−αy−(i+1) +
y/2∫

0

xj−α
∣∣x − y

∣∣−(j+1)
dx




≤ C(j,α)y−α .

(A.9)

Take j = ⌊α⌋ and combine (A.9) with (A.7) to obtain (A.6), which completes the proof. 2

Proof of 3.7. First, note that
∣∣η(t)

∣∣≤‖m0‖T V ≤‖m0‖Mα
for all t ≥ 0, using Lemma 3.1. Thus,

it suffices to prove estimates of the Hölder constant for η. We will assume the data are sufficiently

regular so that the solution is smooth. The claim then follows from a density argument.

We have, by Duhamel’s principle,

m(x, t)=
∞∫

0

(
S(x − y, t)− S(x + y, t)

)
m0(y)dy

+
t∫

0

∞∫

0

(
S(x − y, t − s)− S(x + y, t − s)

)
(bm)y(y, s)dy ds,

which becomes

m(x, t)=
∞∫

0

(
S(x − y, t)− S(x + y, t)

)
m0(y)dy
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+
t∫

0

∞∫

0

(
∂S

∂x
(x − y, t − s)+ ∂S

∂x
(x + y, t − s)

)
(bm)(y, s)dy ds, (A.10)

using integration by parts. Integrating in x and using Fubini’s Theorem, we get

η(t)= ηh[m0](t)+ η2(t),

where ηh[m0](t) is defined in (3.8) and

η2(t)=
t∫

0

∞∫

0

∞∫

0

(
∂S

∂x
(x − y, t − s)+ ∂S

∂x
(x + y, t − s)

)
(bm)(y, s)dx dy ds

= −2

t∫

0

∞∫

0

S(y, t − s)(bm)
(
y, s

)
dy ds.

By definition of the norm in Mα ,

∥∥∥ηh[m0]
∥∥∥
Cα([0,T ])

≤‖m0‖Mα
. (A.11)

It remains to derive Hölder estimates for η2. Let t2 > t1 ≥ 0. Then η2(t2)−η2(t1)= −2 (I1 + I2)

where

I1 =
t2∫

t1

∞∫

0

S(y, t2 − s)b(y, s)m(dy, s)ds,

I2 =
t1∫

0

∞∫

0

(
S(y, t2 − s)− S(y, t1 − s)

)
b(y, s)m(dy, s)ds.

In the first place, we have

|I1| ≤ (2σ 2π)−1/2‖b‖∞

t2∫

t1

(t2 − s)−1/2 ds = 2(2σ 2π)−1/2‖b‖∞ (t2 − t1)
1/2.

In the second place, we write

I2 =
t1∫

0

∞∫

0

t2∫

t1

∂S

∂t
(y, τ − s)dτ b(y, s)m(dy, s)ds.

Since
∂S

∂t
= σ 2

2

∂2S

∂x2
, Lemma 3.6 implies
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|I2| ≤ C(σ)‖b‖∞

t1∫

0

t2∫

t1

(τ − s)−3/2 dτ ds. (A.12)

By Fubini’s Theorem,

t1∫

0

t2∫

t1

(τ − s)−3/2 dτ ds = 2

t2∫

t1

(
(τ − t1)

−1/2 − τ−1/2
)

dτ ≤ 4(t2 − t1)
1/2. (A.13)

Combining (A.12) and (A.13), we get

∣∣η2(t1)− η2(t2)
∣∣≤ C(σ)‖b‖∞|t1 − t2|1/2 . (A.14)

Equation (3.12) follows from combining (A.11) and (A.14). 2

Proof of Lemma 3.8. We start from Equation (A.10) and multiply by φn(x), which is defined

in (A.3). Then integrate and use Lemma 3.5 to get

∫

D

φn(x)m(dx, t)≤ C(α)
∫

D

|x|−αm0(dx)

+‖b‖∞

t∫

0

∫

D

∣∣∣∣∣∣∣

∞∫

0

φn(x)

(
∂S

∂x
(x − y, t − s)+ ∂S

∂x
(x + y, t − s)

)
dx

∣∣∣∣∣∣∣
m(dy, s)ds. (A.15)

Let j = ⌊α⌋. Integrating by parts j times as in the proof of Lemma 3.5, we get

y/2∫

0

φn(x)
∂S

∂x
(x ± y, t − s)dx =

j∑

i=1

(−1)i−18(i)n (y/2)
∂ iS

∂xi
(y/2 ± y, t − s)

+ (−1)j

y/2∫

0

8
(j)
n (x)

∂j+1S

∂xj+1
(x ± y, t − s)dx.

Using Lemma 3.6 and Equation (A.4), we deduce

∣∣∣∣∣∣∣

y/2∫

0

φn(x)
∂S

∂x
(x ± y, t − s)dx

∣∣∣∣∣∣∣
≤

j∑

i=1

C(i,α)
∣∣y
∣∣i−α∣∣y

∣∣−i σ−1(t − s)−1/2

+C(j,α)

y/2∫

0

|x|j−α
∣∣x ± y

∣∣−j σ−1(t − s)−1/2 dx. (A.16)
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For 0 ≤ x ≤ y/2 we have
∣∣x ± y

∣∣≥ y/2, and thus (A.16) yields

∣∣∣∣∣∣∣

y/2∫

0

φn(x)
∂S

∂x
(x ± y, t − s)dx

∣∣∣∣∣∣∣
≤ C(j,α)σ−1

∣∣y
∣∣−α (t − s)−1/2. (A.17)

On the other hand, using Lemma 3.6 it follows that
∫∞

0 t1/2
∣∣∣ ∂S∂x (x, t)

∣∣∣dx ≤ C for all t , and thus

∣∣∣∣∣∣∣

∞∫

y/2

φn(x)
∂S

∂x
(x ± y, t − s)dx

∣∣∣∣∣∣∣
≤ C

∣∣y
∣∣−α (t − s)−1/2. (A.18)

Combining (A.17) and (A.18) into (A.15), then letting n→ ∞, we derive

∫

D

|x|−αm(dx, t)≤ C(α)
∫

D

|x|−αm0(dx)+C(α,σ )‖b‖∞

t∫

0

∫

D

∣∣y
∣∣−αm(dy, s)(t − s)−1/2 ds.

(A.19)

For λ > 0 let

fλ(t)= e−λt
∫

D

|x|−αm(dx, t).

Multiply (A.19) by e−λt to derive

fλ(t)≤ C(α)fλ(0)+C(α,σ )‖b‖∞

t∫

0

e−λ(t−s)(t − s)−1/2fλ(s)ds

≤ C(α)fλ(0)+C(α,σ )‖b‖∞ λ−1/2 sup
τ≥0

fλ(τ )

(A.20)

where by a change of variables we have computed

t∫

0

e−λ(t−s)(t − s)−1/2 ds = λ−1/2

λt∫

0

e−ss−1/2 ds ≤ λ−1/2




1∫

0

s−1/2 ds +
∞∫

1

e−s ds


≤ 3λ−1/2.

(As usual, the value ofC(α,σ )might have changed from line to line.) Let λ=
(
2C(α,σ )‖b‖∞

)2
.

Take the supremum in (A.20) to deduce

sup
t≥0

fλ(t)≤ C(α)fλ(0)+
1

2
sup
t≥0

fλ(t) ⇒ sup
t≥0

fλ(t)≤ 2C(α)fλ(0). (A.21)

Equation (A.21) implies (3.13), as desired. 2
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Appendix B. Proofs of results from Section 4

B.1. Proofs of results from Section 4.1

We will actually show that all of the results of this section hold on a larger domain. Set p∞ :=
limq→∞ P(q). Note that p∞ < 0 because there exists a finite saturation point (Assumption 1.1).

Recall that the profit function π is defined as

π(ǫ, q,Q,a)=
{
q
(
P(ǫQ+ q)− a

)
if q > 0,

0 if q = 0.

In the following the domain of π is defined to be
[
0,∞)

3 × (p∞,∞). Thus the domain of

H(ǫ,Q,a) := supq≥0 π(ǫ, q,Q,a) is
[
0,∞)

2 × (p∞,∞). All the statements about the regular-

ity of H hold on this larger domain. This remark will be useful in Lemma B.1 below.

Proof of Lemma 4.1. We first compute

∂π

∂q
(ǫ, q,Q,a) := qP ′(ǫQ+ q)+ P(ǫQ+ q)− a

and

∂2π

∂q2
(ǫ, q,Q,a)= qP ′′(ǫQ+ q)+ 2P ′(ǫQ+ q)= −

(
q
ρ(ǫQ+ q)

ǫQ+ q
− 2

)
P ′(ǫQ+ q).

By Assumption 1.2 we deduce

∂2π

∂q2
(ǫ, q,Q,a)≤ −

(
ρ̄ − 2

)
P ′(ǫQ+ q) < 0,

i.e. π is strictly concave with respect to q . On the other hand, since P ′ ≤ 0 we also have

lim sup
q→∞

∂π

∂q
(ǫ, q,Q,a)≤ lim

q→∞
P(ǫQ+ q)− a = p∞ − a < 0.

Thus if
∂π

∂q
(ǫ,0,Q,a) = P(ǫQ) − a > 0 there must exist a unique q∗ > 0 such that

∂π

∂q
(ǫ, q∗,Q,a)= 0, and hence q∗ maximizes π(ǫ, ·,Q,a). We also compute

∂2π

∂Q∂q
(ǫ, q,Q,a)= ǫqP ′′(ǫQ+ q)+ ǫP ′(ǫQ+ q)

= −ǫ
(
q
ρ(ǫQ+ q)

ǫQ+ q
− 1

)
P ′(ǫQ+ q),

∂2π

∂a∂q
(ǫ, q,Q,a)= −1,
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∂2π

∂ǫ∂q
(ǫ, q,Q,a)=QqP ′′(ǫQ+ q)+QP ′(ǫQ+ q)

= −Q
(
q
ρ(ǫQ+ q)

ǫQ+ q
− 1

)
P ′(ǫQ+ q)

By the implicit function theorem, we deduce that q∗ is differentiable function of (ǫ,Q,a) in the

region where P(ǫQ) > a, with

∂q∗

∂Q
= −

∂2π
∂Q∂q

(ǫ, q∗,Q,a)

∂2π
∂q2 (ǫ, q

∗,Q,a)
= −ǫ

(
1 −

(
2 − q∗ρ(ǫQ+ q∗)

ǫQ+ q∗

)−1
)
,

∂q∗

∂a
= 1

∂2π

∂q2 (ǫ, q
∗,Q,a)

< 0,

∂q∗

∂ǫ
= −

∂2π
∂ǫ∂q

(ǫ, q∗,Q,a)

∂2π
∂q2 (ǫ, q

∗,Q,a)
= −Q

(
1 −

(
2 − q∗ρ(ǫQ+ q∗)

ǫQ+ q∗

)−1
)

(B.1)

Note that (4.1) follows from (B.1).

In this region we also compute

∂H

∂ǫ
= ∂q∗

∂ǫ

(
P(ǫQ+ q∗)− a

)
+ q∗P ′(ǫQ+ q∗)

(
Q+ ∂q∗

∂ǫ

)
=Qq∗P ′(ǫQ+ q∗), (B.2)

∂H

∂Q
= ∂q∗

∂Q

(
P(ǫQ+ q∗)− a

)
+ q∗P ′(ǫQ+ q∗)

(
ǫ + ∂q∗

∂Q

)
= ǫq∗P ′(ǫQ+ q∗), (B.3)

and

∂H

∂a
= ∂q∗

∂a

(
P(ǫQ+ q∗)− a

)
+ q∗

(
P ′(ǫQ+ q∗)

∂q∗

∂a
− 1

)
= −q∗. (B.4)

On the other hand, if P(ǫQ) ≤ a it follows that the unique maximizer is q∗ = 0. Because P

is continuous and monotone decreasing, the interior of this region is the set where P(ǫQ) <

a, while its boundary is where P(ǫQ) = a. It remains to show that as (ǫ,Q,a) approaches

this boundary set, the derivative of q∗ remains bounded. By (B.1) it is enough to show that
∂2π
∂q2 (ǫ, q

∗(Q,a),Q,a) remains bounded away from zero. For this we observe that as (ǫ,Q,a)

approaches the set where P(ǫQ) = a, q∗(ǫ,Q,a)→ 0 and thus ∂2π
∂q2 (ǫ, q

∗,Q,a)→ 2P ′(ǫQ),
which is bounded away from zero for bounded values of Q. 2

Proof of Corollary 4.2. For (ǫ,Q,a) ∈ [0, ǭ] × [0, Q̄] × [0, ā] we have that a ≤ ā < P (ǭQ̄)≤
P(ǫQ), since P is decreasing. By differentiating (B.2), (B.3), and (B.4) in the proof of

Lemma 4.1, and using (B.1), we see that H is n times continuously differentiable in this region.

These derivatives are Lipschitz on this domain because P (n) is locally Lipschitz by Assump-

tion 1.1. In particular,
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∂2H

∂a2
(ǫ,Q,a)= − ∂q∗

∂a
(ǫ,Q,a) > 0.

The claim follows from compactness of the region. 2

Proof of Corollary 4.3. From Equation (B.3) and the first-order condition for optimality, using

the fact that P ′ < 0, we have

∣∣∣∣
∂H

∂Q

∣∣∣∣= −ǫq∗P ′(ǫQ+ q∗)= ǫ(P (ǫQ+ q∗)− a),

from which the first estimate in (4.3) follows. The second estimate follows from (4.1) and

(B.3). 2

Proof of Lemma 4.4. Let f (Q)=Q−
∫
D
q∗(ǫ,Q,φ(x))dm(x). We claim that f (Q∗)= 0 for

a unique Q∗ ≥ 0. Note that f (0) ≤ 0 because q∗ ≥ 0. By Lemma 4.1 and Assumption 1.2 we

have

f ′(Q)= 1 −
∫

D

∂q∗

∂Q
(ǫ,Q,φ(x))dm(x)≥ 1 − ǫ

ρ̄ − 1

2 − ρ̄

∫

D

dm(x)≥ 2 + ǫ − (1 + ǫ)ρ̄

2 − ρ̄
> 0

if ρ̄ ≥ 1; otherwise we get simply f ′(Q)≥ 1. The claim follows, and we deduce (4.4). To derive

estimate (4.5), we use the lower bound on f ′ to deduce

Q∗ ≤ c(ρ̄, ǫ)
(
f (Q∗)− f (0)

)
= c(ρ̄, ǫ)

∫

D

q∗(ǫ,0, φ(x))dm(x). (B.5)

Now because π(ǫ, q,0, a) = π(0, q,0, a) for all ǫ, a, it follows that q∗(ǫ,0, φ(x)) = q∗(0,0,
φ(x)). Then, since q∗ is decreasing in the last variable and

∫
D

dm(x)≤ 1, we use (B.5) to deduce

(4.5).

We now prove (4.6). Without loss of generality we will assume Q∗
1 ≥Q∗

2 . First, observe that

Q∗
1 −Q∗

2 ≤ c(ρ̄, ǫ)



∫

D

q∗(ǫ1,Q
∗
2, φ1(x))dm1(x)−

∫

D

q∗(ǫ2,Q
∗
2, φ2(x))dm2(x)


 . (B.6)

To see this, note that (4.1) implies

Q∗
1 −Q∗

2 =
∫

D

q∗(ǫ1,Q
∗
1, φ1(x))dm1(x)−

∫

D

q∗(ǫ2,Q
∗
2, φ2(x))dm2(x)

≤ −ǫ1
1 − ρ̄

2 − ρ̄
(Q∗

1 −Q∗
2)

∫

D

dm1(x)+
∫

D

q∗(ǫ1,Q
∗
2, φ1(x))dm1(x)−

∫

D

q∗(ǫ2,Q
∗
2, φ2(x))dm2(x).
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Then one obtains (B.6) by rearranging and using the fact that
∫
D

dm1(x) ≤ 1 and c(ρ̄, ǫ) is

increasing in ǫ. Next, appealing to (4.5) and the fact that q∗ is locally Lipschitz, recalling once

more that
∫
D

dm1(x)≤ 1, (B.6) becomes

Q∗
1 −Q∗

2 ≤ C


|ǫ1 − ǫ2| +

∫

D

∣∣φ1(x)− φ2(x)
∣∣dm1(x)




+C

∫

D

q∗(ǫ2,Q
∗
2, φ2(x))d(m1 −m2)(x)

≤ C
(
|ǫ1 − ǫ2| +

∥∥φ1 − φ2

∥∥
∞

)
+C sup

x

∣∣∣∣
dq∗

da
(ǫ2,Q

∗
2, φ2(x))

dφ2

dx
(x)

∣∣∣∣d1(m1,m2)

+ q∗(ǫ2,Q
∗
2, φ2(0))

∫

D

d(m1 −m2)(x),

which implies (4.6). 2

Proof of Corollary 4.6. We use Lemma 4.1 to get

q∗(ǫ,Q∗, φ(x))≤ q∗(ǫ,0,0)+ ǫ
ρ̄ − 1

2 − ρ̄
Q∗. (B.7)

We recall that q∗(ǫ,0,0)= q∗(0,0,0). To derive (4.7), it suffices to plug (4.5) into (B.7) and use

the definition of c(ρ̄, ǫ). 2

B.2. Proofs of results from Section 4.3

Proof of Lemma 4.10. First let v = e−rtu. Then v satisfies

∂v

∂t
+ σ 2

2

∂2v

∂x2
+ e−rtH

(
ǫ(t),Q∗(t), ert

∂v

∂x

)
= 0, x ∈D, t > 0.

Using the fact that H ≥ 0 and v(0, t) = 0, the maximum principle (see [36, Proposition 2.1])

implies

min
x∈D,0≤t≤T

v(x, t)= min
x∈D

v(x,T )= e−rT min
x∈D

u(x,T )= 0 ⇒ v ≥ 0 ⇒ u≥ 0. (B.8)

It also follows that u(0, t)= minu and so ux(0, t)≥ 0.

We now use the fact that H is decreasing in all variables to deduce

0 ≤H
(
ǫ(t),Q∗(t), ert

∂v

∂x

)
≤H(0,0,0)
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and thus

− ∂v

∂t
− σ 2

2

∂2v

∂x2
≤ e−rtH(0,0,0).

Set ṽ(x, t) = v(x, t)−
∫ T
t
e−rsH(0,0,0)ds = v(x, t)+ 1

r
H(0,0,0)

(
e−rT − e−rt

)
. It follows

that

− ∂ ṽ

∂t
− σ 2

2

∂2ṽ

∂x2
≤ 0

and thus

max
x∈D,0≤t≤T

ṽ(x, t)= max
t=T or x=0

ṽ(x, t)≤ c1e
−rT

since ṽ(x, T ) = e−rT uT (x) ≤ c1e
−rT and ṽ(0, t) = 1

r
H(0,0,0)

(
e−rT − e−rt

)
≤ 0. Together

with (B.8) we deduce that

0 ≤ v(x, t)≤
(

1

r
H(0,0,0)+ c1

)
e−rt ⇒ 0 ≤ u(x, t)≤ 1

r
H(0,0,0)+ c1. (B.9)

To get an estimate on ux , we now use a Bernstein type argument, cf. [29, Section VI.3]. Notice

that

− ∂u

∂t
− σ 2

2

∂2u

∂x2
≤H(0,0,0).

Set ũ(x, t)= u(x, t)+Mλe
−λx , whereMλ > 0 and λ > 0 are defined below in (B.12) and (B.14).

The constants Mλ and λ have to be chosen so that, for all t ≤ T and all x ∈ [0, ℓ] for ℓ > 0 to be

specified later, we have

H(0,0,0)− σ 2

2
λ2Mλe

−λx ≤ 0,

c3 ≤Mλλe
−λx,

1

r
H(0,0,0)+ c1 +Mλe

−λx ≤Mλ.

(B.10)

Then one can check that

− ∂ ũ

∂t
− σ 2

2

∂2ũ

∂x2
≤ 0 in (0, ℓ)× (0, T ),

ũ(x, T ) ≤ Mλ for all x ∈ [0, ℓ] (using the fact that maxu′
T ≤ c3), ũ(ℓ, t) ≤ Mλ (using (B.9)),

and ũ(0, t)=Mλ. By the maximum principle, it follows that ũ(x, t)≤Mλ for all x ∈ [0, ℓ], t ∈
[0, T ]. This means ũ(0, t) = max0≤x≤ℓ ũ(x, t), which implies ũx(0, t) ≤ 0 and thus ux(0, t) ≤
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Mλλ. Finally, we can take the derivative of Equation (4.9) to see that the maximum principle

applies to ux , and thus

max
x∈D,0≤t≤T

ux(x, t)= max
t=T or x=0

ux(x, t)≤ max {Mλλ, c3} . (B.11)

To satisfy (B.10), we choose

Mλ = max

{
2

σ 2λ2
H(0,0,0)eλℓ,

c3

λ
eλℓ,

1

1 − e−λℓ

(
1

r
H(0,0,0)+ c1

)}
. (B.12)

If we set J = max
{

2
σ 2λ2H(0,0,0),

c3

λ

}
, then (B.12) becomes

Mλ = max

{
Jeλℓ,

1

1 − e−λℓ

(
1

r
H(0,0,0)+ c1

)}
. (B.13)

To minimize the value of Mλλ, we first choose the constant ℓ so as to minimize the maximum

appearing in (B.13); it suffices to choose it so that the two maximands are equal, because the first

is increasing in ℓ while the second is decreasing. This is achieved by setting

ℓ= 1

λ
ln

(
1 + 1

rJ
H(0,0,0)+ c1

J

)
⇒Mλ = Jeλℓ = J + 1

r
H(0,0,0)+ c1.

We therefore have

Mλλ= max

{
2

σ 2λ
H(0,0,0), c3

}
+ λ

r
H(0,0,0)+ λc1.

The minimum possible value of the right-hand side is attained by setting

λ= min

{ √
2rH(0,0,0)

σ
√
H(0,0,0)+ rc1

,
2

σ 2c3
H(0,0,0)

}
, (B.14)

and its minimum value is given by Mλλ=M where M is defined in (4.11).

Put together (B.9), and (B.11) to get (4.10). 2

B.3. Proof of result from Section 4.4

Proof of Lemma 4.11. Estimate (4.12) follows from Lemmas 4.4, 4.1, 4.10, and 3.1. Note that

a direct application of Lemma 4.4 would put the constant c(ρ̄, ǫ(t)) in place of c(ρ̄, ǫ(0)); how-

ever, c(ρ̄, ǫ) defined in (4.5) is an increasing function of ǫ, and since Assumption 4.7 implies

ǫ(t)≤ ǫ(0), we have replaced c(ρ̄, ǫ(t)) with c(ρ̄, ǫ(0)) to get an upper bound that is uniform in

time.
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Now we turn to estimate (4.13). By Lemma 4.4, there exists a constant C = C(ǫ(0), ρ̄,M)

such that

∣∣Q∗(t1)−Q∗(t2)
∣∣≤ C

(
∣∣ǫ(t1)− ǫ(t2)

∣∣+
∥∥∥∥
∂u

∂x
(·, t1)−

∂u

∂x
(·, t2)

∥∥∥∥
∞

)

+C




∥∥∥∥∥
∂2u

∂x2

∥∥∥∥∥
∞

d1(m(t1),m(t2))+

∣∣∣∣∣∣∣

∫

D

d(m(t1)−m(t2))(x)

∣∣∣∣∣∣∣




Now suppose m0 ∈ Mα . Appealing to Lemma 3.1 and also Assumption 4.7, we have

∣∣Q∗(t1)−Q∗(t2)
∣∣≤ C

(
|t1 − t2| +

∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2

|t1 − t2|α/2
)

+C



∥∥∥∥∥
∂2u

∂x2

∥∥∥∥∥
∞

(
‖b‖∞ + σ

)
|t1 − t2|1/2 +C(σ)

(
‖m0‖Mα/2

+‖b‖∞
)
|t1 − t2|α/2




for any |t1 − t2| ≤ 1. Here b = ∂H
∂a

(
ǫ,Q∗, ∂u

∂x

)
. By Lemmas 4.1 and 4.10 together with (4.12),

we deduce there exists C = C(ρ̄, ǫ(0),M) such that ‖b‖∞ ≤ C. We deduce that there exists

C = C(ρ̄, ǫ(0),M,σ,‖m0‖Mα/2
) such that

∣∣Q∗(t1)−Q∗(t2)
∣∣≤ C



∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2

+
∥∥∥∥∥
∂2u

∂x2

∥∥∥∥∥
∞

+ 1


|t1 − t2|α/2 , |t1 − t2| ≤ 1,

and since Q∗ is bounded according to (4.12), Equation (4.13) follows. 2

B.4. Proofs of results from Section 4.5

Proof of Lemma 4.12. We begin by taking u0 = 0. First we let g(x, t)= ertf (x, t) and consider

∂v

∂t
− σ 2

2

∂2v

∂x2
= g, ∀x ∈ D, t > 0;v(0, t)= 0 ∀t > 0; v(x,0)= 0 ∀x ∈D. (B.15)

By [29, Theorem IV.6.1], (B.15) is uniquely solvable in C2+α,1+α/2(D × [0, T ]) for arbitrary

T > 0. Also, by the maximum principle, we have

∣∣v(x, t)
∣∣≤ 1

r
ert
∥∥f
∥∥
C0,0 ∀x ∈ D, t ∈

[
0,∞) .

To see this, first let ṽ(x, t)= v(x, t)− ert−1
r

∥∥f
∥∥
C0,0 and observe that

∂ ṽ

∂t
− σ 2

2

∂2ṽ

∂x2
≤ 0, ṽ(0, t)≤ 0, ṽ(x,0)≤ 0.
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By the maximum principle, ṽ ≤ 0, which implies v(x, t)≤ 1
r
ert
∥∥f
∥∥
C0,0 . The opposite inequality

is similarly proved.

Now we let u(x, t)= e−rtv(x, t). Then u satisfies (4.14) and

‖u‖
C0,0(D×

[
0,∞))

≤ 1

r

∥∥f
∥∥
C0,0 . (B.16)

Moreover, appealing again to [29, Theorem IV.6.1], we have an estimate

[
∂2u

∂x2

]

α,α/2

+
[
∂u

∂t

]

α,α/2

≤ C(σ)
([
f
]
α,α/2

+ r [u]α,α/2

)
, (B.17)

where C(σ) does not depend on T . By interpolation, see [29, Lemma II.3.2], we can find a

constant C(α) such that for arbitrary δ > 0 we have

[u]α,α/2 ≤ C(α)


δ−α‖u‖C0,0(D)

+ δ2



[
∂2u

∂x2

]

α,α/2

+
[
∂u

∂t

]

α,α/2





 . (B.18)

Combining (B.16), (B.17), and (B.18) with δ a sufficiently small multiple of r−1/2, we deduce

that (4.16) holds for u0 = 0.

Now suppose f = 0 and let u0 ∈ C2+α(D) be given. Then appealing to [29, Theorem IV.5.1],

(4.14) is uniquely solvable, and moreover by the potential estimates from [29, Section IV.2] we

have

[
∂2u

∂x2

]

α,α/2

+
[
∂u

∂t

]

α,α/2

≤ C(σ)
(
‖u0‖C2+α(D) + r [u]α,α/2

)
,

where again C(σ) does not depend on time. Using the maximum principle, we get‖u‖0 ≤‖u0‖0.

Arguing as before, we deduce (4.16) for f = 0.

The general case now follows from linearity.

B.5. Proofs of results from Section 4.6

Proof of Lemma 4.13. Let f = f (x, t) = H

(
ǫ(t),Q∗(t),

∂u

∂x
(x, t)

)
. From Lemma 4.12 we

have

‖u‖
C2+α,1+α/2(D×

[
0,T

]
)
≤ C(σ,α)

([
f
]
α,α/2

+ r
α
2

∥∥f
∥∥

0
+Cα + r1+ α

2 c1

)
. (B.19)

We now estimate f in Cα,α/2. First, because H is decreasing in all variables, we (again) deduce

0 ≤ f (x, t)≤H(0,0,0).
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Because H is locally Lipschitz by Lemma 4.1, and because ǫ,Q∗, and ∂u
∂x

are bounded with

estimates given in Assumption 4.7, Lemma 4.10 and Lemma 4.11, we have a constant C =
C(ρ̄, ǫ(0), σ,M,α) such that

∥∥f
∥∥
Cα,α/2

≤ C
(

1 +
∥∥Q∗∥∥

Cα/2
+
∥∥∥∥
∂u

∂x

∥∥∥∥
Cα,α/2

)
,

where ‖ǫ‖Cα/2 is also estimated using Assumption 4.7. Using Lemma 4.11 and interpolation on

Hölder spaces, we see that for an arbitrary δ > 0, there existsCδ = C(δ, ρ̄, ǫ(0), σ,M,‖m0‖Mα/2
,

α) such that

∥∥f
∥∥
Cα,α/2

≤ δ‖u‖C2+α,1+α/2 +Cδ.

Taking δ > 0 small enough, (B.19) becomes

‖u‖
C2+α,1+α/2(D×

[
0,T

]
)
≤ C(σ,α)

(
Cδ + r

α
2H(0,0,0)+Cα + r1+ α

2 c1

)
,

which proves (4.17). 2

Before getting to the proof of Theorem 4.15, we establish the following lemma:

Lemma B.1. Let Q∗ ∈ Cα/2
(
[0, T ];

[
0,∞)

)
be given, and let Assumptions 4.7 and 4.8 hold.

Then there exists a unique solution u to the PDE

∂u

∂t
+ σ 2

2

∂2u

∂x2
+H

(
ǫ(t),Q∗(t),

∂u

∂x

)
− ru= 0, u(0, t)= 0, u(x,T )= uT (x). (B.20)

This solution satisfies
∂u

∂x
≥ 0 and the a priori estimate

‖u‖C2+α,1+α/2 ≤ C
(
σ, r,α,H(0,0,0)

)(
1 +

∥∥Q∗∥∥
Cα/2

+‖uT ‖C2+α

)
. (B.21)

Proof. As above we set p∞ := limq→∞ P(q) < 0. Fix a C∞ function ψ : R → (p∞,∞) such

that p(a) = a for all a ≥ 0. Define X = C2,1
(
D × [0, T ]

)
. Let v ∈ X and λ ∈ [0,1]. By

Lemma 4.12, Assumption 4.8, and the local Lipschitz property of H , we get a unique solution u

to the equation

∂u

∂t
+ σ 2

2

∂2u

∂x2
+ λH

(
ǫ(t),Q∗(t),ψ

(
∂v

∂x

))
− ru= 0, u(0, t)= 0, u(x,T )= λuT (x),

(B.22)

and u satisfies

‖u‖C2+α,1+α/2 ≤ C
(
∥∥Q∗∥∥

∞ ,

∥∥∥∥
∂v

∂x

∥∥∥∥
∞

)(
1 +

∥∥Q∗∥∥
Cα/2

+
∥∥∥∥
∂v

∂x

∥∥∥∥
Cα,α/2

)
.
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This defines a map T : X × [0,1] → X. We claim that T is continuous and compact. Suppose

{vn, λn} is a bounded sequence in X × [0,1] and let un = T (vn, λn). Then {un} is bounded in

C2+α,1+α/2, which is compactly embedded in X, so it has a subsequence that converges to some

u in X. To conclude that T is both continuous and compact, it is enough to show that whenever

(vn, λn)→ (v,λ) in X× [0,1], then u= T (v,λ). But this can be deduced from plugging vn, λn
into (B.22) in place of v,λ, then passing to the limit using the local Lipschitz property of H .

Notice that T (v,0)= 0. To apply the Leray-Schauder fixed point theorem, it remains to find

an a priori bound on solutions to the fixed point equation u = T (u,λ). Note that for any such

fixed point, w = ∂u

∂x
satisfies, in a weak sense,

∂w

∂t
+ σ 2

2

∂2w

∂x2
+λ ∂H

∂a

(
ǫ(t),Q∗(t),ψ

(
∂u

∂x

))
ψ ′
(
∂u

∂x

)
∂w

∂x
−rw = 0, w(x,T )= λu′

T (x).

Since u′
T ≥ 0, by the maximum principle we deduce

∂u

∂x
=w ≥ 0. It follows that u satisfies

∂u

∂t
+ σ 2

2

∂2u

∂x2
+ λH

(
ǫ(t),Q∗(t),

∂u

∂x

)
− ru= 0, u(0, t)= 0, u(x,T )= λuT (x),

Lemma 4.10 establishes an a priori bound on u; combined with Lemma 4.12 and using interpola-

tion, we deduce that (B.21) holds for any u satisfying u= T (u,λ). By the Leray-Schauder fixed

point theorem [16, Theorem 11.6], there exists u ∈X such that u= T (u,1), which means u is a

solution to (B.20). Uniqueness follows from the maximum principle by standard arguments. 2

Proof of Theorem 4.15. Set X to be the set of all (v,Q) ∈ C2,1
(
D × [0, T ]

)
×C0 ([0, T ]) such

that
∂v

∂x
≥ 0 and Q ≥ 0, and define T : X × [0,1] → X as follows. Let (v,Q) ∈ X,λ ∈ [0,1].

From Lemma 4.1 we know that the function
∂H

∂a

(
ǫ(t),Q(t),

∂v

∂x

)
is bounded and continuous

with

∥∥∥∥∥
∂H

∂a

(
ǫ(t),Q(t),

∂v

∂x

)∥∥∥∥∥
∞

≤ C
(
ǫ(0),‖Q‖∞ ,

∥∥∥∥
∂v

∂x

∥∥∥∥
∞

)

By Lemma 3.1, there exists a unique solution m satisfying

∂m

∂t
− σ 2

2

∂2m

∂x2
+ ∂

∂x

(
λ
∂H

∂a

(
ǫ(t),Q(t),

∂v

∂x

)
m

)
= 0, m|x=0 = 0, m|t=0 =m0, (B.23)

and moreover we have Hölder estimates (3.4) and (3.12). Now by Lemma 4.4 we can define

Q∗(t) by

Q∗(t)= −
∞∫

0

λ
∂H

∂a

(
ǫ(t),Q∗(t),

∂v

∂x

)
dm(t), (B.24)
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and combining (4.5), (4.6), (3.4) and (3.12), we have

∥∥Q∗∥∥
Cα/2([0,T ]) ≤ C

(
ǫ(0),‖Q‖∞ ,

∥∥∥∥
∂v

∂x

∥∥∥∥
∞
,‖m0‖Mα/2

, σ,α

)
(
‖v‖C2,1 + 1

)
. (B.25)

Setting f (x, t)= λH

(
ǫ(t),Q∗(t),

∂v

∂x

)
, we have, as in the proof of Lemma 4.13,

∥∥f
∥∥
Cα,α/2

≤ C
(
∥∥Q∗∥∥

∞ ,

∥∥∥∥
∂v

∂x

∥∥∥∥
∞

)(
1 +

∥∥Q∗∥∥
Cα/2

+
∥∥∥∥
∂v

∂x

∥∥∥∥
Cα,α/2

)
.

Thus, by Lemma B.1 there exists a unique solution u of

∂u

∂t
+ σ 2

2

∂2u

∂x2
+ λH

(
ǫ(t),Q∗(t),

∂u

∂x

)
− ru= 0, u|x=0 = 0, u|t=T = λuT (B.26)

satisfying (B.21), which in this case can be written

‖u‖C2+α,1+α/2 ≤ C
(
ǫ(0),‖Q‖∞ ,‖v‖C2,1 ,‖m0‖Mα/2

, σ,α
)
. (B.27)

Then we set T (v,Q,λ) = (u,Q∗) ∈ X. We need to show that T is continuous and compact.

Suppose {(vn,Qn, λn)} is a sequence in X× [0,1], and let (un,Q
∗
n)= T (vn,Qn, λn). Note that

by (B.25) and (B.27), (un,Q
∗
n) must have a subsequence converging to (u,Q∗) ∈ X, because

C2+α,1+α/2 × Cα/2 is compactly embedded in C2,1 × C0. We now show that if (vn,Qn, λn)→
(v,Q,λ), then (u,Q∗) = T (v,Q,λ). First let mn be the solution of (B.23) corresponding to

(vn,Qn, λn). By Lemma 3.1 we have that mn is uniformly Hölder in the d1 metric, hence

by passing to a subsequence it converges to some m in C
(
[0, T ];M1,+

)
. Since

∂H

∂a
is lo-

cally Lipschitz, we have that λn
∂H

∂a

(
ǫ(t),Qn(t),

∂vn

∂x

)
→ λ

∂H

∂a

(
ǫ(t),Q(t),

∂v

∂x

)
uniformly.

Combining these facts we deduce that m is really the solution to (B.23) and Q∗ is the solution

of (B.24). Finally, we deduce that u is really the solution to (B.26) by taking the corresponding

equation for un and passing to the limit. We have thus proved that T is continuous and compact.

It remains to show there exists a constant C such that whenever T (u,Q∗, λ)= (u,Q∗), then

∥∥(u,Q∗)
∥∥
X

≤ C.

But this is a consequence of Lemmas 4.11 and 4.13, since λH and λuT satisfy all the same

estimates as H and uT . Now we can apply the Leray-Schauder fixed point theorem, which says

that there exists (u,Q∗) such that T (u,Q∗,1)= (u,Q∗). Letting m now be defined by solving

(4.8)(ii), we deduce that (u,m) solves the system (4.8). The regularity of this solution follows by

once more appealing to Lemmas 3.1 and 4.13. 2
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Appendix C. Proof of the integral estimate used in Section 5

The following proof is more or less the same as that of [21, Lemma 2.1]. We include it for

completeness.

Proof of Lemma 5.7. Set h(t)= Bf (t)+ g(t), so that (5.14) reads simply

f (t1)≤Af (t0)+
t1∫

t0

(t1 − s)−1/2h(s)ds ∀0 ≤ t0 ≤ t1 ≤ t0 + δ (C.1)

For arbitrary t > 0 let n=
⌊
t
δ

⌋
. Use (C.1) n+ 1 times to get

f (t)≤An+1f (0)+
n∑

j=0

Aj

t−jδ∫

(
t−(j+1)δ

)
+

(t − jδ − s)−1/2h(s)ds, (C.2)

where s+ := max{s,0}. Note that

t − (j + 1)δ < s ≤ t − jδ⇒ j =
⌊
t − s

δ

⌋

So we define φ(s)=
(
s −

⌊
s
δ

⌋
δ

)−1/2

. Then (C.2) implies

f (t)≤A t
δ
+1f (0)+

n∑

j=0

t−jδ∫

(
t−(j+1)δ

)
+

A
t−s
δ φ(t − s)h(s)ds =A

t
δ
+1f (0)+

t∫

0

A
t−s
δ φ(t − s)h(s)ds.

(C.3)

Let λ > 1
δ

ln(A) and set κ = λ− 1
δ

ln(A) > 0. Multiply (C.3) by e−λt , then integrate from 0 to T

to get

T∫

0

e−λtf (t)dt ≤ A

κ
f (0)+

T∫

0

t∫

0

e−κ(t−s)φ(t − s)e−λsh(s)ds dt

= A

κ
f (0)+

T∫

0

T−s∫

0

e−κtφ(t)e−λsh(s)dt ds.

(C.4)

We now observe that
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∞∫

0

e−κtφ(t)dt =
∞∑

n=0

(n+1)δ∫

nδ

e−κt (t − nδ)−1/2 dt

=
∞∑

n=0

e−nκδ
δ∫

0

e−κt t−1/2 dt

≤ 1

1 − e−κδ

δ∫

0

t−1/2 dt

= 2δ1/2

1 − e−κδ
= 2δ1/2

1 −Ae−λδ

(C.5)

Applying (C.5) to (C.4), we get

T∫

0

e−λtf (t)dt ≤ A

κ
f (0)+ 2δ1/2

1 −Ae−λδ

T∫

0

e−λs
(
Bf (s)+ g(s)

)
ds,

which implies (5.15). 2

C.1. Proofs of results from Section 5.1

C.1.1. Proofs of results from Section 5.1.1

Proof of Proposition 5.1. Step 1: For a fixed x > 0 set z = d(x)/2. We have chosen z so that

x − y ≥ z for all y ∈ [0, z]. Integrate by parts n times to get

∂nu

∂xn
(x, t)

=
z∫

0

∂nS

∂xn
(x − y, t)u0(y)dy +

n∑

j=1

∂n−jS

∂xn−j
(x − z, t)u

(j−1)
0 (z)+

∞∫

z

S(x − y, t)u
(n)
0 (y)dy.

Now multiply by zn:

zn
∂nu

∂xn
(x, t)= 1

z

z∫

0

zn+1 ∂
nS

∂xn
(x − y, t)u0(y)dy +

n−1∑

j=0

zn−j
∂n−j−1S

∂xn−j−1
(x − z, t)zju

(j)

0 (z)

+
∞∫

z

S(x − y, t)znu
(n)
0 (y)dy.

By Corollary 3.6 and the fact that S(x − ·, t) is a density, we get
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∣∣∣∣z
n ∂

nu

∂xn
(x, t)

∣∣∣∣≤mn‖u0‖0 +
n−1∑

j=0

mn−j−1

∥∥∥dju(j)0

∥∥∥
0
+
∥∥∥dnu(n)0

∥∥∥
0
.

Taking the supremum over all x, we get

∥∥∥∥d
n ∂

nu

∂xn
(·, t)

∥∥∥∥
0

≤ 2n


mn‖u0‖0 +

n−1∑

j=0

mn−j−1

∥∥∥dju(j)0

∥∥∥
0
+
∥∥∥dnu(n)0

∥∥∥
0


 . (C.6)

Step 2: We proceed similarly to estimate v, but first we define

F(y, s) :=
y∫

0

f (ξ, s)dξ.

By integration by parts we have

v(x, t)=
t∫

0

∞∫

0

∂S

∂x
(x − y, t − s)F (y, s)dy ds.

Calculating as before, we get

zn
∂nv

∂xn
(x, t)=

t∫

0

1

z

z∫

0

zn+1 ∂
n+1S

∂xn+1
(x − y, t − s)F (y, s)dy ds

+
t∫

0

n−1∑

j=0

zn−j
∂n−jS

∂xn−j
(x − z, t − s)zj

∂jF

∂xj
(z, s)ds +

t∫

0

∞∫

z

∂S

∂x
(x − y, t)zn

∂nF

∂xn
(y, s)dy ds.

(C.7)

Now applying Corollary 3.6 in (C.7), we get

∣∣∣∣z
n ∂

nv

∂xn
(x, t)

∣∣∣∣≤
(
mn+1,σ +mn,1

)
t∫

0

(t − s)−1/2 sup
0≤y≤1

∣∣F(y, s)
∣∣ds

+
n∑

j=1

t∫

0

mn−j,σ (t − s)−1/2

∥∥∥∥∥d
j ∂

j−1f

∂xj−1
(·, s)

∥∥∥∥∥
0

.

Thus,
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∥∥∥∥d
n ∂

nv

∂xn
(·, t)

∥∥∥∥
0

≤ 2n
(
mn+1,σ +mn,1

)
t∫

0

(t − s)−1/2 sup
0≤y≤1

∣∣∣∣∣∣∣

y∫

0

f (ξ, s)dξ

∣∣∣∣∣∣∣
ds

+ 2n
n∑

j=1

t∫

0

mn−j,σ (t − s)−1/2

∥∥∥∥∥d
j ∂

j−1f

∂xj−1
(·, s)

∥∥∥∥∥
0

. (C.8)

Step 3: Finally,

d(x)n
∂nw

∂xn
(x, t)= −2

t∫

0

d(x)n
∂n+1S

∂xn+1
(x, t − s)ψ(s)ds.

By induction we can establish a formula

∂n+1S

∂xn+1
(x, t)= S(x, t)

⌊
n+1

2

⌋

∑

j=0

(σ 2t)j−n−1cn+1,jx
n+1−2j ,

where cn,j are coefficients defined recursively with respect to n. Multiply by xn to get, using

(3.5),

xn
∂n+1S

∂xn+1
(x, t)= (2π)−1/2(σ 2t)−3/2x exp

{
− |x|2

2σ 2t

}
⌊
n+1

2

⌋

∑

j=0

cn+1,j

(
x2

σ 2t

)n−j

and thus

∞∫

0

∣∣∣∣∣x
n ∂

n+1S

∂xn+1
(x, t)

∣∣∣∣∣dt ≤

⌊
n+1

2

⌋

∑

j=0

∣∣cn+1,j

∣∣
∞∫

0

(2π)−1/2(σ 2t)−3/2x

(
x2

σ 2t

)n−j
exp

{
− |x|2

2σ 2t

}
dt.

Use the substitution t = x2

σ 2s
to get

∞∫

0

(2π)−1/2(σ 2t)−3/2x

(
x2

σ 2t

)n−j
exp

{
− |x|2

2σ 2t

}
dt

= σ−2

∞∫

0

(2π)−1/2sn−j−1/2 exp

{
− s

2

}
ds <∞.

We deduce that for some constant ιn, not depending on x,
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2

∞∫

0

∣∣∣∣∣x
n ∂

n+1S

∂xn+1
(x, t)

∣∣∣∣∣dt ≤ ιn,

and thus

∥∥∥∥d
n ∂

nw

∂xn
(·, t)

∥∥∥∥
0

≤ ιn sup
0≤s≤t

∣∣ψ(s)
∣∣ . (C.9)

The estimates (C.6), (C.8), and (C.9) result in (5.6). 2

Proof of Theorem 5.2. Define

u1(x, t)=
∞∫

0

S(x − y, t)u0(y)dy,

u2(x, t)=
t∫

0

∞∫

0

S(x − y, t − s)f (y, s)dy ds,

u3(x, t)= −2

t∫

0

∂S

∂x
(x, t − s)

(
ψ(s)− u1(0, s)− u2(0, s)

)
ds.

Then by classical arguments (cf. [29, Section IV.1]) we see that u= u1 + u2 + u3 is a solution to

(5.7). By the maximum principle, this solution is unique.

By Proposition 5.1, we have

∥∥u1(·, t)
∥∥
n

≤Mn‖u0‖n ,

∥∥u2(·, t)
∥∥
n

≤Mn

t∫

0

(t − s)−1/2
∥∥f (·, s)

∥∥∗
n−1,1

ds,

∥∥w(·, t)
∥∥
n

≤Mn sup
0≤s≤t

∣∣ψ(s)− u1(0, s)− u2(0, s)
∣∣ .

(C.10)

It also follows from Proposition 5.1 that

sup
0≤s≤t

∣∣u1(0, s)
∣∣≤Mn‖u0‖n ,

sup
0≤s≤t

∣∣u2(0, s)
∣∣≤ sup

0≤s≤t
Mn

s∫

0

(s − s′)−1/2
∥∥f (·, s′)

∥∥∗
n−1,1

ds′ = 2Mnt
1/2 sup

0≤s≤t

∥∥f (·, s)
∥∥∗
n−1,1

.

(C.11)

Combining (C.10) and (C.11), then modifying the constant Mn, we deduce (5.8). 2
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C.1.2. Proofs of results from Section 5.1.2

Let (u,m) be the solution to the finite or infinite time-horizon problem, i.e. to System (4.8)

or (1.6). For a finite time-horizon we assume u(x,T ) = uT (x) satisfies Assumption 4.8. In ad-

dition, we will impose that ‖uT ‖Cn ≤ C̃n for each n = 1,2, . . .. (For n = 1,2, this is not a new

assumption. For larger n, it is always possible to impose this restriction at the same time as

Assumption 4.8.) We again take Assumption 4.7, and we denote ǫ = ǫ(0).

If H is n+ 1 times differentiable, then, under Assumption 4.18, by Corollary 4.2 we have

Cℓ := max
0≤ǫ̃≤ǫ,0≤Q≤Q̄,0≤a≤M

∣∣∣∣∣
∂ℓ+1H

∂aℓ+1
(ǫ̃,Q,a)

∣∣∣∣∣<∞ ∀ℓ≤ n, (C.12)

where Q̄ is given by (4.19), M is given in Lemma 4.10, and c2 is the constant from Assump-

tion 4.8 and can be made arbitrarily small. In particular, by Corollary 4.6, we have that C0 can

be made arbitrarily close to Q̄. By the a priori bounds proved in Section 4 (see Theorem 4.16),

we have the following point-wise bound:

∣∣∣∣∣
∂ℓ+1H

∂aℓ+1

(
ǫ,Q∗(t),

∂u

∂x

)∣∣∣∣∣≤ Cℓ.

Proposition C.1. Let (u,m) be the solution to the mean field games system on a finite or infinite

time horizon T , i.e. either of System (4.8) or (1.6). Suppose (5.9) holds. Then for any n such that

H is n+ 1 times differentiable, we have

sup
t∈[0,T ]

∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥
n

≤ Bn(r) (C.13)

where Bn(r) is a decreasing function of r that depends on the constants Cℓ for ℓ= 0,1, . . . , n.

Proof. Assume first that (u,m) solves the finite horizon problem. We proceed by induction. In

the first step we prove the base case n= 1, and in the second step we prove the inductive step.

In the final step we extend the result to the infinite-horizon case. Note that, by taking c2 small

enough in (C.12), the condition (5.9) implies

r >max
{
(2C0Mn)

2,1
}

ln(2Mn).

Step 1: Define

w(x, t)= ert
∂u

∂x
(x,T − t), f (x, t)= ert

∂

∂x

(
H

(
ǫ(T − t),Q∗(T − t),

∂u

∂x
(x,T − t)

))
.

Then w satisfies

∂w

∂t
= σ 2

2

∂2w

∂x2
+ f (x, t).
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We first calculate

∣∣∣∣∣∣∣

x∫

0

f (y, t)dy

∣∣∣∣∣∣∣

= ert

∣∣∣∣∣H
(
ǫ(T − t),Q∗(T − t),

∂u

∂x
(x,T − t)

)
−H

(
ǫ(T − t),Q∗(T − t),

∂u

∂x
(0, T − t)

)∣∣∣∣∣

≤ 2ertH(0,0,0),

(C.14)

using the fact that H is decreasing in all its variables (Lemma 4.1). Next, since

f (x, t)= ∂H

∂a

(
ǫ(T − t),Q∗(T − t),

∂u

∂x
(x,T − t)

)
∂w

∂x
(x, t),

we have

∣∣d(x)f (x, t)
∣∣≤ C0

∥∥w(·, t)
∥∥

1
. (C.15)

By (C.14) and (C.15), we deduce

∥∥f (·, t)
∥∥∗

0,1
≤ C0

∥∥w(·, t)
∥∥

1
+ 2ertH(0,0,0).

We also know that
∣∣w(0, t)

∣∣≤Mert . Now we apply Theorem 5.2 to get

∥∥w(·, t)
∥∥

1
≤M1

(
∥∥w(·, t0)

∥∥
1
+ (t − t0)

1/2C0 sup
t0≤s≤t

∥∥w(·, s)
∥∥

1
+A1e

rt

)

for all 0 ≤ t0 ≤ t ≤ t0 + 1, where

A1 := 2H(0,0,0)+M,

which can be made arbitrarily close to 2H(0,0,0)+M . Set δ = min
{
(2C0M1)

−2,1
}

. Then for

any 0 ≤ t0 ≤ t ≤ t0 + δ, we deduce

sup
t0≤s≤t

∥∥w(·, s)
∥∥

1
≤ 2M1

(∥∥w(·, t0)
∥∥

1
+A1e

rt
)
. (C.16)

By using (C.16) repeatedly, we deduce
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∥∥w(·, t)
∥∥

1
≤ (2M1)

⌊
t
δ

⌋
+1∥∥w(·,0)

∥∥
1
+

⌊
t
δ

⌋

∑

j=0

(2M1)
j+1A1e

r(t−jδ)

= (2M1)

⌊
t
δ

⌋
+1∥∥u′

T

∥∥
1
+ 2M1A1e

rt 1 − (2M1e
−rδ)

⌊
t
δ

⌋
+1

1 − 2M1e−rδ
.

We use the assumption

r >
ln(2M1)

δ
= max

{
(2C0M1)

2,1
}

ln(2M1)

and divide by ert to deduce

∥∥∥∥
∂u

∂x
(·, T − t)

∥∥∥∥
1

≤ 2M1‖uT ‖1 + 2M1A1

1 − 2M1e−r(2C0M1)
−2
,

and since
∥∥u′

T

∥∥
1
≤‖uT ‖C2 ≤ C̃2 we deduce

sup
t∈[0,T ]

∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥
1

≤ 2M1C̃2 + 2M1A1

1 − 2M1e−r(2C0M1)
−2

=: B1(r),

which is the base case.

Step 2: Suppose for now that (C.13) holds for n− 1; we will prove it holds for n. By using

the chain and product rules, we have

∂m−1f

∂xm−1
(x, t)= ert

∂m

∂xm

(
H

(
ǫ(T − t),Q∗(T − t),

∂u

∂x
(x,T − t)

))

= ert
m−1∑

ℓ=0

∑

1≤kℓ<kℓ−1<···<k1<k0=m

ℓ−1∏

j=0

(
kj − 1

kj+1

)
∂kj−kj+1+1u

∂xkj−kj+1+1
(x, T − t)

∂kℓ+1u

∂xkℓ+1
(x, T − t)

× ∂ℓ+1H

∂aℓ+1

(
ǫ(T − t),Q∗(T − t),

∂u

∂x
(x,T − t)

)
∀m= 1, . . . , n,

where we interpret an empty product as equal to 1. Then using Equation (C.12) we have

∣∣∣∣∣d
m(x)

∂m−1f

∂xm−1
(x, t)

∣∣∣∣∣≤

ert
m−1∑

ℓ=0

∑

1≤kℓ<···<k0=m
Cℓ

ℓ−1∏

j=0

(
kj−1

kj+1

)∣∣∣∣∣d(x)
kj−kj+1

∂kj−kj+1+1u

∂xkj−kj+1+1
(x,T −t)d(x)kℓ ∂

kℓ+1u

∂xkℓ+1
(x,T −t)

∣∣∣∣∣

≤ C0

∥∥w(·, t)
∥∥
m

+ ert
m−1∑

ℓ=1

∑

1≤kℓ<···<k0=m
Cℓ

ℓ−1∏

j=0

(
kj−1

kj+1

)∥∥∥∥
∂u

∂x
(·, T −t)

∥∥∥∥
kj−kj+1

∥∥∥∥
∂u

∂x
(·, T −t)

∥∥∥∥
kℓ

.
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We deduce that there exists some constant An(r), depending only on Cℓ and Bℓ(r) for ℓ≤ n− 1

as well as the constant appearing in estimate (C.14), such that

∥∥f (·, t)
∥∥∗
n−1,1

≤ C0

∥∥w(·, t)
∥∥
n
+ (An(r)−M)ert .

Since Bℓ(r) is decreasing with respect to r for ℓ ≤ n− 1, the same holds for An(r). We apply

Theorem 5.2 again to get

∥∥w(·, t)
∥∥

2
≤Mn

(
∥∥w(·, t0)

∥∥
n
+ (t − t0)

1/2C0 sup
t0≤s≤t

∥∥w(·, s)
∥∥
n
+An(r)e

rt

)

for all 0 ≤ t0 ≤ t ≤ t0 + 1. We will now use the assumption (5.9), and the exactly same argument

as before yields

sup
t∈[0,T ]

∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥
n

≤ 2MnC̃n+1 + 2MnAn(r)

1 − 2Mne−r(2C0Mn)−2
=: Bn(r).

Since An(r) is decreasing with respect to r , so is Bn(r).

For the infinite horizon case, if (uT ,mT ) denotes the solution to the finite time-horizon prob-

lem, then its limit as T → ∞ is the solution (u,m) to System (1.6). We deduce that (u,m)

satisfies (C.13), with [0, T ] replaced by
[
0,∞). 2

As a corollary, we derive (5.10) and (5.11). To prove (5.10), observe that

∂n

∂xn

(
∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x
(x, t)

))

=
n−1∑

ℓ=0

∑

1≤kℓ<···<k1<k0=n

ℓ−1∏

j=0

(
kj − 1

kj+1

)
∂kj−kj+1+1u

∂xkj−kj+1+1
(x, t)

∂kℓ+1u

∂xkℓ+1
(x, t)

× ∂ℓ+2H

∂aℓ+2

(
ǫ,Q∗(t),

∂u

∂x
(x, t)

)
,

so that

∣∣∣∣∣∣
d(x)n

∂n

∂xn

(
∂H

∂a

(
ǫ,Q∗(t),

∂u

∂x
(x, t)

))∣∣∣∣∣∣

≤
n−1∑

ℓ=0

∑

1≤kℓ<···<k1<k0=n
Cℓ+1

ℓ−1∏

j=0

(
kj − 1

kj+1

)∣∣∣∣∣d(x)
kj−kj+1

∂kj−kj+1+1u

∂xkj−kj+1+1
(x, t)d(x)kℓ

∂kℓ+1u

∂xkℓ+1
(x, t)

∣∣∣∣∣

≤
n−1∑

ℓ=0

∑

1≤kℓ<···<k1<k0=n
Cℓ+1

ℓ−1∏

j=0

(
kj − 1

kj+1

)∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥
kj−kj+1

∥∥∥∥
∂u

∂x
(·, t)

∥∥∥∥
kℓ

.
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Thus (5.10) follows from (C.13). The proof of (5.11) is similar: use the formulas (B.3) and (B.4),

taking successive derivatives and applying Equation (5.10).
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