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ABSTRACT

Natural Language Processing (NLP) inference is seeing increas-
ing adoption by mobile applications, where on-device inference is
desirable for crucially preserving user data privacy and avoiding
network roundtrips. Yet, the unprecedented size of an NLP model
stresses both latency and memory, creating a tension between the
two key resources of a mobile device. To meet a target latency,
holding the whole model in memory launches execution as soon
as possible but increases one app’s memory footprints by several
times, limiting its benefits to only a few inferences before being
recycled by mobile memory management. On the other hand, load-
ing the model from storage on demand incurs IO as long as a few
seconds, far exceeding the delay range satisfying to a user; pipelin-
ing layerwise model loading and execution does not hide IO either,
due to the high skewness between IO and computation delays.

To this end, we propose Speedy Transformer Inference (STI).
Built on the key idea of maximizing I0/compute resource utilization
on the most important parts of a model, STI reconciles the latency
v.s. memory tension via two novel techniques. First, model sharding.
STI manages model parameters as independently tunable shards,
and profiles their importance to accuracy. Second, elastic pipeline
planning with a preload buffer. STI instantiates an I0/compute
pipeline and uses a small buffer for preload shards to bootstrap
execution without stalling at early stages; it judiciously selects,
tunes, and assembles shards per their importance for resource-
elastic execution, maximizing inference accuracy.

Atop two commodity SoCs, we build STI and evaluate it against a
wide range of NLP tasks, under a practical range of target latencies,
and on both CPU and GPU. We demonstrate that STI delivers high
accuracies with 1-2 orders of magnitude lower memory, outper-
forming competitive baselines.

CCS CONCEPTS

« Computer systems organization — System on a chip; - Com-
puting methodologies — Natural language processing,.

KEYWORDS
Machine Learning Systems, NLP infernece, Edge computing

ACM Reference Format:
Liwei Guo, Wonkyo Choe, and Felix Xiaozhu Lin. 2023. STI: Turbocharge
NLP Inference at the Edge via Elastic Pipelining. In Proceedings of the 28th

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575698

791

ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS °23), March 25-29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3575693.3575698

Ours (d) 170X smaller memory
< 90 : similar accuracy > N Hold in mem (a)
- 1 much higher (DistiIBERT)
g 80 ;accuracy
270 Load on demand (b & c)
60 ] // ]
0 170MB
™B Model Memory
Large M Compute Large bubbles Full compute
starves l ¢ ¢ Ry 8.7,
Comp. > VR VE W [22]3]4]5]6| .
Preload 10 10 1]2]3 AR s [
0 -

7
(a) Hold in mem (b) Load before exec (c) Standard pipeline  (d) STI (ours)
Figure 1: Comparison of model execution methods. Our
method achieves high accuracy at low memory cost. T: target
latency. M: model memory for Transformer weights.

1 INTRODUCTION

Natural Language Processing (NLP) is seeing increasing adoption
by mobile applications [15]. For instance, a note-taking app allows
users to verbally query for old notes and dictate new notes. Under
the hood, the app invokes an NLP model in order to infer on user
input. It is often desirable to execute NLP inference on device, which
crucially preserves user data privacy and eliminates long network
trips to the cloud [11, 49].

NLP inference stresses mobile devices on two aspects. (1) Im-
promptu user engagements. Each engagement comprises a few
turns [9]; users expect short delays of no more than several hun-
dred ms each turn [10], often mandated as target latencies [49].
(2) Large model size. Designed to be over-parameterized [38, 63],
today’s NLP models are hundred MBs each [16, 43, 45], much larger
than most vision models [44, 66]. As a common practice, separate
NLP model instances are fine-tuned for tasks and topics, e.g. one
instance for sentiment classification [1] and one for sequence tag-
ging [8], which further increase the total parameter size on a mobile
device.

How to execute NLP models? There are a few common ap-
proaches (Figure 1). (1) Hold in memory: preloading a model before
user engagement or making the model linger in memory after en-
gagement. The efficacy is limited: a model in memory increases one
app’s memory footprint (often less than 100MB [30, 31]) by a few
times, making the app a highly likely victim of the mobile OS’s low
memory Killer [6]; as user engagements are bursty and each consists
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of as few as 1-3 model executions [9], a lingering model likely bene-
fits no more than 2 executions before its large memory is reclaimed
by the OS; since user engagements are impromptu [32, 51], pre-
dicting when to preload/unload models is challenging. (2) Load on
demand. The problem is the long IO delays for loading a NLP model.
For instance, DistilBERT, a popular model optimized for mobile,
takes 2.1 seconds to load its 170 MB parameters as we measured,
far exceeding user desirable latencies of several hundred ms. To
hide IO delays, one may stream model parameters from storage to
memory during computation: execute model layer k while loading
parameters for layer k + 1. While such an I0/compute pipeline
was known in ML [37, 62], directly applying it to NLP inference is
ineffective: the core parts of NLP models such as attention has a
skewed IO/compute ratio due to low arithmetic intensity [56]. As a
result, most of the time (>72%) the computation is stalling.

These approaches suffer from common drawbacks: (1) key re-
sources — memory for preload and IO/compute for model execution
- are managed in isolation and lack coordination; (2) obliviousness
to a model’s parameter importance, i.e. which parameters matter
more to model accuracy. Hence, the preload buffer unnecessarily
holds parameters that could have been streamed in parallel to ex-
ecution; IO unnecessarily loads parameters that the computation
cannot consume within the target latency. The results are memory
waste, frequent pipeline stalls, and inferior model accuracy due to
low FLOPs.

Our design We present an engine called STI. Addressing the
drawbacks above, STI integrates on-demand model loading with
lightweight preload, getting the best of both approaches.

(1) A model as resource-elastic shards. The engine preprocesses an
N-layer model: partitioning each layer into M shards; compressing
each shard as K fidelity versions, each version with a different
parameter bitwidth. The engine therefore stores the NxMXxK shard
versions on flash. At run time, the engine assembles a submodel of
its choice: a subset of n layers (n <= N); m shards (m <= M) from
each selected layer; a fidelity version for each selected shard. Any
such submodel can yield meaningful inference results, albeit with
different accuracies and resource costs. Our model sharding is a
new combination of existing ML techniques [26, 64].

In this way, the engine can dynamically vary a model’s total
execution time, adjust I0/compute ratios for individual shards, and
allocate IO bandwidth by prioritizing important shards.

(2) Preload shards for warming up pipeline. The engine maintains
a small buffer of preload shards, adjusting the size to available
memory. Instead of trying to hold the entire model, it selectively
holds shards from a model’s bottom layers (closer to input). Upon
user engagement, the engine can start executing the early stage
of a pipeline with much of the parameters already loaded, which
otherwise would have to stall for IO.

(3) A joint planner for memory, IO, and computation. The engine’s
planner selects shards and their versions to preload and to execute.
Its goal is to compose a submodel that simultaneously meets the
target latency, minimizes pipeline stalling, and maximizes accuracy.

Towards this goal, our ideas are (1) set layerwise IO budgets
according to layerwise computation delays and (2) allocate IO bud-
gets according to shard importance. To plan, STI first decides a
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submodel that can be computed under the target latency. The en-
gine then sets accumulated IO budgets (AIBs) at each layer to be the
computation delays of all prior layers; it further treats the available
memory for preload shards as bonus IO budgets to all layers. Hav-
ing set the budgets, the engine iterates over all shards, allocating
extra bitwidths to loading important shards and hence debiting I0
budgets of respective layers. The engine preloads the first k shards
in the layer order that maximize the usage of preload memory size
|S| but not exceeding |S]|.

Results We implement STI atop PyTorch and demonstrate it on
mobile CPU and GPU of two embedded platforms. On a diverse
set of NLP tasks, STI meets target latencies of a few hundred ms
while yielding accuracy comparable to the state of the art. We
compare STI against competitive baselines enhanced with recent
ML techniques [26, 64] as illustrated in Figure 1. Compared to
holding a model in memory, STI reduces parameter memory by 1-2
orders of magnitude to 1-5MB, while only seeing accuracy drop of
no more than 0.1 percentage points; compared to existing execution
pipelines, STI increases accuracy by 5.9-54.1 percentage points as
its elastic pipeline maximizes both compute and IO utilization.

Contributions The paper makes the following contributions:

e Model sharding, allowing the engine to fine control an NLP
model’s total computation time and finetune each shard’s IO
time according to resource constraints and shard importance.

o A pipeline with high IO/compute utilization: a small preload
buffer for warming up the pipeline; elastic IO and computa-
tion jointly tuned to minimize pipeline bubbles and maximize
model accuracy.

e A two-stage planner for the pipeline: picking a submodel,
tracking layerwise IO budgets, and prioritizing importance
shards in resource allocation.

2 MOTIVATIONS
2.1 Transformer on Mobile Devices

A primer on transformer Figure 2 shows the architecture of
Transformer [52], the modern NN developed for NLP tasks. Com-
pared with traditional NNs (e.g. LSTM [25]), it features a unique
Multi-Headed Attention (MHA) mechanism. MHA extracts features
at sequence dimension by modeling pairwise word interactions
through many attention heads (typically 12), which are backed by
three fully-connected (i.e. linear) layers, namely Query (Q), Key
(K), Value (V). Given an input, each attention head independently
contributes an attention score as one representation of the feature
space. Scores across attention heads are concatenated via a linear
output layer (O) and then projected into higher feature dimensions
by two linear layers in the point-wise Feed-Forward Network (FFN)
module.

Due to the large number of fully connected layers, a transformer
based model contains over 100 million parameters. As a result, a
typical pretrained model is of a few hundred MBs. For instance,
BERT [16] as one of the most popular model is over 400MB large.

Resource demands (1) Low latencies. Prior studies show that
users expect mobile devices to respond in several hundred millisec-
onds, and their satisfaction quickly drops as latency grows beyond
around 400ms [12]. (2) Large model parameters. The scale of NLP
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Figure 2: (Left) The BERT model comprising transformer
layers and (Right) the number of 32-bit floating point param-
eters within a layer [52].

parameters is unprecedented for on-device machine learning. Even
DistilBERT [45] optimized for mobile has nearly 200MB of parame-
ters, contrasting to popular vision models which are as small as a
few MBs [44, 66]. Such numerous parameters stress both memory
capacity and IO for loading them.

Besides parameters, model execution also allocates memory for
intermediate results. Yet, such data has short lifespans and does
entail loading from storage. Hence, it can be served with a relatively
small working buffer sufficient to hold a model tile (often a few
MBs); the size does not grow with the model size. We therefore do
not optimize for it.

2.2 Transformers Challenge Existing Paradigms
Existing paradigms are inadequate, as shown in Figure 1.

First, hold in memory. An app may keep model files lingering
in memory or even pin them; thus, the model can start execution
anytime without IO delays. For how long the app holds the model
depends on its prediction of future user engagements.

The major drawback is that an in-memory model will take hun-
dreds of MBs of memory, bloating an app’s memory footprint which
is often less than 100 MBs [30, 31]. When an app’s memory foot-
print is much larger than its peers, it becomes a highly likely victim
of mobile memory management, which aggressively kills memory-
hungry apps [30]. Once killed, the app has to reload the model for
the next engagement. Furthermore, precise prediction of user en-
gagement is difficult, as mobile apps often exhibit sporadic and ad
hoc usage [10, 46]. To exacerbate the problem, co-running apps may
invoke separate models for their respective tasks, e.g. for sentiment
analysis and for next-word prediction.

Second, load before execute. As the default approach by popular
ML frameworks [2, 4]: upon user engagement, the app sequentially
loads the model and executes it. As we measured on a modern
hexa-core Arm board (see Table 2), it takes 3.6 seconds to execute
DistilBERT, among which 3.1 seconds are for loading the whole 240
MB model file. Prior work observed similar symptoms of slow start
of model inference [61, 62].
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Third, pipelined load/execution. To hide IO delays, one may
leverage layerwise execution of ML models [28, 39] and overlap
the layer loading IO and execution [37, 62]. This approach is barely
effective for on-device NLP due to the high skewness between IO de-
lays and computation delays. As we measured, a layer in DistilBERT
requires 339 ms for parameter load while only 95 ms to compute.
The root causes are (1) low arithmetic intensity in Transformer’s
attention modules [41] and (2) mobile device’s efficiency-optimized
flash, which limits the rate of streaming parameters from storage
to memory. As a result, the pipeline is filled with bubbles and the
computation stalls most of the time at each model layer.
Section 7 will compare our system against these approaches.

2.3

For efficient NLP inference, a popular category of techniques is
model compression, including pruning networks (e.g. layers [45]
and attention heads [53]), reducing feature dimensions [48], and
sharing weights across layers [29]. A notable example is Distil-
BERT [45]: through distilling knowledge, it prunes half of BERT’s
layers, shrinking the model by 2x.

Still, model compression alone is inadequate. (1) While one may
compress a model to be sufficiently small (e.g. ~10MBs [42]) so
that the load delay or the memory footprint is no longer a con-
cern, the resultant accuracy is inferior, often unusable [50]. (2) The
execution pipeline’s bubbles still exist: compression often scales
model compute and parameters in tandem, without correcting the
computation/IO skewness. Hence, compute is still being wasted.
(3) Most compression schemes lack flexibility as needed to accom-
modate diverse mobile CPU, GPU, and IO speeds. They either fix a
compression ratio or require model re-training to adjust the ratios,
which must done by the cloud for each mobile device.

Section 7 will evaluate the impact of model compression.

Model Compression Is Inadequate

3 DESIGN OVERVIEW
3.1 The System Model

STI incarnates as a library linked to individual apps. For complete
NLP experience, we assume that the app incorporates other compo-
nents such as automatic speech recognition (ASR), word embedding,
and speech synthesis [18, 47, 54, 60]. As they often run much faster
than model execution and are orthogonal to STI, this paper does
not optimize for them.

STI loads and executes a model by layer: it loads one layer (com-
prising multiple shards) as a single IO job, decompresses all the
shards in memory, and computes with the layer as a single com-
pute job. IO and compute jobs of different layers can overlap. STI
does not use smaller grains (e.g. load/execute each shard) as they
leave the IO and GPU bandwidth underutilized, resulting in inferior
performance.

STI allocates two types of memory buffers.

o Preload buffer holds shards preloaded selectively. STI keeps the
buffer as long as the app is alive. STI can dynamically change the
buffer size as demanded by the app or the OS.
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Figure 3: System architecture of Speedy Transformer
Inference (STI) and workflow.

o Working buffer holds a layer’s worth of intermediate results and
uncompressed parameters. The buffer is temporary, allocated be-
fore each execution and freed afterward. The buffer size is largely
constant, not growing with the model size; it is not a focus of STL

3.2 The Operation

The STI architecture is shown in Figure 3. STI preprocesses a given
language model (e.g. DistilBERT finetuned for sentiment analysis):
decomposing the model into shards and profiling shard importance
(Section 5). As a one-time, per-model effort, the preprocessing is
expected to be done in the cloud prior to model deployment to
mobile devices; as preprocessing only requires lightweight model
transformation (as opposed to expensive re-training [33]), it can be
done on device as needed. The resultant model shards are stored
alongside apps.

STI profiles each device’s hardware once. The goal is to measure
IO and computation delays in executing a language model; the
profiling results serve as the basis for pipeline planning. To do so,
STI loads and executes a Transformer layer in different bitwidths.

As an app launches, STI is initialized as part of the app. The
app specifies which NLP model(s) it expects to execute, as well as
the corresponding target latencies Ts and preload buffer sizes |S|s.
Later, the app can update Ts and |S|s at any time. For each expected
model, STI plans a separate execution pipeline with separate preload
model shards. STI plans a pipeline once and executes it repeatedly.
Replanning is necessary only when a model’s T or [S| is changed
by the app or OS.

Upon user engagement, STI executes a pipeline for the requested
model. Since planning is already done beforehand, STI simply loads
and executes the shards that have been selected in planning.
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3.3 Example Execution Scenarios

One-shot execution In this scenario, a user engagement consists
of one turn, executing the model once. With preloaded shards, STI
executes the pipeline without stalling in bottom layers, which are
close to input. STI uses the working buffer during the execution
and frees it right after. Throughout the execution, the content of
preload buffer is unchanged.

A few back-to-back executions One engagement may com-
prise multiple executions (often no more than 3) [9]. The scenario
is similar to the above, except for the opportunity of caching al-
ready loaded shards between executions. To this end, the app may
request to enlarge the preload buffer so it selectively caches the
loaded shards. In subsequent executions, STI no longer reloads
these shards; its planner redistributes the freed IO bandwidth to
other shards (Section 5), loading their higher-fidelity versions for
better accuracy. After the series of executions, the app may choose
to keep the additional cached shards as permitted by the OS or
simply discard them.

3.4 Applicability

STI supports Transformer-based models [26, 33, 57]. This paper
focuses on classification tasks (BERT and its variants), which un-
derpin today’s on-device NLP. Although STT’s key ideas apply to
generative models such as GPT-2 [43], their wide adoption on mo-
bile (in lieu of template-based responses [36]) is yet to be seen; we
consider them as future work.

STI keeps a model’s execution time under a target latency T.
However, it alone is insufficient to keep the total wall-clock time
under T. Such a guarantee would require additional OS support, e.g.
real-time scheduling. STT lays the foundation for such a guarantee.

STI expects a small preload buffer. It can, however, work without
such a buffer (i.e. “cold start” every time), for which its elastic
sharding and pipeline still offer significant benefits as we will show
in Section 7.

On future hardware/workloads, we expect STI’s benefit to be
more pronounced: mobile compute continues to scale (due to ad-
vances in technology nodes and accelerators); users expect results
in higher accuracy; NLP models are becoming larger. All these
lead to higher computation/IO skewness, necessitating an elastic
pipeline of loading and execution.

4 ELASTIC MODEL SHARDING
4.1 Key Challenges

We solve a key challenge: how to partition the model into indi-
vidual shards? Set to enable the resource elasticity of a model (i.e.
depths/widths/fidelity), the shards must meet the following criteria:
o Elastic execution. Shards must preserve the same expressiveness
of the attention mechanism and can execute partially to produce
meaningful results.

o Tunable IO. The 10 delays of shards must be tunable to accom-
modate I0/compute capability of different hardware (e.g. due to
diverse CPU/GPUs and DVFS).
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4.2 Instantiating Model Shards on Disk

To address the challenges, our key idea is to combine two machine
learning techniques — dynamic transformer [26, 57] and dictionary-
based quantization [23], in a novel way. We next describe details.

First, vertical partitioning per layer The system adopts a pre-
trained transformer model, which has already been fine-tuned on a
downstream task.

For each of the N layers, the system partitions it into M vertical
slices, as shown in Figure 4 ((1)). By construction, each vertical
slice is independent, constituting one attention head plus 1/M of
FFN neurons of the layer; the partitioning is inspired by dynamic
transformers [26, 57]. Table 1 shows the weight compositions of a
vertical slice. Each cell of the table describes the dimension of the
weight matrix, where d is the hidden state size, M is the number of
attention heads, and drr is the number of FFN neurons; a shard is
therefore one of the M equal slices of a layer. Doing so warrants
model shards the same capability to extract linguistic features from
inputs, as done by the attention mechanism: of an individual shard,
its attention head obtains one independent representation of input
tokens, which is projected into a higher feature dimension by FFN
neurons [13, 53]; jointly, multiple shards attend to information
from different representation subspace at different positions [52].
Therefore, an arbitrary subset of shards of a layer can be executed
and still give meaningful results.

STI uses the submodel to describe the transformer model on
shards, e.g. a n X m submodel comprises n layers, each layer having
m shards. The number m is the same across all layers, as mandated
by the transformer architecture [52], which specifies each layer
must have the same width (i.e. number of shards m) for aligning
input/output features between layers. Although it is possible for a
shard to use 0s as dummy weights, STI expects all m shards to have
concrete weights for a good accuracy.

Second, quantization per shard The system compresses each
of the N X M shards into K bitwidths versions (e.g. K = 2...6).
STT is the first to bring quantization to shard granularity, whereas
prior work only explores layer granularity [17, 21, 58]. Doing so
reduces I0/compute skewness and facilitates elastic IO, allowing
STI to prioritize IO resources at a much finer granularity, e.g. by
allocating higher bitwidths to more important shards, and catering
to IO0/compute capability of diverse devices.
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Table 1: The weight composition of a shard. M is number of
attention heads. The M shards equally slices a transformer
layer, where each shard of the layer can be uniquely identi-
fied by its vertical slice indexi=0... M — 1.

Attn (QKV,0) | FEN1 | FFN2
Transformer Layer dxd depxd | dXdsr
Shard (vertical slice) d x A%I dfwf xd | dx d]&—f

To compress, STI uses Gaussian outlier-aware quantization [64].
The key idea is to represent the vast majority of weights (e.g. 99.9%)
which follow a Gaussin distribution using 2k floating point numbers
(i.e. centroids); doing so compresses the original 32-bit weights into
k-bit indexes pointing to centroids, thus reducing the parameter size
by % For the very few outliers (e.g. 0.1%) which do not follow the
Gaussian distribution, it preserves their weights as-is. The process is
shown in Figure 4 ((2)). We will further describe the implementation
details in Section 6.

We choose it for two main reasons. 1) It provides good compati-
bility between shards of different bitwidths, allowing STI to tune
their bitwidth individually per their importance and to assemble a
mixed-bitwidth submodel. This is due to its lossy compression na-
ture — shards still preserve the original distribution of layer weights,
albeit in different fidelities. Hence they can work with each other
seamlessly. 2) It does not need to fine-tune a model or require ad-
ditional hardware support. The quantization analyzes the weight
distribution of the pretrained model and is not specific to network
structures; it hence does not require fine-tuning, as opposed to fixed-
point quantization [42, 65]. The resultant mixed-bitwidth submodel
also differs from a traditional mixed-precision network [17, 21, 58],
which requires DSP extensions for executing integer operations
efficiently; the extensions are often exclusive to microcontrollers
on ARM devices, e.g. Cortex-M4 [35].

Quantized shards are not meant to be used as-is. Prior to use, STI
must decompress them, which is a mirror process of compression.
STI does so by substituting dictionary indexes with floating point
centroids and outliers. Therefore model shards quantization reduces
IO but not computation (FLOPs) as the inference still executes on
floating point numbers.

Third, storing shards per version STI stores each shard of ev-
ery bitwidth on disk, in total N X M X K shards (e.g. N=M=12,
K=2...6,32, where 32 is the uncompressed, full fidelity). Each shard
contains a weight matrix of the same dimensions listed in Table 1.
Instead of original FP32 weights, the weight matrix now stores K-
bit indexes, which reduces its file size by 32/Kx. Additional to the
weight matrix, it stores centroids and outliers as dictionaries to look
up during decompression, as illustrated by Figure 4 ((3)). To load,
it refers to individual on-disk shards by their original layer/vertical
slice indexes and bitwidths.

5 PIPELINE PLANNING
5.1 Overview

Planning goals Towards maximizing the accuracy under a target
latency T, STI plans for two goals:
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o First, minimize pipeline bubbles. STI attempts to utilize both IO
and computation as much as possible: by keeping IO always busy,
it loads higher-bitwidth shards to improve submodel fidelity; by
maxing out computation (FLOPs), it drives the inference towards a
higher accuracy.

o Second, prioritize bitwidths on important shards. As transformer
parameters exhibit clear redundancy, STI allocates IO bandwidths
with respect to shard importance, i.e. a shard is more important if
it contributes more significantly to accuracy when being executed
in higher bitwidths.

Two-stage planning Towards the goals, STI conducts a two-stage
planning: 1) Compute planning. Based on measured computation
delay of a layer, it proposes the largest submodel R’ bound by T,
which has the maximum FLOPs. 2) IO planning. It first assigns an
accumulated IO budget (AIB) to each layer of the submodel R’ for
tracking layerwise IO resources. To allocate and saturate the IO
resources, STI attempts to consume each layer’s AIB. Starting from
most important shards, STI assigns them a higher bitwidth, e.g.
6-bit; it does so iteratively for less important shards, until no AIB
is left for each layer. We next describe details.

5.2 Prerequisite: Offline Profiling

The following measurements are done ahead of time, off the infer-
ence execution path.

Hardware capability STI measures the following hardware capa-
bilities of a mobile device at installation time.

e 10 delay T;o (k) as a function of bitwidth k. STI measures the
average disk access delay for loading one shard in k bitwidth, where
k = 2...6,32.1t only has to measure one shard per bitwidth because
all others have same amount of parameters.

o Computation delay Teomyp (I, m, freq) as a function of [, the input
sentence length, m, the number of shards per layer (e.g. m = 3...12),
and freq as the current operating frequency of CPU/GPU. It fixes [
to be commonly used input lengths after padding (e.g. [ = 128). It
does a dry run for each (I, m, freq) tuple on one transformer layer. It
measures the average execution delay as the decompression delay
of m shards in 6-bitwidth and the execution delay of the transformer
layer composed by the m shards. Although the decompression delay
is strictly dependent on the shard bitwidth, the delay differences
between individual bitwidths are negligible in practice, e.g. < 1ms;
measuring 6-bitwidth shards further bounds the decompression
delays, ensuring STI always stays under the target latency.

The delays can be recorded offline and replayed at run time
because they are data-independent [22, 40] and are shown deter-
ministic [59], w.r.t. the parameters k, [, m, and freq.

Shard importance Intuitively, important shards have greater im-
pacts on accuracy. Formally, STI deems a shard more important
than another if the shard increases the model accuracy more signif-
icantly as they have higher fidelities. Specifically, STI profiles shard
importance as follows. It first sets the full 12x12 model (i.e. with 144
shards) to the lowest bitwidth (i.e. 2-bit), enumerates through each
shard, and increases the shard bitwidth to the highest (i.e. 32-bit);
for each enumeration, it runs the resultant model on a dev set and
profiles its accuracy. The profiling therefore produces a table (e.g.
with 12 X 12 = 144 entries), whose each entry records the model
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Figure 5: Example shard profiles on SST-2 and RTE show
distinct importance distribution. Each cell at (x, y) marks a
shard; the lighter its color is, the more important the shard is
(i.e. the higher accuracy during profiling). Y-axis: transformer
layer index, X-axis: vertical slice index.

accuracy when the individual shard is at the highest bitwidth while
all others are at the lowest bitwidth. STI then sorts the table by
model accuracy and obtains the list of ranked shard importance.

Notably, the profiling needs to be done for individual fine-tuned
models, which have different weight distributions. Figure 5a and 5b
shows the example of profiling results for models used in SST-2
and RTE respectively. As can be seen, shards of different models
exemplify dissimilar importance distributions. For instance, impor-
tant shards distribute more evenly throughout the layers of SST-2
model yet they are much more concentrated on bottom layers (i.e.
layer 0-5) of RTE model.

5.3 Compute Planning

Given a target latency T, STI proposes a submodel sized by n X m
for the incoming inference, which maximizes FLOPs.

Key ideas In searching for the submodel size, STI follows two
principles: 1) whenever possible, it always picks the submodel with
most number of shards, i.e. n X m is maximized; 2) when two candi-
date submodels have similar number of shards, it prefers the deeper
one, i.e. the candidate with a larger n. As the transformer attention
heads within the same layer are known to be redundant [38], it is
wiser to incorporate more layers.

To infer (n, m), STI enumerates through all possible pairs using
the profiled Teomp (I, m, freq); the enumeration process has a con-
stant complexity and is efficient. Since all inputs can be padded to
a constant length (e.g. I = 128), and freq is often at peak during
active inference, STI only needs to enumerate in total 144 pairs in
practice. For each T, the enumeration therefore deterministically
gives a submodel of (n X m) which is both largest and deepest.

5.4 10 Planning

In this stage, STI selects the bitwidths for individual shards of the
(n x m) submodel. Without stalling the pipeline, it seeks those that
maximize accuracy.

5.4.1 Problem Formulation. Given the deadline T, n X m submodel
R determined by compute planning, and the preload buffer S, STI
plans for a shard configuration S’ to load during computation, s.t.
1) loading S” does not stall the pipeline, and 2) R = § + §” achieves
maximum accuracy.
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5.4.2  Accumulated 10 Budgets. To ensure the planning S’ does not
stall the pipline, STI uses Accumulated IO Budgets (AIBs) to track
fine-grained, per-layer available IO bandwidth.

Key ideas To quantify AIBs, our observation is that the pipeline
does not stall iff before executing one layer, all shards of the cur-
rent and prior layers are already loaded. We hence define AIBs as
follows:

DEFINITION (AccUMULATED IO BupGeTs). The AIB(k) of kth
layer is the available IO time the layer can leverage to load all shards
from0 ...k layers, written as AIB(k) = AIB(k — 1) + Teomp (k — 1),
where Teomp (k — 1) is the computation delay of the (k — 1)tk layer.

The recursive definition (i.e. hence accumulated) encodes the data
dependency between pipeline layers: each layer crucially depends
on previous layers’ available IO budgets and computation delays
for overlapping the loading of its own shards. As of the very first
layer, its AIB is set as the IO delay to fill the preload buffer S,
considered as “bonus IO”. For instance, the AIB of the second layer
is the AIB plus the computation delay of the first layer, i.e. AIB(1) =
AIB(0) +Teomp (0). With the above definition, STI checks AIBs of all
layers: as long as they are non-negative, STI knows each layer still
has IO time remaining and the pipeline does not stall, and deems
the planning valid.

How to use Upon each planning, STI initializes AIBs for all lay-
ers as follows. It first sets AIB(0) to be the IO delay to fill the
preload buffer as described before. Next, STI sets subsequent AIBs
recursively using the above definition, e.g. AIB(1) = AIB(0) +
Teomp, AIB(2) = AIB(0) +2 X Teomp, AIB(3) = AIB(0) + 3 X Teomp.
Note that since layers have an identical structure, STI uses a con-
stant Teomp across all layers.

When STI selects a shard at k-th layer, it deducts the shard IO
from AIBs of k-th as well as all subsequent layers. This is because
loading such shards only affect yet-to-be-executed layers but not
the already executed ones. At the end of selection, STI checks all
AlBs to see if they are non-negative. If so, STI deems the planning
S’ valid, otherwise rejects it.

Submodel (2 x 3)

(from lanning) T_IO table C
Bits(b) 2 3 4 5 6 2 2
T_I0(b) 0.2s 03s 0.4s 0.5s 0.6s 5 2 4
4 i i Invalid
oretond bufrer LS (10 planning decides) ] o
“bonus 10” |(2bit Comp.L0_ [ Comp. L1
-0.6s Os T_comp 1s { T=2s
" AIB(0) = 0.65
2 > AlB(1) = 1.65

AIB propagation

Figure 6: A mini example of AIB tracking the layerwise 10
budgets.

Example Figure 6 shows a mini example of using AIBs to check
the validity of S, where it plans for a 2x3 submodel, targeting a 2s
deadline with Teomp = 1s. The engine initializes AIBs recursively
from L0, whose AIB(0) = 0.6s due to the three 2-bit shards in S.
To plan, the engine first fills $” with S, deducting 0.6s from both
AIB(0) and AIB(1) because all shards in S are in LO0. Since only
L1 has spare AIB, the engine can only select shards for it. We
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show three execution plan candidates A, B, and C. In this case,
both candidates A and B are valid because their AIBs are non-
negative, meaning loading them does not stall computation L1. Yet,
C is invalid, because AIB(1) = —0.1s, violating the constraint and
stalling the pipeline.

5.4.3 Selecting Optimal Shard Versions. For each T, there exist an
enormous number of execution plans. The goal is to select an opti-
mal configuration $’, which 1) is valid, and 2) maximizes accuracy.
For instance, both A and B in Figure 6 are valid, but which has the
maximum accuracy?

Key idea To ensure validity, STI respects the key invariant
AIB(k) > 0 for each allocation attempt on layer k. To maximize
accuracy, our key idea is to first uniformly increase bitwidths for all
shards, then with the rest AIBs it greedily and iteratively allocates
highest possible bitwidths to individual shards guided by shard
importance. By doing so, we build an information passageway for
most important shards, allowing their maximum activations to be
preserved in as high fidelity as possible.

The allocation process comprises two passes as follows. In the
first pass, STI picks a uniform bitwidth for all unallocated shards in
the submodel, i.e. those not in preload buffer. To do so, it enumerates
from lowest bitwidth (i.e. 2-bit) and selects the highest bitwidths
while AIBs still satisfy the invariant. Notably, it fills a submodel
layer with the shards from the same original layer and does not mix
up shards across layers, due to quantization preserves intra-layer
weight distribution (§4.2). If AIBs cannot even support 2-bit shards,
e.g. due to T and/or preload buffer S too small, STI still selects them
as they are necessary for execution but aborts further allocation. In
the second pass, STl iteratively upgrades the bitwidths of individual
shards to full 32 bitwidth guided by the shard importance profiled
in §5.2, until all AIBs are consumed.

The allocation result is an optimal execution plan which instan-
tiates the submodel with individual shard configurations, and is
ready to be executed by the I0/compute pipeline.

5.5 Submodel Execution

STI executes the plan (i.e. the n X m submodel with selected shards)
in a layerwise, pipelined manner from layer 0 to layer n-1. While
conceptually it is possible to pipeline shard computation within the
same layer, STI does not do so due to limited benefits — within a
layer there exists data dependency between the FFNs and attention
module.

STI executes both IO and computation as fast as possible; it
does not reorder the loading of individual shards in order to meet
data dependency between execution, because by design AIBs have
already ensured so. To compute, STT decompresses the shards into
the working buffer using the dictionaries stored along with them;
the working buffer is enough to hold one layer of FP32 weights and
shared by all layers during their ongoing execution. After execution,
STI evicts loaded shards from top to bottom layers until preload
buffer is filled. It does so because shards at bottom layers (i.e. closer
to input) are needed early during inference. Preserving as many of
them as possible avoids compulsory pipeline stalls in early stages.
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Table 2: Platforms in evaluation. Benchmarks run on
Odroid’s CPU (its GPU lacks Pytorch support) and Jetson’s
GPU.

Platform CPU GPU Mem.
. 4x Cortex-A73 + .

Odroid-N2+ 2% Cortex-A53 Mali-G52 4GB

Jetson Nano 4 Cortex-As7 ~ vidia Maxwell w/ o

128 CUDA cores

6 IMPLEMENTATION

We implement STI in 1K SLOC (Python: 800, C: 200) based on
PyTorch v1.11 [3] and sklearn v0.23.2 [5], atop two commodity
SoCs listed in Table 2.

We preprocess the pretrained DynaBERT [26] models. We choose
them because they are easily accessible and well documented. We
preprocess the model as follows. To quantize a model into k bitwidth,
we first partition the model by layers and gathers all weights of
the layer into a large flat 1D array. We then fit the 1D array into
a Gaussian distribution using GaussianMixture with one mixture
component from sklearn.mixture for detecting outliers. Based on
the fitted distribution, we calculate the log likelihood of each sam-
ple in the 1D weight array. Following [64] we also use -4 as the
threshold - if the weight’s log likelihood is below the threshold, we
deem it as an outlier and records its array index; in our experiments,
a model only has 0.14-0.17% outliers, which are an extremely small
portion. For non-outliers which are the vast majority, we sort them
based on their values and divided them into 2¥ clusters with equal
population. We calculate the arithmetic mean of each cluster as one
centroid for representing all weights of the cluster. With such, we
extract shards from the layer based on their weight composition
in Table 1 and massively substitutes their weights with k-bit in-
dexes to centroids; for bit alignment, we represent outliers also as
k-bit integers but bookkeep their original weights and offsets in the
shard. We repeat the process for each layer and for each k = 2...6,
which takes a few minutes per bitwidth. We co-locate disk blocks
of shards from the same layer for access locality. To measure shard
importance, we use dev set from the respective GLUE benchmark
on which the model is fine-tuned.

Implementing the layerwise pipeline is straightforward, by in-
tercepting the forwarding function at each BERT layer and using
asynchronous IO for loading shards. Yet, we have discovered Python
has a poor support for controlling concurrency at fine granularity
(e.g. via low-level thread abstraction), which introduces artificial
delays to shard decompression. Therefore we implement the decom-
pression in separate 200 SLOC of C code using OpenMP [14], which
concurrently substitutes the low-bit integers back to FP32 centroids
using all available cores of our SoCs; we expect the decompression
to be further accelerated with GPU, but leave it as future work.

For miscellaneous parameters of a layer which are not part of
shards, i.e. layer normalization (layernorm) and biases, we keep
them in memory in full fidelity because their sizes are small, e.g.
tens of KB per layer.
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Table 3: GLUE benchmarks [55] used in evaluation.

Benchmark Category Task Metrics Domain
SST-2 Single-sentence Sentiment  Acc. Movie rev.
RTE Inference NLI Acc. News, Wiki.
QNLI Inference QA/NLI Acc. Wiki.

QQP Similarity/paraphrase Paraphrase Acc./F1  Social QA

Table 4: Baselines for evaluation and their positions in the
design space.

Load on demand Hold in memory

|
PreloadModel-X

DistilBERT Load&Exe StdPL-X Ours
Preload? N N N Selected shards Whole model
Sharding? N Y Y Y Y
10 & compute Inseq Inseq Pipeline Pipeline Comp only
Quantization? N N X bits Per-shard bitwidths X bits

7 EVALUATION

We answer the following questions:
(1) Can STI achieve competitive accuracy under time and memory
constraints? (§7.2)

(2) How much do STT’s key designs contribute to its performance?
(§7.3)

(3) How do STT’s benefits change with available time and memory?

(§7.4)

7.1 Methodology

Setup and metrics Table 2 summarizes our test platforms, which
are commodity SoCs. We choose them to evaluate STI on both CPU
and GPU. Based on user satisfaction of NLP inference delays on
mobile devices [12], we set T=150, 200, and 400ms. Prior work re-
ported that beyond 400ms user satisfaction greatly drops [12]. With
T under 100ms, all comparisons including STI show low accuracy —
there is not enough compute bandwidth. This is a limit in our test
hardware, which shall mitigate on faster CPU/GPU.

Table 3 summarizes our benchmarks and metrics. We diversify
them to include each category of GLUE benchmarks [55], which
span a broad range of NLP use cases on mobile devices.

Comparisons We consider two NLP models. (1) DistilBERT [45],
the outcome of knowledge distillation from BERT. Due to its high
popularity on mobile, we use its accuracy as our references and call
it gold accuracy. Yet, DistilBERT has fixed depths/widths (6 layers
x 12 heads) and thus cannot adapt to different target latencies. (2)
DynaBERT [26], which is derived from BERT (12 layers x 12 heads),
allowing execution of a submodel to meet the target latency.
Based on DynaBERT, we design the following competitive base-
lines as summarized in Table 4.
o Load&Exec: It loads model as a whole and executes it. It chooses
the best submodel so the sum of IO and execution delays is closest
to the target latency, using the algorithm described in Section 5.3.
Model parameters are not quantized (32 bits).
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o Standard pipelining (StdPL-X): It executes a layerwise pipeline,
overlapping IO and computation. It chooses the best submodel so
that the total pipeline delay stays under the target latency. We
further augment it with quantization. All parameters in a model
have the same bitwidth X.

o PreloadModel-X: The whole model is already in memory and
no IO is required. It chooses the best submodel so that the total
computation delay stays under the target latency. We augment it
with quantization; all parameters have the same bitwidth X.

We choose X=6 as the highest quantization bitwidth, as further
increasing the bitwidth has little accuracy improvement.

7.2 End-to-End Results

STI achieves comparable accuracies to gold under target latencies
(T) of a few hundred ms. Across all benchmarks and latencies, STI
accuracy is on average 7.1 percentage point (pp) higher than that
of baselines, which is significant.

Compared to preloading the whole model, STI reduces memory
consumption by 1-2 orders of magnitude while seeing 0.16 pp higher
accuracy averaged across all latencies and benchmarks; compared
to loading the model on demand, STI improves the accuracy by 14
pp at the cost of preload memory of no more than 5 MBs.

Figure 7 zooms in accuracy/memory tradeoffs under T = 200ms
of SST and QQP benchmarks. Note that we use log scale in X-axis
(memory consumption) due to its large span. STI uses 204X lower
memory than PreloadModel-full while having less than 1% average
accuracy loss. Even when compared with the quantized version
(i.e. PreloadModel-6bit), STI uses on average 41X smaller memory
to achieve the same accuracy.

Accuracy STI's accuracy matches those of DistilBERT. Given a tar-
get latency T, STI achieves consistent and significant accuracy gain
over baselines. Table 5 shows the full view. On Odroid, STI (Ours)
increases average accuracy by 21.05/21.05/17.13/5.83 pp compared
with Load&Exec/ StdPL-full/ StdPL-2bit/ StdPL-6bit, respectively. On
Jetson, STI increases average accuracy by 18.77/18.77/6.53/3.15
pp compared with Load&Exec/StdPL-full/ StdPL-2bit/StdPL-6bit, re-
spectively. Notably, STI’s benefit is game-changing compared with
Load&Exec and StdPL-full. They are barely usable under low latency
(T<200ms).

Memory consumptions Compared with preloading the whole
model, STI reduces memory consumption significantly and consis-
tently, by 122X on average. This is because the PrelodModel base-
lines hold the whole 12x12 model in memory. By comparison, STI
only needs preload memory of 1MB/5MB on Odroid and Jetson
respectively, which is sufficient to hold shards of the first model
layer and warms up the pipeline execution.

Storage & energy overhead For a model, STI only requires 215 MB
disk space to store five fidelity versions of {2,3,4,5,6} bits, in addition
to the full model (in 32 bits) of 418 MB. This storage overhead is
minor given that today’s smartphone has tens or hundreds GB of
storage.

For a given latency, we expect STI to consume notably more
energy than low-accuracy baselines (e.g. Load&Exec, StdPL-full),
as STI has higher resource utilization to achieve higher accu-
racy. Compared to similar-accuracy, high-memory baselines (i.e.
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Figure 7: STI’s accuracy is significantly higher than
Load&Exec and StdPL, and is similar/higher compared to
PreloadModel albeit using 1-2 orders of magnitude smaller
memory. T=200ms. Full data and benchmarks in Table 5.

PreloadModel-full), we expect STI to consume moderately but not
significantly more energy. First, the major energy consumer is ac-
tive compute (FLOPs); similar accuracies indicate similar FLOPs.
Second, although STT adds IO activities, the contribution to the
system power is marginal because the whole SoC is already in high
power states.

7.3 Significance of Key Designs

Submodel configuration Within a given latency, the result accu-
racy hinges on total FLOPs executed, which depends on the size of
executed submodel. Our results show that STI dynamically adjusts
submodel sizes towards the maximum FLOPs. Table 6 shows the
details. Estimated by comparing submodel sizes: our FLOPs is as
high as that of PreloadModel, which however consumes 1-2 orders
of magnitude more memory; our FLOPs is 7X higher compared with
Load&Exec and StdPL-full, for which the IO blocks computation
most of the time; our FLOPs is 1.3x higher than that of StdPL-2/6bit,
two strong baselines that increase FLOPs through I0/compute par-
allelism and quantization as us; at lower T (e.g. T < 200ms), their IO
delays of loading the first layer may block computation, resulting
in a smaller model. Figure 8 shows such an example. Thanks to
a small preload buffer, our executed submodel has 1.25x higher
FLOPs (i.e. it has one extra layer), which leads to 9.2 percentage
point (pp) higher accuracy.

Table 6 also shows that our system adjusts submodels accord-
ing to platform hardware. Specifically, our system assembles shal-
low/wide submodels on Jetson (GPU) as opposed to deeper/nar-
rower submodels on Odroid (CPU). The reason is GPU’s lack of
proportionality on Transformer shards, e.g. executing a layer of
12 shards is only 0.7% longer than a layer of 3 shards. The root
cause is that GPU is optimized for batch workload; it pays a fixed,
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Table 5: Model execution accuracies; given target latencies, ours are the best or the closest to the best. [S|: preload buffer size.
Gold accuracy from DistilBERT [45], which exceed all target latencies. End-to-end DistilBERT execution delays: 3.7s on Odroid,
of which 10=3.1s; 3.36s on Jetson, of which 10=3.0s.

Benchmark (Gold accu.)  SST-2 (91.3) RTE (59.9) QNLI (89.2) QQP (88.5) SST-2 (91.3) RTE (59.9) QNLI (89.2) QQP (88.5)

Target latency (ms) 150 200 400 | 150 200 400 | 150 200 400 [150 200 400 150 200 400 [ 150 200 400 [ 150 200 400 [ 150 200 400
Load&Exec 50.9 50.9 78.847.3 47.3 47.7|44.8 448 594|454 459 42.9 512 52.9 73.1|47.2 472 48.0|51.6 53.1 50.5[36.9 31.5 315
StdPL-full 509 509 78.8(47.3 47.3 47.7(448 447 594|454 459 429 512 529 73.1|47.2 472 48.0|51.6 53.1 50.5[36.9 31.5 315
StdPL-2bit 747 67.8 89.3(469 47.3 516(51.2 506 53 |33.9 316 552 681 77.2 85.7|47.6 50.1 48.0|51.9 51.1 624542 51.3 74.0
StdPL-6bit 788 78 92 |47.3 47.7 67.5|59.3 541 889416 447 82 60.2 78.0 90.7|46.5 50.5 58.4|53.1 57.6 81.8|58.3 44.1 829
Preload-full |S|:320MB ~ 78.8 87.2 92 |47.7 52.3 682|594 727 88.8|42.9 812 88.1 658 815 91.5(46.9 516 624[535 548 864 (58.1 61.8 858
Preload-6bit [S|: 60 MB  78.8 87.2 92 |47.3 527 67.5|59.3 69.7 88.9|41.6 807 882 66.1 822 915|454 494 638|535 549 86.1(57.6 602 854
Ours-OMB |S|:0MB  78.8 87.2 91.9|47.3 52.7 67.9[56.3 71.0 88.8]|39.4 80.7 882 659 816 91.6|46.9 519 63.1|53.6 54.6 86.2[57.3 61.5 854
Ours [S|:(a)IMB (b)5MB  78.8 87.2 92 |477 527 682| 60 712 89 [424 813 882 659 816 916|469 51.9 620|536 546 86.4|58.3 61.5 856

(a) Odroid (b) Jetson

Table 6: Sizes (depthxwidth) of submodels selected under dif-
ferent target latencies. A large submodel means more FLOPs
executed, suggesting a higher accuracy. STI is able to run the
largest submodel.

Table 7: Model accuracies resultant from allocating addi-
tional IO budget within a 5x3 submodel of 2-bit shards. Our
method shows much higher accuracies than random shard
selection.

Platform Odroid (CPU) Jetson (GPU)
Latency (ms) 150 200 400|150 200 400
Compute | Load&Exec 1x4 1x5 3x3 | 2x1 3x1 5x1
underutilized || StaPL-full x4 1x5 3x3|2x1 3x1 5x1
[ StdPL-2bit 3x3 4x3 10x3|2x12 3x12 7x12
10 StdPL-6bit 3x3 4x3 10x3| 2x8 3x7 7x3
underutilized| Preload-full 3x3 5x3 10x3|2x12 3x12 7x12
L Preload-6bit 3x3 5x3 10x3|2x12 3x12 7x12
Compute &10  Org 3x3 5x3 10x3|2x12 3x12 7x12
well utilized
Preloaded (1MB)
ebit| 6 | 6 | 6 :6!632632
6 6 6 6 : 6 !6 32 | 6 6
6 6 6 6 : 6 ' 6 6 6 | 32
Layer0 Layer3 'L-t;y-e-rt-) Layer4
(a) StdPL-6bit (b) Ours

Figure 8: A comparison between submodels executed by Ours
and StdPL-6bit. Benchmark: SST-2 on Odroid. T=200ms. Ours
runs a larger submodel and higher FLOPs, resulting in 9.2 pp
higher accuracy.

significant cost even in executing a fraction of a transformer layer
and for one input example, which is the case of interactive NLP.

Elastic pipelining STT’s per-shard bitwidths contribute to its ac-
curacy significantly. By contrast, one fixed bitwidth for all shards
in a model is too rigid, resulting in pipeline bubbles. With a full
bitwidth of 32 bits (StdPL-full), IO takes long and stalls the com-
putation (19.9 pp lower accuracy than STI); with a lower bitwidth

Benchmark SST-2 RTE QNLI QaQP

10 budget (VB) | 0.4 2.0 40|04 2.0 40|04 20 40]|04 2.0 4.0
Random 79.5 79.8 81.8(48.0 48.0 51.3|51.1 51.1 52.8(39.2 40.2 59.8
Ours 81.2 83.8 85.8]|50.2 54.5 54.5|53.3 60.3 62.2|56.3 63.3 75.5

(StdPL-{2,6}bit), 10 bandwidth is left underutilized (8.2 pp lower
accuracy than STI). Any fixed bitwidth between 6 and 32 bits does
not help either (Section 7.1). Unlike them, STI well utilizes both
compute and IO through its two-stage planning (§5).

Preload buffers show a clear benefit as shown in Table 5. By
using a small preload buffer of a few MBs, STI achieves a noticeable
and consistent accuracy gain compared to not using the preload
buffer (Ours-0MB). The benefit is most pronounced on QNLI and
QQP among the benchmarks, increasing accuracy by up to 3.7
percent point (Odroid). Section 7.4 will present a sensitivity analysis
regarding its size.
Shard importance STI allocates its IO budgets to the most impor-
tant shards. The accuracy benefit is most pronounced in a small/me-
dian submodel where most shards have low to medium bitwidths.
Case study. We demonstrate the efficacy through a differential
analysis. Table 7 shows an intermediate state of planning: a 5x3
submodel comprising all 2-bit shards. Now the planner is awarded
additional IO budgets, e.g. from enlargement of the preload buffer,
with which the planner will increase some shards’ bitwidths to 6
bits. We compare two strategies: (1) randomly pick shards; (2) pick
shards in their importance order (as in STI). Despite the same IO
budget is spent, STI shows higher accuracy by up to 23.1 percent
point (8.19 percent point on average) across all benchmarks.

7.4 Sensitivity Analysis
We examine how STI’s benefit changes as resource amounts.

Target latencies A more relaxed target latency allows STI to de-
liver more FLOPs and execute a deeper submodel, suggesting a
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higher accuracy. Yet, an NLP model’s accuracy sees diminishing re-
turn as its depth continues to grow, as shown in prior work [19, 26];
as a result, STI’s benefit diminishes as the target latency is fur-
ther relaxed. Specifically, on Odroid (CPU) STI has most significant
advantage over baselines (7.7 pp higher accuracy) when target la-
tencies are below 200 ms; in such cases, a feasible submodel has
fewer than 10 layers. On Jetson (GPU) STI has most significant
advantage when target latencies are below 400 ms and a feasible
submodel has fewer than 7 layers. When the target latency grows
beyond such ranges, STI’s benefits gradually reduce.

Preload buffer size Its significance hinges on the relative speeds
of computation (which consumes model parameters) and IO (which
loads the parameters), because the buffer bridges the speed gap of
the two. When the computation is much faster than IO, an increase
in the buffer size will result in large accuracy gain, and vice versa.

On our platforms, STI shows a noticeable and consistent accuracy
gain over baselines by using a preload buffer of a few MBs. Since at
current preload buffer size STI has already reached best accuracy
(i.e. same as PreloadModel-full), further increasing the buffer size
does not boost the accuracy proportionally. We expect that with
faster compute (e.g. neural accelerators), the preload buffer takes in
a greater role. The reason is, when execution become faster and can
only overlap with loading of low-fidelity shards (e.g. 2 bits), a few
high-fidelity shards provided by preload buffer can significantly
boost the accuracy. Such a case is shown in Table 7, as preload
buffer sizes increase from 0.4 to 4.0 MB, the accuracy increase by

19.2 pp.
8 RELATED WORK

Our system is related to a wide range of ML and systems techniques.
We next discuss the similarities and differences.

Model compression is a common technique for reducing model
size (I0), facilitating faster loading; it includes model structure [19,
45] and feature pruning [48], and quantization which reduces full-
precisions (32bit) parameters into low-bit (e.g. 2bit) representa-
tions [7, 23, 42, 65]. We use quantization to compress the model;
differently, we scale compression ratios to runtime IO by instantiat-
ing multiple compressed versions. Automated quantization searches
for optimal bit-widths of a NN in the offline, often on a per layer ba-
sis [17, 34, 58]. HAQ [58] adopts the reinforcement learning to find
the best mixed precision for each layer, similar with our multiple
versions of shards. Compared with them, we do not need any fine-
tuning, which is time-consuming and we must make fine-grained
decisions (i.e. per-shard) at run time.

Dynamic configuration of DNNs changes model widths and/or
depths in order to suit resource constraints [19, 20, 26, 49, 57]. Edge-
BERT [49] improves NLP energy efficiency under target latencies
via early exit. NestDNN [20] hosts one multi-capacity model on
device and switches across submodels depending on available re-
sources. Assuming the whole model always held in memory, these
systems miss the opportunities of pipelined IO/compute and there-
fore incur high memory cost when applied to NLP. Similar to them,
we configure the NLP model architecture dynamically. Unlike them,
we address the challenge of loading large models through pipelin-
ing. Furthermore, our configuration is on the basis of individual
shards and adapts to both memory and latency constraints.
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Pipeline parallelism for ML Pipelining has been extensively
used to accelerate ML. Prior work mainly uses it to scale out ML
to multiple machines (overcome limit of single machine resource).
Notably for training, PP is used to partition a model or training data
over a cluster of machines [28] for maximizing hardware utilization
by minimizing pipeline stalls using micro/minibatches [39], exploit-
ing hardware heterogeneity [27], or by adapting pipeline depths
on the fly [24]. We share a similar goal of maximizing pipeline
utilization and minimizing bubbles. Unlike that they focus on a
pipeline of computations (forward/backward passes of different in-
puts) or network/computation, our pipeline consists of disk IO tasks
and computation. Our approach towards high efficiency is through
adjusting IO workloads of model shards to the computation.

9 CONCLUDING REMARKS

We present STI, a novel system for speedy transformer inference
on mobile devices. STI contributes two novel techniques: model
sharding and elastic pipeline planning with a preload buffer. The
former allows STI to tune model parameters at fine granularities in
a resource-elastic fashion. The latter facilitates STI for maximizing
10/compute utilization on most important parts of the model. With
them, STI reduces memory consumption by 1-2 orders of magnitude
while delivering high accuracies under a practical range of target
latencies.

ACKNOWLEDGMENT

The authors were supported in part by NSF awards #2128725,
#1919197, #2106893, and Virginia’s Commonwealth Cyber Initiative.
The authors thank the anonymous reviewers for their insightful
feedback.

REFERENCES

[1] 2022. Hugging Face:nlptown/bert-base-multilingual-uncased-sentiment. https:
//huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment. (Accessed
on 07/07/2022).

2022. PyTorch. https://pytorch.org/. (Accessed on 03/14/2022).

2022. PyTorch 1.11, TorchData, and functorch are now available | PyTorch.
https://pytorch.org/blog/pytorch-1.11-released/. (Accessed on 07/07/2022).
2022. TensorFlow. https://www.tensorflow.org/. (Accessed on 03/14/2022).
2022. Version 0.23.2 — scikit-learn 1.1.1 documentation. https://scikit-learn.org/
stable/whats_new/v0.23.html. (Accessed on 07/07/2022).

[6] Android. 2022. Android: Low Memory Killer Daemon.
source.android.com/devices/tech/perf/lmkd/.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu,
Michael R. Lyu, and Irwin King. 2021. BinaryBERT: Pushing the Limit of
BERT Quantization. In Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Pa-
pers), Virtual Event, August 1-6, 2021, Chengqing Zong, Fei Xia, Wenjie Li, and
Roberto Navigli (Eds.). Association for Computational Linguistics, 4334-4348.
https://doi.org/10.18653/v1/2021.acl-long.334

Kasturi Bhattacharjee, Miguel Ballesteros, Rishita Anubhai, Smaranda Muresan,
Jie Ma, Faisal Ladhak, and Yaser Al-Onaizan. 2020. To BERT or Not to BERT:
Comparing Task-specific and Task-agnostic Semi-Supervised Approaches for
Sequence Tagging. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computa-
tional Linguistics, 7927-7934. https://doi.org/10.18653/v1/2020.emnlp-main.636
Toine Bogers, Ammar Ali Abdelrahim Al-Basri, Claes Ostermann Rytlig, Mads
Emil Bak Mgller, Mette Juhl Rasmussen, Nikita Katrine Bates Michelsen, and
Sara Gerling Jorgensen. 2019. A Study of Usage and Usability of Intelligent
Personal Assistants in Denmark. In Information in Contemporary Society - 14th
International Conference, iConference 2019, Washington, DC, USA, March 31 - April
3, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11420), Natalie Greene

https://

—_
&

[


https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
https://pytorch.org/
https://pytorch.org/blog/pytorch-1.11-released/
https://www.tensorflow.org/
https://scikit-learn.org/stable/whats_new/v0.23.html
https://scikit-learn.org/stable/whats_new/v0.23.html
https://source.android.com/devices/tech/perf/lmkd/
https://source.android.com/devices/tech/perf/lmkd/
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2020.emnlp-main.636

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Taylor, Caitlin Christian-Lamb, Michelle H. Martin, and Bonnie A. Nardi (Eds.).
Springer, 79-90. https://doi.org/10.1007/978-3-030-15742-5_7

Juan Pablo Carrascal and Karen Church. 2015. An In-Situ Study of Mobile App
& Mobile Search Interactions. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI 2015, Seoul, Republic of Korea, April
18-23, 2015, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.). ACM,
2739-2748. https://doi.org/10.1145/2702123.2702486

Alejandro Cartas, Martin Kocour, Aravindh Raman, Ilias Leontiadis, Jordi
Luque, Nishanth Sastry, José Nufiez-Martinez, Diego Perino, and Carlos Se-
gura. 2019. A Reality Check on Inference at Mobile Networks Edge. In Pro-
ceedings of the 2nd International Workshop on Edge Systems, Analytics and Net-
working, EdgeSys@EuroSys 2019, Dresden, Germany, March 25, 2019. ACM, 54-59.
https://doi.org/10.1145/3301418.3313946

Xiantao Chen, Moli Zhou, Renzhen Wang, Yalin Pan, Jiagi Mi, Hui Tong, and
Daisong Guan. 2019. Evaluating Response Delay of Multimodal Interface in
Smart Device. In Design, User Experience, and Usability. Practice and Case Studies -
8th International Conference, DUXU 2019, Held as Part of the 21st HCI International
Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part IV
(Lecture Notes in Computer Science, Vol. 11586), Aaron Marcus and Wentao Wang
(Eds.). Springer, 408-419. https://doi.org/10.1007/978-3-030-23535-2_30

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019.
What Does BERT Look at? An Analysis of BERT’s Attention. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, BlackboxNLP@ACL 2019, Florence, Italy, August 1, 2019, Tal Linzen, Grze-
gorz Chrupala, Yonatan Belinkov, and Dieuwke Hupkes (Eds.). Association for
Computational Linguistics, 276-286. https://doi.org/10.18653/v1/W19-4828
Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. IEEE computational science and engineering 5,
1(1998), 46-55.

Allan de Barcelos Silva, Marcio Miguel Gomes, Cristiano André da Costa, Rodrigo
da Rosa Righi, Jorge Luis Victoria Barbosa, Gustavo Pessin, Geert De Doncker, and
Gustavo Federizzi. 2020. Intelligent Personal Assistants: A Systematic Literature
Review. 147 (2020), 113193. https://doi.org/10.1016/j.eswa.2020.113193

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171-4186. https://doi.org/10.18653/v1/n19-1423

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer.
2019. HAWQ: Hessian AWare Quantization of Neural Networks With Mixed-
Precision. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 293-302. https:
//doi.org/10.1109/ICCV.2019.00038

Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim M. Hazelwood, Asaf Cidon, and Sachin Katti. 2019. Bandana:
Using Non-Volatile Memory for Storing Deep Learning Models. In Proceedings
of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March
31 - April 2, 2019, Ameet Talwalkar, Virginia Smith, and Matei Zaharia (Eds.).
mlsys.org. https://proceedings.mlsys.org/book/277.pdf

Angela Fan, Edouard Grave, and Armand Joulin. 2020. Reducing Transformer
Depth on Demand with Structured Dropout. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=SylO2yStDr

Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-Aware Multi-
Tenant On-Device Deep Learning for Continuous Mobile Vision. In Proceedings
of the 24th Annual International Conference on Mobile Computing and Networking,
MobiCom 2018, New Delhi, India, October 29 - November 02, 2018, Rajeev Shorey,
Rohan Murty, Yingying (Jennifer) Chen, and Kyle Jamieson (Eds.). ACM, 115-127.
https://doi.org/10.1145/3241539.3241559

ChengYue Gong, Zixuan Jiang, Dilin Wang, Yibo Lin, Qiang Liu, and David Z.
Pan. 2019. Mixed Precision Neural Architecture Search for Energy Efficient
Deep Learning. In Proceedings of the International Conference on Computer-Aided
Design, ICCAD 2019, Westminster, CO, USA, November 4-7, 2019, David Z. Pan
(Ed.). ACM, 1-7. https://doi.org/10.1109/ICCAD45719.2019.8942147

Liwei Guo and Felix Xiaozhu Lin. 2022. Minimum viable device drivers for ARM
trustzone. In EuroSys "22: Seventeenth European Conference on Computer Systems,
Rennes, France, April 5 - 8, 2022, Yérom-David Bromberg, Anne-Marie Kermar-
rec, and Christos Kozyrakis (Eds.). ACM, 300-316. https://doi.org/10.1145/
3492321.3519565

Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio

and Yann LeCun (Eds.). ht;g;//arxiv.org/abs/lS10.00149
Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. 2021.

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-
scale Models. In Proceedings of the 38th International Conference on Machine

Liwei Guo, Wonkyo Choe, and Felix Xiaozhu Lin

Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Machine
Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 4150—
4159. http://proceedings.mlr.press/v139/he21a.html

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Mem-
ory. Neural Computation 9, 8 (1997), 1735-1780.  https://doi.org/10.1162/
neco.1997.9.8.1735

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. 2020.
DynaBERT: Dynamic BERT with Adaptive Width and Depth. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
6£5216f8d89b086¢18298e¢043bfe48ed- Abstract.html

Yang Hu, Connor Imes, Xuanang Zhao, Souvik Kundu, Peter A. Beerel, Stephen P.
Crago, and John Paul Walters. 2021. Pipeline Parallelism for Inference on Het-
erogeneous Edge Computing. CoRR abs/2110.14895 (2021). arXiv:2110.14895
https://arxiv.org/abs/2110.14895

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen,
Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and
Zhifeng Chen. 2019. GPipe: Efficient Training of Giant Neural Networks us-
ing Pipeline Parallelism. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett (Eds.). 103-112. https://proceedings.neurips.cc/paper/2019/hash/
093f65¢080a295f8076b1c5722a46aa2- Abstract.html

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised Learn-
ing of Language Representations. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net. https://openreview.net/forum?id=H1eA7AEtvS

Niel Lebeck, Arvind Krishnamurthy, Henry M. Levy, and Irene Zhang. 2020. End
the Senseless Killing: Improving Memory Management for Mobile Operating
Systems. In 2020 USENIX Annual Technical Conference, USENIX ATC 2020, July 15-
17, 2020, Ada Gavrilovska and Erez Zadok (Eds.). USENIX Association, 873-887.
https://www.usenix.org/conference/atc20/presentation/lebeck

Soyoon Lee and Hyokyung Bahn. 2021. Characterization of Android Memory
References and Implication to Hybrid Memory Management. IEEE Access 9 (2021),
60997-61009. https://doi.org/10.1109/ACCESS.2021.3074179

Huoran Li, Xuan Lu, Xuanzhe Liu, Tao Xie, Kaigui Bian, Felix Xiaozhu Lin,
Qiaozhu Mei, and Feng Feng. 2015. Characterizing Smartphone Usage Pat-
terns from Millions of Android Users. In Proceedings of the 2015 ACM Inter-
net Measurement Conference, IMC 2015, Tokyo, Japan, October 28-30, 2015, Ken-
jiro Cho, Kensuke Fukuda, Vivek S. Pai, and Neil Spring (Eds.). ACM, 459-472.
https://doi.org/10.1145/2815675.2815686

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).
arXiv:1907.11692 http://arxiv.org/abs/1907.11692

Zhenhua Liu, Xinfeng Zhang, Shanshe Wang, Siwei Ma, and Wen Gao. 2021.
Evolutionary Quantization of Neural Networks with Mixed-Precision. In IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021,
Toronto, ON, Canada, June 6-11, 2021. IEEE, 2785-2789. https://doi.org/10.1109/
ICASSP39728.2021.9413631

Thomas Lorenser. 2016. The DSP capabilities of arm cortex-m4 and cortex-m?7
processors. ARM White Paper 29 (2016).

Michael Frederick McTear, Zoraida Callejas, and David Griol. 2016. The conversa-
tional interface. Vol. 6. Springer.

Hongyu Miao and Felix Xiaozhu Lin. 2021. Enabling Large NNs on Tiny MCUs
with Swapping. CoRR abs/2101.08744 (2021). arXiv:2101.08744 https://arxiv.org/
abs/2101.08744

Paul Michel, Omer Levy, and Graham Neubig. 2019. Are Sixteen Heads Re-
ally Better than One?. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 14014-14024. https://proceedings.neurips.cc/paper/2019/hash/
2¢601ad9d2ff9bc8b282670cdd54f69f- Abstract.html

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville,
ON, Canada, October 27-30, 2019, Tim Brecht and Carey Williamson (Eds.). ACM,
1-15. https://doi.org/10.1145/3341301.3359646

Heejin Park and Felix Xiaozhu Lin. 2021. TinyStack: A Minimal GPU Stack for
Client ML. CoRR abs/2105.05085 (2021). arXiv:2105.05085 https://arxiv.org/abs/
2105.05085


https://doi.org/10.1007/978-3-030-15742-5_7
https://doi.org/10.1145/2702123.2702486
https://doi.org/10.1145/3301418.3313946
https://doi.org/10.1007/978-3-030-23535-2_30
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.1016/j.eswa.2020.113193
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/ICCV.2019.00038
https://doi.org/10.1109/ICCV.2019.00038
https://proceedings.mlsys.org/book/277.pdf
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1109/ICCAD45719.2019.8942147
https://doi.org/10.1145/3492321.3519565
https://doi.org/10.1145/3492321.3519565
http://arxiv.org/abs/1510.00149
http://proceedings.mlr.press/v139/he21a.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://arxiv.org/abs/2110.14895
https://arxiv.org/abs/2110.14895
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://openreview.net/forum?id=H1eA7AEtvS
https://www.usenix.org/conference/atc20/presentation/lebeck
https://doi.org/10.1109/ACCESS.2021.3074179
https://doi.org/10.1145/2815675.2815686
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1109/ICASSP39728.2021.9413631
https://doi.org/10.1109/ICASSP39728.2021.9413631
https://arxiv.org/abs/2101.08744
https://arxiv.org/abs/2101.08744
https://arxiv.org/abs/2101.08744
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://doi.org/10.1145/3341301.3359646
https://arxiv.org/abs/2105.05085
https://arxiv.org/abs/2105.05085
https://arxiv.org/abs/2105.05085

STI: Turbocharge NLP Inference at the Edge via Elastic Pipelining

Suchita Pati, Shaizeen Aga, Nuwan Jayasena, and Matthew D. Sinclair. 2021.
Demystifying BERT: Implications for Accelerator Design. CoRR abs/2104.08335
(2021). arXiv:2104.08335 https://arxiv.org/abs/2104.08335

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan, Aishan Liu, Qingging
Dang, Ziwei Liu, and Xianglong Liu. 2022. BiBERT: Accurate Fully Binarized
BERT. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net. https://openreview.net/
forum?id=5xEgrl_5FAJ

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog
1, 8 (2019), 9.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE
Computer Society, 4510-4520. https://doi.org/10.1109/CVPR.2018.00474
Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR
abs/1910.01108 (2019). arXiv:1910.01108 http://arxiv.org/abs/1910.01108
Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kortum.
2011. LiveLab: Measuring Wireless Networks and Smartphone Users in the Field.
SIGMETRICS Perform. Eval. Rev. 38, 3 (Jan. 2011), 15-20. https://doi.org/10.1145/
1925019.1925023

Yangyang Shi, Yonggiang Wang, Chunyang Wu, Ching-Feng Yeh, Julian Chan,
Frank Zhang, Duc Le, and Mike Seltzer. 2021. Emformer: Efficient memory
transformer based acoustic model for low latency streaming speech recognition.
In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 6783-6787.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. 2020. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited
Devices. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computational
Linguistics, 2158-2170. https://doi.org/10.18653/v1/2020.acl-main.195

Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang,
Marco Donato, Victor Sanh, Paul N. Whatmough, Alexander M. Rush, David
Brooks, and Gu-Yeon Wei. 2021. EdgeBERT: Sentence-Level Energy Optimiza-
tions for Latency-Aware Multi-Task NLP Inference. In MICRO ’21: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, Virtual Event, Greece,
October 18-22, 2021. ACM, 830-844. https://doi.org/10.1145/3466752.3480095
Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2020. Efficient
Transformers: A Survey. CoRR abs/2009.06732 (2020). arXiv:2009.06732 https:
//arxiv.org/abs/2009.06732

Yuan Tian, Ke Zhou, Mounia Lalmas, and Dan Pelleg. 2020. Identifying Tasks
from Mobile App Usage Patterns. In Proceedings of the 43rd International ACM
SIGIR conference on research and development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap
Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 2357-2366.
https://doi.org/10.1145/3397271.3401441

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998-6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019.
Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting,
the Rest Can Be Pruned. In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers, Anna Korhonen, David R. Traum, and Lluis Marquez
(Eds.). Association for Computational Linguistics, 5797-5808. https://doi.org/
10.18653/v1/p19-1580

[54]

[55

o
2

[57

(58]

[59

=
=

[61

[62

[63

[64

(65

=
o

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Hu Wan, Xuan Sun, Yufei Cui, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason
Xue. 2021. FlashEmbedding: storing embedding tables in SSD for large-scale
recommender systems. In APSys ‘21: 12th ACM SIGOPS Asia-Pacific Workshop on
Systems, Hong Kong, China, August 24-25, 2021, Haryadi S. Gunawi and Xiaosong
Ma (Eds.). ACM, 9-16. https://doi.org/10.1145/3476886.3477511

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the Workshop: Analyzing
and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2018, Brussels,
Belgium, November 1, 2018, Tal Linzen, Grzegorz Chrupala, and Afra Alishahi
(Eds.). Association for Computational Linguistics, 353-355.  https://doi.org/
10.18653/v1/w18-5446

Hanrui Wang. 2020. Efficient Algorithms and Hardware for Natural Language
Processing. PhD dissertation. Massachusetts Institute of Technology.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and
Song Han. 2020. HAT: Hardware-Aware Transformers for Efficient Natural Lan-
guage Processing. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computational
Linguistics, 7675-7688. https://doi.org/10.18653/v1/2020.acl-main.686

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware-
Aware Automated Quantization With Mixed Precision. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019. Computer Vision Foundation / IEEE, 8612-8620. https://doi.org/
10.1109/CVPR.2019.00881

Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu. 2021.
AsyMo: scalable and efficient deep-learning inference on asymmetric mobile
CPUs. In ACM MobiCom °21: The 27th Annual International Conference on Mobile
Computing and Networking, New Orleans, Louisiana, USA, October 25-29, 2021.
ACM, 215-228. hitps://doi.org/10.1145/3447993.3448625

Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,
David Brooks, and Gu-Yeon Wei. 2021. RecSSD: Near Data Processing for Solid
State Drive Based Recommendation Inference. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (Virtual USA, 2021-04-19). ACM, 717-729. https://doi.org/
10.1145/3445814.3446763

Luting Yang, Bingqian Lu, and Shaolei Ren. 2020. A Note on Latency Variability
of Deep Neural Networks for Mobile Inference. CoRR abs/2003.00138 (2020).
arXiv:2003.00138 https://arxiv.org/abs/2003.00138

Rongjie Yi, Ting Cao, Ao Zhou, Xiao Ma, Shangguang Wang, and Mengwei Xu.
2022. Understanding and Optimizing Deep Learning Cold-Start Latency on Edge
Devices. https://doi.org/10.48550/ARXIV.2206.07446

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. 2020. Playing the
lottery with rewards and multiple languages: lottery tickets in RL and NLP. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=
S1xnXRVFwH

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy
Efficient Inference. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) (Athens, Greece, 2020-10). IEEE, 811-824. https:
//doi.org/10.1109/MICRO50266.2020.00071

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019. Q8BERT:
Quantized 8Bit BERT. In Fifth Workshop on Energy Efficient Machine Learn-
ing and Cognitive Computing - NeurIPS Edition, EMC2@NeurIPS 2019, Vancou-
ver, Canada, December 13, 2019. IEEE, 36-39. https://doi.org/10.1109/EMC2-
NIPS53020.2019.00016

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices. In 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer
Society, 6848-6856. https://doi.org/10.1109/CVPR.2018.00716

Received 2022-07-07; accepted 2022-09-22


https://arxiv.org/abs/2104.08335
https://arxiv.org/abs/2104.08335
https://openreview.net/forum?id=5xEgrl_5FAJ
https://openreview.net/forum?id=5xEgrl_5FAJ
https://doi.org/10.1109/CVPR.2018.00474
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1145/1925019.1925023
https://doi.org/10.1145/1925019.1925023
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.1145/3466752.3480095
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2009.06732
https://doi.org/10.1145/3397271.3401441
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.1145/3476886.3477511
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.1109/CVPR.2019.00881
https://doi.org/10.1109/CVPR.2019.00881
https://doi.org/10.1145/3447993.3448625
https://doi.org/10.1145/3445814.3446763
https://doi.org/10.1145/3445814.3446763
https://arxiv.org/abs/2003.00138
https://arxiv.org/abs/2003.00138
https://doi.org/10.48550/ARXIV.2206.07446
https://openreview.net/forum?id=S1xnXRVFwH
https://openreview.net/forum?id=S1xnXRVFwH
https://doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://doi.org/10.1109/CVPR.2018.00716

	Abstract
	1 Introduction
	2 Motivations
	2.1 Transformer on Mobile Devices
	2.2 Transformers Challenge Existing Paradigms
	2.3 Model Compression Is Inadequate

	3 Design overview
	3.1 The System Model
	3.2 The Operation
	3.3 Example Execution Scenarios
	3.4 Applicability

	4 Elastic model sharding
	4.1 Key Challenges
	4.2 Instantiating Model Shards on Disk

	5 Pipeline planning
	5.1 Overview
	5.2 Prerequisite: Offline Profiling
	5.3 Compute Planning
	5.4 IO Planning
	5.5 Submodel Execution

	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 End-to-End Results
	7.3 Significance of Key Designs
	7.4 Sensitivity Analysis

	8 Related work
	9 Concluding remarks
	References

