Check for
Updates

Safe and Practical GPU Computation in TrustZone

Heejin Park”
Apple
bakhi@apple.com

Abstract

For mobile devices, it is compelling to run sensitive GPU
computation within a TrustZone trusted execution environ-
ment (TEE). To minimize GPU software deployed in TEE, the
replay approach is promising: record CPU/GPU interactions
on a full GPU stack outside the TEE; replay the interactions
inside the TEE without the GPU stack. A key dilemma is
that the recording process must both (1) occur in a safe en-
vironment and (2) access the exact GPU models to be used
for replay. To this end, we present a novel recording archi-
tecture called GR-T: a mobile device possessing the GPU
hardware collaborates with a GPU-less cloud service which
runs the GPU software; the two parties exercise the GPU
hardware/software jointly for recording. To overcome the
resultant network delays, GR-T contributes optimizations:
register access deferral, speculation, and meta-only synchro-
nization. These techniques reduce the recording delay by
20x, from hundreds of seconds to tens of seconds. Replay-
based GPU computation incurs 25% lower delays compared
to native execution outside TEE. The code is available at
https://github.com/bakhi/GPUReplay.

CCS Concepts: « Security and privacy — Systems secu-
rity; Operating systems security; Mobile platform security;
Trusted computing.

Keywords: Secure GPU computation; Record and replay;
Dry run; GPU stack; TrustZone; TEE

ACM Reference Format:

Heejin Park and Felix Xiaozhu Lin. 2023. Safe and Practical GPU
Computation in TrustZone. In Eighteenth European Conference
on Computer Systems (EuroSys ’23), May 9-12, 2023, Rome, Italy.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3552326.
3567483

“This work is done when the author was at Purdue University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’23, May 9-12, 2023, Rome, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9487-1/23/05...$15.00
https://doi.org/10.1145/3552326.3567483

286

Felix Xiaozhu Lin
University of Virginia
felixlin@virginia.edu

1 Introduction

Arm TrustZone is a trusted execution environment (TEE)
where sensitive-code is isolated from the untrusted OS, en-
suring the execution’s confidentiality and integrity. While
TrustZone is already capable of isolating GPU hardware [15,
44], the biggest obstacle is the GPU software stack (GPU
stack! for short), which is large [46] and known for vulner-
abilities [4, 5, 60]. Existing techniques transform the GPU
stack [71] or workloads [7, 61, 69] to suit TEE; they however
incur high engineering efforts and compatibility loss, as will
be analyzed in Section 2.

Our recent work [57] (referred to as GR below) sheds
light on how to deploy a lean GPU stack within TrustZone
TEEs via GPU record/replay [14, 35, 41, 70]. Interposing
the CPU/GPU boundary, GR executes a GPU workload ‘W,
e.g. neural network inference, in two phases. (1) The record
phase runs W on a full GPU stack and logs CPU/GPU inter-
actions as a series of register accesses and memory dumps.
(2) The replay phase runs ‘W by replaying the pre-recorded
CPU/GPU interactions on new input without needing a GPU
stack. Of the two phases, the recording can be done in a safe
environment outside of TEE; after the recording is done once,
the replay can recur within the TEE on new input repeatedly.
The replayer can be as simple as a few KSLoC, has little exter-
nal dependency, and contains no vulnerabilities commonly
seen in a GPU stack [2, 4, 5].

A key missing piece in applying GR to mobile devices
is practicality. GR hinges on recording specific to the GPU
hardware models (often called GPU SKUs) of the target mo-
bile devices to reproduce GPU computation. Unfortunately,
ML developers cannot run the recorder on target devices as
mobile OSes are untrusted. They must generate recordings
on a separate, trustworthy machine as shown in Figure 1(a).
Doing so, however, early-binds GPU code to specific GPU
SKUs, deviating from the common practice of late binding.
With late binding, developers ship GPU code in hardware-
neutral formats such as in OpenCL or Metal, which is later
JIT-compiled on the target devices for specific GPU SKUs.
Because of early binding, GR requires developers to foresee
GPU SKUs on which their workloads may run, own such
SKUs, and produce/ship per-SKU recordings. This burdens
developers, considering as many as 80 GPU SKUs on today’s
smartphones (Figure 3).

Key idea We present a new approach called GR-T, allowing
a mobile device (i.e. the client) to leverage the cloud for

1We stress that the GPU stack is software running on CPU.

https://github.com/bakhi/GPUReplay
https://doi.org/10.1145/3552326.3567483
https://doi.org/10.1145/3552326.3567483
https://doi.org/10.1145/3552326.3567483
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3552326.3567483&domain=pdf&date_stamp=2023-05-08

EuroSys ’23, May 9-12, 2023, Rome, Italy

GPU recording. As shown in Figure 1 (b), the cloud hosts
the mobile GPU software stack without any GPU hardware.
To record, the client TEE requests the cloud to run a GPU
workload ‘W. The cloud “dry runs” ‘W on its GPU stack
while tunneling all the resultant CPU/GPU interactions to
the physical GPU protected within the client TEE. The cloud
logs all the interactions as a recording for ‘W, which the client
downloads afterwards. In future executions of ‘W, the client
TEE replays the recording on the protected GPU without
invoking the cloud. With GR-T, the cloud recorder accesses
exact, diverse GPU SKUs without the hassle of hosting the
SKUs in the cloud.

Why can a remote cloud service be trusted for recording?
(1) The record phase, by design, does not require the work-
load’s exact input (§2.3). As such, the client TEE never sends
out sensitive data such as ML input and model parameters.
(2) The TEE expects the cloud GPU stack to be integral, for
which the cloud can offer high assurance: it is managed with
rigorous security measures [32]; it can be attested remotely
via techniques including Intel SGX and AMD SEV; sealed in
a VM, a GPU stack instance in the cloud exclusively serves
one client through a narrow interface — encrypted commu-
nication. This is much more secure than running the GPU
stack on a client’s untrusted OS, which serves a myriad of
third party apps and faces various threats including malware
and misconfiguration. See Section 7.1 for a security analysis.

Challenges and Designs The main challenge to GR-T
arises from spanning the GPU stack (running on CPU) and
the GPU hardware over the wireless Internet. An ML work-
load induces frequent CPU/GPU interactions including ac-
cesses to GPU registers, shared memory accesses, and in-
terrupts. When CPU and GPU are co-located on the same
device, each interaction takes no more than microseconds.
Over a wireless connection, however, naively forwarding
each interaction takes milliseconds or seconds. Such a long
delay would preclude GPU recording due to frequent soft-
ware/hardware timeouts; it would render GR-T unusable due
to formidable recording delays.

To overcome the long delays, our insights are twofold.
(1) The sequence of GPU register accesses consists of many
recurring segments, induced by repeated invocations to GPU
driver routines, e.g. job submission and GPU cache flush. By
learning these access patterns, the cloud service can spec-
ulate most register accesses and their outcomes even be-
fore the client responds. (2) Unlike cloud offloading [20] in
which the cloud must produce correct computation results,
for recording the cloud only has to dry run the GPU stack,
extracting the CPU/GPU interactions of interest.

With the insights, GR-T automatically instruments the
GPU driver code for the following mechanisms.

(1) Register access deferral. Although each register access was
intended to execute on physical GPU synchronously, the
cloud service queues and commits multiple accesses to the

287

Heejin Park and Felix Xiaozhu Lin

Dev machine Client
0S
ML Workload
GPU stack =é TEE
[LREC | Recordings (SREP]
GPU |======——————— GPU
Same SKU model

(a) Existing model: record/replay on separate
machines which must have matched GPU SKUs

Cloud Client
(0N
ML Workload
TEE
GPU stack Collaboration
LREC K-

\ 4

{ 2.REP
GPU

(b) This work: to record, cloud dry runs the GPU
stack which accesses GPU on the client

[EQ Recordings

Figure 1. A comparison between (a) the existing GR model
and (b) GR-T (this work). Figure 4 shows GR-T in detail.

client GPU in a batch, coalescing their network round trips.
Since the register accesses interleave with a driver’s execu-
tion in program order, the cloud service represents the values
of pending register reads as symbols and executes the driver
symbolically. After the register accesses are completed, the
cloud replaces the symbolic variables with concrete register
values.

(2) Register access speculation. To further mask the network
delay of a commit, the cloud service predicts outcomes of
register reads. Without waiting for the client to finish a
commiit, the cloud continues its GPU driver execution with
the predicted register values, and validates the prediction
after the client returns the actual register values. In case of
misprediction, both the cloud and the client roll back to their
most recent valid states.

(3) Meta-only synchronization. Despite of being physically
distributed, the cloud and the client must maintain a synchro-
nized view of the CPU/GPU shared memory. GR-T reduces
the synchronization frequencies by tapping in GPU’s hard-
ware events; GR-T reduces the synchronization traffic by only
synchronizing GPU’s metastate — GPU shaders, command
lists, and job descriptions — while omitting the program data.
Essentially, GR-T gives up computation correctness while
faithfully preserving the semantics of CPU/GPU interactions.

Results We build GR-T atop Armv8 SoCs and Mali Bifrost, a
popular family of mobile GPUs, and evaluate it on a series of
ML workloads. Compared to naive forwarding, GR-T lowers

Safe and Practical GPU Computation in TrustZone

the recording delays by more than one order of magnitude,
from several hundred seconds down to tens of seconds; it
reduces the client energy consumption by up to 99%. Its
replay incurs 25% lower delays as compared to insecure,
native execution outside TEE.

Contributions We present a holistic solution for GPU com-
putation within the TrustZone TEE. We address the key
missing piece — a safe, practical recording process. We make
the following contributions.

e A novel architecture called GR-T, where the cloud and the
client TEE collaboratively exercise the GPU software/hard-
ware for recording.

o A suite of key I/O optimizations that exploit GPU-specific
insights in order to overcome the long network delays be-
tween the cloud and the client.

e A concrete implementation for practicality: lightweight
instrumentation of the GPU driver; crafting device trees for
cloud VMs to operate remote GPUs; a TEE module managing
GPU for record and replay.

2 Motivations
2.1 Mobile GPUs

This paper focuses on mobile GPUs commonly seen on mo-
bile and embedded SoCs. Today, a mobile GPU has its own
MMU and shares the main memory with the CPU.

GPU stack and execution workflow A modern GPU stack
consists of ML frameworks (e.g. Tensorflow), a userspace
runtime for GPU APIs (e.g. OpenCL), and a GPU driver in
the kernel. Figure 4 shows details.

When an app executes ML workloads, it invokes GPU APIs,
e.g. OpenCL. Accordingly, the runtime prepares GPU jobs
and input data: it emits GPU commands, shaders, and data
to the shared memory which is mapped to the app’s address
space. The driver sets up the GPU’s page tables that store the
shared memory mapping between the GPU’s virtual and the
physical addresses; it configures GPU hardware and submits
the GPU jobs. The GPU then loads the job shader code and
data from the shared memory, executes the code, and writes
back compute results and job status to the memory. After the
job, the GPU raises an interrupt to the CPU. For throughput,
the GPU stack often supports multiple outstanding jobs.

CPU/GPU interact through three channels:
o Registers, for configuring GPU and controlling jobs.
e Shared memory, to which CPU deposits commands, shaders,
and data and retrieves compute results. Modern GPUs have
dedicated page tables, allowing them to access shared mem-
ory using GPU virtual addresses.
o GPU interrupts, which signal GPU job status.

The GPU driver manages these interactions; thus it can
interpose and log these interactions.

288

EuroSys ’23, May 9-12, 2023, Rome, Italy

Layer 0 (conv)
App K

Layer 1 (pooling)

Input Output Input Output/ \
recording 0 recording 1
Replayer H ¥ 1 f t I a
CPU/GPU Interactions H i !)
N 1 1 v I 1 Time
GPU @@ o 'e'e
job

Figure 2. A timeline for replaying NN inference.

2.2 Prior approaches

Towards GPU compute inside the TrustZone TEE, prior ap-
proaches are inadequate.

Porting GPU stack to TEE One approach is to pull the GPU
stack to the TEE (“lift and shift”) [36, 51]. The biggest problem
is the clumsy GPU stack: the stack spans large codebases (e.g.
tens of MB binary code), much of which are proprietary. The
stack depends on POSIX APIs which are unavailable inside
TrustZone TEE. For these reasons, it will be a daunting task
to port proprietary runtime binaries and a POSIX emulation
layer, let alone the GPU driver. Partitioning the GPU stack
and porting part of it, as suggested by recent works [34,
71], also see significant drawbacks: they still require high
engineering efforts and sometimes even custom hardware.
The ported GPU code is likely to introduce vulnerabilities to
the TEE [1, 3, 4], bloating the TEE and weakening security.

Outsourcing Another approach is for TEE to invoke an
external GPU stack. One choice is to invoke the GPU stack
in the normal-world OS of the same device. Because the
OS is untrusted, the TEE must prevent it from learning ML
data/parameters and tampering with the result. Recent tech-
niques include homomorphic encryption [25, 69], ML work-
load transformation [29, 43], and result validation [17]. They
support limited GPU operators and often incur significant
efficiency losses.

2.3 GR for TrustZone

Unlike prior approaches, GR provides a new execution para-
digm [57]. (1) In the record phase, app developers run their
ML workload once on a trusted GPU stack; a recorder at the
CPU/GPU boundary logs all the CPU/GPU interactions —
register accesses, GPU memory dumps, and interrupt events.
(2) In the replay phase, a target app invokes a simple replayer
to reproduce the logged computation on new input data.

Example Figure 2 exemplifies how GR works for neural
network (NN) inference. To record, developers run the NN
inference once and produce a sequence of recordings, one
for each NN layer; each recording encloses multiple GPU
jobs for an NN layer. To replay, a target ML app executes the
recordings in the layer order. The granularity of recordings
is a developers’ choice as the tradeoff between composabil-
ity and efficiency. Alternatively, developers may create one

EuroSys ’23, May 9-12, 2023, Rome, Italy

monolithic recording for all the NN layers (not shown in the
figure).

Why GR works? It addresses three design concerns [57]
below.

(1) Completeness. Happening at the CPU/GPU boundary,
recording transparently captures all the information needed
to reproduce the original GPU computation: GPU commands,
shaders, page tables, and job input/output addresses. For in-
stance, CPU’s dynamic updates to the GPU address space
are recorded in snapshots of GPU page tables; GPU memory
layout is recorded as memory dumps; CPU/GPU synchro-
nization, e.g. OpenCL barriers, is recorded as register polling
for GPU interrupts.

(2) Determinism. When recording, GR takes steps to fore-
stall nondeterministic CPU/GPU interactions such as job
submission timing and concurrency. The recorder/replayer
serialize job executions and avoid concurrent GPU jobs; dur-
ing record and replay, only one app can access the GPU. This
makes CPU/GPU interactions deterministic, ensuring that
the replayer can faithfully reproduce recorded computation.
(3) Independence of input. Common ML workloads (e.g.
CNN and RNN) often have static graphs of GPU jobs; no con-
ditional branches exist among jobs, a key property exploited
in prior work [72]. A workload invokes the same set of GPU
jobs regardless of its input data. Therefore, a single record
run can exercise all GPU jobs in a workload and capture
them. Once recorded, the same GPU jobs can be reproduced
repeatedly: the replayer injects a new input to the recorded
input address and can later retrieve the corresponding output
from the recorded output address.

2.4 The problem of recording

Requisites for recording environment To apply GR to
TrustZone, a missing component is the recording environ-
ment where the GPU stack is exercised and recordings are
produced. First, the recording environment must be accessi-
ble to the exact GPU SKU to be used for replay in the future.
In our experience, even subtle SKU differences can break
replay. Examples include variations in GPU hardware re-
sources, e.g. shader core count, which determines how the
JIT compiler generates and optimizes GPU shaders; varia-
tions in GPU page table formats; variations in shared memory
layout, with which GPU communicates its execution status
with CPU. Second, it must be trustworthy to guarantee the
GPU compute integrity. A corrupted recording may induce
unintended replay outcomes and even break the entire TEE’s
integrity. This precludes local recording on the client de-
vice as its normal-world OS is untrusted, often managed by
novice users and exposed to malware and clickbait.

Alternative recording environments Developers may
choose the following recording environments, remote from
clients that still fall short of portability and practical use.

289

Heejin Park and Felix Xiaozhu Lin

30 Mali 3 Adreno 30 PowerVR EEE NV Tegra I

420

o

O

—

5]

10 [M ‘ H ! u
0 ‘ | \

2012 2013 2014 2015 2016 2017 2018 2019 2020
Years

Figure 3. Numbers of new mobile GPU SKUs per year [24],
showing the diversity of mobile GPUs.

(1) Developer’s machines. App developers may maintain
various GPU SKUs and produce per-SKU recordings for tar-
get clients. However, they must cope with diverse, ever-
changing mobile hardware [63, 73]. Figure 3 highlights the
diversity of today’s mobile GPUs [38]: around 80 SKUs are
seen on today’s smartphones; no SKUs are dominating; new
SKUs are rolled out frequently. It is impractical for app de-
velopers, e.g. those developing video analytics or activity
recognition as secure extensions to their apps, to foresee
all possible GPU SKUs on clients and possess them. More
importantly, since recordings are SKU-specific, distributing
them among clients violates today’s common practice of
distributing ML apps - shipping GPU programs in hardware-
neutral formats for portability. All major ML frameworks
we know follow this common practice, e.g. TFLite shipping
OpenCL/GL/Metal shaders [42] and ncnn shipping Vulkan
shaders [68].

(2) Mobile device farm in the cloud. While such a device
farm relieves developers’ burden, managing a large, diverse
collection of mobile devices in the cloud is impractical. Not
designed to be hosted, mobile devices do not conform to the
size, power, and thermal requirements of data centers. The
device farm is not elastic: a device can serve one client at a
time; planning the capacity and device types is difficult. As
new mobile devices emerge every few months, the total cost
of ownership is high.

3 GR-T

We advocate for a new recording approach: when a workload
is executed for the first time, dry run the GPU stack in the
cloud while using GPUs on the clients.

3.1 The workflow

The GR-T workflow is as follows. (1) Developers write ML
apps as usual, e.g. MNIST inference atop Tensorflow; they
ship GPU programs in hardware neutral formats as usual.
They are oblivious to the TEE, the GPU SKU, and the cloud
service. (2) Before executing the workload for the first time,
the client TEE requests the cloud service to dry run the
workload. As the cloud runs the GPU stack, it forwards GPU
hardware access to the client TEE and receives the GPU’s

Safe and Practical GPU Computation in TrustZone

response from the latter. In the meantime, the cloud records
all the CPU/GPU interactions. (3) For actual executions of the
ML workload, the client TEE replays the recorded CPU/GPU
interactions on new input (exploiting input independence,
§2.3); it no longer invokes the cloud. For security, the cloud
never caches and reuses recordings across clients even if they
have the same GPU SKU.

Our approach fundamentally differs from remote I/O or
I/O-Device-as-a-Service [64]. Our goal is neither to execute
GPU compute in the cloud [18, 21] nor run the GPU stack
precisely in the cloud, e.g. software testing [67]. It is to ex-
tract the CPU’s stimuli to GPU and the GPU’s response. Our
unique goal allows novel optimization to be described later.

Why use the cloud for recording? The cloud has the
following benefits.

(1) Safe. The cloud hosts the GPU stack in an environment
subject to rigorous security measures [32] and attestation.
Each GPU stack instance is sealed in a dedicated VM, serving
one authenticated client exclusively. This contrasts to the
client OS where the GPU stack is shared by many apps and
constantly faces threats such as malware and misconfigura-
tion. See Section 7.1 for a detailed security analysis.

(2) Rich resources. The cloud can run a GPU stack that is too
big to fit in the TEE; it can also host multiple GPU stack
variants, catering to different APIs and frameworks used by
ML workloads.

Can the cloud emulate GPUs? One may wonder if the
cloud runs software-based GPU emulators [23] without the
need for physical GPUs on clients. However, precise emula-
tion of modern GPUs is hard: they are diverse; they often
have undisclosed behaviors, interfaces, and hardware quirks.

Will the cloud have too many GPU drivers? While the
cloud VMs need to host drivers for all GPU SKUs on clients,
the total number of needed GPU drivers will be small. This is
because a single GPU driver often supports many GPU SKUs
of the same family [12, 13]; SKUs share much driver logic
while differing only in register definitions, hardware revi-
sions, and erratum. For instance, Mali Bifrost and Qualcomm
Adreno 6xx drivers each support 6 and 7 GPUs [10, 47]. As
Section 6 will show, by instructing the kernel device tree, we
can incorporate multiple GPU drivers in one unified Linux
kernel image to be used by the cloud VMs.

Why is GR-T practical? One may wonder if OS and device
vendors are in a good position for crafting in-TEE GPU stacks.
However, doing so would require deep customization across
multiple parties (e.g. vendors of OS, TEEs, GPUs, and SoCs);
in particular, the hardware vendors are secretive about their
IPs. Even if they are willing to, they still face challenges in re-
architecting the complex GPU stacks. By contrast, GR-T does
not require such deep, cross-domain cooperation. Unlike
alternative recording environments (§4.2), GR-T alleviates

290

EuroSys ’23, May 9-12, 2023, Rome, Italy

Cloud CPU/GPU Client
(- . interactions
oy N N
[App] Reg access
E [ML Framework] Interrupts TEE
2 GPU Runtime |Usr Metastate GPU
% _GP_U D_riv:r == _Ker pagetables | Shim
\{ (instr'd) Driver |4t zrr:;isers‘\ GPU
- Shim F N

Figure 4. GR-T’s online recording. The cloud collaborates
with the client to dry run the GPU stack.

the burden of maintaining the current and future GPU SKUs
from both the cloud provider and ML developers.

Limitations GR-T requires an Internet connection to func-
tion: it cannot create recordings when the client device is
offline. The poor network condition can slow down the en-
tire recording process. To record a workload, the TEE must
faithfully allocate the same amount of memory as needed by
the workload’s actual run. As the secure memory available to
TrustZone is typically pre-configured small [52, 53, 58], GR-T
may need the SoC firmware to enlarge the secure memory
for recording a high-memory ML workload.

Broader applicability While we show GR-T for recording,
its optimizations can be used for remote debugging [67].
For instance, by comparing a client’s GPU register logs and
memory dumps with the ones from the cloud, the cloud
may detect and report firmware malfunctioning and vendors
may troubleshoot remotely. As replay has been used on IO
devices other than GPU [30], our techniques can be used for
generating recordings for these IO without possessing the
actual IO hardware.

3.2 The GR-T architecture

Figure 4 shows the architecture. The cloud service manages
multiple VM images corresponding to variants of GPU stack.
The VM is lean, containing a kernel and the minimal software
required by the GPU stack. Once launched, a VM is dedicated
to serving only one client TEE. Neither a VM nor a recording
is shared across clients. All the communication between the
cloud VM and the TEE is authenticated and encrypted.
GR-T’s recorder comprises two shims for the cloud (Driver-
Shim) and the client TEE (GPUShim). DriverShim at the bot-
tom of the GPU stack interposes access to the GPU hardware.
It is implemented by automatic instrumenting of the GPU
driver, injecting code to register accessors and interrupt han-
dlers. GPUShim, instantiated as a TEE module, isolates the
GPU during recording and prevents normal-world access.
After a record run, DriverShim processes logged interac-
tions as a recording; it signs and sends the recording back to

EuroSys ’23, May 9-12, 2023, Rome, Italy

the client. To replay, the client TEE loads a recording, veri-
fies its authenticity, and executes the enclosed interactions.
During replay, the TEE isolates the GPU; before and after
the replay, it resets the GPU and cleans up all the hardware
state.

3.3 Challenge: long network delays

A GPU stack is designed with the premise that CPU and GPU
co-locate on an on-chip interconnect with sub-microsecond
delays. GR-T breaks the premise by distributing CPU/GPU
over the Internet with tens of ms or even seconds of delays.
The impacts are twofold. (1) GPU register accesses are trans-
lated into numerous network round trips. Taking MNIST
inference as an example, the GPU driver issues 2800 register
accesses, each requiring a round trip. (2) Long round trip
time (RTT) makes memory synchronization slow. By design,
CPU and GPU exchange extensive information via shared
memory: commands, shader code, and input/output data.
Since they are distributed with no shared physical memory,
maintaining such a shared memory view can be prohibitively
slow. As we will show in Section 5, classic distributed shared
memory (DSM) misses a key opportunity in dry run.

The long recording delay, often hundreds of seconds (§7),
renders GR-T unusable. (1) We observed that the GPU stack
constantly throws exceptions and GPU resets or freezes from
time to time. This is because the long delays violate many
timing assumptions implicitly made by the stack code and
the GPU firmware. (2) As the TEE has to exclusively lock the
GPU for a record run, it blocks the normal-world apps from
accessing the GPU for long and hurts the system interactivity.
(3) As each record run (per client, per workload) requires a
dedicated cloud VM for hundreds of seconds, GR-T is less
cost-effective. (4) An ML workload has to wait long before
its first execution.

4 Hiding Register Access Delays

To overcome long network delays, we retrofit known I/O
optimizations to exploit new opportunities in mobile GPUs.

4.1 Register access deferral

Problem By design, a GPU driver weaves GPU register ac-
cesses into its instruction stream, executing register accesses
and CPU instructions synchronously in program order. For
example in Listing 1(a), the driver cannot issue the second
register access (line 4) until the first access (line 3) and the
preceding CPU instructions are completed. The synchronous
register access leads to numerous network round trips. This
is exacerbated by the fact that GPU register accesses are dom-
inated by reads (more than 95% in our measurement), which
cannot be simply buffered as writes. This is in Figure 5(a).

Basic idea We coalesce the round trips by making register
accesses asynchronous: as shown in Figure 5(b), DriverShim
defers register accesses as the driver executes, until the driver

291

Heejin Park and Felix Xiaozhu Lin

Blocking Execution Reg access

Cloud ¥ 5 —] (o] e — —
v S Y i P [
et @ B B DOE @ O
(a) Naive: reg reads are synchronous
Time
Cioud (T T
Commit 3§ W £
(b) Register access deferral
Time
(IR (R IR W W R R —
Commit § / Validate Yo

(c) Register access deferral + Speculation

Figure 5. GR-T’s strategies for hiding long RTTs.

cannot continue execution without the value from a deferred
register read. DriverShim then synchronously commits all
deferred register accesses in a batch to the client GPU. After
the commit, DriverShim stalls the driver execution until the
client GPU returns the register access results.

To implement the mechanism, DriverShim injects the de-
ferral hooks into the driver via automatic instrumentation.
The driver source code remains unmodified.

Key mechanisms for correctness First, DriverShim keeps
the deferral transparent to the client and its GPU. For correct-
ness, the GPU must execute the same sequence of register
accesses as if there was no deferral. The register accesses
must be in their exact program order, because (1) GPU is
stateful and (2) these accesses may have hidden dependen-
cies. For instance, read from an interrupt register may clear
the GPU’s interrupt status, which is a prerequisite for a sub-
sequent write to a job register. For this reason, DriverShim
queues register accesses in their program order. It instanti-
ates one queue per kernel thread, which is important to the
memory model to be discussed later.

Second, DriverShim tracks data dependencies. This is be-
cause (1) the driver code may consume values from un-
committed register reads; (2) the value of a later register
write may depend on the earlier register reads. Listing 1
(a) shows examples: variable qrk_mmu depends on the read
from register MMU_CONFIG; the write to MMU_CONFIG on line
8 depends on the register read on line 4. To this end, for each
queued register read, DriverShim creates a symbol for the
read value and propagates the symbol in subsequent driver
execution. Specifically, a symbol S can be encoded in a later
register write to be queued, e.g. reg_write(MMU_CONFIG,
S|0x10). After the next commit returns concrete register
values, DriverShim resolves the symbols and replaces sym-
bolic expressions in the driver state that encode these sym-
bols.

Third, DriverShim respects control dependencies. The dri-
ver control flow may reach a predicate that depends on an

Safe and Practical GPU Computation in TrustZone

1 #define MMU_ALLOW_SNOOP_DISPARITY 0x10 Deferral queue

3 grk_shader = reg_read(SHADER_CONFIG); S DIGHHIER. IS
4 grk_mmu = reg_read(MMU_CONFIG); §,=READ(MMU_CONFIG)
WRITE (MMU_CONFIG, (S,] 0x10))
6 if (dev->coherency == COHERENCY_ACE)
7 qrk_mmu |= MMU_ALLOW_SNOOP_DISPARITY; R
8 reg_write(MMU_CONFIG, qrk_mmu); Symbolic state
9 ... qrk_shader S,
10 // commit 1 qrkmu 5,10X10
(a) Data dependency
Deferral queue
2 int done = reg_read(JOB_IRQ_STATUS);
3 if (!done) // commit 1 -‘ &,=READ(J0B_IRQ_STATUS)
4 return IRQ_NONE;
5 else {
6 reg_write(JOB_IRQ_CLEAR, done);
WRITE(JOB_IRQ_CLEAR
7 dev->tiler = reg_read(TILER_PRESENT); (J0B_IRQ_C 51
8 dev->shader = reg_read(SHADER_PRESENT); §,=READ(TILER_PRESENT)

9 if (dev->tiler) // commit 2
10 reg_write(PWR_ON, dev->tiler);
1 if (dev->shader)

12 reg_write(PWR_ON, dev->shader);
13}

§,=READ(SHADER_PRESENT)

(b) Control dependency (symbolic expressions omitted)

Listing 1. Code examples of data and control dependencies.
The register accesses are deferred in the queue; the driver
keeps running with symbolic values until commit.

uncommitted register read, as shown in Listing 1 (b), line 3.
DriverShim resolves such control dependency immediately:
it commits all the queued register accesses including the one
pertaining to the predicate.

When to commit? DriverShim commits register accesses
when the driver triggers the following events.

o Resolution of control dependency. This happens when the
driver execution is about to take a conditional branch that
depends on an uncommitted register read.

e Invocations of kernel APIs, notably scheduling and locking.
There are three rationales. (1) By doing so, DriverShim safely
limits the scope of code instrumentation and dependency
tracking to the GPU driver itself; it hence avoids doing so for
the whole kernel. (2) DriverShim ensures all register reads
are completed before kernel APIs that may externalize the
register values, e.g. printk() of register values. (3) Committing
register accesses prior to any lock operations (lock/unlock)
ensures memory consistency, which will be discussed below.
o Driver’s explicit delay, e.g. calling the kernel’s delay family
of functions [48]. The drivers often use delays as barriers, as-
suming register accesses preceding delay() in program order
will take effect after delay(). For example, the driver writes
a GPU register to initiate cache flush and then calls delay(),
after which the driver expects that the cache flush is com-
pleted and coherent GPU data already resides in the shared
memory. To respect such design assumptions, DriverShim
commits register accesses before explicit delays.

292

EuroSys ’23, May 9-12, 2023, Rome, Italy

Memory consistency for concurrent threads A GPU
driver is multi-threaded by design. Since DriverShim defers
register accesses with per-thread queues, if a driver thread
assigns a symbolic value to a variable X, the actual update
to X will not happen until the thread commits the corre-
sponding register read. What if at this time another thread
attempts to read X? Will it read the stale value of X?

DriverShim implements a known memory model of re-
lease consistency [27] to ensure no other concurrent threads
can read X. The memory model is guaranteed by two de-
signs. (1) Given that the Linux kernel and drivers have been
thoroughly scrutinized for data race [49], a thread always
updates shared variables (e.g. X) with necessary locks, which
prevent concurrent accesses to the variables. (2) DriverShim
always commits register accesses before the driver invokes
unlock APIs, i.e. a thread commits register accesses before
releasing any locks. As such, the thread must have updated
the shared variables with concrete values before any other
threads are allowed to access the variables.

Optimizations To further lower overhead, we narrow down
the scope of register access deferral. We exploit an observa-
tion: GPU register accesses show high locality in the driver
code: tens of “hot” driver functions issue more than 90% reg-
ister accesses. These hot functions are analogous to compute
kernels in HPC applications.

To do so, we obtain the list of hot functions via profiling
offline. We run the GPU stack, trace register accesses, and bin
them by driver functions. At record time, DriverShim only
defers register accesses within these functions. When the
driver’s control flow leaves these hot functions, DriverShim
commits queued register accesses. Note that (1) the choices
of hot functions are for optimization and do not affect driver
correctness, as register accesses outside of hot functions are
executed synchronously; (2) profiling is done once per GPU
driver, hence incurring low effort.

4.2 Speculation

Basic idea Even with deferred register accesses, each com-
mit is still synchronous taking one RTT (Figure 5(b)). Driver-
Shim further makes some commits asynchronous to hide
their RTTs. The idea is shown in Figure 5(c): rather than
waiting for a commit C to complete, DriverShim predicts
the values of all register reads enclosed in C and continues
driver execution with the predicated values; later, when C
completes with the actual read values, DriverShim validates
the predicated values: it continues the driver execution if the
all predictions were correct; otherwise, it initiates a recovery
process. Misprediction incurs performance penalty but does
not violate correctness.

Why are register values predictable? Our observation is
that the driver issues recurring segments of register accesses,
to which the GPU responds with identical values most of the
time. Such segments recur within a workload (e.g. MNIST

EuroSys ’23, May 9-12, 2023, Rome, Italy

inference) and across workloads (e.g. MNIST and AlexNet
inferences).

What causes recurring segments? (1) Routine GPU mainte-
nance. For instance, before and after each GPU job, the driver
flushes GPU’s TLB/cache. The sequences of register accesses
and register values (e.g. the final status of flush operations)
repeat themselves. (2) Repeated GPU state transitions. For in-
stance, each time an idle GPU wakes up, the driver exercises
the GPU’s power state machine, for which the driver issues
a fixed sequence of register writes (to initiate state changes)
and reads (to confirm state changes). (3) Repeated hardware
discovery. For instance, during its initialization, the driver
probes GPU hardware capabilities by reading tens of regis-
ters. The register values remain the same as the hardware
does not change.

When to speculate? Not all register accesses belong to
recurring segments. To minimize misprediction, DriverShim
acts conservatively, only making predictions when the his-
tory of commits shows high confidence.

When DriverShim is about to make a commit C, it looks
up the commit history at the same driver source location. It
considers the most recent k historical commits that enclose
the same register access sequence as C: if all the k historical
commits have read identical sequences of register values,
DriverShim uses the values for prediction; otherwise, Driver-
Shim avoids speculation for C, executing it synchronously
instead. k is a configurable parameter controlling confidence
that permits prediction. We set k = 3 in our experiment.

How does driver execute with predicted values? Based
on predicted register values, the GPU driver may mutate
its state and take code branches; DriverShim may make a
new commit without waiting for outstanding commits to
complete. To ensure correctness, DriverShim stalls the driver
execution until all outstanding commits are completed and
the predictions are validated, when the driver is about to
externalize any kernel state, e.g. calling printk() on a variable.
This condition is simple, as it does not differentiate if the
externalized state depends on predicted register values. As
a result, checking the condition is trivial: DriverShim just
intercepts a dozen of kernel APIs that may externalize kernel
state. DriverShim eschews fine-grained tracking of data and
control dependencies throughout the whole kernel.

Optimization: Only checking the above condition has a
drawback: in the event of misprediction, both the driver and
the GPU have to roll back to valid states, because both may
have executed based on mispredicted register values. List-
ing 1 (b) shows an example: if the read of JOB_IRQ_STATUS
(line 2) is found to be mispredicted after the second commit
(line 10), the driver already contains an incorrect state (in
dev) and the GPU has executed incorrect register accesses
(e.g. write to JOB_IRQ_CLEAR).

To this end, DriverShim can relieve the client GPU from
rollback in case of misprediction. It does so by preventing

293

Heejin Park and Felix Xiaozhu Lin

1 u32 cmd = PGT_UPDATE;
2 int max = MAX_LOOP;
3 u32 val = reg_read(MMU_STATUS);

4 while (--max 8& (val & STATUS_ACTIVE)) .

5 val = reg_read(MMU_STATUS); Offload in a shot
6 if [(max == @)
7 return -1
8 else reg_write(MMU_CMD, cmd);

A predicate to
be predicted

Listing 2. Code example of a polling loop.

spilling speculative state to the client. Specifically, Driver-
Shim additionally stalls the driver before committing reg-
ister accesses that themselves are speculative, i.e. having
dependencies on predicted values. For example, in Listing 1
(b), the second commit must be stalled if the first is yet to
complete, because the second commit consists of register ac-
cesses (JOB_IRQ_CLEAR and TILER/SHADER_PRESENT) that
casually depend on the outcome of the first commit. To track
speculative register accesses, DriverShim taints the predicted
register values and follows their data/control dependencies
in the driver execution. In the above example, when the dri-
ver takes a conditional branch based on a speculative value
(line 3), DriverShim taints all updated variables and state-
ments on that branch to be speculative, e.g. dev->tiler. For
completeness, the taint tracking applies to any kernel code
invoked by the driver.

How to recover from misprediction? When DriverShim
finds an actual register value different from what was predi-
cated, the GPU stack and/or the GPU should restore to valid
states. We exploit the GPU replay technique [57] for both
parties to reset and fast-forward independently. To initiate
recovery, DriverShim sends the client the location of the mis-
predicted register access in the interaction log. Then both
parties restart and replay the log up to the location. In this
process, GPUShim feeds the recorded stimuli (e.g. register
writes) to the physical GPU; DriverShim feeds the recorded
GPU response (e.g. register reads and interrupts) to the GPU
stack. Because both parties need no network communication,
the recovery takes only a few seconds, as will be evaluated
in Section 7.3.

4.3 Offloading polling loops

A GPU driver often invokes polling loops, e.g. to busy wait
for register value changes as shown in Listing 2. Polling
loops contribute a large fraction of register accesses; they
are a major source of control dependencies.

Problem Naive execution of a polling loop incurs multiple
round trips, rendering the aforementioned techniques inef-
fective. (1) Deferring register access does not benefit much,
because each loop iteration generates control dependency
and requests a synchronous commit. (2) Speculation on a
polling loop is difficult: by design above, DriverShim must

Safe and Practical GPU Computation in TrustZone

predict the iteration count upon which the terminating con-
dition is met, which often depends on GPU timing (e.g. a
GPU job’s delay) and is nondeterministic in general.

Observations Fortunately, most polling loops are simple,
meeting the following conditions.

e Register accesses in the loop are idempotent: the GPU state
is not be affected by re-execution of the loop body.

o The iteration count has only a local impact: the count is a
local variable and does not escape the function enclosing the
loop. The count is evaluated with some simple predicates,
e.g. (count<MAX).

o The addresses of kernel variables referenced in a loop are
determined prior to the loop, i.e. the loop itself does not
compute these addresses dynamically.

e The loop body does not invoke kernel APIs that have an
external impact, e.g. locking and printk().

DriverShim uses static analysis to find all of the simple
polling loops in the GPU driver. Complex polling loops that
misfit the definition above are rare; DriverShim just executes
them without optimizations.

Solution DriverShim executes simple polling loops as fol-
lows. (1) Offloading. DriverShim commits a loop in a shot to
the client GPU, incurring only one RTT. To do so, Driver-
Shim offloads a copy of the loop code as well as all variables
to be referenced in the loop. GPUShim runs the loop and re-
turns updated variables. Offloading respects release memory
consistency as described in Section 4.1, because accesses to
shared variables inside the loop must be protected with locks
and the loop itself does not unlock. (2) Speculation. Driver-
Shim further masks the RTT in offloading a loop. Rather than
predicting the exact iteration count (e.g. the final value of max
in Listing 2), DriverShim extracts and predicts the predicate
on the iteration count, e.g. (max?=0), which is more pre-
dictable. When the client returns the actual iteration count,
DriverShim evaluates the predicate in order to validate the
prediction.

5 Memory Synchronization

Problem Mobile CPU and GPU were intended to share
physical memory. As the driver (cloud) and the GPU (client)
run on their own local memories, we need to synchronize
a shared memory view between them as in Figure 6. Mem-
ory synchronization has been a central issue in distributed
execution [8, 18, 27, 67]. A proven approach is relaxed mem-
ory consistency: one node pushes its local memory updates
to other nodes only when the latter nodes are about to see
the updates. Accordingly, prior systems choose synchroniza-
tion points based on program behaviors, e.g. synchronizing
thread-local memory at the function call boundary [18] or
synchronizing shared memory of a data-race free program
as part of lock/unlock operations [27].

294

EuroSys ’23, May 9-12, 2023, Rome, Italy

Cloud Client
Driver e~ | Lepushim] TEE

(,) \.’ (I\
No GPU pgtables mem pgtables No | 5
shaders shaders svnc il a
sync cmds ... dump cmds ... v E (0]

\Prog. data Metastate | | Metastate Prog. data)

Local mem Local mem

Figure 6. Selective memory synchronization of GPU metas-
tate only but not program data.

Unlike these prior systems, the memory sharing proto-
col between CPU and GPU is never explicitly defined. For
example, they never use locks. From our observations, we
conjecture that CPU and GPU write to disjoint memory re-
gions and order their memory accesses by some register
accesses and some driver-injected delays. However, it would
be brittle to build GR-T based on such vague assumptions.

Approach Our idea is to constrain the GPU driver behaviors
so that we can make conservative assumptions for memory
synchronization. To do so, we configure the driver’s job
queue length to be 1, which effectively serializes the dri-
ver’s job preparation and the GPU’s job execution. Such a
constraint has been applied in prior work and shows minor
overhead [57]. With the constraint, the driver emits GPU
jobs to the shared memory only when the GPU is idle; the
GPU is executing jobs from the memory only when the dri-
ver is idle. Therefore, the driver and the client GPU will never
access the shared memory simultaneously.

When to synchronize? The cloud and client synchronize
when GPU is about to become busy or idle:

o Cloud = client. Right before the register write that starts a
new GPU job, DriverShim dumps its local memory allocated
to GPU and sends it to the client. The memory dump is
consistent: at this moment, the GPU driver has emitted and
flushed all the memory states needed for the new job, and
has updated the GPU page tables for mapping the memory.
e Client = cloud. Right after the client GPU raises an in-
terrupt signaling job completion, GPUShim forwards the
interrupt and uploads its memory dump to the cloud. The
memory dump is also consistent: at this moment the GPU
must have written back the job status and flushed job data
from cache to local memory.

We further implement continuous validation as a safety
net. After DriverShim sends its memory dump to the client, it
unmaps the dumped memory regions from CPU and disables
DMA to/from the memory. As such, any spurious access to
the memory region will be trapped to DriverShim as a page
fault and reported as an error. In the same fashion, GPUShim
unmaps the shared memory from the GPU’s page table when
the GPU becomes idle; any spurious access from GPU will
be trapped.

EuroSys ’23, May 9-12, 2023, Rome, Italy

What to synchronize? As shown in Figure 6, we mini-
mize the amount of memory transfer with the following
insight: for recording, it is sufficient to synchronize only the
GPU metastate in memory, including GPU commands, shader
code, and page tables. Synchronizing program data, such as
input/output and intermediate GPU buffers, is unnecessary.
Fortunately, program data constitutes most of GPU memory.

How to locate metastate in the shared memory, given
that GPU memory layout is proprietary? We implement a
combination of techniques. (1) Some GPU page tables have
permission bits which suggest the usage of memory pages.
For instance, the Mali GPUs map metastate as executable
because the state contains GPU shader code [9]. (2) For GPU
hardware lacking permission bits, GR-T infers the usage of
memory regions from IOCTL() flags used by ML workloads
to map these regions. For instance, a region mapped as read-
only cannot hold GPU commands, because the GPU runtime
needs the write permission to emit GPU commands. (3) If
the above knowledge is unavailable, DriverShim simply fills
an ML workload’s inputs and parameters as zeros. Doing
so will sparsify the GPU’s program data, making memory
dumps highly compressible.

We further apply standard compression. Both shims use
range encoding to compress memory dumps; each shim cal-
culates and transfers the deltas of memory dumps between
consecutive synchronization points.

6 Implementations

Platforms We implement the GR-T prototype on the fol-
lowing platforms. The cloud service runs on a single board
computer (SBC) with quad Arm Cortex-A55 cores. The client
runs on Hikey960, a mobile development board with a Mali
G71 MP8 GPU. Our choice of Arm processors for the cloud
is for prototyping ease rather than a hard requirement; the
cloud service can run on x86 machines with binary transla-
tion [67].

The cloud service runs Debian 9.4 (Linux v4.14) with a
GPU stack composed of an ML framework (ACL v20.05 [11]),
a runtime (1ibmali. so), and a driver (Mali Bifrost r24 [12]).
Below the service, KVM-QEMU (v4.2.1) runs as the VM
hypervisor. The client runs Debian 9.13 (Linux v4.19) and
OPTEE (v3.12) as its TEE.

DriverShim We build our code instrumentation tool as
a Clang plugin. For static analysis and code manipulation,
the plugin traverses the driver’s abstract syntax tree (AST).
With the Clang/LLVM toolchain [19], our tool compiles the
GPU driver and links it against DriverShim. By limiting
the scope to the hot driver functions in the Mali GPU dri-
ver (§4.1), our instrumentation tool processes 19 functions in
total. The instrumentation itself incurs negligible overhead.
We implement DriverShim as a kernel module (~1K SLoC)
to be invoked by the instrumented driver code; the module

295

Heejin Park and Felix Xiaozhu Lin

performs dependency tracking, commit management, and
speculation, as described in Section 4 and 5.

DriverShim communicates with the client via TCP-based
messages. We install GPU devicetrees in the cloud VM, so the
GPU stack can run transparently even a physical GPU is not
present [67]. To support multiple GPU types, we implement
a mechanism for the cloud service to load per-GPU device-
tree when a VM boots. As a result, a single VM image can
incorporate multiple GPU drivers, which are dynamically
loaded depending on the specific client GPU model.

GPUShim We build GPUShim as a TEE module. Following
the TrustZone convention, GPUShim communicates with
the cloud using the GlobalPlatform APIs implemented by
OPTEE [26]. The communication is authenticated and en-
crypted by SSL 3.0 with the TEE, before it is forwarded
through the normal-world OS.

By design, the trusted firmware on the client dynami-
cally switches the GPU between the normal world and the
TEE with a configurable TrustZone address space controller
(TZASC) [44]. Yet, our client platform (Hikey960) has a pro-
prietary TZASC which lacks public documentation [33]. We
workaround this issue by statically reserving memory re-
gions for GPU and mapping the memory regions and GPU
registers to the TEE.

We modify the secure monitor to route the GPU’s inter-
rupts to the TEE. GPUShim forwards the interrupts to Driver-
Shim for handling. We avoid interrupt injection to the VM
hypervisor and keep it unmodified.

To bootstrap the GPU, the client TEE needs to access SoC
resources not managed by the GPU driver, e.g. power/clock
for GPU. For strong security, we protect these resources
inside the TEE as did in prior work [44] instead of invoking
the normal-world OS via RPC [67].

7 Evaluation

The evaluation answers the following questions.
o Is GR-T secure against attacks? (§ 7.1)

e What are the delays of GR-T? (§ 7.2)

o Are GR-T’s optimizations significant? (§ 7.3)

e What is the energy implication of GR-T? (§7.4)

7.1 Security analysis

Threat model We trust the cloud service and its GPU stack,
assuming that the VMs are attested [65, 66] when the client
TEE requests a connection to them. We also assume that
each client TEE can communicate with the cloud VMs over
a secure channel where all the data is encrypted (e.g. using
attested TLS [39]). We trust the client’s TrustZone and hard-
ware but not its OS. We consider two types of adversaries: (1)
a local, privileged adversary who controls the client OS; (2) a
network-level adversary who can eavesdrop the cloud/client
communications during recording.

Safe and Practical GPU Computation in TrustZone

500
Register /1O C—1
Mem sync 1

400 H Others I ol
o

[

<

o

& 300

[

o

&

5 200 |

—

] H
i3

o

100 -

0 ﬂH n! nH ﬂE_
£¥98 $¥98 2§98 £%98 2§98 2§88
23¢% 23¢% 23t% 23¢% 23t% 23%%
068- 0505 Oo:vg 0505 OSOE anxi
MNIST Alex Mobile Squeeze Resl2 VGGI6

(a) Recording with WiFi conditions (RTT: 20ms, BW: 80Mbps)

Recording delays (sec)

EuroSys ’23, May 9-12, 2023, Rome, Italy

1000
Register /O C—1
Mem sync 3
800 H Others HEEER "
600 -
400 - H
[ﬂ HH ﬂH
0 nnﬁﬁ ﬂ* ﬂn nH ﬂn ﬂn
2x0g ¢x0g ¢ex0Qg ¢exa0Qg ¢x0g ¢xag
25%: 25%% 35%T 33%% 28% 3 238%:
05% 65% 65t 65¢ 605% 65%
°3 °3 °3 03 3 3
MNIST Alex Mobile Squeeze Resl2 VGGI6

(b) Recording with cellular conditions (RTT: 50ms, BW: 40Mbps)

Figure 7. Recording delays of our design (OursMDS) are significantly lower than other versions.

NNs # Blocking RTTs MemSync (MB)
(# GPU jobs) | OursM OursMD OursMDS Naive OursM
MNIST (23) 2837 585 65 3.07 0.8
AlexNet (60) 5008 1392 196 454.9 4.2
MobileNet (104) 7307 2097 320 37.4 11.8
SqueezeNet (98) 7373 2049 303 41.3 11.3
ResNet12 (111) 8326 2352 345 151.2 13.0
VGG16 (96) 7662 2184 309 1215.2 10.2

Table 1. Statistics of record runs, showing GR-T significantly
reduces network round trips that block the recording and
the memory synchronization traffic.

Security overhead and TCB Compared to the total record-
ing delay, the secure communication in GR-T incurs negli-
gible overhead; the cloud VM attestation is cheap as done
locally on the cloud. Establishing a secure channel leads to
a couple of additional RTTs; the entailed data encryption
overhead is low as the payload for each commit is small (200
- 400 Bytes in our measurement).

GR-T’s TCB includes the cloud VM (including the GPU

stack) and the client’s TEE. The TCB is better shielded and
exposes a smaller attack surface, as compared to the TCB
for client GPU computation outside the TEE, which includes
the client’s entire OS.
Integrity GR-T’s recording integrity is jointly ensured by
(1) the trusted cloud service, (2) the client’s TrustZone hard-
ware, and (3) the encrypted cloud/client communication. In
particular, GPUShim locks the GPU MMIO region during
recording, preventing any local adversary from tampering
with GPU registers or shared memory. GR-T’s replay integrity
is ensured by the TrustZone hardware. Since the replayer
only accepts recordings signed by the cloud, it exposes no
additional attack surface to adversaries.

Confidentiality For recording, TEE does not leak ML data,
e.g. model parameters or inputs, as such data never leaves
the TEE. This is due to input independence (§2.3): to record

296

Delay (ms)
MNIST Alex Mobile Squeeze Res1l2 VGG16
Native 15.2 63 60.9 64.3 362.1 372.2
OursMDS 4.8 54.8 45.2 54.3 373.9 364.8

Table 2. Replay delays of GR-T (OursMDS) are similar to
Native, which executes benchmarks on the GPU stack in the
normal world of the same device.

computation, the cloud does not need the actual input or
parameters. The TEE, however, must reveal ML model struc-
tures and GPU commands/shaders to the cloud. Although
the network traffic is encrypted, sophisticated eavesdrop-
pers may learn certain model information via network side
channels. Such side channels can be mitigated by orthogonal
solutions [34, 77].

Since replay is within the client TEE and requires no clien-

t/cloud communication, its data confidentiality is given by
TrustZone. We notice TrustZone may leak data to local ad-
versaries via hardware side channels, which can be mitigated
by existing solutions [50, 76].
Availability Like any cloud-based service, recording avail-
ability of GR-T depends on network conditions and the cloud
availability, which are vulnerable to DDoS attacks. Its replay
availability is at the same level of the TrustZone TEE, when
the GPU power is managed by the TEE not the OS [44].

7.2 Performance

Methodology As shown in Table 1, we test GR-T on in-
ference with 6 popular NNs running atop ARM Compute
Library [11]. We measure GR-T’s recording delay under two
network conditions as controlled by NetEm [31]: i) WiFi-like
(20 ms RTT, 80 Mbps) and ii) cellular-like (50 ms RTT, 40
Mbps) [59]. The hardware platform is described in Section 6.
We compare the following recorder implementations:
e Naive incurs a round trip per register access and synchro-
nizes entire GPU memory before/after a GPU job.

EuroSys ’23, May 9-12, 2023, Rome, Italy

[IRQ T pwrState T polling B others Il |
100 i 1421 2177 2061 2030 1837
E s0f - - - -
§
v 60 -
G (748) (1144) (1076)
§ wl (298) (872) 736)
5
B -
° (ns) (300) 520) @20} e 0
0

MNIST Alex Mobile Squeeze Res|2 VGGI6

Figure 8. Breakdown of speculative commits, normalized to
100%. The actual numbers of commits are shown in paren-
theses.

o OursM includes metaonly memory synchronization (§5).
e QursMD, in addition to OursM, includes register access de-
ferral (§4.1); it generates an RTT per commit.

e QursMDS additionally includes speculation (§4.2). It repre-
sents GR-T with all our techniques.

Recording delays Figure 7 shows the end-to-end record-
ing delays. Naive incurs long recording delays: on WiFi, the
delays range from 52 seconds (MNIST, a small NN) to 423
seconds (VGG16, a larger NN); on cellular network, the de-
lays range from 116 seconds to 795 seconds. As discussed
in Section 3.3, such high delays render the system unusable.
Compared to Naive, OursMDS reduces the delays by up to
95%, to 18 seconds (WiFi) and 30 seconds (cellular) on aver-
age. With the optimized delays, the GPU software/hardware
never throw exceptions; the delays are acceptable to users be-
cause they are comparable to mobile app installation delays
reported to be 10 — 50 seconds [37].

Replay delays GR-T’s replay is faster in most of the bench-
marks as shown in Table 2. Compares native executions,
GR-T’s replay delays range from 68% lower to 3% higher
(25% lower on average). GR-T performance advantage comes
from its removal of the complex GPU stack. We notice that
these results are consistent with the prior work [57].

7.3 Validation of key designs

Efficacy of deferral Figure 7 (OursM vs. OursMD) shows
the impact of register access deferral: it reduces the overall
delays by 65% (WiFi) and 69% (cellular). Table 1 further shows
that the deferral reduces the number of round trips by 73%
on average. With deferral, each commit encloses 3.8 register
accesses on average.

Efficacy of speculation We run all six benchmarks with
retaining register access history in between, allowing GR-T
to reuse history across benchmarks. Figure 7 (OursMDS vs.
OursMD) shows that speculation reduces the recording delays
by 60% to 74%. Table 1 further shows OursMDS achieves 86%
reduced number of round trips on average. Such benefits
mainly come from coalescing round trips via asynchronous
commits.

297

Heejin Park and Felix Xiaozhu Lin

Record (Naive) C1 Record (Ours) £ Replay (Ours) |

10%
=)
= 103 F
o —~
.S_E ,
§§ 10
§g° 10'
5=
g 100F
&

107!

MNIST Alex Mobile Squeeze Resl2 VGGIé

Figure 9. System energy for record and replay.

We further investigate the speculation success rates and
find 95% of commits (99% register accesses) satisfy the spec-
ulation criteria (§4.2). These commits are generated by GPU
driver routines that fall into four categories. (1) Init: probe
hardware configuration when loading the driver. (2) Inter-
rupt: read and clear interrupt status. (3) Power state: periodic
manipulation of GPU power states. (4) Polling: busy wait for
GPU to finish TLB or cache operations. Figure 8 shows a
breakdown of commits by category. All register values in
these commits are highly predictable.

The commits that fail the criteria are due to reads of non-
deterministic register values. For example, on each job sub-
mission, the Mali GPU driver reads and writes a register
LATEST_FLUSH_ID which reflects the GPU cache state and
can be nondeterministic.

Misprediction cost We have not observed misprediction
in our 1,000 runs of each workload. To validate that GR-T
can handle misprediction, we artificially inject into record
runs wrong register values. In all the cases of injection, GR-T
always detects mismatches between the predicted and the
injected register value, initiating rollback of the software
and the hardware states properly. In the worst case (mispre-
diction at the end of a record run), we measure the delays of
rollback as 1 and 3 seconds for MNIST and VGG16, respec-
tively. The delays are primarily dominated by driver reload
and GPU job recompilation on the cloud side, which exceed
the replay delays on the client GPU.

Selective memory synchronization Figure 7 (OursM vs.
Naive) shows that the technique reduces the recording de-
lays by 1% - 57% on average. The reduction is more pro-
nounced on large NNs such as AlexNet and VGG16 (34% -
57%). Table 1 shows the network traffic for memory synchro-
nization is reduced by 72% — 99%.

Polling offloading (§4.3) The numbers of polling loop
instances range from 117 (MNIST) to 492 (VGG16), which
generate from 130 to 550 round trips. Offloading each polling
instance reduces round trips by 13 - 58 per benchmark. This
is because without offloading, a polling loop often takes a few
RTTs (the RTT is long as compared to GPU operations being
polled such as cache flush); with offloading and speculation,
the polling loop takes one RTT.

Safe and Practical GPU Computation in TrustZone

7.4 Energy consumption

We measure the whole client energy using a digital mul-
timeter which instruments the power barrel of the client
device (Hikey960). The client device has no display. It uses
the on-board WL1835 WiFi module for communication; it
runs no other foreground applications. Each workload runs
500 times and we report the average per run. Figure 9 shows
the results.

Record. The energy consumed by recording is moderate,
ranging from 1.8] — 8.2], which is comparable to energy for
installing a mobile app, e.g. 16] for Snapchat (80MB) on the
same device. Note that it is one-time consumption per ML
workload. Compared to Naive, GR-T reduces the system
energy by 84% — 99%.

Replay. As a reference, we measure replay energy per
benchmark. It ranges from 0.01 - 1.3 J, consistent with the
replay performance in Table 2. The replaying energy is com-
parable with the native GPU execution on the client device
(not shown in the figure).

8 Related Work

Remote I/0O is adopted for cross-device I/O sharing [8, 55]
and task offloading [21, 34]. Unlike GR-T, their remoting
boundary is at higher levels, e.g. file [8], Android binder
IPC [55], and runtime API [34]. Doing so would bloat the
TEE with implementation of these high-level APIs.

Similar to GR-T, prior works interpose low-level primi-
tives, e.g. forwarding I/O from VM to mobile system [67] or
low-level memory access from emulator to real device [40,
74]. However, their cross-device interfaces are wired as op-
posed to wireless Internet addressed by GR-T. Contrasting to
their concrete executions, GR-T targets dry run and therefore
contributes unique optimizations that were absent.

Device isolation with TEE Recent works isolates GPUs
by enclosing the GPU stack in the TEE [36, 51] or even part
of the GPU stack in hardware [71]. They, however, require
deep modification of the GPU software/hardware and/or
bloat the TEE. TrustZone is also leveraged by prior works
to secure devices, e.g. peripheral IO [44] and displays [7, 45,
56]; none of them use replay as we did for a complex GPU
stack. Although recent works [30, 57] secure devices based
on record and replay the device interactions, they cannot
solve the problem of recording (§2.4), which is limited to
developers machines unlike GR-T’s online recording.
Speculative execution is widely explored by prior works;
based on caching and prefetching, they facilitate asynchro-
nous file I/O [16, 54, 62] or speed up VM replication [22]
and distributed systems [75]. GR-T gives this conventional
wisdom a fresh context: mobile GPUs. Catering to GPU com-
putation, GR-T avoids register prefetch; it predicts register
values with heuristics specific to mobile GPU drivers, which
were unexploited by prior works.

298

EuroSys ’23, May 9-12, 2023, Rome, Italy

Mobile cloud offloading Cloud offloading [18, 20, 27]
partitions mobile application between a device and the cloud;
both partitions collaborate to execute. GR-T can be viewed
as an extreme case of offloading: the whole GPU stack is
offloaded while only GPU hardware remains on device. As
opposed to prior offloading for concrete execution, GR-T’s
offloading is for dry run.

GPU record and replay at a variety of API levels is used
to reverse-engineer GPU commands [6, 28, 46], enhance
performance [41], profiling [14], and lean software deploy-
ment [30, 57]. While prior works focus on what to record,
GR-T focuses on how to record for TEE, for which GR-T
contributes remote GPU recording.

Secure client ML Many works protect the confidentiality
of ML input and model parameters [29, 43, 52, 53]. Their
ML computation runs on CPU instead of GPU. While re-
cent work [69] proposes verifiable GPU compute in TEE, the
entailed expensive homomorphic encryption unlikely fits
client devices.

9 Conclusions

GR-T is a novel system architecture to run GPU computa-
tion inside the TrustZone TEE. It provides a safe, practical
recording process. The key idea for recording is to leverage a
cloud service which dry runs the GPU stack interacting with
the client GPUs over wireless communication. With a series
of I/O optimization techniques specific to mobile GPUs, GR-
T significantly reduces the time and energy consumed by
clients.

Acknowledgments

The authors were supported in part by NSF awards #2128725,
#1919197, #2106893, and Virginia’s Commonwealth Cyber
Initiative. The authors thank the shepherd Prof. Mark Sil-
berstein and the anonymous reviewers for their insightful
feedback.

References

[1] CVE-2014-1376: Improper restriction to unspecified opencl api calls.
https://nvd.nist.gov/vuln/detail/CVE-2014-1376, 2014.

[2] CVE-2019-14615: Information leakage vulnerability on the intel inte-
grated gpu architecture. https://nvd.nist.gov/vuln/detail/CVE-2019-
14615, 2019.

[3] CVE-2019-20577: Smmu page fault in mali gpu driver. https://nvd.nist.
gov/vuln/detail/CVE-2019-20577, 2019.

[4] CVE-2019-5068: Exploitable shared memory permission vulnerability
in mesa 3d graphics library. https://nvd.nist.gov/vuln/detail/CVE-2019-
5068, 2019.

[5] CVE-2020-11179: Qualcomm adreno gpu ringbuffer corruption / pro-
tected mode bypass. https://nvd.nist.gov/vuln/detail/CVE-2020-11179,
2020.

[6] alyssa rosenzweig. Dissecting the apple m1 gpu. https://rosenzweig.
io/blog/asahi-gpu-part-1.html.

https://nvd.nist.gov/vuln/detail/CVE-2014-1376
https://nvd.nist.gov/vuln/detail/CVE-2019-14615
https://nvd.nist.gov/vuln/detail/CVE-2019-14615
https://nvd.nist.gov/vuln/detail/CVE-2019-20577
https://nvd.nist.gov/vuln/detail/CVE-2019-20577
https://nvd.nist.gov/vuln/detail/CVE-2019-5068
https://nvd.nist.gov/vuln/detail/CVE-2019-5068
https://nvd.nist.gov/vuln/detail/CVE-2020-11179
https://rosenzweig.io/blog/asahi-gpu-part-1.html
https://rosenzweig.io/blog/asahi-gpu-part-1.html

EuroSys ’23, May 9-12, 2023, Rome, Italy

(7]

(14]

(15]

(16]

(17]

(18]

[22]

(23]

A. Amiri Sani. Schrodintext: Strong protection of sensitive textual
content of mobile applications. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’17, page 197-210, New York, NY, USA, 2017. Association for
Computing Machinery.

A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong. Rio: A system
solution for sharing i/o between mobile systems. In Proceedings of the
12th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’14, page 259-272, New York, NY, USA, 2014.
Association for Computing Machinery.

Android kernel. Arm Bifrost Graphics Driver: KBASE_REG_GPU_NX.
https://android.googlesource.com/kernel/arm64/+/refs/tags/android-
11.0.0_r0.67/drivers/gpu/arm/midgard/mali_kbase_mem.h#208.
Android kernel. Arm Bifrost Graphics Driver: kbase_show_gpuinfo().
https://android.googlesource.com/kernel/arm64/+/refs/tags/android-
11.0.0_r0.67/drivers/gpu/arm/midgard/mali_kbase_core_linux.c#
2698.

Arm. Arm Compute Library. https://github.com/ARM-software/
ComputeLibrary.

Open Source Mali Bifrost GPU Kernel Drivers.
https://developer.arm.com/tools-and-software/graphics-and-
gaming/mali-drivers/bifrost-kernel.

Arm. Open Source Mali Midgard GPU Kernel Drivers
https://developer.arm.com/tools-and-software/graphics-and-
gaming/mali-drivers/midgard-kernel.

ARM-software. Software for capturing gles calls of an application
and replaying them on a different device. https://github.com/ARM-
software/patrace.

F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf. SANCTUARY:
arming trustzone with user-space enclaves. In 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society, 2019.

F. Chang and G. A. Gibson. Automatic i/o hint generation through
speculative execution. In 3rd Symposium on Operating Systems Design
and Implementation (OSDI 99), New Orleans, LA, Feb. 1999. USENIX
Association.

H. Chen, C. Fu, B. D. Rouhani, J. Zhao, and F. Koushanfar. Deepattest:
An end-to-end attestation framework for deep neural networks. In
Proceedings of the 46th International Symposium on Computer Architec-
ture, ISCA 19, page 487-498, New York, NY, USA, 2019. Association
for Computing Machinery.

B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
Elastic execution between mobile device and cloud. In Proceedings of
the Sixth Conference on Computer Systems, EuroSys '11, pages 301-314,
New York, NY, USA, 2011. ACM.

Clang. a C language family frontend for LLVM. https://clang.llvm.org/.
E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer with
code offload. In Proc. USENIX/ACM MobiSys, MobiSys ’10, pages 49-62,
New York, NY, USA, 2010. ACM.

E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu,
and M. Musuvathi. Kahawai: High-quality mobile gaming using gpu
offload. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’15, page 121-135,
New York, NY, USA, 2015. Association for Computing Machinery.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual ma-
chine replication. In 5th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 08), San Francisco, CA, Apr. 2008.
USENIX Association.

R. de Jong and A. Sandberg. Nomali: Simulating a realistic graphics
driver stack using a stub gpu. In 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 255-262,
2016.

Arm.

299

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Heejin Park and Felix Xiaozhu Lin

GadgetVersus. Various lists of graphics cards. https://gadgetversus.
com/graphics-card/.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In M. F. Balcan and K. Q.
Weinberger, editors, Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 201-210, New York, New York, USA, 20-22 Jun 2016.
PMLR.

Global Platform. Tee api specification.
https://globalplatform.org/specs-library/tee-internal-core-api-
specification, 2021.

M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
Comet: Code offload by migrating execution transparently. OSDI'12,
page 93-106, USA, 2012. USENIX Association.

Grate. Open source reverse-engineering tools aiming at nvidia
tegra2+3d engine. https://github.com/grate-driver/grate.

Z.Gu, H. Huang, J. Zhang, D. Su, A. Lamba, D. Pendarakis, and I. Molloy.
Securing input data of deep learning inference systems via partitioned
enclave execution. CoRR, abs/1807.00969, 2018.

L. Guo and F. X. Lin. Minimum viable device drivers for arm trustzone.
In Proceedings of the Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 300-316, New York, NY, USA, 2022. Association
for Computing Machinery.

internal core

S. Hemminger. Network emulation with netem. Linux conf au, 2005.
M. Hogan, F. Liu, A. Sokol, and J. Tong. Nist cloud computing standards
roadmap. NIST Special Publication, 35:6-11, 2011.

Z.Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan. vtz: Virtualizing
ARM trustzone. In 26th USENIX Security Symposium (USENLX Security
17), pages 541-556, Vancouver, BC, 2017. USENIX Association.
T.Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and E. Witchel.
Telekine: Secure computing with cloud gpus. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20),
pages 817-833, Santa Clara, CA, Feb. 2020. USENIX Association.
James Reed and Michael Suo. Introduction to Torchscript. https:
//pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html,
2021.

I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh. Heteroge-
neous Isolated Execution for Commodity GPUs. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 455-468. ACM,
2019.

C.J. Jiang, S. Li, G. Huo, and L. Luo. Research on the relationship
between app size and installation time in intelligent mobile devices. In
2019 IEEE Fourth International Conference on Data Science in Cyberspace
(DSC), pages 270-277, 2019.

Kashish Kumawat, Tech Centurion.
(Adreno/Mali/PowerVR).
gpu-rankings.

T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij.
Integrating remote attestation with transport layer security. CoRR,
abs/1801.05863, 2018.

K. Koscher, T. Kohno, and D. Molnar. SURROGATES: Enabling near-
real-time dynamic analyses of embedded systems. In 9th USENIX
Workshop on Offensive Technologies (WOOT 15), Washington, D.C.,
Aug. 2015. USENIX Association.

W. Kwon, G.-L. Yu, E. Jeong, and B.-G. Chun. Nimble: Lightweight
and parallel gpu task scheduling for deep learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 8343-8354.
Curran Associates, Inc., 2020.

J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi,
R. Sarokin, A. Kulik, and M. Grundmann. On-device neural net infer-
ence with mobile gpus. CoRR, abs/1907.01989, 2019.

Mobile GPU Rankings 2021
https://www.techcenturion.com/mobile-

https://android.googlesource.com/kernel/arm64/+/refs/tags/android-11.0.0_r0.67/drivers/gpu/arm/midgard/mali_kbase_mem.h#208
https://android.googlesource.com/kernel/arm64/+/refs/tags/android-11.0.0_r0.67/drivers/gpu/arm/midgard/mali_kbase_mem.h#208
https://android.googlesource.com/kernel/arm64/+/refs/tags/android-11.0.0_r0.67/drivers/gpu/arm/midgard/mali_kbase_core_linux.c#2698
https://android.googlesource.com/kernel/arm64/+/refs/tags/android-11.0.0_r0.67/drivers/gpu/arm/midgard/mali_kbase_core_linux.c#2698
https://android.googlesource.com/kernel/arm64/+/refs/tags/android-11.0.0_r0.67/drivers/gpu/arm/midgard/mali_kbase_core_linux.c#2698
https://github.com/ARM-software/ComputeLibrary
https://github.com/ARM-software/ComputeLibrary
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/bifrost-kernel
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/bifrost-kernel
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/midgard-kernel
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/midgard-kernel
https://github.com/ARM-software/patrace
https://github.com/ARM-software/patrace
https://clang.llvm.org/
https://gadgetversus.com/graphics-card/
https://gadgetversus.com/graphics-card/
https://globalplatform.org/specs-library/tee-internal-core-api-specification
https://globalplatform.org/specs-library/tee-internal-core-api-specification
https://github.com/grate-driver/grate
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://www.techcenturion.com/mobile-gpu-rankings
https://www.techcenturion.com/mobile-gpu-rankings

Safe and Practical GPU Computation in TrustZone

(43]

[44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

(56]

(57]

T. Lee, Z. Lin, S. Pushp, C. Li, Y. Liu, Y. Lee, F. Xu, C. Xu, L. Zhang,
and J. Song. Occlumency: Privacy-preserving remote deep-learning
inference using sgx. In The 25th Annual International Conference on
Mobile Computing and Networking, MobiCom '19, New York, NY, USA,
2019. Association for Computing Machinery.

M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee. Secloak: Arm
trustzone-based mobile peripheral control. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’18, page 1-13, New York, NY, USA, 2018. Association
for Computing Machinery.

W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li. Building
trusted path on untrusted device drivers for mobile devices. In Pro-
ceedings of 5th Asia-Pacific Workshop on Systems, APSys *14, New York,
NY, USA, 2014. Association for Computing Machinery.

T. M. D. G. Library. Panfrost. https://docs.mesa3d.org/drivers/panfrost.
html.
Linux. Qualcomm adreno graphics driver: gpu list. https:
//elixir.bootlin.com/linux/v5.15-rc5/source/drivers/gpu/drm/msm/
adreno/adreno_device.c#L23.

Linux. delays - Information on the various kernel delay / sleep mech-
anisms. https://www.kernel.org/doc/Documentation/timers/timers-
howto.txt/, 2021.

Linux. The Kernel Concurrency Sanitizer (KCSAN). https://www.
kernel.org/doc/html/latest/dev-tools/kcsan.html, 2021.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. Armaged-
don: Cache attacks on mobile devices. In 25th USENIX Security Sym-
posium (USENIX Security 16), pages 549-564, Austin, TX, Aug. 2016.
USENIX Association.

R. Liu, L. Garcia, Z. Liu, B. Ou, and M. Srivastava. Secdeep: Secure and
performant on-device deep learning inference framework for mobile
and iot devices. In Proceedings of the International Conference on
Internet-of-Things Design and Implementation, IoTDI "21, page 67-79,
New York, NY, USA, 2021. Association for Computing Machinery.

F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtellis.
Ppfl: Privacy-preserving federated learning with trusted execution en-
vironments. In Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’21, page 94-108,
New York, NY, USA, 2021. Association for Computing Machinery.

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cav-
allaro, and H. Haddadi. Darknetz: Towards model privacy at the edge
using trusted execution environments. In Proceedings of the 18th In-
ternational Conference on Mobile Systems, Applications, and Services,
MobiSys "20, page 161-174, New York, NY, USA, 2020. Association for
Computing Machinery.

E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in a
distributed file system. In Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, SOSP ’05, page 191-205, New York,
NY, USA, 2005. Association for Computing Machinery.

S. Oh, H. Yoo, D. R. Jeong, D. H. Bui, and I. Shin. Mobile plus: Multi-
device mobile platform for cross-device functionality sharing. In
Proceedings of the 15th Annual International Conference on Mobile Sys-
tems, Applications, and Services, MobiSys *17, page 332-344, New York,
NY, USA, 2017. Association for Computing Machinery.

C. M. Park, D. Kim, D. V. Sidhwani, A. Fuchs, A. Paul, S.-J. Lee, K. Dantu,
and S. Y. Ko. Rushmore: Securely displaying static and animated
images using trustzone. In Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys °21,
page 122-135, New York, NY, USA, 2021. Association for Computing
Machinery.

H. Park and F. X. Lin. Gpureplay: A 50-kb gpu stack for client ml. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2022, page 157-170, New York, NY, USA, 2022. Association for Com-
puting Machinery.

300

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

EuroSys ’23, May 9-12, 2023, Rome, Italy

H. Park, S. Zhai, L. Lu, and F. X. Lin. Streambox-tz: Secure stream
analytics at the edge with trustzone. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 537-554, Renton, WA, July 2019.
USENIX Association.

S. Park, J. Lee, J. Kim, J. Lee, S. Ha, and K. Lee. Exll: An extremely
low-latency congestion control for mobile cellular networks. In Pro-
ceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies, CONEXT ’18, page 307-319, New York,
NY, USA, 2018. Association for Computing Machinery.

R. D. Pietro, F. Lombardi, and A. Villani. Cuda leaks: A detailed hack
for cuda and a (partial) fix. 15(1), Jan. 2016.

R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa.
Visor: Privacy-preserving video analytics as a cloud service. In 29th
USENIX Security Symposium (USENIX Security 20), pages 1039-1056.
USENIX Association, Aug. 2020.

A. Raman, G. Yorsh, M. Vechev, and E. Yahav. Sprint: Speculative
prefetching of remote data. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA 11, page 259-274, New York, NY, USA, 2011.
Association for Computing Machinery.

J. W. M. W. Y. W. J. Z. Rendong Liang, Ting Cao and Y. Liu. Romou:
Rapidly generate high-performance tensor kernels for mobile gpus.
In The 28th Annual International Conference on Mobile Computing and
Networking, MobiCom 22, 2022.

A. A. Sani and T. Anderson. The case for i/o-device-as-a-service. In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
’19, page 66-72, New York, NY, USA, 2019. Association for Computing
Machinery.

N. Santos, K. P. Gummadi, and R. Rodrigues. Towards trusted cloud
computing. In Proceedings of the 2009 Conference on Hot Topics in Cloud
Computing, HotCloud’09, USA, 2009. USENIX Association.

N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed
data: A new abstraction for building trusted cloud services. In 21st
USENIX Security Symposium (USENIX Security 12), pages 175-188,
Bellevue, WA, Aug. 2012. USENIX Association.

S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani, and
Z. Qian. Charm: Facilitating dynamic analysis of device drivers of
mobile systems. In 27th USENIX Security Symposium (USENIX Security
18), pages 291-307, Baltimore, MD, Aug. 2018. USENIX Association.
Tencent. Tencent ncnn framework. https://github.com/Tencent/ncnn.
F. Tramer and D. Boneh. Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware. In International Conference
on Learning Representations, 2019.

S.B.E. V.S. M. L. N. G. A. D. E. Y. Vinh Nguyen, Michael Carilli.
Accelerating PyTorch with CUDA Graphs. https://pytorch.org/blog/
accelerating-pytorch-with-cuda-graphs/.

S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted execution
environments on gpus. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 681-696, Carlsbad,
CA, Oct. 2018. USENIX Association.

M. Wang, S. Ding, T. Cao, Y. Liu, and F. Xu. Asymo: scalable and effi-
cient deep-learning inference on asymmetric mobile cpus. In Proceed-
ings of the 27th Annual International Conference on Mobile Computing
and Networking, pages 215-228, 2021.

C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao,
B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang,
B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Machine learning at
facebook: Understanding inference at the edge. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pages 331-344, 2019.

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A frame-
work to support dynamic security analysis of embedded systems’
firmwares. In NDSS, 2014.

https://docs.mesa3d.org/drivers/panfrost.html
https://docs.mesa3d.org/drivers/panfrost.html
https://elixir.bootlin.com/linux/v5.15-rc5/source/drivers/gpu/drm/msm/adreno/adreno_device.c#L23
https://elixir.bootlin.com/linux/v5.15-rc5/source/drivers/gpu/drm/msm/adreno/adreno_device.c#L23
https://elixir.bootlin.com/linux/v5.15-rc5/source/drivers/gpu/drm/msm/adreno/adreno_device.c#L23
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt/
https://www.kernel.org/doc/Documentation/timers/timers-howto.txt/
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://github.com/Tencent/ncnn
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/

EuroSys ’23, May 9-12, 2023, Rome, Italy Heejin Park and Felix Xiaozhu Lin

[75] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Im- [77] W. Zheng, A. Dave,]J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
proving mapreduce performance in heterogeneous environments. In 1. Stoica. Opaque: An oblivious and encrypted distributed analytics
Proceedings of the 8th USENIX Conference on Operating Systems De- platform. In 14th USENIX Symposium on Networked Systems Design and
sign and Implementation, OSDI'08, page 29-42, USA, 2008. USENIX Implementation (NSDI 17), pages 283-298, Boston, MA, 2017. USENIX
Association. Association.

[76] N.Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou. Truspy: Cache side-
channel information leakage from the secure world on arm devices.
IACR Cryptol. ePrint Arch., 2016:980, 2016.

301

	Abstract
	1 Introduction
	2 Motivations
	2.1 Mobile GPUs
	2.2 Prior approaches
	2.3 GR for TrustZone
	2.4 The problem of recording

	3 GR-T
	3.1 The workflow
	3.2 The GR-T architecture
	3.3 Challenge: long network delays

	4 Hiding Register Access Delays
	4.1 Register access deferral
	4.2 Speculation
	4.3 Offloading polling loops

	5 Memory Synchronization
	6 Implementations
	7 Evaluation
	7.1 Security analysis
	7.2 Performance
	7.3 Validation of key designs
	7.4 Energy consumption

	8 Related Work
	9 Conclusions
	References

