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Clinical EHR data is naturally heterogeneous, where it contains abundant sub-phenotype. Such
diversity creates challenges for outcome prediction using a machine learning model since it leads
to high intra-class variance. To address this issue, we propose a supervised pre-training model with
a unique embedded k-nearest-neighbor positive sampling strategy. We demonstrate the enhanced
performance value of this framework theoretically and show that it yields highly competitive
experimental results in predicting patient mortality in real-world COVID-19 EHR data with a total
of over 7,000 patients admitted to a large, urban health system. Our method achieves a better
AUROC prediction score of 0.872, which outperforms the alternative pre-training models and
traditional machine learning methods. Additionally, our method performs much better when the
training data size is small (345 training instances).

Keywords

Sub-phenotype; Intra-class variance; Pre-training; Self-supervised Learning; Supervised
Contrastive Learning; mortality prediction

1 INTRODUCTION

Electronic health records (EHRs) contain large amounts of longitudinal, heterogeneous

data generated by clinical activities, ranging from structured data (e.g., disease diagnoses,
laboratory test results, and vital signs), to unstructured clinical notes and medical images. It
provides great potential for improving human health and clinical care, such as patient health
trajectory modeling [8], disease inference [2], and clinical decision support systems [16].

In recent years, many machine learning techniques, including deep learning, have been
leveraged to derive insights from EHR data [6, 12, 18, 21, 28]. However, the intra-class
heterogeneous nature of EHRs presents one barrier to the training and deployment of
state-of-the-art machine learning models. Specifically, EHR data typically possess different
sub-phenotype within the same class group. For example, COVID-19 patients may present
different sub-phenotype regarding distinctive respiratory parameters [3]; Sepsis patients have
various acute kidney injury (AKI) associated phenotypes [4]. Such diversity within the
cohort population leads to a high intra-class variance in etiology and presentation.

It is not a trivial task to handle the intra-class variance in the deep learning models.
Simple cross-entropy loss based on label information would not capture such diverse data
heterogeneity because it could easily produce a poor margin for a decision boundary [19],
thus resulting in poor generalization. In recent years, supervised contrastive learning has
provided a promising solution because it can generate discriminative features by pulling
together positive pairs from the same class and pushing apart the negative pairs from
different classes [5]. Nevertheless, it suffers from class collapse, where each example in
the same class has the same representation. Therefore, it cannot distinguish the latent
subphenotypes within the patient of the same condition.

To overcome this issue, we propose a new Embedding-Based K-NN Positive Sampling
Contrastive Learning (EKPS-CL) method to model EHR data intra-class variance (Figure
1). Specifically, we first construct a KNN (K Nearest Neighborhood) graph from the
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patients with the same conditions. Then we apply a supervised contrastive learning strategy
to pull examples from the same neighbor closer together than examples from different
neighbors. Compared to previous studies, our model can learn a “spread out” representation
to distinguish subphenotype classes. To optimize the number of neighbors in EKPS-CL , we
adopt an Expectation-Maximization (EM) strategy. In the E-step, we perform unsupervised
learning to construct a KNN. In the M-step, we sample “positive” and noisy “negative”
samples out of the KNN graph for contrastive learning. To extrinsically evaluate our method,
we apply EKPS-CL to an important problem: predicting the mortality of patients with
COVID-19. Experiments on the newly collected data from Mount Sinai Hospital show that
our pre-training model can largely increase the prediction accuracy (~ 7% on average). In
addition, it outperforms the state-of-the-art pre-training methods (~ 2% increment).

Our contributions can be summarized in the following three-fold. (1) We propose a new pre-
training loss function that could lead to a better embedding representation by approximating
EHR data intra-class variance. (2) Following the designed loss function, we propose a
pre-training algorithm called EKPS-CL that efficiently learns the embedding representation.
(3) We empirically evaluate our pre-train model on a use case of predicting the mortality

of patients with COVID-19 and demonstrate its superior performance against both Simple
contrastive learning (SimCLR) and supervised contrastive learning (SupCLR), as well as
other traditional machine learning baselines.

2 RELATED WORK

Phenotype intra-class heterogeneity and sub-phenotypes.

Clinical phenotypes are often expressed heterogeneously, meaning the same disease can
have different lab test values or diagnostic codes. For example, individuals with severe
COVID-19 have large intra-class variance in terms of etiology and presentation [23].
Patterns in this phenomenon can be considered sub-phenotypes of a disease. Exploring
different sub-phenotypes is valuable to precision medicine and can enhance the performance
of the predictive tasks, leading to more personalized recommendations. There is a large
body of work exploring computational methods for subphenotyping, such as Parkinson’s
disease [17], scleroderma [20], and Glioblastoma [25]. Methods such as multi-task learning
and hierarchical models [1, 24] have been employed to better capture subtype patterns. This
discovery suggests the importance of capturing EHR data heterogeneity in machine learning
systems.

Self-supervised contrastive learning (SimpCLR) and Supervised contrastive learning

(SupCLR).

Self-supervised contrastive learning characterizes intra-class clusters by employing
contrastive learning within classes. In this method, clusters of the same-class points have a
single positive sample as an augmented anchor. This anchor takes advantage of the intrinsic
distribution without relying on pre-labeled class information [14].

Contrastive learning can also be fully-supervised [14]. The idea is to pull “similar points”
(or points belonging to the same class) together, while simultaneously pushing apart
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“dissimilar points” (or points belonging to different classes) in the embedding space. Studies
show that SupCLR performs consistently better than SimpCLR and cross-entropy loss on
large-scale classification problems [14, 26]. It also yields superior robustness to noise and
unseen corruptions during testing [5]. For example, Khosla et al. [14] proposed a unified
loss function that can be viewed as the generalization of both triplet [27] and N-pair [22]
losses. Their loss is less sensitive to hyperparameters, which can provide consistent boosts
for accuracy for different datasets, and is robust to natural corruptions.

Nevertheless, previous literature either performs data augmentation to create a similar
anchor and positive examples (in the unsupervised setting) [7, 11], or randomly samples
examples from the same class (in the supervised setting) [13, 14]. They suffer from class
collapse, where each example in the same class has the same representation. Therefore, it
cannot distinguish the latent subphenotypes within the patient of the same condition. Our
technical novelty in this work is to automatically consider the underlying feature clusters
when sampling data points for contrastive learning. As a result, our model can learn a
“spread out” representation to distinguish subphenotype classes.

3 MATERIALS AND METHODS
3.1 Task definition

While our method can be used on any task, in this study, we focus on the study of dynamic
prediction in the medical field. Nowadays, there is great interest in prognostic models

and their application to personalized medicine. In the dynamic prediction, the survival
probabilities are dynamically updated as additional longitudinal information is recorded.

More formally, for a new subject 7, we have available measurements up to time point £ We
are interested in P(T} > u | T{ > t), where u> tand T; is the true event time. In the discrete
context, we divide the continuous time into joint intervals V= (#.1, #] where £ and ¢

are the first and last observations interval boundaries (Figure 2). Our goal is to predict the
mortality probability at time £, with longitudinal features in the observation window (%), #,].

3.2 Overall architecture

Our overall architecture is presented in Figure 1. We first perform the proposed pre-training
model which learns the initial parameters for the longitudinal model. We then fine-tune it in
the downstream task.

Because of the sequential nature of the problem, we use the Long Short-Term Memory
(LSTM) model to capture the time-variant effect of each feature over time. Specifically, we
apply a two layers LSTM structure, followed by a dropout layer for both the pretraining
and downstream tasks. The input is given by the feature x; of patient 7 (such as lab tests
and vital signals). The output is the hidden state output for the last time step (#,). We then
concatenated it with the static features (such as demographics) to form the final embedding
output for the downstream application (Figure 3).
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3.3 Supervised pre-training through contrastive categorical positive samplings

In this section, we discuss the proposed pre-training model by first introducing the loss
function, followed by describing the algorithm.

Based on the heterogeneity of EHR data, we assume that there exist sub-phenotype category
groups within the same class group. we denote this set of category groups as as C= {¢j,
...cxt. Let Ay = f{x;) be the output of the embedding function f(.) with the input feature x;. In
this study, /4;is the final embedding output in Figure 3.

3.3.1 Objective Function.—To make the pre-train embedding distribution approximate
a multi-subcategory distribution, we design our system to maximize the conditional joint
probability of a multi-categorical model in Equation (1), in which @1is the model parameters,
hjis the embedding vector representation of a data instance, C'is a set of categories, ¢;is an
indicator that A;belongs to subcategory /, and n is the batch size.

n k
0" = arg meax Z z cjlog p(h; | ¢; € C;6)
==
n ok Q)]
p(hl’cjae)
= arg max cilogs——""—"—"""—
SPIPIER vy

Explicitly computing the denominator term would be intractable since it requires integrating
over the whole embedding space H. Therefore, we resort to using Noise Contrastive
Estimation (NCE) to approximate the objective function and optimize &[10]. Since the
objective function relates to multi-categorical distribution, which is slightly different from
the original NCE loss, we derive our NCE optimization as follows.

Given a set of nsamples with one “positive” sample x; from category ¢;, and 71— 1 noise
samples from the other categories (7{c;}. The categorical conditional probability is:

p(hi | cj,0)

1
phi | cj, 9)+|C|7_12cm €C/ {cj}Ph | em> 0)

pej | b 0) =

Thus, the objective function of the joint conditional categorical probability is:

n k
L©O)= ), Y, cjlogple; | hi,6) @

i=1j=1

Semantically, optimizing L(6) is to maximize a probability density ratio between the
conditional probability where the data embedding 4;is generated from the actual category
cj, against the data embedding generated from the noise categories (7{c;}, thus lead to an
approximation of maximizing (1).
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To model the categorical conditional probability in (2), we use the log-bilinear model exp (4,
“¢j) & p(hjlc;, 6), where ¢; is a context embedding vector of ¢, and will be discussed later.

The final form of our objective function is:

n k _
exp(h;c)
L=3 > ¢log - T ~ - 3
i=1j=1 exp(hicj) + [C] -1 Zcm €C/{cj) exp(hc,y,)

3.3.2 Learning algorithm.—There are many ways to model ¢. In this study, we find
that a simple sampling could achieve good performance. To optimize (3), we adopt an
Expectation-Maximization (EM) strategy. In the E-step, we perform unsupervised learning
to construct a KNN (K-nearest Neighborhood) graph out of the whole data embeddings
(Figure 4). The similarity criteria between the embeddings are based on their inner product.
In the M-step, we sample “positive” and noisy “negative” samples out of the KNN graph and
optimize (3). Our algorithm is presented in Algorithm 1.

Algorithm 1 Embedding-based K-nearest Neighborhood Sampling Contrastive Learning

Input: Longitutinal EHR features
Output: Pretrained systemm with parameters tuned
1: Initialize system parameters 6
2: for each epoch do
3:  For each class group (label 1 or 0), Compute similarities
between all pairs of embedding feature representations based
on their inner product, and build KNN graph from it .
while not converged do
Sample a mini-batch training patients P € P;

4

5

6: for eachp € Pdo

7 Sample 1 “‘positive" sample data p,i_ € Py that have

the same label as p, and are connected to node pin the
KNN graph.
end for

O oo

Optimize L in equation 3

10:  end while

11: end for

12: return Pre-trained deep learning system

3.4 Downstream dynamic prediction

The objective is a binary cross-entropy loss for predicting survival probability:
Ly= —ylog(y)+ (1 - y)log(l - ) “

where yis the actual label and 7 is the predicted probability from the projection layer. As
shown in Figure 3, the cross entropy loss is calculated based on the output of the Dense
Projection Layer.
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4 EXPERIMENTS

While our method can be used on any dynamic prediction task, in this study, we focus on the
problem of mortality prediction of patients with COVID-19. Early prediction of COVID-19
mortality is important since it can alleviate the burden on healthcare systems and help
identify efficient early detection of patient deterioration which is important for allocating
limited resources [9].

4.1 Dataset

We obtained the EHR data of COVID-19 patients from five hospitals within the Mount

Sinai Health System located in New York City. The EHR data collected contains the
following patient data: COVID-19 status, Intensive Care Unit (ICU) status, demographics,
lab test results, vital signs, comorbid diseases, and outcome (e.g., mortality, discharge).

Lab tests and vital signs were measured at multiple time points along the hospital

course. We included nine frequently measured vital signs: heart rate, respiration rate, pulse
oximetry, blood pressure (diastolic and systolic), temperature, oxygen saturation, height, and
weight. We also selected 76 lab tests that were both commonly measured and relevant to
COVID-19. For the static features, we included age, gender, and race as demographics and
12 comorbid diseases: atrial fibrillation, asthma, coronary artery disease, cancer, chronic
kidney disease, chronic obstructive pulmonary disease, diabetes mellitus, health failure,
hypertension, stroke, alcoholism, and liver disease. Comorbid diseases were considered from
their presence at admission to the hospital and defined via ICD9/10-CM codes collapsed

by Phecode. This study has been approved by the Institutional Review Board at the Icahn
School of Medicine at Mount Sinai (IRB- 20-03271).

Overall, we obtained 7,067 patients who tested positive for COVID-19 and were
hospitalized (~23% mortality rate). Table 1 lists the patient statistics for patient commodities
and vital signals. Details of the lab tests can be found in the Appendix.

4.2 Baseline methods

For baseline comparisons, we divide the methods into two groups. The first group of
methods does not apply pre-training. Here, we listed 4 traditional machine learning models
that are commonly used on prediction tasks: Logistic Regression [18], Random Forest

[12], Support Vector Machine (SVM) [29], and XGboost [28]. The input features for these
baseline models are the averaged feature values (labs and vitals) in the observation window.
Additionally, we included an LSTM model with Cross-Entropy Loss without pre-training.

The second group contains two pre-training methodologies: Sim-CLR [7] and SupCLR
[14]. SimCLR requires the augmented data generated from the training instance. Therefore,
we generated the positive sample by picking a temporal embedding from our longitudinal
structure at a random time step. For SupCLR, we implemented the same procedure from the
original paper. Note that SupCLR is different from our methods in that it samples “positive”
instances from the same binary classification group (label 1 or 0) rather than from the
sub-phenotype category groups within the same group.
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4.3 Experimental settings

We split our data into 70% for training, 10% for validation, and 20% for testing. The
longitudinal data (i.e., features with multiple values), specifically lab tests and vital signs,
were binned and averaged within 4-hour windows across their hospitalization. We pre-
process the longitudinal and static features by considering the values between 0.5 and 99.5
percentile to remove any inaccurate measurement, we then normalize the data by calculating
the standard score (Z score). For categorical comorbid data, we use one-hot encoding
representation. Numerical data with missing values are imputed with zeros.

All analyses were performed using TensorFlow 1.15.1 and utilized the Adam optimizer [15].
We set the batch size to be 256, with 30 training epochs. The embedding dimension is set to
be 100. We used two NVIDIA 2080 TI in our experiments.

For the evaluation metric, we reported the area under the receiver-operating characteristic
(AUROC) and the area under the precision, recall curve (AUPRC). We used 10 bootstrap
samples to obtain a distribution of the evaluation metrics and reported 95% confidence
intervals.

4.4 Results and Discussion

4.41 Prediction performance.—Table 2 shows the performance to predict mortality
of patients with COVID-19 using the HER within 8, 12, 24, and 48 hours after hospital
admission. First, we observed that the prediction performance (AUC score) of the baseline
models without pre-training is similar (around 0.7), with the random forest model showing
slightly better performance. In contrast, our pre-training model largely increases the
performance (above 7% increment) against the models without pre-training. Secondly,
among the pre-training methodologies, EKPS-CL achieves the best performance through
all time periods (around 3% over SimCLR and 2% over SupCLR), which verifies our
hypothesis and analysis in Section 3.3.

4.4.2 Effect of the learning behaviors.—Next, we compared different learning
behaviors (Figure 5), where we recorded the AUC scores on the validation set for every
epoch. In this experiment, we compared SEKPS-CL to SimCLR and SupCLR, as well as the
model with a single cross-entropy (CE) loss but not pre-training. The learning curve shows
that, compared to the model with only a CE loss, models with pre-training consistently
achieved higher accuracy at every epoch. More importantly, SEKPS-CL achieved a higher
AUC score along with each epoch than SImCLR and SupCLR, showing the effects of
categorical positive sampling.

4.4.3 Effect of the training size.—We performed an additional study to evaluate the
robustness of different models (Figure 7). In this evaluation scenario, we varied the training
data size but kept the testing and evaluation data set unchanged. The purpose is to assess
how our pre-training model would help on remaining stable performance against baselines
under situations when training data sets are limited. Specifically, we compared performance
at N=[345, 945, 1945, 2945, 3450] where N is the training data size. We used random
down-sampling to make the data unbiased.
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4.4.4 Effect of k in KNN.—WEe also evaluated the model performance on different & in
KNN (Figure 6). The model reaches peak performance when k= 5.

Figure 7 shows the AUC results corresponding to different training sample sizes. The
performance of models without pre-training substantially decreases as the training size
becomes smaller (Totally 12% decrement). On the other hand, models with pre-training have
much more stable performance, where the performance decrement for SimcCLR, SupCLR,
and SEKPS-CL are 0.23, 0.21, and 0.20, respectively. In addition, SEKPS-CL pre-training
consistently outperforms SimCLR and SupCLR within each training set (different in size).
This observation suggests the effectiveness of our pre-training algorithm.

4.4.5 Discussion.—From our experiments, we observed that models that do not apply
pre-training, such as models that directly adopt CE loss, tend to make the embeddings
separate into two distributions where each represents a class group. When adopting
supervised contrastive pre-training, the two-class distribution centers are pushed further
away than using the use CE loss only. In the meantime, SImCLR is a self-supervised
pre-training strategy, which maximizes the data intra-class variance. Thus, when adopting
this strategy, the effect is similar to generating embeddings that approximate multi sub-
phenotype categories.

Our pre-training method (EKPS-CL) combines the advantages of both SimCLR and
SupCLR. First, we performed the supervised sampling (sample “positive” samples from

the same class group). This brings the strength of SupCLR by pushing away the two-class
distribution centers. Secondly, though the “positive” samples are picked from the same class
group, we selectively sample these positive samples from the sub-categories by constructing
a KNN graph. Hence, this procedure is similar to recognizing the intra-class heterogeneous
which is consistent with the effect of SIimCLR. As evidenced by our experiments, combining
the two approaches significantly improves the downstream prediction performance.

5 CONCLUSION

In this work, we propose a pre-training algorithm designed based on the unique EHR

data heterogeneous characteristic. We evaluated the algorithm for predicting the mortality
of COVID-19 patients and demonstrated the superior performance of our algorithm over
alternative baselines. Our analysis and results showed the great potential to improve
prediction performance by designing pre-training models that consider both the class label
information as well as the EHR data heterogeneity.
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APPENDIX

Table 3:
Statistics of the laboratory test

Laboratory Values (median, IQR) Overall Mortality

Albumin (g/dL) 2.5 (0.8) 2.1 (0.75)
Alkaline Phosphatase (units/L) 74.0 (40.0) 80.5 (41.5)
Alanine Transaminase (units/L) 27.0 (31.0) 28.0 (27.0)
Anion Gap (mEq/L) 10.0 (3.25) 11.68 (4.22)
Partial Thromboplastin Time (s) 32.7 (9.09) 353 (13.56)
Aspartate Aminotransferase (units/L) 32.0 (26.0) 39.0 (34.0)
Atypical lymphocyte percentage (Band count 3.0 (3.0) 4.0 (5.0)
Direct Bilirubin (mg/dL) 0.3 0.2) 0.3 0.3)
Total Bilirubin (mg/dL) 0.5 0.4) 0.5 (0.45)
B-Type Natriuretic Peptide (ng/mL) 148.02  (398.16) 87.6  (237.39)
Blood Urea Nitrogen (mg/dL) 17.5 (22.0) 36.0 (37.5)
C Reactive Protein (mg/L) 52.61 (84.68) 104.6 (128.5)
Tonized calcium (mg/dL) 1.15 (0.09) 1.14 (0.12)
Calcium (mg/dL) 8.0 (0.75) 7.65 (0.9)
Chloride (mEq/L) 102.0 (6.0) 103.0 9.0)
Creatine Phosphokinase (units/L) 103.0  (249.25) 142.0 (321.75)
Creatine Kinase-MB (units/L) 3.35 (4.38) 32 @3.1)
Bicarbonate (mEq/L) 22.6 (5.0 20.65 (5.65)
Creatinine (mg/dL) 0.89 (0.79) 1.4 (2.02)
D-Dimer (ng/mL) 1.42 (1.88) 2.31 (2.33)
Ferritin (ng/mL) 687.0  (224.5) 1011.0 (1555.5)
Fibrinogen (mg/dL) 520.0  (240.5) 526.0 (242.75)
Glucose (mg/dL) 100.0 (45.0) 124.0 (61.0)
Hematocrit (%) 342 (10.7) 31.9 (11.72)
Hemoglobin (g/dL) 11.0 (3.65) 10.2 3.9)
International Normalised Ratio 1.15 0.2) 1.2 0.3)
Interleukin-6 (pg/mL) 46.4 (136.88) 143.7  (278.15)
Iron (mcg/dL) 25.0 (21.0) 33.0  (29.75)
Lactate (mmol/L) 1.4 (0.65) 1.58 (0.85)
Lactate Dehydrogenase (U/L) 371.0  (193.12) 517.0 (248.0)
Lymphocyte Percentage (%) 10.1 (10.9) 4.95 (4.86)
Lymphocyte Count 0.9 (0.6) 0.6 (0.5)
Mean Corpuscular Hemoglobin Concentration (g/dL) 29.6 (2.85) 29.8 (2.85)
Mean Corpuscular Volume (fL) 90.4 (8.0) 91.3 (8.75)
Mean Platelet Volume (fL) 8.2 (1.5) 8.6 (1.64)
Monocyte Percentage (Monocyte Count 0.4 (0.3) 0.4 (0.35)
Neutrophil Percentage (Neutrophil Count 5.0 (4.05) 7.6 (5.3)
Partial pressure of carbon dioxide (mmHg) 39.5 (8.5) 39.0 (11.62)
pH 7.37 (0.08) 7.32 (0.14)
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Laboratory Values (median, IQR) Overall Mortality

Platelets 211.0  (133.0) 178.0  (109.5)
Partial pressure of oxygen (mmHg) 40.0 (16.0) 39.0 (14.5)
Potassium (mEq/L) 4.0 (0.6) 4.15 (0.85)
Prothrombin time (s) 14.4 (2.0) 15.1 (2.22)
Serum protein (g/dL) 6.0 (1.05) 5.6 (1.1)
Red Blood Cell Count 3.78 (1.2) 3.48 (1.3)
Red Blood Cell Distribution Width (Sodium (mEq/L) 137.5 (5.0 139.0 (7.0)
Total iron binding capacity (mcg/dL) 163.0 (76.25) 203.0 (100.0)
Transferrin Saturation (Troponin I (ng/mL) 0.06 (0.15) 0.08 (0.25)
White Blood Cells (uL) 7.1 (4.5) 9.7 (6.35)

REFERENCES

[1]. Alaa AM, Yoon J, Hu S, and van der Schaar M. 2018. Personalized Risk Scoring for Critical Care
Prognosis Using Mixtures of Gaussian Processes. IEEE Transactions on Biomedical Engineering
65, 1(2018),207-218. 10.1109/TBME.2017.2698602 [PubMed: 28463183]

[2]. Austin Peter C, Tu Jack V, Ho Jennifer E, Levy Daniel, and Lee Douglas S. 2013. Using methods
from the data-mining and machine-learning literature for disease classification and prediction: a
case study examining classification of heart failure subtypes. Journal of clinical epidemiology 66,
4 (2013), 398-407. [PubMed: 23384592]

[3]. Bos Lieuwe DJ, Sjoding Michael, Sinha Pratik, Bhavani Sivasubramanium V, Lyons Patrick G,
Bewley Alice F, Botta Michela, Tsonas Anissa M, Neto Ary Serpa, Schultz Marcus J, et al. 2021.
Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory
distress syndrome: results from three observational cohorts. The Lancet Respiratory Medicine 9,
12 (2021), 1377-1386. [PubMed: 34653374]

[4]. Chaudhary Kumardeep, Vaid Akhil, Duffy Aine, Paranjpe Ishan, Jaladanki Suraj, Paranjpe
Manish, Johnson Kipp, Gokhale Avantee, Pattharanitima Pattharawin, Chauhan Kinsuk, et al.
2020. Utilization of deep learning for subphenotype identification in sepsis-associated acute
kidney injury. Clinical Journal of the American Society of Nephrology 15, 11 (2020), 1557—
1565. [PubMed: 33033164]

[5]. Chen Mayee F, Fu Daniel Y, Narayan Avanika, Zhang Michael, Song Zhao, Fatahalian Kayvon,
and Ré Christopher. 2022. Perfectly Balanced: Improving Transfer and Robustness of Supervised
Contrastive Learning. arXiv preprint arXiv:2204.07596 (2022).

[6]. Chen Peihua and Pan Chuandi. 2018. Diabetes classification model based on boosting algorithms.
BMC bioinformatics 19, 1 (2018), 1-9. [PubMed: 29291722]

[7]. Chen Ting, Kornblith Simon, Norouzi Mohammad, and Hinton Geoffrey. 2020. A simple
framework for contrastive learning of visual representations. In International conference on
machine learning. PMLR, 1597-1607.

[8]. Ebadollahi Shahram, Sun Jimeng, Gotz David, Hu Jianying, Sow Daby, and Neti Chalapathy.
2010. Predicting patient’s trajectory of physiological data using temporal trends in similar
patients: a system for near-term prognostics. In AMIA annual symposium proceedings, Vol.
2010. American Medical Informatics Association, 192.

[9]. Garrafa Emirena, Vezzoli Marika, Ravanelli Marco, Farina Davide, Borghesi Andrea, Calza
Stefano, and Maroldi Roberto. 2021. Early prediction of in-hospital death of COVID-19 patients:
a machine-learning model based on age, blood analyses, and chest x-ray score. Elife 10 (2021),
€70640. [PubMed: 34661530]

[10]. Gutmann Michael and Hyvérinen Aapo. 2010. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth International

ACM BCB. Author manuscript; available in PMC 2022 August 10.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Wanyan et al.

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[26].

[27].

Page 12

Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference
Proceedings, 297-304.

He Kaiming, Fan Haoqi, Wu Yuxin, Xie Saining, and Girshick Ross. 2020. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 9729-9738.

Hu Chen and Steingrimsson Jon Arni. 2018. Personalized risk prediction in clinical oncology
research: applications and practical issues using survival trees and random forests. Journal of
biopharmaceutical statistics 28, 2 (2018), 333—349. [PubMed: 29048993]

Kang Bingyi, Li Yu, Xie Sa, Yuan Zehuan, and Feng Jiashi. 2021. Exploring Balanced Feature
Spaces for Representation Learning. In International Conference on Learning Representations.

Khosla Prannay, Teterwak Piotr, Wang Chen, Sarna Aaron, Tian Yonglong, Isola Phillip,
Maschinot Aaron, Liu Ce, and Krishnan Dilip. 2020. Supervised contrastive learning. Advances
in Neural Information Processing Systems 33 (2020), 18661-18673.

Kingma Diederik P and Ba Jimmy. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

Kuperman Gilad J, Bobb Anne, Payne Thomas H, Avery Anthony J, Gandhi Tejal K, Burns
Gerard, Classen David C, and Bates David W. 2007. Medication-related clinical decision support
in computerized provider order entry systems: a review. Journal of the American Medical
Informatics Association 14, 1 (2007), 29-40. [PubMed: 17068355]

Lewis SJG, Foltynie T, Blackwell AD, Robbins TW, Owen AM, and Barker RA. 2005.
Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach.
Journal of Neurology, Neurosurgery & Psychiatry 76, 3 (2005), 343-348. [PubMed: 15716523]
Lorenzoni Giulia, Sabato Stefano Santo, Lanera Corrado, Bottigliengo Daniele, Minto Clara,
Ocagli Honoria, De Paolis Paola, Gregori Dario, Iliceto Sabino, and Pisand Franco. 2019.
Comparison of machine learning techniques for prediction of hospitalization in heart failure
patients. Journal of clinical medicine 8, 9 (2019), 1298.

Nar Kamil, Ocal Orhan, Sastry S Shankar, and Ramchandran Kannan. 2018. Crossentropy loss
leads to poor margins. (2018).

Schulam Peter, Wigley Fredrick, and Saria Suchi. 2015. Clustering longitudinal clinical marker
trajectories from electronic health data: Applications to phenotyping and endotype discovery. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29.

Shickel Benjamin, Tighe Patrick James, Bihorac Azra, and Rashidi Parisa. 2017. Deep EHR:

a survey of recent advances in deep learning techniques for electronic health record (EHR)
analysis. IEEE journal of biomedical and health informatics 22, 5 (2017), 1589-1604. [PubMed:
29989977]

. Sohn Kihyuk. 2016. Improved deep metric learning with multi-class n-pair loss objective. In

Proceedings of the 30th International Conference on Neural Information Processing Systems.
1857-1865.

. Su Chang, Zhang Yongkang, Flory James H, Weiner Mark G, Kaushal Rainu, Schenck Edward

J, and Wang Fei. 2021. Novel clinical subphenotypes in COVID-19: derivation, validation,
prediction, temporal patterns, and interaction with social determinants of health. medRxiv (2021).

. Suresh Harini, Gong Jen J, and Guttag John V. 2018. Learning tasks for multitask learning:

Heterogenous patient populations in the icu. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 802—810.

. Verhaak Roel GW, Hoadley Katherine A, Purdom Elizabeth, Wang Victoria, Qi Yuan, Wilkerson

Matthew D, Miller C Ryan, Ding Li, Golub Todd, Mesirov Jill P, et al. 2010. Integrated genomic
analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in
PDGFRA, IDH1, EGFR, and NF1. Cancer cell 17, 1 (2010), 98-110. [PubMed: 20129251]
Wanyan Tingyi, Honarvar Hossein, Jaladanki Suraj K, Zang Chengxi, Naik Nidhi, Somani
Sulaiman, De Freitas Jessica K, Paranjpe Ishan, Vaid Akhil, Miotto Riccardo, et al. 2021.
Contrastive Learning Improves Critical Event Prediction in COVID-19 Patients. arXiv preprint
arXiv:2101.04013 (2021).

Weinberger Kilian Q and Saul Lawrence K. 2009. Distance metric learning for large margin
nearest neighbor classification. Journal of machine learning research 10, 2 (2009).

ACM BCB. Author manuscript; available in PMC 2022 August 10.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Wanyan et al. Page 13

[28]. Yu Bin, Qiu Wenying, Chen Cheng, Ma Anjun, Jiang Jing, Zhou Hongyan, and Ma Qin. 2020.
SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature
information and eXtreme gradient boosting. Bioinformatics 36, 4 (2020), 1074-1081. [PubMed:
31603468]

[29]. Zhang Xudong, Xiao Jiehao, and Gu Feng. 2019. Applying support vector machine to electronic
health records for cancer classification. In 2019 Spring Simulation Conference (SpringSim).
IEEE, 1-9.

ACM BCB. Author manuscript; available in PMC 2022 August 10.



1duosnuely Joyiny 1duuosnuey Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Wanyan et al.

Page 14

CCS CONCEPTS

* Theory of computation — Models of learning.

ACM BCB. Author manuscript; available in PMC 2022 August 10.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Wanyan et al. Page 15

l Learning Parameters

Fine Tuning

— Binary Cross Entropy Loss

Figure 1:
The overview of the pipeline.
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Figure 2:

Example of temporal input.
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Figure 3:
The longitudinal model structure.
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The learning curves for mortality prediction (observation window=24h).
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Figure 7:
Prediction performance on mortality prediction with different training data sizes

(observation window=24h).
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Table 1:
Statistics of the cohort.
Overall Mortality

N 7,067 1,625

Gender, m (%)
Male 3887 (553) 924 (580)
Female 3,180 (446 70Ol (4200

Age, median (IQR) 64 24 74 {19

Race, n (%)
Asian 262 50 (4.4)
Black/African American 1,564 357 (265)
Other 2,227 01 (3712)
White 1,443 64 271
Unknown 216 64 (4.8)

Vital Signs (median, IQR)
Systolic Blood Pressure, mmHe 1140 (100) 1080  (20.5)
Diastolic Blood Pressure, mmHe 645 (120) 500 (12.0)
Temperature, °F 07.65 08 976 (L0
Pulse Oximetry, % 04.0 30y 930 (4.0
Oxygen Saturation, % T147 (2824) 6028 (27.05)
Respiration Rate, breaths fmin 120 (15 190 (3.0)
Heart Fate, beats/min TEO (170} 845 (20
Height, (inches) 6406 (5000 6402  (6.38)
Weight (pounds) 744 (7.71) 7657 (27.13)
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