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Clinical EHR data is naturally heterogeneous, where it contains abundant sub-phenotype. Such 
diversity creates challenges for outcome prediction using a machine learning model since it leads 
to high intra-class variance. To address this issue, we propose a supervised pre-training model with 
a unique embedded k-nearest-neighbor positive sampling strategy. We demonstrate the enhanced 
performance value of this framework theoretically and show that it yields highly competitive 
experimental results in predicting patient mortality in real-world COVID-19 EHR data with a total 
of over 7,000 patients admitted to a large, urban health system. Our method achieves a better 
AUROC prediction score of 0.872, which outperforms the alternative pre-training models and 
traditional machine learning methods. Additionally, our method performs much better when the 
training data size is small (345 training instances).

Keywords
Sub-phenotype; Intra-class variance; Pre-training; Self-supervised Learning; Supervised 
Contrastive Learning; mortality prediction

1 INTRODUCTION
Electronic health records (EHRs) contain large amounts of longitudinal, heterogeneous 
data generated by clinical activities, ranging from structured data (e.g., disease diagnoses, 
laboratory test results, and vital signs), to unstructured clinical notes and medical images. It 
provides great potential for improving human health and clinical care, such as patient health 
trajectory modeling [8], disease inference [2], and clinical decision support systems [16].

In recent years, many machine learning techniques, including deep learning, have been 
leveraged to derive insights from EHR data [6, 12, 18, 21, 28]. However, the intra-class 
heterogeneous nature of EHRs presents one barrier to the training and deployment of 
state-of-the-art machine learning models. Specifically, EHR data typically possess different 
sub-phenotype within the same class group. For example, COVID-19 patients may present 
different sub-phenotype regarding distinctive respiratory parameters [3]; Sepsis patients have 
various acute kidney injury (AKI) associated phenotypes [4]. Such diversity within the 
cohort population leads to a high intra-class variance in etiology and presentation.

It is not a trivial task to handle the intra-class variance in the deep learning models. 
Simple cross-entropy loss based on label information would not capture such diverse data 
heterogeneity because it could easily produce a poor margin for a decision boundary [19], 
thus resulting in poor generalization. In recent years, supervised contrastive learning has 
provided a promising solution because it can generate discriminative features by pulling 
together positive pairs from the same class and pushing apart the negative pairs from 
different classes [5]. Nevertheless, it suffers from class collapse, where each example in 
the same class has the same representation. Therefore, it cannot distinguish the latent 
subphenotypes within the patient of the same condition.

To overcome this issue, we propose a new Embedding-Based K-NN Positive Sampling 
Contrastive Learning (EKPS-CL) method to model EHR data intra-class variance (Figure 
1). Specifically, we first construct a KNN (K Nearest Neighborhood) graph from the 
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patients with the same conditions. Then we apply a supervised contrastive learning strategy 
to pull examples from the same neighbor closer together than examples from different 
neighbors. Compared to previous studies, our model can learn a “spread out” representation 
to distinguish subphenotype classes. To optimize the number of neighbors in EKPS-CL , we 
adopt an Expectation-Maximization (EM) strategy. In the E-step, we perform unsupervised 
learning to construct a KNN. In the M-step, we sample “positive” and noisy “negative” 
samples out of the KNN graph for contrastive learning. To extrinsically evaluate our method, 
we apply EKPS-CL to an important problem: predicting the mortality of patients with 
COVID-19. Experiments on the newly collected data from Mount Sinai Hospital show that 
our pre-training model can largely increase the prediction accuracy (~ 7% on average). In 
addition, it outperforms the state-of-the-art pre-training methods (~ 2% increment).

Our contributions can be summarized in the following three-fold. (1) We propose a new pre-
training loss function that could lead to a better embedding representation by approximating 
EHR data intra-class variance. (2) Following the designed loss function, we propose a 
pre-training algorithm called EKPS-CL that efficiently learns the embedding representation. 
(3) We empirically evaluate our pre-train model on a use case of predicting the mortality 
of patients with COVID-19 and demonstrate its superior performance against both Simple 
contrastive learning (SimCLR) and supervised contrastive learning (SupCLR), as well as 
other traditional machine learning baselines.

2 RELATED WORK
Phenotype intra-class heterogeneity and sub-phenotypes.

Clinical phenotypes are often expressed heterogeneously, meaning the same disease can 
have different lab test values or diagnostic codes. For example, individuals with severe 
COVID-19 have large intra-class variance in terms of etiology and presentation [23]. 
Patterns in this phenomenon can be considered sub-phenotypes of a disease. Exploring 
different sub-phenotypes is valuable to precision medicine and can enhance the performance 
of the predictive tasks, leading to more personalized recommendations. There is a large 
body of work exploring computational methods for subphenotyping, such as Parkinson’s 
disease [17], scleroderma [20], and Glioblastoma [25]. Methods such as multi-task learning 
and hierarchical models [1, 24] have been employed to better capture subtype patterns. This 
discovery suggests the importance of capturing EHR data heterogeneity in machine learning 
systems.

Self-supervised contrastive learning (SimpCLR) and Supervised contrastive learning 
(SupCLR).

Self-supervised contrastive learning characterizes intra-class clusters by employing 
contrastive learning within classes. In this method, clusters of the same-class points have a 
single positive sample as an augmented anchor. This anchor takes advantage of the intrinsic 
distribution without relying on pre-labeled class information [14].

Contrastive learning can also be fully-supervised [14]. The idea is to pull “similar points” 
(or points belonging to the same class) together, while simultaneously pushing apart 
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“dissimilar points” (or points belonging to different classes) in the embedding space. Studies 
show that SupCLR performs consistently better than SimpCLR and cross-entropy loss on 
large-scale classification problems [14, 26]. It also yields superior robustness to noise and 
unseen corruptions during testing [5]. For example, Khosla et al. [14] proposed a unified 
loss function that can be viewed as the generalization of both triplet [27] and N-pair [22] 
losses. Their loss is less sensitive to hyperparameters, which can provide consistent boosts 
for accuracy for different datasets, and is robust to natural corruptions.

Nevertheless, previous literature either performs data augmentation to create a similar 
anchor and positive examples (in the unsupervised setting) [7, 11], or randomly samples 
examples from the same class (in the supervised setting) [13, 14]. They suffer from class 
collapse, where each example in the same class has the same representation. Therefore, it 
cannot distinguish the latent subphenotypes within the patient of the same condition. Our 
technical novelty in this work is to automatically consider the underlying feature clusters 
when sampling data points for contrastive learning. As a result, our model can learn a 
“spread out” representation to distinguish subphenotype classes.

3 MATERIALS AND METHODS
3.1 Task definition

While our method can be used on any task, in this study, we focus on the study of dynamic 
prediction in the medical field. Nowadays, there is great interest in prognostic models 
and their application to personalized medicine. In the dynamic prediction, the survival 
probabilities are dynamically updated as additional longitudinal information is recorded.

More formally, for a new subject i, we have available measurements up to time point t. We 
are interested in Pr(Ti∗ ≥ u ∣ Ti∗ > t), where u ≥ t and Ti∗ is the true event time. In the discrete 
context, we divide the continuous time into joint intervals V = (tl–1, tl] where t0 and tT 
are the first and last observations interval boundaries (Figure 2). Our goal is to predict the 
mortality probability at time tu with longitudinal features in the observation window (t0, tu].

3.2 Overall architecture

Our overall architecture is presented in Figure 1. We first perform the proposed pre-training 
model which learns the initial parameters for the longitudinal model. We then fine-tune it in 
the downstream task.

Because of the sequential nature of the problem, we use the Long Short-Term Memory 
(LSTM) model to capture the time-variant effect of each feature over time. Specifically, we 
apply a two layers LSTM structure, followed by a dropout layer for both the pretraining 
and downstream tasks. The input is given by the feature xi of patient i (such as lab tests 
and vital signals). The output is the hidden state output for the last time step (tu). We then 
concatenated it with the static features (such as demographics) to form the final embedding 
output for the downstream application (Figure 3).
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3.3 Supervised pre-training through contrastive categorical positive samplings

In this section, we discuss the proposed pre-training model by first introducing the loss 
function, followed by describing the algorithm.

Based on the heterogeneity of EHR data, we assume that there exist sub-phenotype category 
groups within the same class group. we denote this set of category groups as as C = {c1, 
…ck}. Let hi = f(xi) be the output of the embedding function f(.) with the input feature xi. In 
this study, hi is the final embedding output in Figure 3.

3.3.1 Objective Function.—To make the pre-train embedding distribution approximate 
a multi-subcategory distribution, we design our system to maximize the conditional joint 
probability of a multi-categorical model in Equation (1), in which θ is the model parameters, 
hi is the embedding vector representation of a data instance, C is a set of categories, cj is an 
indicator that hi belongs to subcategory j, and n is the batch size.

θ∗ = arg max
θ

∑
i = 1

n
∑
j = 1

k
cj log p(ℎi ∣ cj ∈ C; θ)

= arg max
θ

∑
i = 1

n
∑
j = 1

k
cj log p(ℎi, cj; θ)

∑ℎ ∈ H p(ℎ, cj)

(1)

Explicitly computing the denominator term would be intractable since it requires integrating 
over the whole embedding space H. Therefore, we resort to using Noise Contrastive 
Estimation (NCE) to approximate the objective function and optimize θ [10]. Since the 
objective function relates to multi-categorical distribution, which is slightly different from 
the original NCE loss, we derive our NCE optimization as follows.

Given a set of n samples with one “positive” sample xi from category cj, and n – 1 noise 
samples from the other categories C/{cj}. The categorical conditional probability is:

p(cj ∣ ℎi, θ) =
p(ℎi ∣ cj, θ)

p(ℎi ∣ cj, θ) + 1
∣ C ∣ − 1 ∑cm ∈ C ∕ {cj}p(ℎi ∣ cm, θ)

Thus, the objective function of the joint conditional categorical probability is:

L(θ) = ∑
i = 1

n
∑
j = 1

k
cj log p(cj ∣ ℎi, θ) (2)

Semantically, optimizing L(θ) is to maximize a probability density ratio between the 
conditional probability where the data embedding hi is generated from the actual category 
cj, against the data embedding generated from the noise categories C/{cj}, thus lead to an 
approximation of maximizing (1).
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To model the categorical conditional probability in (2), we use the log-bilinear model exp (hi 
· c̄j) ∝ p(hi∣cj, θ), where c̄j is a context embedding vector of cj, and will be discussed later. 
The final form of our objective function is:

L = ∑
i = 1

n
∑
j = 1

k
cj log exp(ℎic̄j)

exp(ℎic̄j) + 1
∣ C ∣ − 1 ∑cm ∈ C ∕ {cj} exp(ℎic̄m)

(3)

3.3.2 Learning algorithm.—There are many ways to model c̄. In this study, we find 
that a simple sampling could achieve good performance. To optimize (3), we adopt an 
Expectation-Maximization (EM) strategy. In the E-step, we perform unsupervised learning 
to construct a KNN (K-nearest Neighborhood) graph out of the whole data embeddings 
(Figure 4). The similarity criteria between the embeddings are based on their inner product. 
In the M-step, we sample “positive” and noisy “negative” samples out of the KNN graph and 
optimize (3). Our algorithm is presented in Algorithm 1.

Algorithm 1 Embedding-based K-nearest Neighborhood Sampling Contrastive Learning

Input:Longitutinal EHR features
Output:Pretrained systemm with parameters tuned
1: Initialize system parameters θ
2: for each epoch do
3: For each class group (label 1 or 0), Compute similarities

between all pairs of embedding feature representations based
on their inner product, and build KNN graph from it .

4: while not converged do
5: Sample a mini‐batch training patientsP ∈ Pall
6: for each p ∈ P do

7: Sample 1 ‘‘positive" sample data pk
+ ∈ Pall that have

the same label as p, and are connected to node p in the
KNN graph.

8: end for
9: OptimizeL in equation 3

10: endwhile
11: end for
12: returnPre‐trained deep learning system

3.4 Downstream dynamic prediction

The objective is a binary cross-entropy loss for predicting survival probability:

Lb = − y log(y) + (1 − y) log(1 − y) (4)

where y is the actual label and y is the predicted probability from the projection layer. As 
shown in Figure 3, the cross entropy loss is calculated based on the output of the Dense 
Projection Layer.
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4 EXPERIMENTS
While our method can be used on any dynamic prediction task, in this study, we focus on the 
problem of mortality prediction of patients with COVID-19. Early prediction of COVID-19 
mortality is important since it can alleviate the burden on healthcare systems and help 
identify efficient early detection of patient deterioration which is important for allocating 
limited resources [9].

4.1 Dataset

We obtained the EHR data of COVID-19 patients from five hospitals within the Mount 
Sinai Health System located in New York City. The EHR data collected contains the 
following patient data: COVID-19 status, Intensive Care Unit (ICU) status, demographics, 
lab test results, vital signs, comorbid diseases, and outcome (e.g., mortality, discharge). 
Lab tests and vital signs were measured at multiple time points along the hospital 
course. We included nine frequently measured vital signs: heart rate, respiration rate, pulse 
oximetry, blood pressure (diastolic and systolic), temperature, oxygen saturation, height, and 
weight. We also selected 76 lab tests that were both commonly measured and relevant to 
COVID-19. For the static features, we included age, gender, and race as demographics and 
12 comorbid diseases: atrial fibrillation, asthma, coronary artery disease, cancer, chronic 
kidney disease, chronic obstructive pulmonary disease, diabetes mellitus, health failure, 
hypertension, stroke, alcoholism, and liver disease. Comorbid diseases were considered from 
their presence at admission to the hospital and defined via ICD9/10-CM codes collapsed 
by Phecode. This study has been approved by the Institutional Review Board at the Icahn 
School of Medicine at Mount Sinai (IRB- 20-03271).

Overall, we obtained 7,067 patients who tested positive for COVID-19 and were 
hospitalized (~23% mortality rate). Table 1 lists the patient statistics for patient commodities 
and vital signals. Details of the lab tests can be found in the Appendix.

4.2 Baseline methods

For baseline comparisons, we divide the methods into two groups. The first group of 
methods does not apply pre-training. Here, we listed 4 traditional machine learning models 
that are commonly used on prediction tasks: Logistic Regression [18], Random Forest 
[12], Support Vector Machine (SVM) [29], and XGboost [28]. The input features for these 
baseline models are the averaged feature values (labs and vitals) in the observation window. 
Additionally, we included an LSTM model with Cross-Entropy Loss without pre-training.

The second group contains two pre-training methodologies: Sim-CLR [7] and SupCLR 
[14]. SimCLR requires the augmented data generated from the training instance. Therefore, 
we generated the positive sample by picking a temporal embedding from our longitudinal 
structure at a random time step. For SupCLR, we implemented the same procedure from the 
original paper. Note that SupCLR is different from our methods in that it samples “positive” 
instances from the same binary classification group (label 1 or 0) rather than from the 
sub-phenotype category groups within the same group.
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4.3 Experimental settings

We split our data into 70% for training, 10% for validation, and 20% for testing. The 
longitudinal data (i.e., features with multiple values), specifically lab tests and vital signs, 
were binned and averaged within 4-hour windows across their hospitalization. We pre-
process the longitudinal and static features by considering the values between 0.5 and 99.5 
percentile to remove any inaccurate measurement, we then normalize the data by calculating 
the standard score (Z score). For categorical comorbid data, we use one-hot encoding 
representation. Numerical data with missing values are imputed with zeros.

All analyses were performed using TensorFlow 1.15.1 and utilized the Adam optimizer [15]. 
We set the batch size to be 256, with 30 training epochs. The embedding dimension is set to 
be 100. We used two NVIDIA 2080 TI in our experiments.

For the evaluation metric, we reported the area under the receiver-operating characteristic 
(AUROC) and the area under the precision, recall curve (AUPRC). We used 10 bootstrap 
samples to obtain a distribution of the evaluation metrics and reported 95% confidence 
intervals.

4.4 Results and Discussion

4.4.1 Prediction performance.—Table 2 shows the performance to predict mortality 
of patients with COVID-19 using the HER within 8, 12, 24, and 48 hours after hospital 
admission. First, we observed that the prediction performance (AUC score) of the baseline 
models without pre-training is similar (around 0.7), with the random forest model showing 
slightly better performance. In contrast, our pre-training model largely increases the 
performance (above 7% increment) against the models without pre-training. Secondly, 
among the pre-training methodologies, EKPS-CL achieves the best performance through 
all time periods (around 3% over SimCLR and 2% over SupCLR), which verifies our 
hypothesis and analysis in Section 3.3.

4.4.2 Effect of the learning behaviors.—Next, we compared different learning 
behaviors (Figure 5), where we recorded the AUC scores on the validation set for every 
epoch. In this experiment, we compared SEKPS-CL to SimCLR and SupCLR, as well as the 
model with a single cross-entropy (CE) loss but not pre-training. The learning curve shows 
that, compared to the model with only a CE loss, models with pre-training consistently 
achieved higher accuracy at every epoch. More importantly, SEKPS-CL achieved a higher 
AUC score along with each epoch than SimCLR and SupCLR, showing the effects of 
categorical positive sampling.

4.4.3 Effect of the training size.—We performed an additional study to evaluate the 
robustness of different models (Figure 7). In this evaluation scenario, we varied the training 
data size but kept the testing and evaluation data set unchanged. The purpose is to assess 
how our pre-training model would help on remaining stable performance against baselines 
under situations when training data sets are limited. Specifically, we compared performance 
at N = [345, 945, 1945, 2945, 3450] where N is the training data size. We used random 
down-sampling to make the data unbiased.
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4.4.4 Effect of k in KNN.—We also evaluated the model performance on different k in 
KNN (Figure 6). The model reaches peak performance when k = 5.

Figure 7 shows the AUC results corresponding to different training sample sizes. The 
performance of models without pre-training substantially decreases as the training size 
becomes smaller (Totally 12% decrement). On the other hand, models with pre-training have 
much more stable performance, where the performance decrement for SimcCLR, SupCLR, 
and SEKPS-CL are 0.23, 0.21, and 0.20, respectively. In addition, SEKPS-CL pre-training 
consistently outperforms SimCLR and SupCLR within each training set (different in size). 
This observation suggests the effectiveness of our pre-training algorithm.

4.4.5 Discussion.—From our experiments, we observed that models that do not apply 
pre-training, such as models that directly adopt CE loss, tend to make the embeddings 
separate into two distributions where each represents a class group. When adopting 
supervised contrastive pre-training, the two-class distribution centers are pushed further 
away than using the use CE loss only. In the meantime, SimCLR is a self-supervised 
pre-training strategy, which maximizes the data intra-class variance. Thus, when adopting 
this strategy, the effect is similar to generating embeddings that approximate multi sub-
phenotype categories.

Our pre-training method (EKPS-CL) combines the advantages of both SimCLR and 
SupCLR. First, we performed the supervised sampling (sample “positive” samples from 
the same class group). This brings the strength of SupCLR by pushing away the two-class 
distribution centers. Secondly, though the “positive” samples are picked from the same class 
group, we selectively sample these positive samples from the sub-categories by constructing 
a KNN graph. Hence, this procedure is similar to recognizing the intra-class heterogeneous 
which is consistent with the effect of SimCLR. As evidenced by our experiments, combining 
the two approaches significantly improves the downstream prediction performance.

5 CONCLUSION
In this work, we propose a pre-training algorithm designed based on the unique EHR 
data heterogeneous characteristic. We evaluated the algorithm for predicting the mortality 
of COVID-19 patients and demonstrated the superior performance of our algorithm over 
alternative baselines. Our analysis and results showed the great potential to improve 
prediction performance by designing pre-training models that consider both the class label 
information as well as the EHR data heterogeneity.
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APPENDIX
Table 3:

Statistics of the laboratory test

Laboratory Values (median, IQR) Overall Mortality

Albumin (g/dL) 2.5 (0.8) 2.1 (0.75)

Alkaline Phosphatase (units/L) 74.0 (40.0) 80.5 (41.5)

Alanine Transaminase (units/L) 27.0 (31.0) 28.0 (27.0)

Anion Gap (mEq/L) 10.0 (3.25) 11.68 (4.22)

Partial Thromboplastin Time (s) 32.7 (9.09) 35.3 (13.56)

Aspartate Aminotransferase (units/L) 32.0 (26.0) 39.0 (34.0)

Atypical lymphocyte percentage (Band count 3.0 (3.0) 4.0 (5.0)

Direct Bilirubin (mg/dL) 0.3 (0.2) 0.3 (0.3)

Total Bilirubin (mg/dL) 0.5 (0.4) 0.5 (0.45)

B-Type Natriuretic Peptide (ng/mL) 148.02 (398.16) 87.6 (237.39)

Blood Urea Nitrogen (mg/dL) 17.5 (22.0) 36.0 (37.5)

C Reactive Protein (mg/L) 52.61 (84.68) 104.6 (128.5)

Ionized calcium (mg/dL) 1.15 (0.09) 1.14 (0.12)

Calcium (mg/dL) 8.0 (0.75) 7.65 (0.9)

Chloride (mEq/L) 102.0 (6.0) 103.0 (9.0)

Creatine Phosphokinase (units/L) 103.0 (249.25) 142.0 (321.75)

Creatine Kinase-MB (units/L) 3.35 (4.38) 3.2 (3.1)

Bicarbonate (mEq/L) 22.6 (5.0) 20.65 (5.65)

Creatinine (mg/dL) 0.89 (0.79) 1.4 (2.02)

D-Dimer (ng/mL) 1.42 (1.88) 2.31 (2.33)

Ferritin (ng/mL) 687.0 (224.5) 1011.0 (1555.5)

Fibrinogen (mg/dL) 520.0 (240.5) 526.0 (242.75)

Glucose (mg/dL) 100.0 (45.0) 124.0 (61.0)

Hematocrit (%) 34.2 (10.7) 31.9 (11.72)

Hemoglobin (g/dL) 11.0 (3.65) 10.2 (3.9)

International Normalised Ratio 1.15 (0.2) 1.2 (0.3)

Interleukin-6 (pg/mL) 46.4 (136.88) 143.7 (278.15)

Iron (mcg/dL) 25.0 (21.0) 33.0 (29.75)

Lactate (mmol/L) 1.4 (0.65) 1.58 (0.85)

Lactate Dehydrogenase (U/L) 371.0 (193.12) 517.0 (248.0)

Lymphocyte Percentage (%) 10.1 (10.9) 4.95 (4.86)

Lymphocyte Count 0.9 (0.6) 0.6 (0.5)

Mean Corpuscular Hemoglobin Concentration (g/dL) 29.6 (2.85) 29.8 (2.85)

Mean Corpuscular Volume (fL) 90.4 (8.0) 91.3 (8.75)

Mean Platelet Volume (fL) 8.2 (1.5) 8.6 (1.64)

Monocyte Percentage (Monocyte Count 0.4 (0.3) 0.4 (0.35)

Neutrophil Percentage (Neutrophil Count 5.0 (4.05) 7.6 (5.3)

Partial pressure of carbon dioxide (mmHg) 39.5 (8.5) 39.0 (11.62)

pH 7.37 (0.08) 7.32 (0.14)
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Laboratory Values (median, IQR) Overall Mortality

Platelets 211.0 (133.0) 178.0 (109.5)

Partial pressure of oxygen (mmHg) 40.0 (16.0) 39.0 (14.5)

Potassium (mEq/L) 4.0 (0.6) 4.15 (0.85)

Prothrombin time (s) 14.4 (2.0) 15.1 (2.22)

Serum protein (g/dL) 6.0 (1.05) 5.6 (1.1)

Red Blood Cell Count 3.78 (1.2) 3.48 (1.3)

Red Blood Cell Distribution Width (Sodium (mEq/L) 137.5 (5.0) 139.0 (7.0)

Total iron binding capacity (mcg/dL) 163.0 (76.25) 203.0 (100.0)

Transferrin Saturation (Troponin I (ng/mL) 0.06 (0.15) 0.08 (0.25)

White Blood Cells (uL) 7.1 (4.5) 9.7 (6.35)
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CCS CONCEPTS

• Theory of computation → Models of learning.
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Figure 1: 
The overview of the pipeline.
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Figure 2: 
Example of temporal input.
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Figure 3: 
The longitudinal model structure.
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Figure 4: 
Pre-training model architecture
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Figure 5: 
The learning curves for mortality prediction (observation window=24h).
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Figure 6: 
Predictive Performance on Different k
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Figure 7: 
Prediction performance on mortality prediction with different training data sizes 
(observation window=24h).
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