

March 9, 2023

Stay or Go: Sulfolobales Biofilm Dispersal is Dependent on a Bifunctional VapB Antitoxin

April M. Lewis¹, Daniel J. Willard¹, Mohammad J.H. Manesh¹, Shamphavi Sivabalasarma^{2,3},
Sonja-Verena Albers^{2,3,4}, and Robert M. Kelly^{1*}

¹Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA 27695-7905

²Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany

³Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany

⁴Signalling Research Centres BIOSS and CIBBS, Faculty of Biology, University of Freiburg, Freiburg, Germany

Submitted to: *mBio* (January 2023)

Keywords: Toxin-Antitoxin loci, biofilms, Sulfolobales, thermoacidophiles

Running Title: VapB Antitoxin regulates biofilm dispersal in the Sulfolobales

***Address Correspondence to:** Robert M. Kelly
Department of Chemical and Biomolecular Engineering
North Carolina State University
Raleigh, NC 27695
Phone: 919-515-6396
Email: rmkelly@ncsu.edu

32 **Abstract**

33 A Type II VapB14 Antitoxin regulates biofilm dispersal in the archaeal thermoacidophile
34 *Sulfolobus acidocaldarius*, through traditional Toxin neutralization but also through noncanonical
35 transcriptional regulation. Type II VapC Toxins are ribonucleases that are neutralized by their
36 proteinaceous cognate Type II VapB Antitoxin. VapB Antitoxins have a flexible tail at their C-
37 terminus that covers the Toxin's active site neutralizing its activity. VapB Antitoxins also have a
38 DNA binding domain at their N-terminus that allows them to not only auto-repress their own
39 promoters but also distal targets. VapB14 Antitoxin gene deletion in *S. acidocaldarius* stunted
40 biofilm and planktonic growth and increased motility structures (archaella). Conversely,
41 planktonic cells were devoid of archaella in the *ΔvapC14* cognate Toxin mutant. VapB14 is
42 highly conserved at both the nucleotide and amino acid levels across the Sulfolobales,
43 extremely unusual for Type II Antitoxins that are typically acquired through horizontal gene
44 transfer. Furthermore, homologs of VapB14 are found across the Crenarchaeota, in some
45 Euryarchaeota, and even bacteria. *S. acidocaldarius vapB14* and its homolog in the
46 thermoacidophile *Metallosphaera sedula* (Msed_0871) were both up-regulated in biofilm cells,
47 supporting the role of the Antitoxin in biofilm regulation. In several Sulfolobales species,
48 including *M. sedula*, homologs of *vapB14* and *vapC14* are not co-localized. Strikingly,
49 *Sulfuracidifex tepidarius* has an unpaired VapB14 homolog and lacks a cognate VapC14,
50 illustrating the Toxin-independent conservation of the VapB14 Antitoxin. The findings here
51 suggest that a stand-alone VapB-type Antitoxin was the product of selective evolutionary
52 pressure to influence biofilm formation in these archaea, a vital microbial community behavior.

53

54

55 **Importance**

56 Biofilms allow microbes to resist a multitude of stresses and stay proximate to vital nutrients.
57 The mechanisms of entering and leaving a biofilm are highly regulated to ensure microbial
58 survival, but are not yet well described in archaea. Here, a VapBC Type II Toxin-Antitoxin
59 system in the thermoacidophilic archaeon *Sulfolobus acidocaldarius* was shown to control
60 biofilm dispersal through a multifaceted regulation of the archaeal motility structure, the
61 archaellum. The VapC14 Toxin degrades an RNA that causes an increase in archaella and
62 swimming. The VapB14 Antitoxin decreases archaella and biofilm dispersal by binding the
63 VapC14 Toxin and neutralizing its activity, while also repressing the archaellum genes. VapB14-
64 like Antitoxins are highly conserved across the Sulfolobales and respond similarly to biofilm
65 growth. In fact, VapB14-like Antitoxins are also found in other archaea, and even in bacteria,
66 indicating an evolutionary pressure to maintain this protein and its role in biofilm formation.

67

68 **Introduction**

69 Billions of years ago, prokaryotic organisms developed the ability to form biofilms (1),
70 largely beneficial multi-cellular communities that confer resistance to stressors and aid in
71 nutrient sequestration. Archaeal biofilms have been studied most intently in the Sulfolobales,
72 particularly *Sulfolobus acidocaldarius*, *Saccharolobus solfataricus* (f. *Sulfolobus solfataricus*),
73 and *Sulfurisphaera tokodaii* (f. *Sulfolobus tokodaii*), that have varying abilities to form biofilms
74 despite similar extracellular polysaccharide matrix makeup (2). Some thermoacidophiles can
75 form biofilms on sulfur (*Sulfuracidifex metallicus* (f. *Sulfolobus metallicus*) (3)) and iron pyrite
76 (*Sulfu. metallicus* and *Acidianus* spp. (4)), substrates that serve as energy sources. There are
77 three major phases of biofilm formation: attachment, maturation, and dispersal. In archaeal
78 biofilms, attachment is typically mediated by type IV pili, proteinaceous structures that
79 irreversibly adhere to surfaces and attach to other cells (5). *S. acidocaldarius* has three different
80 type IV pili or type IV pili-like appendages: the Archaeal Adhesive Pili (Aap) (6), the situational
81 UV-inducible pili (Ups) (7), and the primary motility appendage (the archaeal flagellum), referred
82 to as the archaellum (6, 8). *S. acidocaldarius* primarily attaches to surfaces by the Aap pilus,
83 although removal of the UV-inducible pili also has an acute effect on biofilm morphology (6).
84 During maturation, attached cells produce an extracellular matrix consisting of polysaccharides,
85 protein, lipids, and extracellular DNA (eDNA) (9). *S. acidocaldarius*, *Sa. solfataricus*, and *Sulfu.*
86 *tokodaii* have extracellular matrices composed of polysaccharides containing glucose,
87 galactose, mannose, and N-acetylglucosamine (2, 10), with protein structures and some eDNA
88 also detected in *S. acidocaldarius* biofilms (11). Archaeal biofilm dispersal is mediated by the
89 archaellum (6, 8), which propels cells to new locations potentially to form biofilm through
90 reversible interactions with the substratum. In fact, deletion of the archaellum in
91 *S. acidocaldarius* (6) leads to attachment defects.

92 Control of biofilm formation in *S. acidocaldarius* is accomplished by several known
93 regulators. The one component system, ArnR (archaellar regulatory network regulator), and its

94 homolog, ArnR1, both act as activators of archaella by directly binding to the *arlB* gene
95 promoter during nitrogen starvation (12). However, only ArnR binds to the promoter regions and
96 directly induces expression of both *aapF* and *upsX* pili genes (12, 13). Additionally, the leucine-
97 responsive regulator (Lrs) 14-like proteins of *S. acidocaldarius*, encoded by *Saci_1223* and
98 *Saci_1242*, are biofilm activators and result in an impaired biofilm upon deletion (14). Moreover,
99 archaeal biofilm regulator 1 (AbfR1), another Lrs14-like regulator, is a known repressor of
100 biofilm formation that, depending on its phosphorylation state, directly binds to *aap* and *arl*
101 (archaellum genes) promoters (15). Deletion mutants of *abfR1* down-regulate *arl* genes, leading
102 to decreased motility, and up-regulate *aap* genes, causing increased biofilm formation (14).

103 Beyond these mechanisms, other factors that regulate this phenomenon remain
104 unknown. In mesophilic bacteria, Toxin-Antitoxin (TA) loci have been connected to biofilm
105 formation. Type II TAs are most prevalent and consist of a Toxin protein that typically functions
106 as a ribonuclease and an Antitoxin protein (16). The Antitoxin possesses a C-terminus that
107 obstructs the Toxin active site, neutralizing its ribonuclease activity, and a DNA-binding N-
108 terminus that autoregulates the TA operon (16-20). In several mesophilic bacteria, perturbing
109 native TA systems leads to defects in biofilm formation. Deletion of TA systems in *Escherichia*
110 *coli* caused defects in quorum sensing and biofilm attachment (21, 22), and stunted biofilm
111 formation was observed in TA mutants of *Vibrio cholera* (23) and *S. pneumoniae* (24). In
112 *Staphylococcus aureus*, deletion of *mazF* Type II Toxin gene also caused increased biofilm
113 formation and higher sensitivity to antibiotic treatment (25). In *Caulobacter crescentus*, a ParDE₄
114 TA system is activated upon O₂ limitation and enhances eDNA stimulated dispersal from its
115 biofilm, perhaps to seek out a more favorable situation (26). Interestingly, the Antitoxin's DNA-
116 binding domain not only binds to its own promoter region, particularly when complexed with its
117 cognate Toxin (27, 28), but can also bind to and regulate distal promoters (22, 29, 30). For
118 example, the *E. coli* Type II Antitoxin MqsA, represses its own operon and that of the
119 noncognate *cspD* Toxin (22). Additionally, MqsA represses the *rpoS* stress response sigma

120 factor that reduces the level of cyclic-di-GMP, causing an increase in motility and decrease in
121 biofilm (29). Moreover, all mutants of the *Pseudomonas putida* *mqsRA* Toxin-Antitoxin locus
122 showed significant biofilm defects. Not only did TA systems promote *P. putida* biofilm formation,
123 but the Antitoxin MqsA represses a sigma factor and a universal stress protein (30), illustrating
124 the Antitoxin's dual role of Toxin neutralizer and transcriptional regulator.

125 Much less is known about the function of TA systems in the Archaea. Studies have
126 shown that TA systems play a role in the heat shock response of *Sa. solfataricus* (31, 32) and
127 the response of *Metallosphaera* spp. to uranium exposure (33, 34). TA systems were
128 transcriptionally up-regulated in the thermoacidophile *Sa. solfataricus* during heat shock and
129 deletion of the *vapB6* Antitoxin gene resulted in a heat labile mutant (31). Furthermore,
130 *Metallosphaera prunae* developed resistance to hexavalent uranium, more so than its close
131 relative *Metallosphaera sedula*, by degrading its own cellular RNA via Toxin ribonucleases,
132 resulting in growth arrest and entry into a dormant state (33, 34).

133 Currently, the Toxin ribonuclease component of Type II TA systems has attracted the
134 most attention. Rarely have separate Antitoxin mutants been examined and, in fewer cases, has
135 the regulatory ability of the Antitoxin been investigated outside of its own operon. Furthermore,
136 Toxin-Antitoxin systems are often acquired through horizontal gene transfer leading to a lack of
137 nucleotide identity conservation, even within a species (35). Here, we focus on an archaeal
138 Type II Antitoxin's regulatory function beyond its own promoter, in which a VapB Antitoxin had a
139 profound effect on biofilm formation in *S. acidocaldarius*. The nucleotide identity of this Antitoxin,
140 VapB14, was highly conserved across the Sulfolobales and responded similarly to biofilm
141 growth in *M. sedula*, suggesting a significant role in regulating this phenomenon across the
142 Sulfolobales.

143

144 **Results**

145 *Sulfolobus acidocaldarius* biofilm transcriptome

146 Transcriptomics comparing biofilm to planktonic *S. acidocaldarius* cells identified genes
147 associated with biofilm formation. Among the most biofilm-responsive genes was *Saci_2184*
148 that increased 10.8-fold in the biofilm compared to planktonic culture, second only to the
149 hypothetical protein *Saci_0301* (**Table 1**). The high transcriptional response of *Saci_0301* was
150 previously reported and its deletion causes a biofilm defect, which was found to be regulated by
151 a non-coding RNA *RrrR* (RNase R resistant RNA) (36). *Saci_2184* and *Saci_2183* encode a
152 putative VapB Type II Antitoxin and its cognate VapC Toxin, respectively. Using TAfinder (37),
153 seventeen Type II Toxin-Antitoxin pairs are predicted in the *S. acidocaldarius* genome (**Fig. S1**,
154 **Table 2**). The clustering of TA loci in the genome indicates a possible horizontal inheritance by
155 mobile genetic elements (**Fig. S1**). Of these 17 potential TA pairs, two sets,
156 *Saci_1957/Saci_1956* and *Saci_2111/Saci_2112*, are not associated with any TA type and have
157 predicted Toxins of an abnormally long length, suggesting they are unlikely to be Type II TAs.
158 One identified TA pair was predicted as an MNT/HEPN-like system, which is common to
159 thermophiles (38). MNT (minimal nucleotidyltransferase)-type Antitoxins inactivate their cognate
160 HEPN (higher eukaryotes and prokaryotes nucleotide-binding) ribonucleases by AMPylation
161 (39). Remaining TAs were identified as the VapBC type, including *Saci_2184* (referred to here
162 as VapB14). Interestingly, the VapB14 predicted cognate VapC-type Toxin *Saci_2183* (referred
163 to here as VapC14), was unresponsive in biofilm cells. In fact, except for *vapB14*, all other
164 identified Toxin or Antitoxin genes were largely unresponsive in the biofilm (**Table 1**). All Toxin
165 and Antitoxin genes, including *vapB14*, were between the 25th and 75th percentile of the
166 transcriptome profile for both the biofilm and the planktonic condition. Follow-up relative
167 quantitative real-time polymerase chain reaction (qPCR) analysis of *S. acidocaldarius* MW001
168 biofilm and planktonic cultures revealed a significant 2.2-fold increase in *vapB14* expression in
169 the biofilm condition on day 3 (**Fig. 1A**), confirming these results. Moreover, *vapB14* is up-

170 regulated 2.9-fold in *Saci_1223* (biofilm activator) mutant planktonic cells compared to the
171 parent, suggesting that *Saci_1223* is a repressor *vapB14* in planktonic growth (**Table 3**).

172

173 *Reduction of VapC14 Toxin activity by its cognate VapB14 Antitoxin*

174 The VapC14 Toxin and the VapB14 Antitoxin were recombinantly expressed and tested
175 for their associated activities. Purified fractions of the VapC14 Toxin had a pinkish hue and
176 correlated with the ~25 kDa VapC14 Toxin band on an SDS-PAGE gel (**Fig. S2**). This coloration
177 in VapC14 containing fractions may be due to the co-elution of manganese ions, pinkish in
178 aqueous solutions, that crystal structure studies indicate are present within VapC-type Toxin
179 active sites (17, 18). Additionally, significant ribonuclease activity was measured in 5 µg of the
180 VapC14 compared to the no protein control, confirming its function as an RNase-type Toxin
181 (**Fig. 1B, S3**). No ribonuclease activity was measured in the VapB14 Antitoxin alone and the
182 VapC14 Toxin's activity was completely abolished by the addition of the metal ion chelating
183 agent, EDTA (**Fig. S3**). Addition of 10 µg of the VapB14 Antitoxin led to a mild 15% reduction in
184 detectable VapC14 Toxin activity. However, VapC14 ribonuclease activity was significantly
185 reduced with the addition of 20 µg (34%) and 30 µg (30%) of VapB14, confirming the Antitoxin
186 function of VapB14 (**Fig. 1B**).

187

188 *Regulation of the vapBC14 locus*

189 Type II Toxin-Antitoxin systems are typically organized in an operon with the Antitoxin
190 upstream and overlapping the Toxin or separated by a small intergenic region (35). This
191 paradigm also applies to the *vapBC14* locus as the *vapB14* Antitoxin gene is upstream of the
192 *vapC14* gene with only a 25 bp intergenic region. Often Type II Antitoxins auto-repress their
193 own operon in conjunction with their cognate Toxin through a process called conditional
194 cooperativity; repression of the operon is dependent on the ratio of Toxin:Antitoxin in the
195 regulating TA complex (27, 28). If the ratio is skewed toward Antitoxin binding, repression

196 occurs; if the ratio is skewed toward Toxin, repression is relieved. If auto-repression was the
197 only impact on the expression of the *vapBC14* locus, then deletion of the *vapB14* Antitoxin gene
198 would cause an increase in the transcription of *vapC14*. However, qPCR showed a significant
199 5.7-fold decrease in *vapC14* expression in the Δ *vapB14* mutant compared to the MW001 parent
200 strain in planktonic cultures (**Fig. 1C**), indicating the VapB14 Antitoxin may not be regulating the
201 *vapC14* promoter, as predicted.

202

203 *Role of the VapB14 Antitoxin in planktonic and biofilm growth*

204 Single and double deletion mutants were generated for the *vapBC14* locus and
205 continuous monitoring of planktonic cultures was performed to determine culture fitness
206 (**Fig. 1D**). The Δ *vapBC14* Toxin-Antitoxin mutant and the Δ *vapC14* Toxin mutant grew similarly
207 to the MW001 parent strain. However, planktonic growth of the Δ *vapB14* Antitoxin mutant
208 exhibited a significant growth defect compared to any other strain at 48 and 72 h (**Fig. 1D**), 14%
209 and 36% less than MW001, respectively. Neither the Δ *vapC14* Toxin nor the Δ *vapBC14* Toxin-
210 Antitoxin mutants were significantly different from the parent at any time point. Additionally,
211 *vapB14* expression increased a significant 2.6-fold in MW001 day 4 compared to day 1
212 planktonic cultures, indicating this Antitoxin may also play a role in late stationary phase growth
213 (**Fig. 1A**).

214 Using crystal violet staining, a *vapBC14* mutant panel was evaluated for their ability to
215 generate biofilms. Both the Δ *vapC14* Toxin and the Δ *vapBC14* Toxin-Antitoxin mutant were
216 biofilm overproducers compared to the MW001 parent generating 47% and 65% more biofilm on
217 day 3, and 124% and 119% more biofilm on day 4, respectively (**Fig. 2B, D**). The Δ *vapB14*
218 Antitoxin mutant was deficient in biofilm growth compared to the MW001 parent strain at every
219 time point, with a significant difference on days 1-3 (**Fig. 2B**). Even accounting for the Δ *vapB14*
220 Antitoxin mutant's growth defect by normalizing the biofilm data to the overall growth of the well
221 (OD_{600}), the Δ *vapB14* Antitoxin mutant retained a significant biofilm growth defect on days 2

222 (47% decrease) and day 3 (37% decrease) (**Fig. 2C**). The VapB14 Antitoxin may act as an
223 activator of biofilm formation by regulating genes such as *abfr1*, which encodes a *S.*
224 *acidocaldarius* biofilm repressor, but more evidence is needed to support this possibility. The
225 biofilm defect seen in the Δ *vapB14* Antitoxin mutant could be due to the unfettered VapC14
226 Toxin targeting important biofilm RNAs, such as the transcript of the known Lrs14-like biofilm
227 activator (Saci_1223).

228

229 *Response of known biofilm genes to absence of the VapB14 Antitoxin*

230 Response of known biofilm genes in the Δ *vapB14* Antitoxin mutant was determined via
231 qPCR on 3-day-old biofilm and planktonic samples. The biofilm repressor *abfR1*, Saci_1242
232 biofilm activator, and UV-inducible pilus genes (*upsE* and *upsA*) registered no response to
233 deletion of the *vapB14* Antitoxin gene in any conditions tested (**Fig. S4**). Strikingly, a 3-fold
234 significant increase was observed in both *arlB* and *arlX* archaeum genes in the Δ *vapB14*
235 Antitoxin mutant biofilm condition (**Fig. 3A-B**). Up-regulation of the archaeum in the Δ *vapB14*
236 biofilm, which triggers dispersal from the biofilm, is consistent with the crystal violet experiments
237 showing the Δ *vapB14* mutant produces significantly less biofilm. Furthermore, a slight increase
238 was observed in both archaeum genes in the Δ *vapBC14* double mutant, but no such increase
239 was seen in the Δ *vapC14* single mutant, indicating the importance of the VapB14 Antitoxin
240 alone in the regulation of *S. acidocaldarius* motility. The VapB14 Antitoxin directly or indirectly
241 represses the expression of key archaeum genes to minimize biofilm dispersal.

242 Additionally, the deletion of *vapC14* Toxin gene caused transcription of the *aapA* to be
243 completely abolished in planktonic and biofilm cells, indicating that VapC14 Toxin targets an
244 *aapA* repressor such as AbfR1 (**Fig. 3C**). However, the binding of AbfR1 is dependent on its
245 phosphorylation state that differs across these conditions (15); relieving RNase degradation of
246 *abfR1* transcript would not result in complete abrogation of the *aapA* transcription in both

247 planktonic and biofilm cells, as seen here. VapC14 is likely targeting an unknown repressor of
248 *aapA*.

249 Deletion of the *vapC14* Toxin, with or without the presence of the VapB14 Antitoxin,
250 caused a significant increase in *aapF* in planktonic cells (3.4-fold in Δ *vapC14*, 4.4-fold in
251 Δ *vapBC14*) compared to the MW001 parent (**Fig. 3D**). Antisense RNA transcripts are known to
252 be within the *Sa. solfataricus* *aapF* homolog (Sso_2386) (40) and deletion of the *aapF* in *S.*
253 *acidocaldarius* causes hyperarchaellation (41), which suggests that potential non-coding RNAs
254 within the *aapF* gene may repress archaellum expression. Increase in *aapF* transcription in only
255 Δ *vapC14* Toxin mutants indicates that the VapC14 Toxin targets either *aapF* mRNA or these
256 antisense transcripts, allowing them to accumulate in its absence. No significant change in *aapF*
257 was measured in the Δ *vapB14* Antitoxin mutant in either condition most likely due to the direct
258 repression of *aapF* by AbfR1 in biofilm cells (14) and the low expression of *vapB14* in planktonic
259 cells (**Table 1**).

260

261 *VapBC14 regulation of S. acidocaldarius surface structures*

262 Electron microscopy of 4-day biofilms showed hyperarchaellation of the Δ *vapB14*
263 Antitoxin mutant compared to the MW001 parent and Δ *vapC14* Toxin mutant (**Fig. 4C**).
264 Moreover, an increase in archaella was also detected in the Δ *vapB14* Antitoxin mutant biofilm
265 compared to any other strain via western blot using Anti-ArlB antibodies (**Fig. 4A-B**). EM
266 imaging and western blot of the Δ *vapBC14* Toxin-Antitoxin mutant biofilm displayed higher
267 levels of archaella than the MW001 parent (**Fig. 4A-C**), further confirming the Toxin-
268 independent role of the VapB14 Antitoxin in the regulation of *S. acidocaldarius* dispersal.
269 Additionally, both the Δ *vapC14* Toxin single mutant and the Δ *vapBC14* double mutant lacked
270 Aap pili structures, confirming qPCR results, and indicating that the VapC14 Toxin is a strong
271 regulator of Aap pili production. Furthermore, Δ *vapC14* Toxin mutant 4-day planktonic cultures
272 were devoid of most surface appendages, supporting the VapC14 Toxin's regulation of Aap pili

273 and archaella in planktonic cells. Thin structures referred to as “threads”, which are structurally
274 similar to Type I pili (42), were unaffected by the VapBC14 TA system as they were seen in
275 every strain at similar levels. However, the Δ vapBC14 double mutant biofilm was hyperpiliated
276 with Ups pili and hyperarchaellated in planktonic culture, which may be stress responses to the
277 loss of other surface appendage structures. (Fig. 4C).

278

279 *VapB14 Antitoxin homologs across the Sulfolobales and beyond*

280 It was surprising to find that removal of VapB14, comprised of 114 amino acids, had
281 such a profound impact on growth physiology and biofilm formation processes in *S.*
282 *acidocaldarius*. This raises the question of whether homologous Antitoxins with similar roles
283 exist in other Sulfolobales. In fact, homologs were identified in many Sulfolobales species (Fig.
284 5A). Interestingly, all surveyed species had at least one homolog of the VapB14 Antitoxin
285 except for *Acidianus brierleyi*, *Acidianus infernus*, *Stygiolobus azoricus*, and *Sulfuracidifex*
286 *metallicus*. *Metallosphaera yellowstonensis* was the only species with two *vapB14* homologs.
287 Conversely, weaker homologs of the VapC14 Toxin were found in several Sulfolobales species
288 with a much lower amino acid % identity (Table 4). Additionally, synteny analysis using the
289 SyntTax webtool (43) identified several species that contained homologous VapB14 proteins
290 that were not co-localized with the VapC14 Toxin gene. Sulfolobales species that have unpaired
291 *vapB14* homologs include several members of the *Metallosphaera* species (*Metallosphaera*
292 *hakonensis*, *Metallosphaera javensis*, *Metallosphaera prunae*, *Metallosphaera sedula*, and
293 *Metallosphaera tengchongensis*), *Sulfodiicoccus acidiphilus*, and *Sulfuracidifex tepidarius*. In
294 fact, despite the conservation of a VapB14 homolog (Fig. 5A), a VapC14 homolog is absent
295 from the genome of *Sulfu. tepidarius* (Table 4). This suggests that the role of the VapB14
296 Antitoxin in biofilm development may be conserved among the Sulfolobales and less dependent
297 on the conservation of its cognate Toxin. To this point, the transcriptional response of the
298 *vapB14* homolog in *Metallosphaera sedula*, Msed_0871, in 3-day old biofilms and planktonic

299 cultures was consistent with the response of *vapB14* in *S. acidocaldarius* (**Fig. 5B**). Since *M.*
300 *sedula* Msed_0871 is among the lowest homologies found among the Sulfolobales, other
301 *vapB14* homologs with higher similarity likely also play a role in biofilm regulation. Moreover, *M.*
302 *sedula* does possess both a *vapB14* Antitoxin (**Fig. 5A**) and a *vapC14* Toxin homolog (**Table 4**)
303 but they are located at disparate locations in the genome, suggesting divergent functions.

304 Toxin-Antitoxin systems are often associated with mobile genetic elements and are
305 highly susceptible to horizontal gene transfer between species (35). Because of the inherent
306 mobility of these TA systems, it is common to see a large divergence in nucleotide identity even
307 within the same species (35). However, VapB14 homologs across the Sulfolobales have
308 conserved amino acid and nucleotide sequences (**Fig. 5A**). Furthermore, VapB14 homologs
309 may be pivotal to regulating motility in Archaea as BlastP results shows VapB14 homologs in
310 many members of the Phylum Crenarchaeota and some examples in the Euryarchaeota.
311 Homologs were even identified in motile mesophilic bacterial genera, such as the pathogenic
312 mesophiles of *Pseudomonas* and marine bacteria of *Nitrosococcus* (**Supplemental File 1**).
313 While VapB14 clearly has an important role in the regulation of motility and its homologs are
314 found in many motile prokaryotic species, this Antitoxin is also present in many non-motile
315 genera, such as *Acidianus* of the Sulfolobales, thermophilic bacteria of *Thermoflexus*, and the
316 mesophiles of *Gardnerella* (**Supplemental File 1**). VapB14, though important for regulation of
317 the biofilm in the Sulfolobales through controlling dispersal, may have another regulatory role in
318 non-motile species, such as biofilm attachment.

319

320 **Discussion**

321 The functional study of Toxin-Antitoxin systems remains controversial with recent
322 investigations suggesting no phenotypic response to stressors despite a measured
323 transcriptional response (44). However, this study identifies a VapC14 Toxin that significantly
324 impacts RNA transcripts contained in the *aapF* gene, and the production of archaella and Aap

325 pili structures. Additionally, VapC14 RNase activity, though not completely abolished, was
326 significantly reduced by its cognate Antitoxin, VapB14, confirming the canonical function of
327 VapB14 as a VapC14 neutralizing Antitoxin. However, deletion of *vapB14* did not cause the
328 expected upregulation of the *vapC14* Toxin gene and may indicate a third-party regulator of the
329 *vapBC14* operon, which has some precedence (45, 46). Saci_1223 is a potential candidate as
330 its deletion results in up-regulation of *vapB14* in planktonic cells. Deletion of *vapB14* could result
331 in downstream polar effects, however, removal of *vapB14* left no genetic scar, minimizing the
332 potential of this deleterious effect. Furthermore, RNase assays were performed *in vitro* and may
333 not have been representative of the native conditions inside the cell which could lead to stronger
334 affinity of the VapB14 Antitoxin for the VapC14 Toxin. Also, Antitoxins can be promiscuous,
335 meaning that another Antitoxin may aid in the reduction of VapC14 RNase activity and that
336 VapB14 may bind a second Toxin. The VapC14 Toxin's activity was lower than previously seen
337 for VapC-type Toxin's in *M. sedula* (34). This lower activity could be due to a higher specificity
338 for a very narrow range of transcripts, such as *aapF*, that may not be well represented in the
339 RNA probes available in the kit used for measuring ribonuclease activity. Overall, RNase activity
340 data demonstrated that VapC14 is a ribonuclease-type Toxin and that VapB14 does function as
341 the Antitoxin to this activity (**Fig. 1B**).

342 The VapC14 Toxin most likely activates attachment by targeting a strong repressor of
343 the *aapA* archaeal adhesive pilus structural subunit. This is further supported by the complete
344 lack of pili structures in the Δ *vapC14* and Δ *vapBC14* mutants (**Fig. 4C**). However, these same
345 mutants also are biofilm over-producers, which suggests they are employing an alternative
346 attachment mechanism. Threads, the only non-type IV pilus surface filament on *S.*
347 *acidocaldarius*, are present in EM images of all strains. Although the function of threads is still
348 unknown, *S. acidocaldarius* Ups pili, Aap pili, and archaella triple mutants are capable of making
349 biofilm (6). Threads may be playing a compensatory attachment role in the Δ *vapC14* and
350 Δ *vapBC14* mutants, allowing these strains to produce biofilm. Similarly, the Ups hyperpiliation of

351 the Δ vapBC14 double mutant may also improve its biofilm production (**Fig. 4C**). The Δ vapBC14
352 double mutant biofilm also had an increase in archaella compared to the parent which could
353 contribute to biofilm formation as archaella can aid in initial attachment (6, 47). Finally, *S.*
354 *acidocaldarius* *aapX* and *aapE* mutants produce more extracellular matrix, which would
355 contribute to biofilm formation (41). As there were no visible pili in the Δ vapC14 single or
356 Δ vapBC14 double mutant (**Fig. 4C**), it is reasonable to assume that AapX and AapE are absent
357 in these strains yielding excess extracellular matrix. Overall, Δ vapC14 Toxin and Δ vapBC14
358 double mutants may be biofilm over-producers through alternative attachment mechanisms and
359 overexpression of extracellular matrix.

360 Additionally, in planktonic cells, *aapF* is significantly increased in the absence of the
361 VapC14 Toxin (**Fig. 3D**), which may contain antisense non-coding RNAs like those observed in
362 the *Sa. solfataricus* *aapF* homolog (40). Furthermore, deletion of *aapF* in *S. acidocaldarius*
363 causes an increase in archaella (41), suggesting that AapF or potential non-coding transcripts
364 within the *aapF* gene repress archaella expression. An abundance of antisense *aapF* transcript
365 may function as non-coding RNAs that post-transcriptionally down regulate archaellum gene
366 expression. As is natural for a Toxin-Antitoxin system, VapC14 and VapB14 may apply
367 opposing regulatory pressure on archaellum expression. VapC14 derepresses the archaella by
368 degrading *aapF* mRNA or a non-coding RNA during planktonic growth. However, during biofilm
369 growth VapB14 is highly expressed and transcriptionally represses the archaellum. VapB14 also
370 behaves as a traditional Antitoxin by neutralizing the VapC14 Toxin, allowing the archaellum to
371 be post-transcriptionally repressed (**Fig. 6**). While nutrient starvation is known to induce
372 expression of the archaellum in *S. acidocaldarius* (48) through regulation by ArnR (12), the
373 VapBC14 TA system's regulation of the archaellum is responsive to biofilm growth rather than
374 nutrient availability.

375 Unlike Bacteria, non-coding RNAs are plentiful in the genomes of Archaea (40). Since
376 Archaea are lacking sigma factors and have an abundance of Type II Toxin-Antitoxin systems,

377 this may point to ribonuclease activity of Type II Toxins as an important regulatory mechanism
378 within this domain. Specifically, homologs of both AapF and VapB14 are found in most surveyed
379 Sulfolobales species (**Supplemental Results, Fig. S5, 5A**), suggesting that the mechanism of
380 archaellum regulation described here may be a multispecies phenomenon that is present in all
381 archaellated Sulfolobales. This is further supported by the similar up-regulation of the *M. sedula*
382 VapB14 homolog (Msed_0871) to biofilm growth (**Fig. 5B**). Additionally, conservation of *vapB14*
383 is independent of *vapC14*, as several Sulfolobales species either encode these genes at distinct
384 locations or possess only a *vapB14* Antitoxin gene. Moreover, VapB14 homologs are prevalent
385 in the archaeal Phylum Crenarchaeota and present in some species of the Phylum
386 Euryarchaeota (**Supplemental File 1**). While the importance of VapB14 in motile Archaea is
387 evident, homologs are also found in some bacterial species and non-motile organisms,
388 indicating that VapB14 may also have other functions.

389 TA systems are prevalent in bacteria, archaea, and fungi (16) suggesting that the
390 evolution of the current Type II TA systems are not a recent occurrence. Fossil evidence has
391 also shown that prokaryotic organisms of both bacterial and archaeal origin were forming
392 multicellular biofilms more than 3 billion years ago (1). In fact, the earliest recorded occurrences
393 of biofilms are in hydrothermal environments like those native to the species of the Sulfolobales
394 (1). It is, therefore, possible that this VapBC14 TA system may have co-evolved with the ability
395 to form a biofilm within this thermophilic order. Furthermore, nucleotide sequence conservation
396 of a Type II TA system is atypical due to their association with mobile genetic elements and
397 tendency toward horizontal gene transfer (35, 49). However, VapB14 is highly conserved across
398 the Sulfolobales (**Fig. 5A**) indicating an evolutionary selective pressure to maintain this small
399 but important biofilm regulating protein. Overall, the bifunctional VapB14 Antitoxin has evolved
400 as an important regulator of Sulfolobales, and perhaps archaeal, motility by not only inhibiting
401 the activity of its cognate Toxin but also through transcriptional repression of the archaellum
402 (**Fig. 6**).

403

404 **Materials and Methods**

405 *Ribonuclease activity assay*

406 Ribonuclease activity assays were performed as described previously using the
407 RNaseAlert® kit (Integrated DNA Technologies) (34). For each reaction containing VapC14, 5
408 µg of VapC14 Toxin was added with or without the addition of 10 µg, 20 µg or 30 µg of VapB14
409 Antitoxin, or 25 mM EDTA. A no protein and a 10 µg of VapB14 Antitoxin alone control were
410 also performed. All reaction were prewarmed at 75°C for 5 min to activate the VapC14 Toxin
411 and VapB14 Antitoxin.

412

413 *Planktonic growth curves*

414 Cultures were inoculated from frozen stocks in 50 mL 75°C prewarmed Brock's salts
415 pH3 supplemented with 0.1% NZ-amine + 0.2% sucrose + 0.01g/L uracil. Cultures of
416 *S. acidocaldarius* MW001, Δ vapB14, Δ vapC14, and Δ vapBC14 were grown aerobically in foam
417 stoppered flasks at a 1:5 volume to flask ratio at 75°C, 150 rpm. Cultures were monitored by
418 backscatter at 520 nm every 15 min with the Cell Growth Quantifier (Scientific Bioprocessing,
419 inc.) for 72 h.

420

421 *Crystal violet biofilm assay*

422 The *S. acidocaldarius* MW001 parent, Δ vapB14 Antitoxin, Δ vapC14 Toxin, and
423 Δ vapBC14 Toxin-Antitoxin mutant biofilms were grown in 1 mL of Brock's basal salts pH 3 +
424 0.1% NZ-amine + 0.2% sucrose + 0.01 g/L uracil on Sarstedt Cell⁺ flat bottom 24 well plates at
425 75°C for a period of 1 to 4 days. Outer wells of each 24 well plate were filled with 1 mL of water
426 and plates were incubated in a humidified box to reduce evaporation. Prior to staining, optical
427 density was read at 600 nm as a measure of overall well growth. Supernatant was then

428 removed, attached biofilm stained with 500 μ L 0.1% crystal violet, washed twice with 1 mL of
429 water, and crystal violet solubilized with 500 μ L 100% ethanol and absorbance read at 550 nm.

430

431 *RNA isolation and quantitative real-time polymerase chain reaction*

432 *S. acidocaldarius* MW001 and mutant planktonic cultures were grown in 50 mL 75°C
433 prewarmed Brock's salts pH3 supplemented with 0.1% NZ-amine + 0.2% sucrose + 0.01g/L
434 uracil. Cultures were inoculated at an OD_{600} = 0.01 and grown aerobically in foam stoppered
435 flasks at a 1:5 volume to flask ratio at 75°C, 150 rpm for 4 days. On day 2, 20 mL of sterile 75°C
436 deionized water was added to each flask. The entire culture of cells was centrifuged at 4000 xg
437 for 5 min and resuspended in 1 mL of RNAlater (Invitrogen). *S. acidocaldarius* MW001 and
438 mutant biofilm cultures were inoculated in the same prewarmed medium at an OD_{600} = 0.01 in
439 150 x 20 mm Sarstedt Cell⁺ tissue culture dishes (Sarstedt). Biofilms were incubated at 75°C in
440 a sealed humidified box for 4 days. RNA was then extracted on days 1-4 for the *S.*
441 *acidocaldarius* MW001 and Δ vapB14 Antitoxin mutant, and on day 3 for the Δ vapC14 Toxin and
442 Δ vapBC14 double mutants using Trizol reagent followed by the RNA easy kit (Qiagen) (50).
443 Residual DNA was removed with a rigorous treatment of Turbo DNase (Invitrogen). RNA was
444 determined to be relatively free of DNA contamination by qPCR checking for amplification using
445 secY primers (**Supplemental File 2**) with RNA as template. Relative qPCR was performed
446 using SsoFast EvaGreen Supermix (Bio-Rad) or SsoAdvanced Universal SYBR[®] Green
447 Supermix (Bio-Rad) and fold change values were calculated using the Livak method (51) with
448 secY used as the normalizer.

449 *M. sedula* planktonic and biofilm cultures were inoculated as above with the following
450 exceptions. Cultures were inoculated in 50 mL 70°C prewarmed Brock's salts pH2
451 supplemented with 0.1% yeast extract and incubate at 70°C, 150 rpm for planktonic cultures
452 and 70°C stationary for biofilm plates for 3 days. RNA was determined to be relatively free of
453 DNA contamination by qPCR checking for amplification using Msed_R0026 16s gene primers

454 (Supplemental File 2) with RNA as template. Relative qPCR was performed using
455 SsoAdvanced Universal SYBR® Green Supermix (Bio-Rad) and fold change values were
456 calculated using the Livak method (51) with Msed_R0026 used as the normalizer.

457

458 *Transmission electron microscopy of S. acidocaldarius surface appendage structures*

459 Biofilms and planktonic *S. acidocaldarius* MW001 and mutant strains were grown as for
460 RNA isolation. Biofilm was scraped off the petri dishes and resuspended in 1 mL growth
461 medium. 5 µL of biofilm or planktonic cells were applied on freshly glow-discharged
462 carbon/formvar coated copper grids (300 mesh, Plano GmbH) and incubated for 30 seconds.
463 The excess liquid was blotted away and cells were negatively stained with 2% Uranyl acetate.
464 Imaging was done with Hitachi HT7800 operated at 100 kV, equipped with an EMSIS XAROSA
465 20 Megapixel CMOS camera.

466

467 *Western blotting*

468 To assay the production of ArlB in planktonic and biofilm *S. acidocaldarius* MW001 and
469 mutant strains were grown as for RNA isolation. Biofilm was scraped off the petri dishes and
470 resuspended in 1 mL growth medium. The OD₆₀₀ of cells from biofilm and planktonic cultures
471 were determined. Cells were pelleted at 2400 x g in a tabletop centrifuge for 10 min and
472 resuspended to a theoretical OD of 10 in 1x SDS loading dye. The whole cell samples were
473 separated on SDS-PAGE and blotted on PVDF membrane (Roche). The membrane was
474 blocked with I-Block (Thermo Fisher Scientific) and incubated in primary antibody against ArlB
475 (Eurogentec) overnight at 4°C. Afterwards, the membrane was incubated in secondary goat
476 anti-rabbit antibody coupled to HRP overnight at 4°C. Chemiluminescent signals were recorded
477 with IBright 1500 (Invitrogen, Thermo Fisher Scientific) using Clarity Western ECL blotting
478 substrate (Bio-Rad).

479

480 *Data Availability*

481 Microarray data is available at Gene Expression Omnibus repository (NCBI) accession
482 number GSE226483 for normalized data, and accession numbers GSM707782, GSM7077822,
483 GSM7077823, GSM7077824 for raw data files.

484

485 **Acknowledgments**

486 This work was supported by the US Air Force Office of Scientific Research (FA9550-17-
487 1-0268, FA9550-20-1-0216) and the US National Science Foundation (CBET-1802939). DJW
488 acknowledges support from an NIH Biotechnology Traineeship (2T32GM008776). SS and SVA
489 were supported by the Deutsche Forschungsgemeinschaft (German Research Foundation)
490 under project no. 403222702-SFB 1381. We thank Arpan Mukherjee and Alvaro Orell for
491 performing the microarray.

492 DJW created the get homologs database, MJH isolated RNA for qPCR, SS generated
493 the western blot and EM images. AML performed the remaining experiments and wrote the
494 original draft of the manuscript. All authors contributed to editing the manuscript.

495

496

497 **References:**

498 1. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural
499 environment to infectious diseases. *Nat Rev Microbiol* 2:95-108.

500 2. Koerdt A, Gödeke J, Berger J, Thormann KM, Albers SV. 2010. Crenarchaeal biofilm
501 formation under extreme conditions. *PLoS One* 5:e14104.

502 3. Zhang R, Neu TR, Zhang Y, Bellenberg S, Kuhlicke U, Li Q, Sand W, Vera M. 2015.
503 Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon
504 *Sulfolobus metallicus*. *Appl Microbiol Biot* 99:7343-7356.

505 4. Castro C, Zhang R, Liu J, Bellenberg S, Neu TR, Donati E, Sand W, Vera M. 2016.
506 Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic
507 archaea *Acidianus* spp. and *Sulfolobus metallicus*. *Res Microbiol* 167:604-612.

508 5. van Wolferen M, Orell A, Albers S-V. 2018. Archaeal biofilm formation. *Nat Rev
509 Microbiol* 16:699-713.

510 6. Henche A-L, Koerdt A, Ghosh A, Albers S-V. 2012. Influence of cell surface structures
511 on crenarchaeal biofilm formation using a thermostable green fluorescent protein.
512 *Environ Microbiol* 14:779-793.

513 7. Schult F, Le TN, Albersmeier A, Rauch B, Blumenkamp P, van der Does C, Goesmann
514 A, Kalinowski J, Albers S-V, Siebers B. 2018. Effect of UV irradiation on *Sulfolobus
515 acidocaldarius* and involvement of the general transcription factor TFB3 in the early UV
516 response. *Nucleic Acids Res* 46:7179-7192.

517 8. Jarrell KF, Albers S-V. 2012. The archaellum: an old motility structure with a new name.
518 *Trends in Microbiol* 20:307-312.

519 9. Flemming H-C, Neu TR, Wozniak DJ. 2007. The EPS matrix: the “house of biofilm cells”.
520 *J Bacteriol* 189:7945-7947.

521 10. Koerdт A, Jachlewski S, Ghosh A, Wingender J, Siebers B, Albers S-V. 2012.
522 Complementation of *Sulfolobus solfataricus* PBL2025 with an α -mannosidase: effects on
523 surface attachment and biofilm formation. *Extremophiles* 16:115-125.

524 11. Jachlewski S, Jachlewski WD, Linne U, Bräsen C, Wingender J, Siebers B. 2015.
525 Isolation of extracellular polymeric substances from biofilms of the thermoacidophilic
526 archaeon *Sulfolobus acidocaldarius*. *Front Bioeng Biotechnol* 3:123.

527 12. Lassak K, Peeters E, Wróbel S, Albers S-V. 2013. The one-component system ArnR: a
528 membrane-bound activator of the crenarchaeal archaellum. *Mol Microbiol* 88:125-139.

529 13. Bischof LF, Haurat MF, Albers SV. 2019. Two membrane-bound transcription factors
530 regulate expression of various type-IV-pili surface structures in. *PeerJ* 7:e6459.

531 14. Orell A, Peeters E, Vassen V, Jachlewski S, Schalles S, Siebers B, Albers S-V. 2013.
532 Lrs14 transcriptional regulators influence biofilm formation and cell motility of
533 Crenarchaea. *ISME J* 7:1886-1898.

534 15. Li L, Banerjee A, Bischof LF, Maklad HR, Hoffmann L, Henche AL, Veliz F, Bildl W,
535 Schulte U, Orell A. 2017. Wing phosphorylation is a major functional determinant of the
536 Lrs14-type biofilm and motility regulator AbfR1 in *Sulfolobus acidocaldarius*. *Mol
537 Microbiol* 105:777-793.

538 16. Yamaguchi Y, Park JH, Inouye M. 2011. Toxin-antitoxin systems in bacteria and
539 archaea. *Annu Rev Genet* 45:61-79.

540 17. Dienemann C, Bøggild A, Winther KS, Gerdes K, Brodersen DE. 2011. Crystal structure
541 of the VapBC toxin-antitoxin complex from *Shigella flexneri* reveals a hetero-octameric
542 DNA-binding assembly. *J Mol Biol* 414:713-722.

543 18. Das U, Pogenberg V, Subhramanyam UKT, Wilmanns M, Gourinath S, Srinivasan A.
544 2014. Crystal structure of the VapBC-15 complex from *Mycobacterium tuberculosis*
545 reveals a two-metal ion dependent PIN-domain ribonuclease and a variable mode of
546 toxin-antitoxin assembly. *J Struct Biol* 188:249-258.

547 19. Kang S-M, Jin C, Kim D-H, Lee Y, Lee B-J. 2020. Structural and functional study of the
548 *Klebsiella pneumoniae* VapBC toxin–antitoxin system, including the development of an
549 inhibitor that activates VapC. *J Med Chem* 63:13669-13679.

550 20. Deep A, Kaundal S, Agarwal S, Singh R, Thakur KG. 2017. Crystal structure of
551 *Mycobacterium tuberculosis* VapC20 toxin and its interactions with cognate antitoxin,
552 VapB20, suggest a model for toxin–antitoxin assembly. *The FEBS J* 284:4066-4082.

553 21. Kim Y, Wang X, Ma Q, Zhang X-S, Wood TK. 2009. Toxin-antitoxin systems in
554 *Escherichia coli* influence biofilm formation through YjgK (TabA) and fimbriae. *J Bacteriol*
555 191:1258.

556 22. Kim Y, Wang X, Zhang X-S, Grigoriu S, Page R, Peti W, Wood TK. 2010. *Escherichia*
557 *coli* toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. *Environ Microbiol* 12:1105-
558 1121.

559 23. Wang Y, Wang H, Hay AJ, Zhong Z, Zhu J, Kan B. 2015. Functional RelBE-family toxin-
560 antitoxin pairs affect biofilm maturation and intestine colonization in *Vibrio cholerae*.
561 *PLoS ONE* 10:e0135696.

562 24. Chan WT, Domenech M, Moreno-Córdoba I, Navarro-Martínez V, Nieto C, Moscoso M,
563 García E, Espinosa M. 2018. The *Streptococcus pneumoniae* *yefM-yoeB* and *relBE*
564 toxin-antitoxin operons participate in oxidative stress and biofilm formation. *Toxins*
565 10:378.

566 25. Ma D, Mandell JB, Donegan NP, Cheung AL, Ma W, Rothenberger S, Shanks RMQ,
567 Richardson AR, Urich KL. 2019. The Toxin-Antitoxin *MazEF* Drives *Staphylococcus*
568 *aureus* Biofilm Formation, Antibiotic Tolerance, and Chronic Infection. *mBio* 10.

569 26. Berne C, Zappa S, Brun YV. 2022. eDNA-stimulated cell dispersion from *Caulobacter*
570 *crescentus* biofilms upon oxygen limitation is dependent on a toxin-antitoxin system.
571 *Elife* 11:e80808.

572 27. Overgaard M, Borch J, Jørgensen MG, Gerdes K. 2008. Messenger RNA interferase
573 ReIE controls *reIE* transcription by conditional cooperativity. *Mol Microbiol* 69:841-857.

574 28. Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H, Magnuson RD,
575 Charlier D, van Nuland NA, Loris R. 2010. Allostery and intrinsic disorder mediate
576 transcription regulation by conditional cooperativity. *Cell* 142:101-111.

577 29. Wang X, Kim Y, Hong SH, Ma Q, Brown BL, Pu M, Tarone AM, Benedik MJ, Peti W,
578 Page R, Wood TK. 2011. Antitoxin MqsA helps mediate the bacterial general stress
579 response. *Nat Chem Biol* 7:359-66.

580 30. Sun C, Guo Y, Tang K, Wen Z, Li B, Zeng Z, Wang X. 2017. MqsR/MqsA Toxin/Antitoxin
581 System Regulates Persistence and Biofilm Formation in *Pseudomonas putida* KT2440.
582 *Front Microbiol* 8.

583 31. Cooper CR, Daugherty AJ, Tachdjian S, Blum PH, Kelly RM. 2009. Role of *vapBC* toxin–
584 antitoxin loci in the thermal stress response of *Sulfolobus solfataricus*. *Biochem Soc T*
585 37:123-126.

586 32. Cooper CR, Lewis AM, Notey JS, Mukherjee A, Willard DJ, Blum PH, Kelly RM. 2023.
587 Interplay between transcriptional regulators and VapBC toxin-antitoxin loci during
588 thermal stress response in extremely thermoacidophilic archaea. *Environ Microbiol*.

589 33. Mukherjee A, Wheaton GH, Blum PH, Kelly RM. 2012. Uranium extremophily is an
590 adaptive, rather than intrinsic, feature for extremely thermoacidophilic *Metallosphaera*
591 *prunae*. *P Natl Acad Sci USA* 109:16702-16707.

592 34. Mukherjee A, Wheaton GH, Counts JA, Ijeomah B, Desai J, Kelly RM. 2017. VapC
593 toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile
594 *Metallosphaera prunae*. *Environ Microbiol* 19:2831-2842.

595 35. Jurénas D, Fraikin N, Goormaghtigh F, Van Melderen L. 2022. Biology and evolution of
596 bacterial toxin–antitoxin systems. *Nat Rev Microbiol* 20:335-350.

597 36. Orell A, Tripp V, Aliaga-Tobar V, Albers S-V, Maracaja-Coutinho V, Randau L. 2018. A
598 regulatory RNA is involved in RNA duplex formation and biofilm regulation in *Sulfolobus*
599 *acidocaldarius*. *Nucleic Acids Res* 46:4794-4806.

600 37. Microbial Bioinformatics Group in MML S. 2017. [https://bioinfo-](https://bioinfo-mml.sjtu.edu.cn/TAfinder/index.php)
601 [mml.sjtu.edu.cn/TAfinder/index.php](https://bioinfo-mml.sjtu.edu.cn/TAfinder/index.php). Accessed October.

602 38. Makarova KS, Wolf YI, Koonin EV. 2009. Comprehensive comparative-genomic analysis
603 of type 2 toxin-antitoxin systems and related mobile stress response systems in
604 prokaryotes. *Biol Direct* 4:1-38.

605 39. Songailiene I, Juozapaitis J, Tamulaitiene G, Ruksenaite A, Šulčius S, Sasnauskas G,
606 Venclovas Č, Siksnys V. 2020. HEPN-MNT toxin-antitoxin system: the HEPN
607 ribonuclease is neutralized by OligoAMPylation. *Mol Cell* 80:955-970. e7.

608 40. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R. 2010. A single-base
609 resolution map of an archaeal transcriptome. *Genome Res* 20:133-141.

610 41. Henche AL, Ghosh A, Yu X, Jeske T, Egelman E, Albers SV. 2012. Structure and
611 function of the adhesive type IV pilus of *Sulfolobus acidocaldarius*. *Environ Microbiol*
612 14:3188-3202.

613 42. Gaines MC, Isupov MN, Sivabalasarma S, Haque RU, McLaren M, Mollat CL, Tripp P,
614 Neuhaus A, Gold VA, Albers S-V. 2022. Electron cryo-microscopy reveals the structure
615 of the archaeal thread filament. *Nat Commun* 13:1-13.

616 43. Oberto J. 2013. SyntTax: a web server linking synteny to prokaryotic taxonomy. *BMC*
617 *Bioinform* 14:1-10.

618 44. LeRoux M, Culviner PH, Liu YJ, Littlehale ML, Laub MT. 2020. Stress can induce
619 transcription of toxin-antitoxin systems without activating toxin. *Mol Cell* 79:280-292.e8.

620 45. Hallez R, Geeraerts D, Sterckx Y, Mine N, Loris R, Van Melderen L. 2010. New toxins
621 homologous to ParE belonging to three-component toxin-antitoxin systems in
622 *Escherichia coli* O157: H7. *Mol Microbiol* 76:719-732.

623 46. Zielenkiewicz U, Ceglowski P. 2005. The toxin-antitoxin system of the streptococcal
624 plasmid pSM19035. *J Bacteriol* 187:6094-6105.

625 47. Näther DJ, Rachel R, Wanner G, Wirth R. 2006. Flagella of *Pyrococcus furiosus*:
626 multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-
627 cell contacts. *J Bacteriol* 188:6915-6923.

628 48. Lassak K, Neiner T, Ghosh A, Klingl A, Wirth R, Albers S-V. 2012. Molecular analysis of
629 the crenarchaeal flagellum. *Mol Microbiol* 83:110-124.

630 49. LeRoux M, Laub MT. 2022. Toxin-Antitoxin Systems as Phage Defense Elements. *Annu
631 Rev Microbiol* 76.

632 50. Wheaton GH, Vitko NP, Counts JA, Dulkis JA, Podolsky I, Mukherjee A, Kelly RM. 2019.
633 Extremely Thermoacidophilic *Metallosphaera* Species Mediate Mobilization and
634 Oxidation of Vanadium and Molybdenum Oxides. *Appl Environ Microbiol* 85:e02805-18.

635 51. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-
636 time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods* 25:402-408.

637 **FIGURE AND TABLE CAPTIONS**

638 **Figure 1.** *S. acidocaldarius* VapBC14 expression and activity. **A)** Differential *vapB14*
639 expression in *S. acidocaldarius* biofilm and planktonic cultures. Relative qPCR of total RNA
640 isolated from *S. acidocaldarius* MW001 biofilm and planktonic cultures across four days of
641 growth. Graphed data represents the average fold change of *vapB14* expression of n = 3
642 biological replicates compared to the day 1 planktonic condition \pm standard error of the mean
643 (SEM). Graphed points are the fold-change in individual biological replicates. *Statistically
644 significant difference with a p<0.05. ** Statistically significant difference with a p<0.01 compared
645 to the day 1 planktonic condition. **B)** Reduction of VapC14 RNase activity by VapB14 Antitoxin.
646 N = 3 experimental replicates \pm SEM. **Statistically significant difference from 5 μ g VapC14
647 Toxin alone at 60 min with a p<0.01 or • p<0.10. **C)** Differential *vapC14* expression in *S.*
648 *acidocaldarius* MW001 and Δ *vapB14* mutant biofilm and planktonic cultures. Relative qPCR of
649 total RNA isolated from *S. acidocaldarius* MW001 and Δ *vapB14* mutant biofilm and planktonic
650 cultures after three days of growth. Graphed data represents the average fold change of
651 *vapC14* expression of n = 3 biological replicates (n =4 for Δ *vapB14* mutant biofilm) compared to
652 the MW001 parent planktonic condition \pm SEM. Graphed points are the fold-change in individual
653 biological replicates. *Statistically significant difference with a p<0.05. **D)** *S. acidocaldarius*
654 MW001 parent, and Δ *vapB14*, Δ *vapC14*, and Δ *vapBC14* mutant planktonic growth curves
655 monitored by backscatter at 520 nm. Each curve represents the average of n =4 independent
656 experiments \pm SEM. The Δ *vapB14* mutant is significantly different from the MW001 parent at •
657 48 hr (p<0.10) and ** 72 hr (p<0.05). Statistical differences were calculated using a two-way
658 analysis of variance (ANOVA) followed by a Tukey Honestly Significant Difference (Tukey HSD)
659 post hoc test for panels A, B, and D, and a Dunnett T3 test for panel C.

660

661 **Figure 2.** *S. acidocaldarius* *vapBC14* locus impact on biofilm and planktonic growth. **A)** to
662 **C)** MW001 parent strain, Δ *vapB14* Antitoxin mutant, Δ *vapC14* Toxin mutant, and Δ *vapBC14*

663 Toxin-Antitoxin mutant biofilm growth for a period of 1 to 4 days. Prior to staining, optical density
664 was read at 600 nm as a measure of overall well growth. Crystal violet-stained biofilm
665 absorbance was read at 550 nm as a measure of biofilm growth. Each graph represents a n=4
666 for each strain except for the MW001 parent, which has a n=8. **A)** Graph of average OD₆₀₀
667 measurements of overall well growth ± SEM. **B)** Graph of average OD₅₅₀ measurements of
668 biofilm growth ± SEM. **C)** Graph of OD₅₅₀/OD₆₀₀ average measurements of biofilm growth
669 normalized to the overall growth of the well ± SEM. **D)** Image of crystal violet stained 4-day
670 biofilms prior to solubilization. *Statistically significant difference with a p<0.05 compared to the
671 MW001 parent within the same day. • Statistically significant difference with a p<0.10 compared
672 to the MW001 parent within the same day. All statistical differences were calculated using a
673 two-way analysis of variance (ANOVA) followed by a Dunnett T3 test.

674

675 **Figure 3. Effect of VapBC14 on the transcriptional expression of the *S. acidocaldarius***
676 **archaeal adhesive pilus and archaellum genes.** Differential expression of archaellum genes,
677 **A)** *arlB* and **B)** *arlX*, and archaeal adhesive pilus genes, **C)** *aapA* and **D)** *aapF* in *S.*
678 *acidocaldarius* MW001 parent, Δ *vapB14* Antitoxin, Δ *vapC14* Toxin, and Δ *vapBC14* Antitoxin-
679 Toxin mutant biofilm and planktonic cultures. Relative qPCR of total RNA isolated from biofilm
680 and planktonic cultures after three days of growth. Graphed data represents the average fold
681 change of each gene's expression of n = 3 biological replicates compared to the MW001 parent
682 planktonic condition ± SEM. Graphed points are the fold-change in individual biological
683 replicates. *Statistically significant difference with a p<0.05 compared to the MW001 parent in
684 the same condition. N.D. = none detected as cycle threshold was above the detection limit. All
685 statistical differences were calculated using a two-way analysis of variance (ANOVA) followed
686 by a Tukey Honestly Significant Difference (Tukey HSD) post hoc test.

687

688 **Figure 4. Effect of VapBC14 on *S. acidocaldarius* archaeal adhesive pilus and archaellum**
689 **surface structures. A)** Loading control and **B)** archaellum western blot using an Anti-ArlB
690 antibody. **C)** Electron microscopy images of *S. acidocaldarius* MW001 parent, Δ vapB14
691 Antitoxin, Δ vapC14 Toxin, and Δ vapBC14 Antitoxin-Toxin mutant biofilm and planktonic cells.
692 Red arrows indicate archaella and blue arrows indicate Aap pili. Scale bar is 1 μ m.

693

694 **Figure 5 Sulfolobales VapB14 homolog conservation and biofilm response. A)** Prevalence
695 of VapB14 Antitoxin homologs in the Sulfolobales **B)** Differential expression of Msed_0871
696 vapB14 homolog in *Metallosphaera sedula* biofilm and planktonic cultures. Relative qPCR of
697 total RNA isolated from *M. sedula* biofilm and planktonic cultures after three days of growth.
698 Graphed data represents the average fold change of Msed_0871 expression of n = 4 biological
699 replicates compared to the planktonic condition \pm SEM. Graphed points are the fold-change in
700 individual biological replicates. *Statistically significant difference with a p<0.05 using a two-
701 tailed student's t-test.

702

703 **Figure 6. Archaellum regulation by the VapB14 Antitoxin and VapC14 Toxin.** In planktonic
704 conditions the VapC14 Toxin degrades *aapF* RNA transcripts relieving archaella repression and
705 inducing motility. In biofilm conditions the VapB14 Antitoxin functions by both transcriptionally
706 repressing the archaellum (*arl*) locus and suppressing the post-transcriptional degradation of the
707 *aapF* transcript by the VapC14 Toxin leading to a down-regulation in motility and induction of
708 biofilm formation.

709

710 **Table 1. *Sulfolobus acidocaldarius* vapBC Transcriptional Response to Biofilm**
711 **Formation.**

712

713 **Table 2. *Sulfolobus acidocaldarius* TAfinder Results.**

714

715 **Table 3. *Sulfolobus acidocaldarius* *vapBC14* Transcriptional Response to *saci_1223***
716 **Deletion**

717

718 **Table 4. Prevalence of VapC14 Toxin homologs in the Sulfolobales.**

719

720

721 **SUPPLEMENTAL MATERIAL**

722 **Figure S1. Location of identified Type II Toxin-Antitoxins in the *Sulfolobus***
723 ***acidocaldarius* genome.**

724

725 **Figure S2. Purification of the VapC14 Toxin. A)** VapC14 Toxin purification
726 chromatogram from VapBC14 co-expression. **B)** VapC14 Toxin purification fractions
727 coloration and gel.

728

729 **Figure S3. Ribonuclease activity of the VapC14 Toxin** Reduction of VapC14 RNase
730 activity by VapB14 Antitoxin. N =3 experimental replicates \pm SEM. ** Statistically
731 significant difference from the no protein control at 60 min with a p<0.01 calculated using
732 a one-way analysis of variance (ANOVA) followed by a Tukey Honestly Significant Difference
733 (Tukey HSD) post hoc test.

734

735 **Figure S4. Differential expression of known biofilm genes in *S. acidocaldarius* MW001**
736 **parent and Δ vapB14 mutant biofilm and planktonic cultures.** Relative qPCR of total RNA
737 isolated from *S. acidocaldarius* MW001 biofilm and planktonic cultures after three days of
738 growth. Graphed data represents the average fold change of each gene's expression of n = 3

739 biological replicates compared to the MW001 parent planktonic condition \pm SEM. Graphed
740 points are the fold-change in individual biological replicates. Lack of statistical differences were
741 calculated using a two-way analysis of variance (ANOVA) followed by a Tukey Honestly
742 Significant Difference (Tukey HSD) post hoc test.

743

744 **Figure S5. Prevalence of archaellum and Type IV Pili homologs in the Sulfolobales**

745

746 **Supplemental File S1. *Sulfolobus acidocaldarius* VapB14 BLASTP Results**

747

748 **Supplemental File 2. Primer, Plasmid, and Strain Tables**

749

750 **Supplemental File 3. Sulfolobales Biofilm Gene Homologs and Sulfolobus Pangenome**

751

752

Table 1. *Sulfolobus acidocaldarius vapBC* Transcriptional Response to Biofilm Formation.

Gene Product	Gene ID	LSM Biofilm	% Rank Biofilm	LSM Planktonic	% Rank Planktonic	Difference Biofilm - Planktonic	Fold Change Biofilm - Planktonic	p-value
Hypothetical protein	Saci_0301	5.01	86.4	0.75	55.7	4.26	19.15	3.68E-22
NAD-dependent alcohol dehydrogenase	Saci_0557	5.51	90.2	6.71	100.0	1.12	-2.31	4.17E-12
DNA-directed RNA polymerase subunit P	Saci_0864	6.80	100.0	5.68	92.3	-1.21	-2.31	3.32E-07
VapC1	Saci_0467	-0.59	43.6	-0.22	48.6	-0.38	-1.30	7.39E-02
VapB1	Saci_0468	-1.17	39.2	-0.90	43.5	-0.27	-1.21	3.44E-01
VapB2	Saci_1235	0.93	55.3	0.68	55.2	0.25	1.19	2.94E-01
VapC2	Saci_1236	-0.16	46.9	-0.05	49.8	-0.11	-1.08	4.65E-01
VapC3	Saci_1790	-0.75	42.4	-0.63	45.5	-0.12	-1.09	6.24E-01
VapB3	Saci_1791	-0.83	41.8	0.22	51.8	-1.05	-2.07	1.80E-04
VapB4	Saci_1812	1.89	62.6	2.55	69.1	-0.66	-1.58	2.63E-02
VapC4	Saci_1813	2.41	66.6	3.43	75.7	-1.02	-2.03	5.03E-04
VapB5	Saci_1882	-0.54	44.0	0.29	52.3	-0.83	-1.78	8.47E-03
VapC5	Saci_1883	2.35	66.1	2.29	67.1	0.06	1.05	7.85E-01
VapB6	Saci_1952	-1.73	35.0	-0.95	43.1	-0.78	-1.71	4.87E-04
VapC6	Saci_1953	-1.25	38.6	-1.21	41.2	-0.04	-1.03	9.27E-01
VapC7	Saci_1954	2.75	69.2	2.93	71.9	-0.17	-1.13	4.27E-01
VapB7	Saci_1955	1.90	62.7	2.16	66.2	-0.26	-1.20	1.33E-01
VapB8	Saci_1977	2.33	65.9	3.22	74.1	-0.89	-1.86	4.52E-03
VapC8	Saci_1978	1.48	59.5	2.14	66.0	-0.66	-1.58	2.51E-02
VapB9	Saci_1980	0.59	52.7	1.62	62.2	-1.03	-2.04	9.25E-04
VapC9	Saci_1981	-0.13	47.2	0.65	55.0	-0.78	-1.71	1.68E-02
VapB10	Saci_1984	0.57	52.5	1.92	64.4	-1.36	-2.56	1.02E-05
VapC10	Saci_1985	-2.68	27.7	-1.34	40.2	-1.34	-2.53	1.86E-03
VapC11	Saci_2002	2.15	64.5	2.12	65.9	0.03	1.02	8.17E-01
VapB11	Saci_2003	2.72	68.9	3.16	73.6	-0.44	-1.36	1.75E-03
VapB12	Saci_2079	2.92	70.4	3.90	79.1	-0.98	-1.97	2.41E-04
VapC12	Saci_2080	1.08	56.4	0.82	56.2	0.26	1.20	1.69E-01
VapB13	Saci_2166	-0.75	42.5	-1.44	39.5	0.69	1.61	4.41E-02
VapC13	Saci_2167	0.52	52.1	-0.78	44.4	1.30	2.46	4.36E-05
VapC14	Saci_2183	1.18	57.2	0.44	53.4	0.74	1.67	5.73E-04
VapB14	Saci_2184	0.84	54.5	-2.60	30.8	3.44	10.83	3.63E-12
VapC15	Saci_2192	-2.84	26.5	-2.61	30.8	-0.24	-1.18	2.68E-01
VapB15	Saci_2193	1.67	60.9	2.18	66.3	-0.51	-1.42	1.86E-02
Hypothetical protein	Saci_1530	-6.31	0.0	-6.76	0.0	0.45	1.36	2.92E-01
Hypothetical protein	Saci_1138	0.78	54.1	2.63	69.7	-2.71	-6.53	6.48E-12

^a Microarray data measuring differential expression of genes between biofilm and planktonic cells.

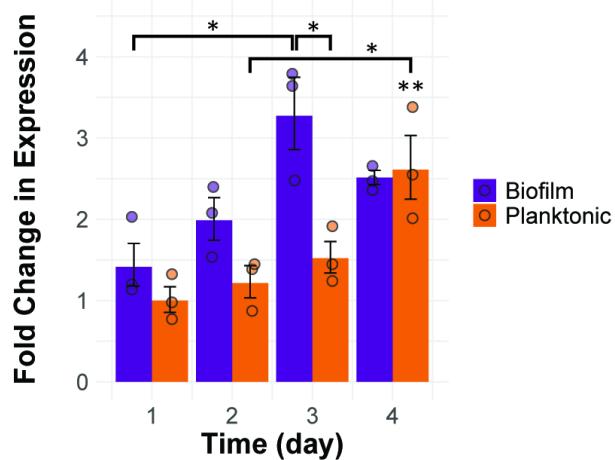
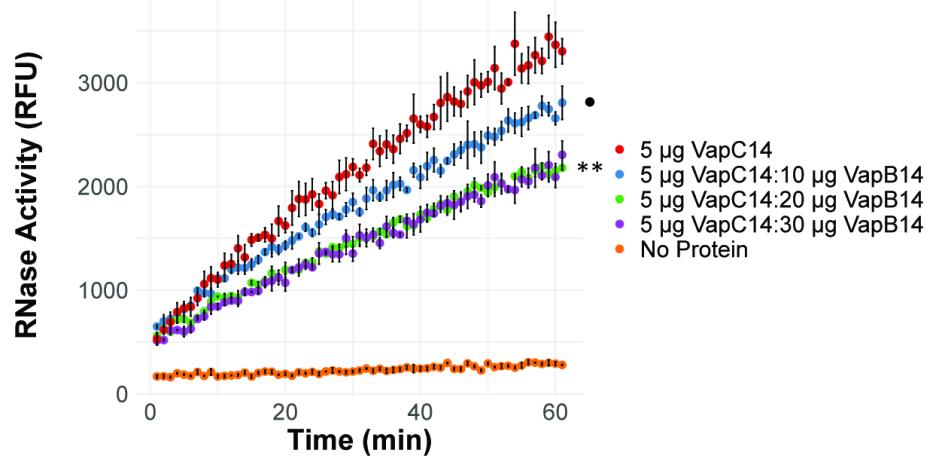
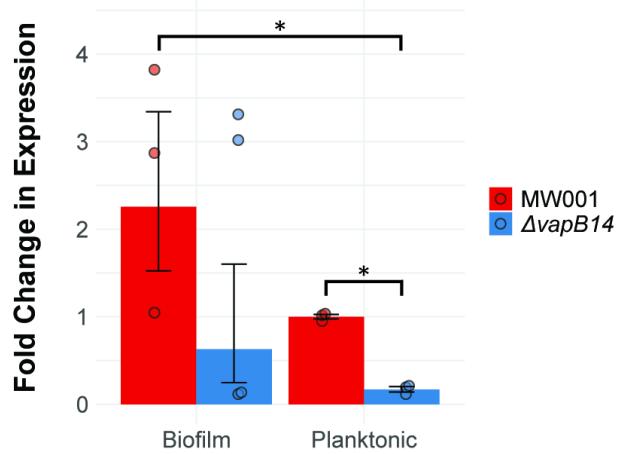
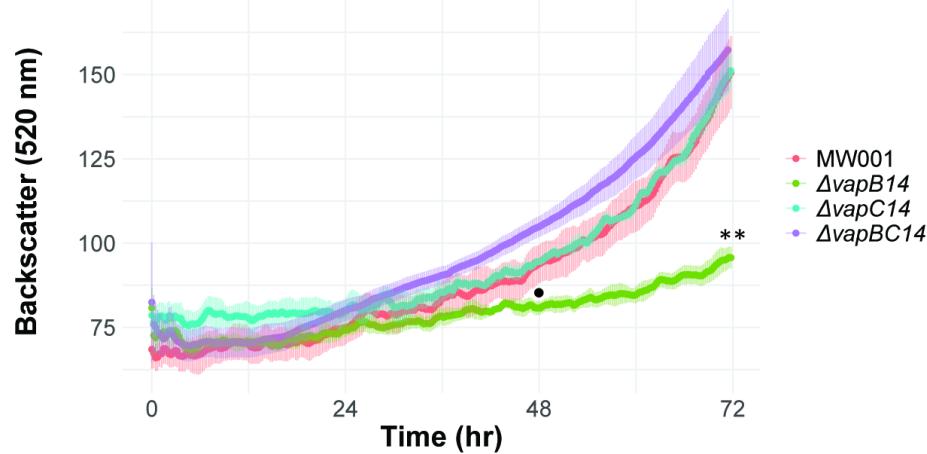
Table 2. *Sulfolobus acidocaldarius* TAfinder Results

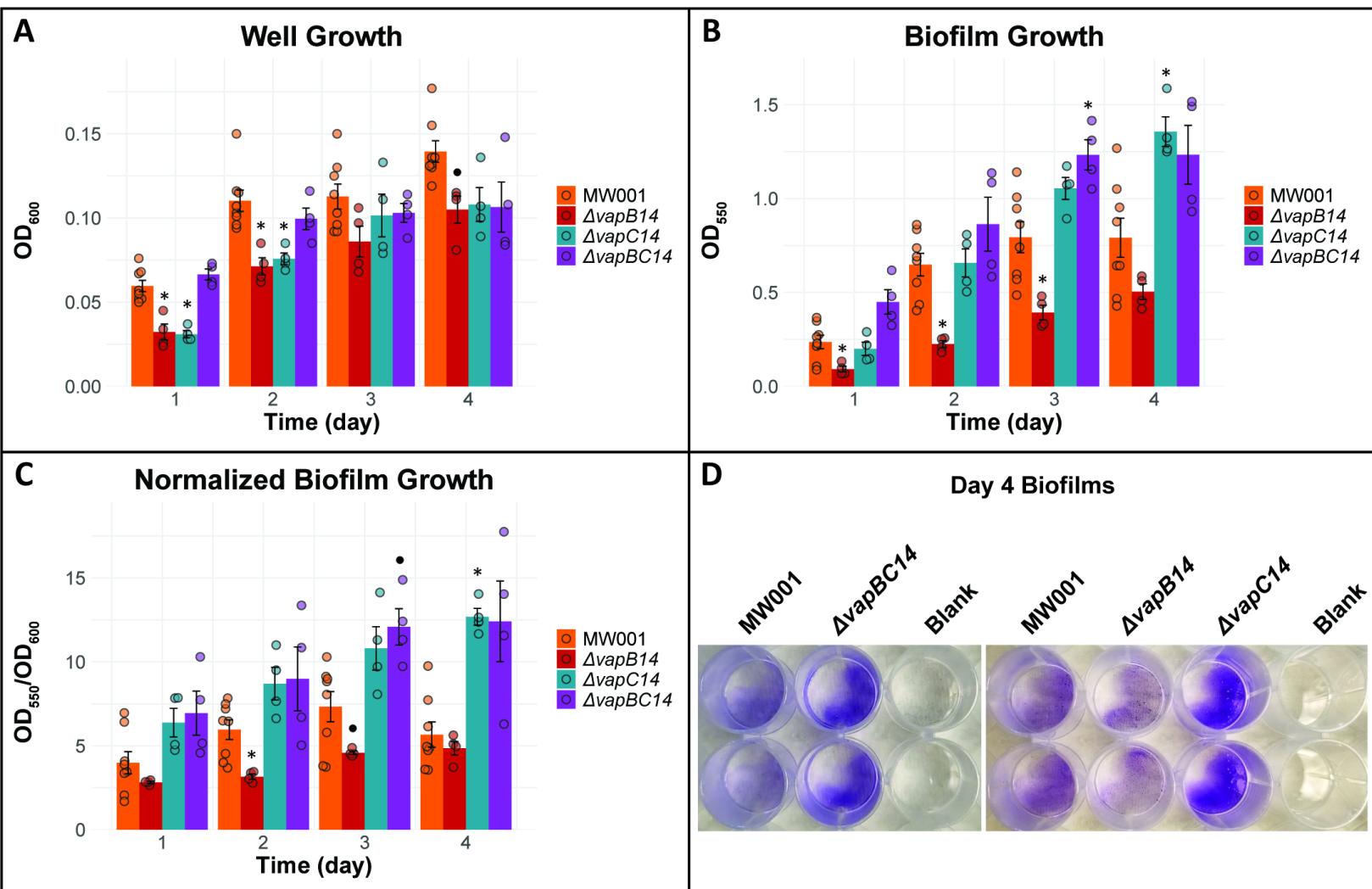
Name	ID	T/A	Locus tag	Location	Length (a.a.)	Strand	Family	Domain
VapC1	70606299	T	Saci_0467	394110..394478	122	-	PIN-like	cd09981
VapB1	70606300	A	Saci_0468	394465..394713	82	-	RHH-like	COG1753
VapC2	70607005	T	Saci_1236	1052274..1052666	130	+	vapC	-
VapB2	70607004	A	Saci_1235	1052045..1052290	81	+	vapB	-
VapC3	70607519	T	Saci_1790	1557436..1557846	136	-	PIN-like	COG4113
VapB3	70607520	A	Saci_1791	1557834..1558100	88	-	RHH-like	PRK11235
VapC4	70607542	T	Saci_1813	1580918..1581340	140	+	PIN-like	-
VapB4	70607541	A	Saci_1812	1580688..1580921	77	+	RHH-like	-
VapC5	70607611	T	Saci_1883	1677052..1677447	131	+	PIN-like	COG4113
VapB5	70607610	A	Saci_1882	1676838..1677062	74	+	RHH-like	COG3905
VapC6	70607679	T	Saci_1953	1765576..1765995	139	+	vapC	-
VapB6	70607678	A	Saci_1952	1765335..1765583	82	+	vapB	-
VapC7	70607680	T	Saci_1954	1766204..1766599	131	-	PIN-like	cd09872
VapB7	70607681	A	Saci_1955	1766583..1766810	75	-	AbrB-like	COG2002
NA	70607683	T	Saci_1957	1767340..1769043	567	-	-	pfam12568
NA	70607682	A	Saci_1956	1766910..1767353	147	-	-	COG1733
MNT8	70607703	T	Saci_1978	1792029..1792373	114	+	MNT-like	-
HEPN8	70607702	A	Saci_1977	1791620..1792051	143	+	HEPN-like	-
VapC9	70607706	T	Saci_1981	1795579..1795983	134	+	PIN-like	-
VapB9	70607705	A	Saci_1980	1795356..1795592	78	+	RHH-like	-
VapC10	70607710	T	Saci_1985	1799655..1800041	128	+	PIN-like	cd09886
VapB10	70607709	A	Saci_1984	1799411..1799665	84	+	AbrB-like	COG2002
VapC11	70607724	T	Saci_2002	1817055..1817375	106	-	PIN-like	-
VapB11	70607725	A	Saci_2003	1817476..1817742	88	-	RHH-like	-
VapC12	70607797	T	Saci_2080	1898348..1898716	122	+	PIN-like	COG4113
VapB12	70607796	A	Saci_2079	1898115..1898345	76	+	RHH-like	pfam01402
NA	70607828	T	Saci_2111	1932477..1934174	565	+	-	pfam12568
NA	70607829	A	Saci_2112	1934285..1934725	146	+	-	COG1733
VapC13	70607880	T	Saci_2167	2000715..2001335	206	+	vapC	-
VapB13	70607879	A	Saci_2166	2000353..2000703	116	+	vapB	-
VapC14	70607892	T	Saci_2183	2019340..2019957	205	-	vapC	-
VapB14	70607893	A	Saci_2184	2019983..2020327	114	-	vapB	-
VapC15	70607901	T	Saci_2192	2032246..2032686	146	-	PIN-like	-
VapB15	70607902	A	Saci_2193	2032646..2032906	86	-	AbrB-like	-

T/A: This shows the type of the protein. T for Toxin and A for Antitoxin.

Sequence Name: *Sulfolobus acidocaldarius* DSM 639 chromosome, complete genome

Length: 2225959 bp





Table 3. *Sulfolobus acidocaldarius* *vapBC14* Transcriptional Response to *saci_1223* Deletion


Gene Product	Gene ID	MW001 Biofilm/Planktonic		Δ saci_1223 Biofilm/Planktonic		Biofilm Δ saci_1223/MW001		Planktonic Δ saci_1223/MW001	
		Fold Change	p-value	Fold Change	p-value	Fold Change	p-value	Fold Change	p-value
VapC14 Toxin	Saci_2183	1.7	5.73E-04	1.4	2.51E-02	1.4	1.28E-02	1.7	4.02E-04
VapB14 Antitoxin	Saci_2184	10.8	3.63E-12	3.9	6.29E-07	1.0	8.62E-01	2.9	4.10E-05

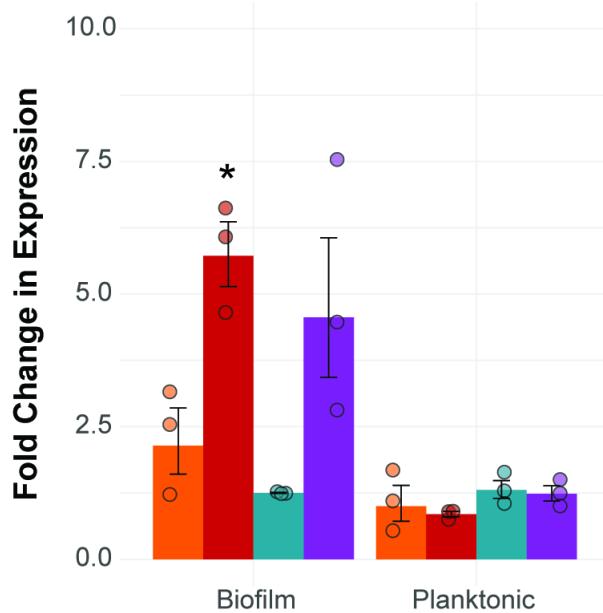
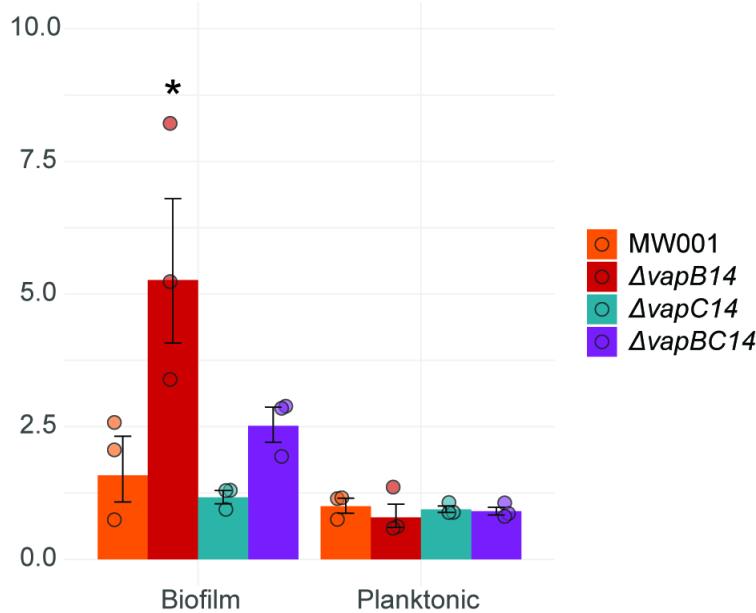
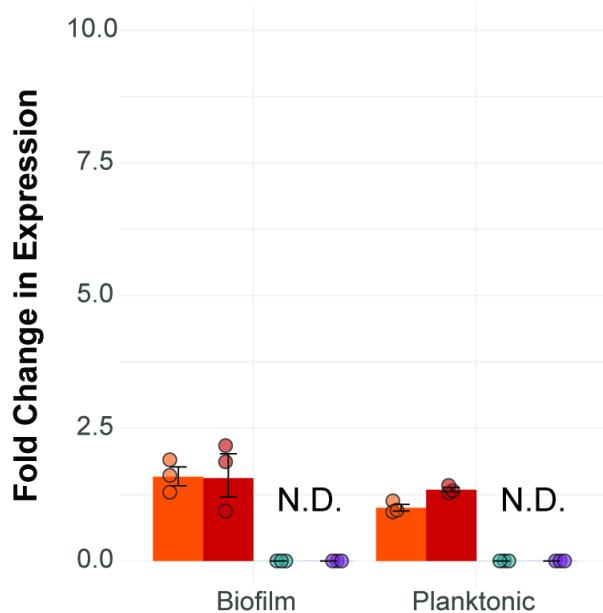
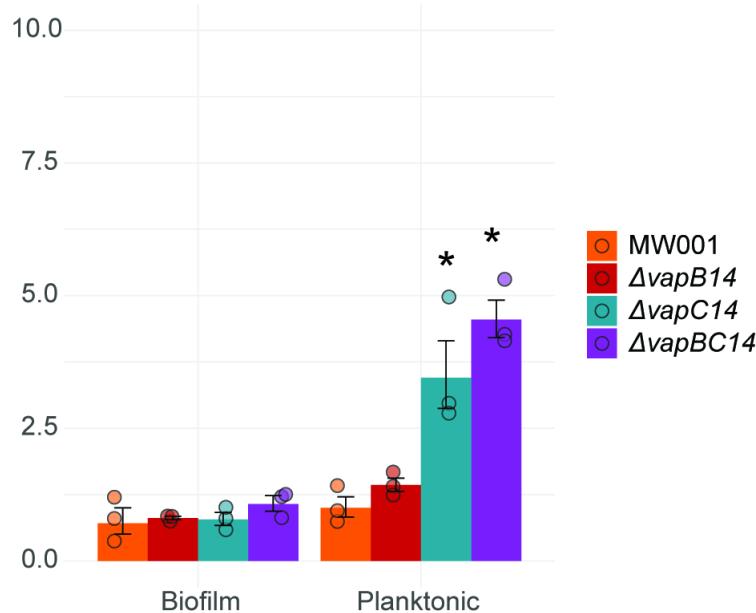
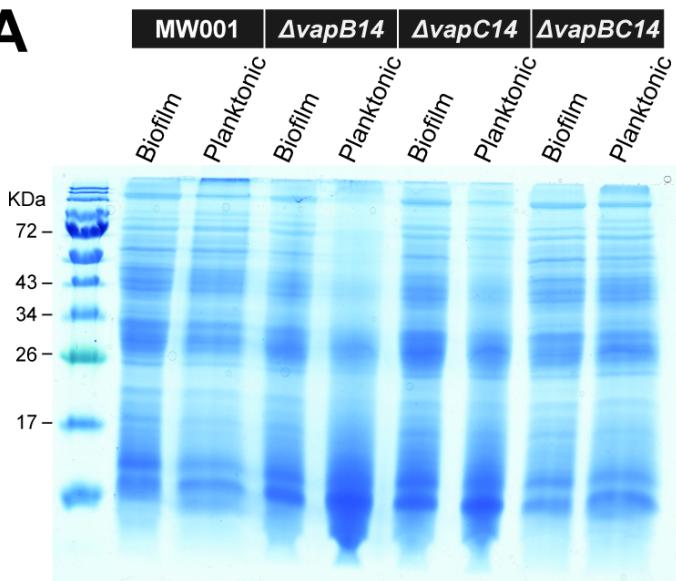
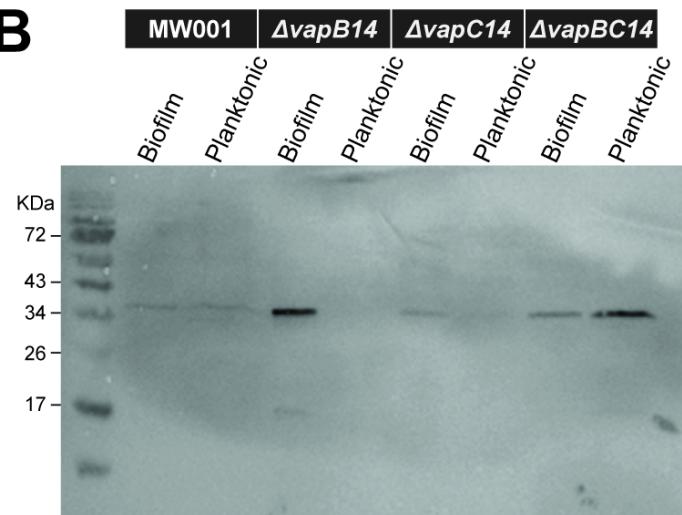
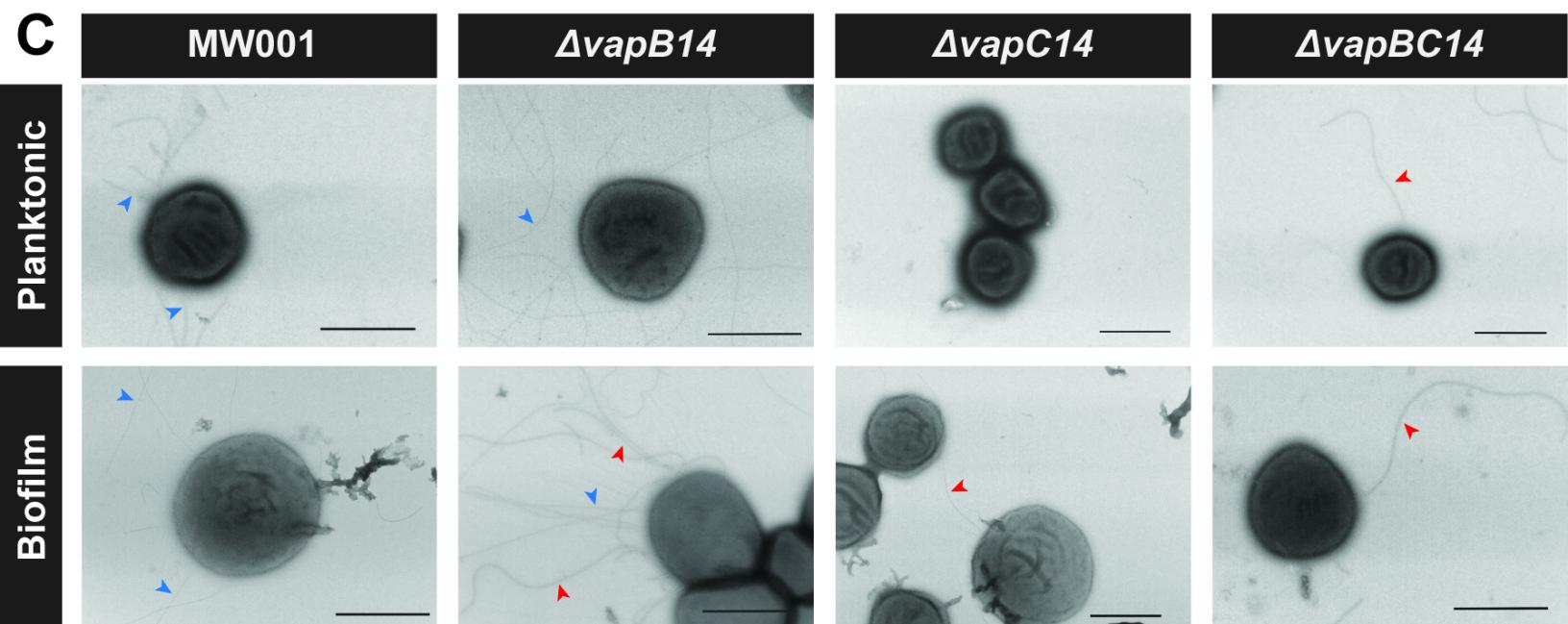




^a Microarray data measuring differential expression of genes between biofilm and planktonic cells of the *S. acidocaldarius* MW001 parent and the Δ saci_1223 mutant.

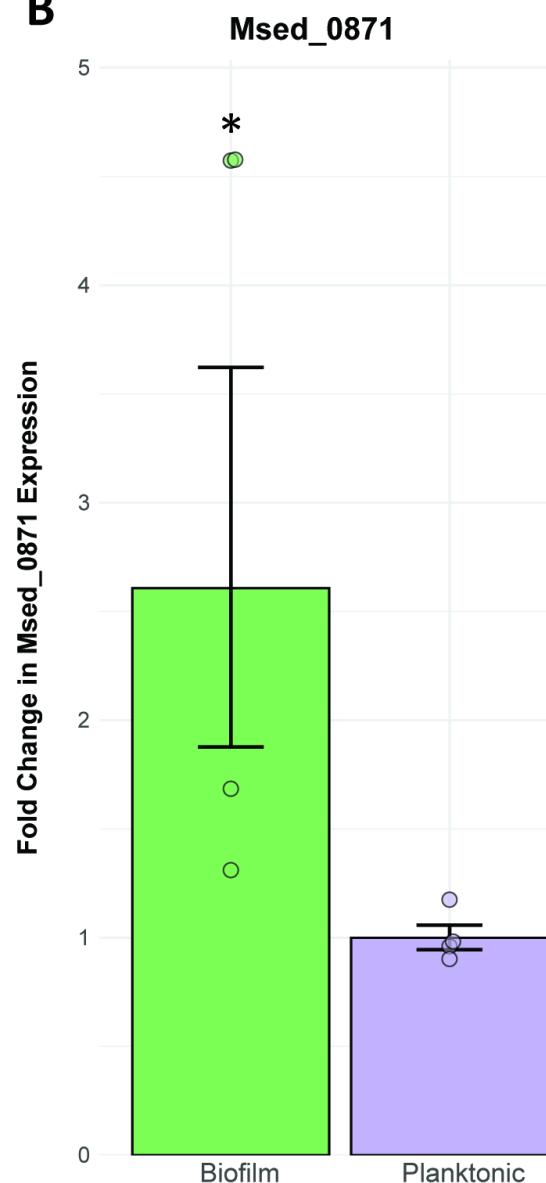
Table 4. Prevalence of VapC14 Toxin homologs in the Sulfolobales.

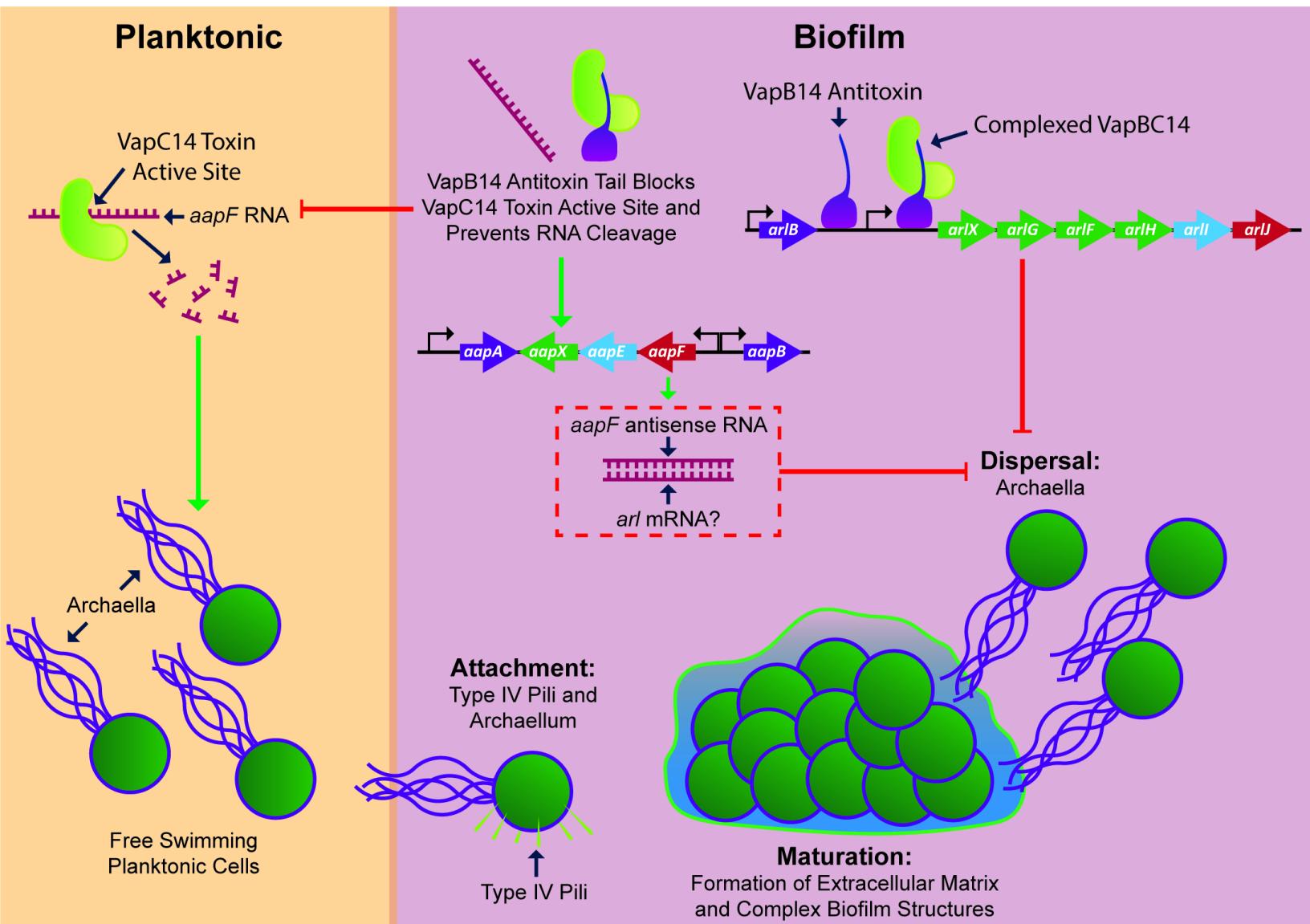
Function	Toxin			
Name	VapC14		VapC13	
Protein Accession	WP_011278971.1		WP_011278959.1	
GenBank Accession	AAY81469.1		AAY81457.1	
Organism	Locus ID/AA% Identity		Locus ID/AA% Identity	
<i>Sulfolobus acidocaldarius</i> DSM 639	Saci_2183	100.00	Saci_2167	63.00
<i>Acidianus ambivalens</i> LEI 10	D1866_09095		51.50	
<i>Acidianus brierleyi</i> DSM 1651				
<i>Acidianus hospitalis</i> W1	Ahos_1667		52.50	
<i>Acidianus infernus</i> DSM 3191				
<i>Acidianus manzaensis</i> YN-25	B6F84_13285		53.73	
<i>Acidianus sulfidivorans</i> JP7	DFR86_00270		53.50	
<i>Candidatus Acidianus copahuensis</i> ALE1	CM19_01545		54.23	
<i>Candidatus Aramenus sulfurataquae</i> Az1	ASUL_08644		62.50	
<i>Metallosphaera cuprina</i> Ar-4	Mcup_1067	56.18	Mcup_1328	39.41
<i>Metallosphaera hakonensis</i> HO1-1	DFR87_00325		39.38	
<i>Metallosphaera javensis</i> AS-7	MjAS7_1675		36.87	
<i>Metallosphaera prunae</i> RON 12/II	DFR88_02270		37.93	
<i>Metallosphaera sedula</i> DSM 5348	Msed_0856		37.37	
<i>Metallosphaera tengchongensis</i> Ric-A	GWK48_00470		41.48	
<i>Metallosphaera yellowstonensis</i> MK1	MetMK1DRAFT_00004880		54.86	
<i>Saccharolobus caldissimus</i> JCM32116	SACC_25450		53.50	
<i>Saccharolobus shibatae</i> B12	J5U23_02119		53.50	
<i>Saccharolobus solfataricus</i> P2	SSO1868		54.00	
<i>Stygiolobus azoricus</i> FC6				
<i>Sulfodiicoccus acidiphilus</i> HS-1	HS1genome_2027		34.03	
<i>Sulfolobus islandicus</i> L.D.8.5	LD85_0694		54.00	
<i>Sulfuracidifex metallicus</i> DSM 6482				
<i>Sulfuracidifex tepidarius</i> IC-007				
<i>Sulfurisphaera ohwakuensis</i> TA-1	D1869_08965		56.22	
<i>Sulfurisphaera tokodaii</i> str. 7	STK_15930		56.22	




A***vapB14*****B****VapC14 Toxin Ribonuclease Activity****C*****vapC14*****D*****vapBC14* Mutant Panel Growth**

A***arlB*****B*****arlX*****C*****aapA*****D*****aapF***

○ MW001
 □ $\Delta v\text{ap}B14$
 ▲ $\Delta v\text{ap}C14$
 ▨ $\Delta v\text{ap}BC14$


○ MW001
 □ $\Delta v\text{ap}B14$
 ▲ $\Delta v\text{ap}C14$
 ▨ $\Delta v\text{ap}BC14$


A**B****C**

A Prevalence of VapB14 Antitoxin homologs in the Sulfolobales

Function	Antitoxin		
Name	VapB14		
Protein Accession	WP_011278972.1		
GenBank Accession	AAY81470.1		
Organism	Locus ID	% Identity	
		Amino Acid	Nucleotide
<i>Sulfolobus acidocaldarius</i> DSM 639	Saci_2184	100.00	100.00
<i>Acidianus ambivalens</i> LEI 10	D1866_09090	62.28	67.80
<i>Acidianus brierleyi</i> DSM 1651			
<i>Acidianus hospitalis</i> W1	Ahos_1666	72.32	71.74
<i>Acidianus infernus</i> DSM 3191			
<i>Acidianus manzaensis</i> YN-25	B6F84_13280	67.86	72.07
<i>Acidianus sulfidivorans</i> JP7	DFR86_00275	66.97	67.58
<i>Candidatus Acidianus copahuensis</i> ALE1	CM19_01540	70.18	69.18
<i>Candidatus Aramenus sulfurataquae</i> Az1	ASUL_08639	71.05	67.75
<i>Metallosphaera cuprina</i> Ar-4	Mcup_1066	62.50	65.40
<i>Metallosphaera hakonensis</i> HO1-1	DFR87_00770	59.29	67.69
<i>Metallosphaera javensis</i> AS-7	MjAS7_1695	61.95	67.15
<i>Metallosphaera prunae</i> RON 12/II	DFR88_02195	57.39	68.89
<i>Metallosphaera sedula</i> DSM 5348	Msed_0871	57.39	68.89
<i>Metallosphaera tengchongensis</i> Ric-A	GWK48_00265	57.02	
<i>Metallosphaera yellowstonensis</i> MK1	MetMK1DRAFT_00002900	51.79	
	MetMK1DRAFT_00004870	72.32	72.36
<i>Saccharolobus caldissimus</i> JCM32116	SACC_25440	72.32	70.15
<i>Saccharolobus shibatae</i> B12	J5U23_02118	64.04	67.88
<i>Saccharolobus solfataricus</i> P2	SSO1867	67.54	67.48
<i>Stygiolobus azoricus</i> FC6			
<i>Sulfodiicoccus acidiphilus</i> HS-1	HS1genome_2020	57.27	69.30
<i>Sulfolobus islandicus</i> L.D.8.5	LD85_0695	73.21	71.74
<i>Sulfuracidifex metallicus</i> DSM 6482			
<i>Sulfuracidifex tepidarius</i> IC-007	IC007_0597	66.67	70.16
<i>Sulfurisphaera ohwakuensis</i> TA-1	D1869_08970	67.86	72.56
<i>Sulfurisphaera tokodaii</i> str. 7	STK_15940	66.07	72.46

B

