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Abstract
The generalized polynomial chaos (gPC) method is one of the most popular method for
uncertainty quantification. Being essentially a spectral approach, the gPC method exhibits
the spectral convergence rate which heavily depends on the regularity of the solution in the
random space. Many regularity studies have been made for stochastic elliptic and parabolic
equations while regularities studies of stochastic hyperbolic equations has long been infea-
sible due to its intrinsic difficulties. In this paper, we investigate the impact of uncertainty
on the time-dependent radiative transfer equation (RTE) with nonhomogeneous boundary
conditions, which sits somewhere between hyperbolic and parabolic equations. We theoret-
ically prove the a-priori bound of the solution, its continuity with respect to the scattering
coefficient, and its regularity in the random space. These studies can serve as a building block
in understanding the influence of uncertainties in the passage from hyperbolic to parabolic
equations. Moreover, we vigorously justify the validity of the gPC expansion ansatz based on
the regularity study. Then the stochastic Galerkin method of the gPC approach is employed to
discretize the random variable.We further conduct a delicate analysis to show the exponential
decay rate of the gPC coefficients and establish the error estimates of the stochastic Galerkin
approximation for both one-dimensional andmulti-dimensional random space cases. Numer-
ical tests are presented to verify our analytical results.
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1 Introduction

The radiative transfer equation (RTE) [6, 7] is a fundamental model for light propagation. It is
a model equation for a class of kinetic equations, whose solutions are probability distribution
functions of particles in the phase space. RTE, like other kinetic equations, describes the
dynamics of photons in a given optical environment. The equation has wide applications
in many areas such as astrophysics, inertial confinement fusion, optical molecular imaging,
shielding, atmospheric science, and remote sensing, etc..

In practical applications, the RTE almost always contains uncertainties. It is very common
that the optical environment contains uncertain parameters, rendering a parameterized equa-
tion that is otherwise deterministic. For each fixed configuration of the parameters, solving
the deterministic RTE is a classical topic. At the forefront of stochastic computation, most
numerical techniques focus on capturing the stochastic behavior of the solution when param-
eters vary. Among many choices of numerical methods, the polynomial chaos (PC) methods
have received intensive attention. The term “polynomial chaos”was coined byWiener in [36],
where the decomposition of Gaussian random processes was studied with Hermite polyno-
mials serving as an orthogonal basis in the random space. Inspired by Wiener’s work, the
original PC method using Hermite polynomials was developed by Ghanem and his collabo-
rators for many engineering problems where uncertainties are mostly modeled by Gaussian
stochastic processes. We refer to [17] for an overview of the method. Later, Xiu and Kar-
niadakis proposed the generalized polynomial chaos (gPC) method in [39], where different
types of orthogonal polynomials are chosen as basis functions according to the features of
the random inputs, extending Gaussian process to a more general setting.

Being essentially a spectral approach, the gPC method exhibits the spectral convergence
with the specific rate depending on the regularity of the solution in the random space. As a
result, justifying the regularity of the solution lies at the core of numerical validation. Many
regularity studies have been made for stochastic elliptic and parabolic equations; see [2, 3,
9, 10, 40]. These studies explore the solutions’ properties in the random space, and based on
these properties, new numerical methods were developed to further incorporate the solutions’
structure [1, 8, 12, 20, 21, 32–34]. However, these studies have mostly been confined to
elliptic/parabolic type equations since this regularity argument for stochastic hyperbolic
equations usually breaks down [4, 12]: The solutions develop nonsmooth structures rendering
the failure of the spectral accuracy.

Interestingly, kinetic equations sit somewhere between hyperbolic and parabolic systems.
The equations describe dynamics of particles, and thus naturally contain terms that character-
ize transport phenomena, resemblingmost hyperbolic systems.However, particles sometimes
interact, either with each other or with the environment, bringing in a dissipative feature that
eventually sends the system to equilibrium. In this sense, it is closer to a parabolic system.
The feature the system shows largely depends on the regime the equation gets presented on.
Typically one adjusts the scaling between temporal and spatial variables, and this scaling is
presented by the Knudsen number. In the large time regime where temporal scale dominates
and the Knudsen number is small, the system dissipates fast into an equilibrium, demonstrat-
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ing a parabolic feature. This interesting phenomenon attracted growing interest in kinetic
equations in recent years, especially when the system contains uncertainty. These studies
serve as a building block in understanding the influence of uncertainties in the passage from
hyperbolic to parabolic equations. Uniform (in the Knudsen number) regularity in the ran-
dom space and the uniform spectral convergence of the stochastic Galerkin method were
proved for the transport equation in [23] and for the semiconductor Boltzmann equation in
[24]. The authors in [30] carried out uniform regularity analysis based on hypocoercivity
[13] for stochastic linear kinetic equations in the random space where the regularity result is
independent of the form of the collision operator, the probability distribution of the random
variables, or the regime in which the system is in, and can be applied to a wide range of linear
kinetic equations and to different regimes including kinetic, diffusive, and high field. It was
followed by [16] where uniform error estimates of the bi-fidelity method was conducted for
linear transport equations. We refer readers to the asymptotic-preserving stochastic Galerkin
methods for kinetic equations in [22, 25, 26, 28, 42], etc.. We also refer readers to the mono-
graph [27] for more details regarding uncertainty quantification for hyperbolic and kinetic
equations.

All of these results focused on preserving the regularity in time based on the assumption
that the solution has a gPC expansion ansatz in the random space. However, why the solution
can be represented by random variables and be formed as a well-defined function is left
unjustified. The study in this paper can be regarded as a complement to these previous
results. It provides a recipe, using the time-dependent RTE as an example, to justify the gPC
expansion ansatz. By establishing the a-prior estimate of the RTE solution, we prove the
regularity of the solution in the random space for the RTE with nonhomogeneous boundary
conditions. Based on these studies, we rigorously show that the solution can be represented
as a power series with nontrivial radius of convergence and thus is well-defined in the random
space. Therefore, the stochastic Galerkin method can be adopted to approximate the random
variables. Moreover, a delicate analysis is conducted to prove the exponential decay rate
of the gPC coefficients, and the error estimates are established for the stochastic Galerkin
approximation. It is worth mentioning that, for the time-dependent RTE with homogeneous
boundary conditions, the regularity of the solution in the random spacewas proved in the [23].
It is also a special case of linear kinetic equations with random inputs studied in [30] where
uniform regularity was proved based on the hypocoercivity depending on four assumptions
regardingmicroscopic coercivity, macroscopic coercivity, orthogonality, and boundedness of
auxiliary operator. Although almost all the kinetic equations satisfy these four assumptions
as checked in [13], it can be verified that, for the RTE with nonhomogeneous boundary
conditions, the transport operator is not skew symmetric and thus breaks the assumption of
macroscopic coercivity that the uniform regularity analysis relies on. We also refer readers
to the regularity and convergence study for the stationary RTE investigated in [41].

The rest of paper is organized as follows: In Sect. 2, we present the equation and some
theoretical aspects, including the a-prior bound in Sect. 2.2, continuity with respect to the
scattering coefficient in Sect. 2.3, and the regularity in the random space in Sect. 2.4. Section3
is devoted to the study of the stochastic Galerkin approximation with the method presented in
Sect. 3.1, the decay rate analysis of the gPC coefficients carried out in Sect. 3.2, and the error
estimates for the stochastic Galerkin approximation established in Sect. 3.3. Numerical tests
are provided in Sect. 4 and the paper is concluded with summaries and remarks in Sect. 5.
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2 Theoretical Aspects of the RTE Solution

In this section, we introduce the equation and investigate theoretical aspects of the RTE
solution including the a-priori bound, its continuity with respect to the scattering coefficient,
and its regularity in the random space.

The time-dependent RTE is given by
⎧
⎪⎨

⎪⎩

∂t f + v · ∇x f = Lσ f , (x, v) ∈ R × S,

f (t, x, v) = ψ(t, x, v), (x, v) ∈ �−,

f (0, x, v) = f0(x, v), (x, v) ∈ R × S,

(2.1)

where f (t, x, v) is the probability distribution function of particles at position x ∈ R with
velocity v ∈ S at time t > 0. Here R denotes some bounded Lipschitz domain, and S is the
unit sphere (

∫

S
dv = 1). The boundary ∂R × S can be split into two parts

�± = {(x, v) ∈ ∂R × S : ±v · n(x) > 0}, (2.2)

where �+ and �− are the so-called outflow and inflow boundary, respectively, and n(x)
denotes the outward unit normal vector at x ∈ ∂R. The collision operator Lσ , defined by

Lσ f =
∫

S

σ(x, v, v′) f (t, x, v′)dv′ − σa f (t, x, v) , (2.3)

describes the interaction of particleswith themedia (themutual interactions between particles
are ignored). Here σa > 0 is the total cross-section of themedium, and σ > 0 is the scattering
kernel. σs = ∫

σ(x, v, v′)dv′ is the scattering coefficient.
Without loss of generality, we focus on the critical case with σa = σs . The scattering

coefficientσs is further assumed to be independent of the velocity v and involves uncertainties.
Thus, (2.3) can be rewritten as

Lσ f = σs(x, ω)

(∫

S

f dv′ − f

)

� σsL f , (2.4)

where ω ∈ � denotes the random variables, and

L f =
∫

S

f dv − f . (2.5)

2.1 Preliminaries

In this section, we unify and introduce notations. To study themodel problem (2.1) with (2.4),
we first represent the random variable ω ∈ � with more concrete parameters. By applying
the well-known Karhunen-Loève (KL) expansion [31], the coefficient σs can be rewritten as

σs(x, ω) = σ̄s(x) +
d∑

j=1

y j (ω)φ j (x), (2.6)

where {y j } j=1,2,...,d are mutually uncorrelated random variables, and {φ j } j=1,2,...,d are
orthogonal functions in L2(R). Herewe assume that ‖y j‖L∞(�) = supω∈� |y j (ω)| = 1, j =
1, . . . , d , up to a renormalization of the function φ j . It is worth mentioning that the standard
KL expansion has an eigenvalue term as the coefficient of y jφ j , which is also absorbed
into φ j . The eigenvalue and the associated orthogonal eigenfunctions can be derived from
the eigenvalue problem of the KL expansion. More details can be found in [31]. Here d is
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the number of random variables, which could be infinity but is truncated here with a finite
approximation under a preset error tolerance.

Now the solution is viewed as a function f (t, x, v, y), where y = (y1, . . . , yd) are the
random variables. We unify the notations and rewrite the RTE with uncertainty as

⎧
⎪⎨

⎪⎩

∂t f + v · ∇x f = σsL f , f = f (t, x, v, y), (t, x, v, y) ∈ (0, T ) × R × S ×U ,

f (t, x, v) = ψ(t, x, v), (t, x, v) ∈ (0, T ) × �−,

f (0, x, v) = f0(x, v), (x, v) ∈ R × S

(2.7)
withU = [−1, 1]d , σs given in (2.6), and L defined in (2.5). It describes the evolution of the
probability distribution function of particles f at time t on phase space (x, v) and subject to
a set of random variables {y j }. Without abuse of notations, here and after, we adopt simpler
notations such as f or f (v) or f (y), σs , etc.. It is worth emphasizing that f is viewed as
f (t, x, v, y), σs as σs(x, y), ψ as the deterministic boundary ψ(t, x, v), and f0 as the initial
condition f0(x, v).

Let ρ(y) be the probability density function of y. We define the norm in the Hilbert space
L2(U × R × S; ρ(y)dydxdv) as

‖ f ‖2L2(U×R×S; ρ(y)dydxdv)
=

∫

U
‖ f ‖22 ρ(y)dy, (2.8)

where ‖ f ‖ is the standard L2 norm of f in the phase space (x, v) ∈ R × S given by

‖ f ‖22 =
∫

R×S

f 2dxdv, ‖ f ‖22,�− =
∫

�−
|v · n(x)| f 2dxdv. (2.9)

We further define the dual norm of the operator L in (2.5) by

‖L‖2 = sup
‖ f ‖2=1

√∫

S

(L f )2 dv.

The bound of the dual norm is presented in the following lemma, which plays an important
role for the theoretical study of the solution. The proof of this lemma can be found in [41]
and thus is omitted here.

Lemma 2.1 The dual norm of L is bounded by 1, meaning ‖L‖2 ≤ 1.

For all the lemmas and theorems presented in this paper, we assume that σs ≥ 0, σs ∈
L∞(U × R), and f0 ∈ L2(R × S). We also assume that there exists a positive constant Cψ

independent of t such that
‖ψ‖2,�− ≤ Cψ < ∞, (2.10)

which can be achieved by assuming for simplicity that ψ is independent of time t .

2.2 The A-priori Estimate of the RTE Solution

The existence and uniqueness for this initial boundary value problem were first proved for
the L1 case in [5] under the assumption that the scattering coefficient is bounded away from
the absorption coefficient. Under the assumption that σs ≥ 0 and σs ∈ L∞(R), the existence
and uniqueness (in the weak sense) for this initial boundary value problem with absorbing
(homogeneous) boundary conditions (ψ = 0) were proved for general L p case with semi-
group argument in [11] where a remark on nonhomogeneous boundary conditions was also
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given by transforming the nonhomogeneous problem to its homogeneous counterpart with
the help of the lifting of ψ . More details can be found in the monograph [11] (Chapter XXI,
Section 2). We also refer to [15] for the study on a class of Galerkin schemes for the time-
dependent RTEwith homogeneous boundary conditions and to [14] for the a-priori estimates
in the L p sense for the stationary RTE.

In the following theorem, we provide the a-priori estimates for the RTE solution with
source terms and nonhomogeneous boundary conditions. For simplicity, we omit the argu-
ment y in this subsection.

Theorem 2.1 Suppose S ∈ L2(R × S), the following initial boundary value problem
⎧
⎨

⎩

∂t f + v · ∇x f = σs(x)L f + S, (x, v) ∈ R × S,

f (t, x, v) = ψ(t, x, v), (x, v) ∈ ×�−,

f (0, x, v) = f0(x, v), (x, v) ∈ R × S

(2.11)

has a unique solution which satisfies

‖ f ‖22 ≤ eCt
(

‖ f0‖22 +
∫ t

0
e−Cτ

(
‖S(τ )‖22 + ‖ψ(τ)‖22,�−

)
dτ

)

,

where C = 2‖σs‖∞ + 1.

Proof Multiplying both sides of the equation by f and integrating over R × S, we have

1

2

d

dt

∫

R×S

f 2dxdv + 1

2

∫

∂R×S

f 2v · ndxdv =
∫

R×S

σs(x) (L f ) f dxdv +
∫

R×S

S f dxdv,

(2.12)
where the second term on the left hand side is obtained by

∫

R×S

f (v · ∇x f ) dxdv = 1

2

∫

R×S

v · ∇x f
2dxdv = 1

2

∫

∂R×S

f 2v · ndxdv.

It follows from Lemma 2.1 and Young’s inequality that

1

2

d

dt

∫

R×S

f 2dxdv + 1
2

∫

�+ f 2v · ndxdv ≤ ‖σs‖∞‖ f ‖22 + 1
2

(‖ f ‖22 + ‖S‖22
)

− 1
2

∫

�− f 2v · ndxdv, (2.13)

where the boundary term ∂R × S is split into two parts �±. According to the definition of
�± in (2.2), it is easy to verify that

∫

�+
f 2v · ndxdv ≥ 0, −1

2

∫

�−
f 2v · ndxdv = ‖ψ‖22,�− ,

which yields
d

dt
‖ f ‖22 ≤ C‖ f ‖22 + ‖S‖22 + ‖ψ‖22,�− , (2.14)

withC = 2‖σs‖∞+1. The proof is completed by directly applying theGronwall’s inequality.
	


Corollary 2.1 The solution to the RTE (2.7) satisfies

‖ f ‖22 ≤ eCt
(
‖ f0‖22 + C2

ψ

)
, (2.15)

where C = 2‖σs‖∞ + 1, and Cψ is defined in (2.10).
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Proof For (2.7) with null source, we apply Theorem 2.1 with S = 0 and obtain

‖ f ‖22 ≤ eCt
(

‖ f0‖22 +
∫ t

0
e−Cτ

(
‖ψ(τ)‖22,�−

)
dτ

)

≤ eCt
(
‖ f0‖22 + C2

ψ

)
(2.16)

based on the assumption on ψ and the fact that
∫ t
0 e

−Cτdτ ≤ 1
C (1 − e−Ct ) ≤ 1

C ≤ 1. 	


2.3 Continuity with Respect to �s

In this subsection, we show that the solution f is continuous with respect to the scattering
coefficient σs . Namely, for small changes in σs , we will show that the solution f responds
with a small change as well.

Theorem 2.2 (continuity) The solution f to the RTE (2.7) is continuous in the L2 sense with
respect to the scattering coefficient σs . That is, if f and f̃ satisfy the following equations

⎧
⎨

⎩

∂t f + v · ∇x f = σsL f ,
f |�− = ψ,

f |t=0 = f0,

⎧
⎨

⎩

∂t f̃ + v · ∇x f̃ = σ̃sL f̃ ,
f̃ |�− = ψ,

f̃ |t=0 = f0,

respectively, then the error E = f − f̃ satisfies

‖E‖22 ≤ eCt t‖σs − σ̃s‖2∞C1,

where C = 2‖σs‖∞ + 1 and C1 = ‖ f0‖22 + C2
ψ .

Proof Clearly, the error function E satisfies the following equation

⎧
⎨

⎩

∂t E + v · ∇x E = σsLE + (σs − σ̃s)L f̃ ,
E |�− = 0,
E |t=0 = 0.

By Theorem 2.1 and Lemma 2.1, we have

‖E‖22 ≤ eCt
∫ t

0
e−Cτ‖(σs − σ̃s)L f̃ ‖22dτ ≤ eCt‖σs − σ̃s‖2∞

∫ t

0
e−Cτ‖ f̃ (τ, ·, ·)‖22dτ,

which, together with Corollary 2.1, yields

‖E‖22 ≤ eCt t‖σs − σ̃s‖2∞(‖ f0‖22 + C2
ψ).

Thus, the proof is complete. 	


2.4 Differentiability and A-priori Estimates for Derivatives

We further study the dependence of f on y = (y1, . . . , yd), which is the representation of
the perturbation in σs , by taking the derivatives of (2.7) with respect to y.

We show in the following theorem the existence and L2 bound of the first order derivative.
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Theorem 2.3 (differentiability) The solution f to the RTE (2.7) is differentiable with respect
to y, and ∂ f

∂ ym
satisfies the following equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t

(
∂ f

∂ ym

)

+ v · ∇x
∂ f

∂ ym
= σsL

∂ f

∂ ym
+ φmL f ,

∂ f

∂ ym
|�− = 0,

∂ f

∂ ym
|t=0 = 0.

(2.17)

Moreover,
‖∂ f /∂ ym‖22 ≤ eCt t‖φm‖2∞C1, (2.18)

where C = 2‖σs‖∞ + 1 and C1 = ‖ f0‖22 + C2
ψ .

Proof Let f and fh be the solutions to (2.7) with σs(x) = σ̄s + ∑

k≥1
ykφk(x) and σ̃s(x) =

σ̄s + ∑

k≥1
ykφk(x) + hφm(x), respectively. Then, fh − f satisfies

⎧
⎨

⎩

∂t ( fh − f ) + v · ∇x ( fh − f ) = σsL ( fh − f ) + (σ̃s − σs)L fh,
( fh − f ) |�− = 0,
( fh − f ) |t=0 = 0.

Denote w = 1
h ( fh − f ), we have

⎧
⎨

⎩

∂tw + v · ∇xw = σsLw + φm(x)L fh,
w|�− = 0,
w|t=0 = 0.

For every y ∈ [−1, 1], ‖w‖2 is bounded according to Theorem 2.1, which implies that

‖ fh − f ‖2 → 0, as h → 0, a.s. .

Therefore, by Lemma 2.1, L fh → L f , as h → 0, and we conclude that the solution is
differentiable with respect to y by letting ∂ f

∂ ym
= lim

h→0
w = lim

h→0

1
h ( f − fh).

Moreover, it follows from Theorem 2.1 and Lemma 2.1 that
∥
∥
∥
∥

∂ f

∂ ym

∥
∥
∥
∥

2

2
≤ eCt

∫ t

0
e−Cτ‖φm(x)L f ‖22dτ

≤ eCt‖φm‖2∞
∫ t

0
e−Cτ‖ f ‖22dτ ≤ eCt t‖φm‖2∞(‖ f0‖22 + C2

ψ).

	

We now generalize the results in Theorem 2.3 to higher order derivatives with respect

to y = (y1, . . . , yd). Let α = (α1, . . . , αd) be a multi-index with the length and factorial
defined as

|α| =
d∑

j=1

α j , α! =
d∏

j=1

α j !,

respectively. We further define b = (b1, . . . , bd) with b j > 0 to the power of α as

bα =
∏

1≤ j≤d

b
α j
j .
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Theorem 2.4 The high order derivatives of the solution f to the RTE (2.7) are governed by
the following equation

⎧
⎪⎪⎨

⎪⎪⎩

∂t

(
∂α
y f

)
+ v · ∇x∂

α
y f = σsL

(
∂α
y f

)
+ ∑

j,α j �=0
α jφ jL

(
∂

α−e j
y f

)
,

∂α
y f |�− = 0,

∂α
y f |t=0 = 0,

(2.19)

and satisfy
∥
∥
∥∂α

y f
∥
∥
∥
2

2
≤ eCtd |α|−1α!b2αt |α|C1, (2.20)

where e j ∈ N
d is the multi-index whose j-th entry is 1 and all other entries are zero. Here

C = 2‖σs‖∞ + 1, C1 = ‖ f0‖22 + C2
ψ , and b = (b1, . . . , bd) is a d-dimensional vector with

b j = ‖φ j‖∞.

Proof We will prove (2.19) and (2.20) by induction on |α|. Clearly (2.19) and (2.20) hold
for |α| = 1 by Theorem 2.3. For |α| > 1 with the m-th entry αm �= 0, let α̃ = α − em . Then
α̃m = αm − 1, α̃ j = α j for j �= m, and |α̃| = |α| − 1. By the induction hypothesis, we have

∂t

(
∂α̃
y f

)
+ v · ∇x∂

α̃
y f = σsL

(
∂α̃
y f

)
+

∑

j,α̃ j �=0

α̃ jφ jL
(
∂

α̃−e j
y f

)
, (2.21)

and ∥
∥
∥∂α̃

y f
∥
∥
∥
2

2
≤ eCtd |α̃|−1α̃!b2α̃t |α̃|C1, (2.22)

where C = 2‖σs‖∞ +1, C1 = ‖ f0‖22 +C2
ψ , and b = (b1, . . . , bd) is a d-dimensional vector

with b j = ‖φ j‖∞.
Taking derivative of (2.21) with respect to ym , we obtain

∂t

(
∂α
y f

)
+ v · ∇x∂

α
y f = σsL

(
∂α
y f

)
+ ∂ymσsL

(
∂α̃
y f

)
+ ∂ym

⎛

⎝
∑

j,α̃ j �=0

α̃ jφ jL
(
∂

α̃−e j
y f

)
⎞

⎠

= σsL
(
∂α
y f

)
+ φmL

(
∂α−em
y f

)
+ (αm − 1)φmL

(
∂α−em
y f

)

+
∑

j �=m,α j �=0

α jφ jL
(
∂

α−e j
y f

)

= σsL
(
∂α
y f

)
+

∑

j,α j �=0

α jφ jL
(
∂

α−e j
y f

)
,

which is exactly (2.19). It follows from Theorem 2.1 and Lemma 2.1 that

‖∂α
y f ‖22 ≤ eCt

∫ t

0
e−Cτ

∥
∥
∥

∑

j,α j �=0

α jφ jL
(
∂

α−e j
y f

) ∥
∥
∥
2

2
dτ

≤ eCt
∫ t

0
e−Cτ

⎛

⎝
∑

j,α j �=0

∥
∥
∥α jφ jL

(
∂

α−e j
y f

) ∥
∥
∥
2

⎞

⎠

2

dτ

≤ eCt
∫ t

0
e−Cτ

⎛

⎝
∑

j,α j �=0

α j‖φ j‖∞‖∂α−e j
y f ‖2

⎞

⎠

2

dτ,

(2.23)
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which, together with the hypothesis induction (2.22), yields

‖∂α
y f ‖22 ≤ eCt

∫ t

0
e−Cτ

⎛

⎝
∑

j,α j �=0

e
Cτ
2 d

|α|−2
2 α j b j

√

(α − e j )!bα−e j τ
|α|−1
2

√
C1

⎞

⎠

2

dτ

= eCtd |α|−2

⎛

⎝
∑

j,α j �=0

√
α j

⎞

⎠

2

α!b2αC1

∫ t

0
τ |α|−1dτ

= eCtd |α|−2

(
∑

j,α j �=0

√
α j

)2

|α| α!b2αt |α|C1

≤ eCtd |α|−1α!b2αt |α|C1.

We complete the proof. 	

It is worth mentioning that the existence of the first derivative shown in proof of Theorem

2.3 is the limit of ( f − fh)/h. The procedure can be generalized to the existence of the
high order derivatives. Likewise, Eq.2.17 can be obtained by directly taking derivatives with
respect to ym in (2.7).

It is tempting to use these regularity results to expand f pointwisely as a power series

f (t, x, v, y) =
∞∑

k=0

∑

|α|=k

∂α
y f (t, x, v, y)

α!
∣
∣
∣
∣
y=y0

(y − y0)
α , (2.24)

and to obtain an upper bound of f as

‖ f ‖2(y) ≤
∞∑

k=0

∑

|α|=k

|y − y0|α
α! ‖∂α

y f ‖2(y0)

by directly taking L2-norm in (x, v). However, the expression (2.24) is only formal and
requires the assumption that y belongs to the convergence radius of y0 for fixed (t, x, v).
Although Theorem 2.4 provides the bound for its convergence radius and ensures the validity
of the power series for the L2(R× S) norm of f , i.e., ‖ f ‖2, a more rigorous analysis writes
out the expansion of F(y) = ‖ f ‖22 directly as

F(y) =
∞∑

k=0

∑

|α|=k

∂α
y F(y0)

α! (y − y0)
α

and requires an estimate of ∂α
y F(y0). In fact, for multi-indices α = (α1, . . . , αd) and κ =

(κ1, . . . , κd), and fixed y0 ∈ U = [−1, 1]d , we have
∣
∣∂α

y F(y0)
∣
∣ = ∣

∣∂α
y ‖ f ‖22(y0)

∣
∣ ≤

∫

R×S

∣
∣∂α

y f 2(t, x, v, y0)
∣
∣dxdv

=
∫

R×S

∣
∣
∣
∣

∑

κ≤α

(
α

κ

)(
∂κ
y f (t, x, v, y0)

) (
∂α−κ
y f (t, x, v, y0)

) ∣
∣
∣
∣dxdv

≤
∑

κ≤α

(
α

κ

)
∥
∥∂κ

y f
∥
∥
2(y0)

∥
∥∂α−κ

y

∥
∥
2(y0),
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where the partial order α ≤ κ is defined as αi ≤ κi , for i = 1, . . . , d , and the binomial
coefficient is defined as

(
α

κ

)

=
(

α1

κ1

)(
α2

κ2

)

· · ·
(

αd

κd

)

= α!
κ! (α − κ)! .

Thus, it follows from Theorem 2.4 directly to get the bound for ∂α
y F(y0) and to further

claim that F is a well-defined function that can be represented by a power series. Instead of
engaging in details of this issue, we focus our effort and move on to analyze the stochastic
Galerkin method (the spectral approach).

3 Stochastic Galerkin Approximation

In this section, we apply the stochastic Galerkin method to the RTE based on based on the
vadility of justification discussed in previous section. We first briefly review the stochastic
Galerkinmethod in Sect. 3.1. This amounts to rewriting the solution in the random space using
the expansion of orthogonal polynomials. The coefficients for the expansion enjoy certain
decay, and such decay analysis is presented in Sect. 3.2, in which we further justify the
convergence of the expansion series. We finally establish the error estimate of the stochastic
Galerkin approximation in Sect. 3.3.

3.1 The Stochastic Galerkin Method

The stochastic Galerkin method is essentially the spectral method in the random space. This
is to write the solution in the random space as an expansion of orthogonal polynomials of
random variables.

The gPC basis functions, denoted as pn(y), are orthogonal polynomials with the proba-
bility density function ρ(y) serving as the weight function, i.e.,

〈pm, pn〉y ≡
∫

U
pm(y)pn(y)ρ(y)dy = δmn, ∀m, n, (3.1)

where δmn is the Kronecker delta function. Here the polynomials are normalized and
single-indexed even for multivariate functions. These polynomial basis pm depends on the
distribution ρ. The commonly used ones are Legendre polynomials associated with uniform
distributions, and Hermite polynomials associated with Gaussian distributions [38, 39]. To
simplify the presentation, we set U = [−1, 1]d and ρ as the uniform distribution on U . As
such the tensor product of one-dimensional Legendre polynomials in each direction forms
the gPC basis in the d-dimensional random space U .

As a start, we form the ansatz to the solution f (t, x, v, y) to (2.7) as

f (t, x, v, y) =
∞∑

n=0

f̂n(t, x, v)pn(y) , (3.2)

where the coefficient f̂n is defined as

f̂n(t, x, v) = 〈 f (t, x, v, y), pn(y)〉y . (3.3)
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The N -th degree gPC projection of f is defined by

PN f =
N∑

n=0

f̂n pn . (3.4)

It is worth emphasizing that that the validity of the ansatz (3.2) is roughly justified in the
end of Sect. 2.4 and will be delicately justified in Lemma 3.1. Based on these converging
seriers, it is straightforward to verify that the coefficients satisfy the following infinite system

∂t f̂n + v · ∇x f̂n =
∞∑

m=0

An,mL f̂n, n = 0, 1, 2, . . . , (3.5)

where
An,m = 〈σs(y)pm(y), pn(y)〉y . (3.6)

The stochastic Galerkin methods truncates the expansion into a finite dimensional space,
and use this finite gPC expansion gN given by

gN (t, x, v, y) =
N∑

n=0

ĝn pn(y) . (3.7)

as a numerical approximation, such that the residue of (2.7) is orthogonal to the subspace
spanned by the first N + 1 gPC basis polynomials. That is,

∂t ĝn + v · ∇x ĝn =
N∑

m=0

An,mLĝn, n = 0, 1, 2, . . . , N , (3.8)

with An,m defined in (3.6).

3.2 Decay Rate Analysis of the gPC Coefficients

The solution f to the RTE has been shown to be in Hk for all k in Sect. 2.4. The coefficients
f̂n for f ∈ Hk under the spectral expansion are supposed to decay exponentially by the
classical theory of spectral methods, when all derivatives of f are bounded by a constant
independent of the order of the derivatives. However, it can be observed from Theorem 2.4
that the bounds of the derivatives of the RTE solution grow in a factorial fashion as the order
increases. Therefore, in this section, we establish amore delicate analysis for the decay rate of
the gPC coefficients, which can be used as a preparation for error estimates of the stochastic
Galerkin approximation in Sect. 3.3.

This section is organized as follows: We first prove that f can be represented as a power
series for all y ∈ (−1, 1) in Lemma 3.1. Then with the help of the integral formula given
in Lemma 3.2, and an integral estimate given in Lemma 3.3, we obtain the decay rate of the
gPC coefficients f̂n in Theorem 3.1. Finally we conclude this section with the extension to
multi-dimensional random space.

As did in [3] for the stochastic elliptic equation and in [41] for stationary radiative transfer
equation with random coefficients, we first show the procedure for one KL mode with σs
written as

σs = σ̄s + yφ, (3.9)

where y ∈ [−1, 1] and φ is the corresponding KL mode.
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Lemma 3.1 For y0 ∈ (−1, 1), the solution f to (2.7) can be represented as a power series
in the form of f = ∑∞

j=0 f̃ j (y − y0) j with f̃ j ( j ≥ 1) and f̃0 satisfying

⎧
⎪⎪⎨

⎪⎪⎩

∂t f̃ j + v · ∇x f̃ j = σ0L f̃ j + φL f̃ j−1

f̃ j
∣
∣
∣
�−

= 0,

f̃ j
∣
∣
∣
t=0

= 0,

and

⎧
⎪⎪⎨

⎪⎪⎩

∂t f0 + v · ∇x f̃0 = σ0L f̃0
f̃0
∣
∣
∣
�−

= ψ,

f̃0
∣
∣
∣
t=0

= f0,

(3.10)

respectively. Here σ0 = σs (y0).

Proof To begin with, we show the ansatz f = ∑∞
j=0 f̃ j (y − y0) j with f̃ j satisfying (3.10)

is a solution to (2.7). It follows from (3.10) that

∂t f + v · ∇x f = ∂t

⎛

⎝
∞∑

j=0

f̃ j (y − y0)
j

⎞

⎠ + v · ∇x

⎛

⎝
∞∑

j=0

f̃ j (y − y0)
j

⎞

⎠

= ∂t f0 + v · ∇x f0 +
∞∑

j=1

(y − y0)
j
(
∂t f̃ j + v · ∇x f̃ j

)

= ∂t f0 + v · ∇x f0 +
∞∑

j=1

(y − y0)
j
(
σ0L f̃ j + φL f̃ j−1

)

= σ0L f̃0 +
∞∑

j=1

(y − y0)
jσ0L f̃ j +

∞∑

j=0

(y − y0)
j+1φL f̃ j

= (σ0 + (y − y0)φ)L
⎛

⎝
∞∑

j=0

f̃ j (y − y0)
j

⎞

⎠

= σsL f ,

where the last equality is due to the fact σ0 + (y − y0)φ = σ̄s + y0φ + (y − y0)φ = σs by
(3.9).

We further show that the ansatz f = ∑∞
j=0 f̃ j (y − y0) j is valid by checking its L2

bound. By Lemma 2.1, Theorem 2.1, and Corollary 2.1, we have

‖ f̃ j‖22 ≤ eC0t
∫ t

0
e−C0t j

∥
∥φL f̃ j−1

∥
∥2
2dt j ≤ eC0t‖φ‖2∞

∫ t

0
e−C0t j

∥
∥ f̃ j−1

∥
∥2
2dt j

≤ eC0t‖φ‖2 j∞
∫ t

0

∫ t j

0
· · ·

∫ t2

0
e−C0t1‖ f̃0(t1)‖22dt1dt2 · · · dt j

≤ eC0t‖φ‖2 j∞
t j

j !
(
‖ f0‖22 + C2

ψ

)

with C0 = 2‖σ0‖∞ + 1. Next we show

‖ f ‖2 ≤
∞∑

j=0

‖ f̃ j‖2(y − y0)
j ≤ eC0t/2

√

‖ f0‖22 + C2
ψ

∞∑

j=0

‖φ‖ j∞
t j/2√
j ! (y − y0)

j < ∞

by applying d’Alembert’s ratio test, where one compute the limit

lim
j→∞

t ( j+1)/2√ j !‖φ‖∞(y − y0)√
( j + 1)!t j/2 = lim

j→∞

√
t

j + 1
‖φ‖∞(y − y0) = 0 < 1.
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We conclude that the solution f can be represented as a power series in y − y0 for all
y ∈ (−1, 1). 	


Remark 3.1 One special property of the converging series for the stationary RTE studied in
[41] is that the series converges only in a small ball around y0. One then needs to patch up
all balls to cover the entire U to show the convergence of the series over the whole random
space. This difficulty is not encountered for the time-dependent RTE discussed in this paper,
since it follows from the proof of Lemma 3.1 that the power series converges uniformly for
all y ∈ (−1, 1).

Remark 3.2 In Sect. 2, the bound of the solution or the derivatives depends on the con-
stant C which are related with ‖σs‖∞. The discussion is conducted point-wise for random
variables and ‖σs‖∞ is taken as maxx∈R σs(x) as the standard L∞ norm in the space
R for the deterministic case, while for the stochastic case, one needs to take ‖σs‖∞ =
supy0∈(−1,1) maxx∈R σs(x, y0) with y0 defined in Lemma 3.1.

Lemma 3.2 There exists a positive constant β such that

‖ f̂n‖2 ≤ eCt/2

√
2n + 1

√
C1

2n

∫ 1

−1

(
1 − y2

1 + y + β

)n

dy, (3.11)

where C = 2‖σs‖∞ + 1 and C1 = ‖ f0‖22 + C2
ψ .

Proof With our assumption that y is uniformly distributed on [−1, 1], the probability density
function ρ(y) = 1

2 , and the gPC basis function are the Legendre polynomials which can be
written in the form of

pn(y) =
√
2n + 1

2nn!
dn

dyn
(1 − y2)n, n = 0, 1, . . . . (3.12)

Then the gPC coefficients f̂n defined in (3.3) can be written as

f̂n = 1

2

∫ 1

−1
f pndy = (−1)n

n!
√
2n + 1

2n+1

∫ 1

−1

dn

dyn
f (y)

(
1 − y2

)n
dy (3.13)

after integrating by parts n times.
It follows from Lemma 3.1 that f can be represented as a power series and is point-wise

analytic for y ∈ (−1, 1). Thus for each fixed y ∈ (−1, 1), f can be analytically extended to
the complex domain with the complex variable η. By Cauchy’s formula, we have

dn

dyn
f (y) = n!(−1)n

2π i

∫

γy

f (η)

(η − y)n+1 dη,

where i is the imaginary unit satisfying i2 = −1, and γy is a positively oriented closed
circumference with the center at the real point y ∈ (−1, 1) and the radius R(y) > 0. Here
we set the radius of γy by R(y) = 1 − |y| + β > 0 where β is a positive constant.

By Corollary 2.1, we get

∥
∥
∥
∥
dn

dyn
f

∥
∥
∥
∥
2

≤ n!
2π

∫

γy

‖ f (η)‖2
|η − y|n+1 |dη| ≤ n!

2π

eCt/2√C1

R(y)n+1 2πR(y) = eCt/2√C1n!
R(y)n

, (3.14)
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which, combining with (3.13), yields

‖ f̂n‖2 ≤ eCt/2
√
2n + 1

√
C1

2n+1

∫ 1

−1

(
1 − y2

1 − |y| + β

)n

dy

= eCt/2
√
2n + 1

√
C1

2n

∫ 0

−1

(
1 − y2

1 − |y| + β

)n

dy

= eCt/2
√
2n + 1

√
C1

2n

∫ 0

−1

(
1 − y2

1 + y + β

)n

dy

≤ eCt/2
√
2n + 1

√
C1

2n

∫ 1

−1

(
1 − y2

1 + y + β

)n

dy.

Thus the proof is complete. 	


Lemma 3.3 (integral estimate from [3, 19]) Let ξ < −1, then

∫ 1

−1

(
1 − y2

y − ξ

)n

dy = (2r)n2n+1 n!
(2n + 1)!!�n,0

(
r2

)
, (3.15)

where r = 1
|ξ |+

√
ξ2−1

and �n,0
(
r2

)
is the Gauss hypergeometric function. Moreover, we

have

�n,0
(
r2

) =
√
1 − r2 + O (

1/n1/3
)
,

uniformly with respect to 0 < r < 1.

By Lemma 3.1 and Lemma 3.3, together with the asymptotic equivalence 2nn!
(2n−1)!! ∼ √

πn
as n → ∞, we finally establish in the following theorem the estimate for the gPC coefficients
f̂n .

Theorem 3.1 There exists β > 0 such that

‖ f̂n‖2 � eCt/2
√

πC1

(√
1 − r2 + O (

1/n1/3
))

rn

with 0 < r = 1
|ξ |+

√
ξ2−1

< 1 and ξ = −1 − β < −1. Here C = 2‖σs‖∞ + 1 and

C1 = ‖ f0‖22 + C2
ψ .

Remark 3.3 As shown in the proof of Lemma 3.2, there exists a positive number r such that
the radius R(y) is positive. Accordingly, the decay rate r in Theorem 3.1 satisfies 0 < r < 1.
The specific value of r depends on time t and the diffusive scaling ε, as shown in the numerical
results in Sect. 4, where the values of r are approximated by the decay rate of the numerical
data. The dependence on ε is also numerically observed in [28, 41].
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Remark 3.4 The bound for the gPC coefficients can also be achieved by applying
∥
∥ dn
dyn f

∥
∥
2

given in Theorem 2.4. By this approach, we have

‖ f̂n‖2 ≤
√
2n + 1

2n+1n!
∫ 1

−1

∥
∥d

n f

dyn
∥
∥
2(1 − y2)ndy

≤
√
2n + 1

2n+1
√
n!e

Ct
2 ‖φ‖n∞t

n
2
√
C1

∫ 1

−1
(1 − y2)ndy

= e
Ct
2
√
C1(‖φ‖∞

√
t)n

2n√
2n + 1

(n!) 3
2

(2n)!

≤ e
Ct
2
√
C1(‖φ‖∞

√
t)n

2n√
2n + 1

(
√
2πnnne−n+ 1

12n )
3
2√

4πn(2n)2ne−2n

� e
Ct
2
√
C1n

− 1
4

(‖φ‖∞
√
et

2
√
n

)n

withC andC1 defined in Theorem 2.4. Herewe use the fact that
∫ 1
−1(1−y2)dy = 22n+1(n!)2

(2n+1)! in

the third equality and the Stirling formula
√
2πnn+ 1

2 e−n+ 1
12n+1 < n! <

√
2πnn+ 1

2 e−n+ 1
12n

in the forth inequality. As a consequence, we also obtain the decay rate of the gPC coefficients
f̂n .

It is worth mentioning that although the decay rate analysis above is carried out for one KL
mode, i.e., one-dimensional random variable, it can be extended to multi-dimension as well.
We nowpresent the two-dimensional case to show the derivation. Let y = (y1, y2) ∈ [−1, 1]2
denote the two-dimensional random variable and f̂n1n2 be the gPC coefficient associated with
the basis function pn1(y)pn2(y), where {pn} are the one-dimensional Legendre polynomials
given in (3.12). Similar as (3.13), f̂n1n2 can be rewritten as

f̂n1n2 = 1

22

∫ 1

−1

∫ 1

−1
f pn1 pn2dy1dy2

= (−1)n1(−1)n2

n1!n2!
√

(2n1 + 1)(2n2 + 1)

2n1+n2+2

∫ 1

−1

∫ 1

−1

∂n1+n2

∂ yn11 ∂ yn22
f (y1, y2)

(
1 − y21

)n1 (1 − y22
)n2 dy1dy2

after integrating by parts n1 times with respect to y1 and n2 times with respect to y2.
It follows from Lemma 3.1 that f (y1, y2) is analytic with respect to one argument while

fixing the other, which combining with the classical complex theory yields that f is analytic
with respect to (y1, y2) ∈ [−1, 1]2. Thus f can be analytically extended to the complex
domainwith several complex variables (η1, η2). Similar to one-dimensional case, by applying
Cauchy’s formula, we have

∂n1+n2

∂ yn11 ∂ yn22
f (y1, y2) = n1!n2!(−1)n1+n2

(2π i)2

∫

γy2

∫

γy1

f (η1, η2)

(η1 − y1)n1+1(η2 − y2)n2+1 dη1dη2,

where γy� (� = 1, 2) are positively oriented closed circumferences with the center at the real
point y� and the radius set as R(y�) = 1 − |y�| + β > 0. Here β is a positive constant. By
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Corollary 2.1, we obtain
∥
∥
∥
∥

∂n1+n2

∂ yn11 ∂ yn22
f

∥
∥
∥
∥
2

≤ n1!n2!
(2π)2

∫

γy2

∫

γy2

‖ f (η1, η2)‖2
|η1 − y1|n1+1 |η2 − y2|n2+1 |dη1| |dη2|

≤ e
Ct
2
√
C1

n1!n2!
R(y1)n1+1R(y2)n2+1 ,

which further yields the estimates for the gPC coefficient as

‖ f̂n1n2‖2 ≤
√

(2n1 + 1)(2n2 + 1)

2n1+n2

∫ 1

−1

∫ 1

−1

(
1 − y21

1 + y1 + β

)n1 (
1 − y22

1 + y2 + β

)n2

dy1dy2.

The decay rate of ‖ f̂n1n2‖2 can be obtained by estimating integrals by Lemma 3.3 for each
variable.

3.3 Error Estimates of the Stochastic Galerkin Method

In this section, we investigate the error between the exact solution f to the RTE (2.7) and
the numerical solution gN obtained by the stochastic Galerkin method presented in Sect. 3.1.
The error can be separated into the following two parts

f − gN = f − PN f
︸ ︷︷ ︸

truncation error

+PN f − gN
︸ ︷︷ ︸
scheme error

with PN f defined in (3.4). We will first show the estimate for the truncation error f −PN f
in Sect. 3.3.1. In Sect. 3.3.2, we study the scheme error PN f − gN and establish the main
results about f − gN .

3.3.1 Error Estimate of f −PNf

In this section, we establish the error estimate of f − PN f for one-dimensional and multi-
dimensional random variables. We first show in the following lemma the error estimate for
the case when the random variable y is one-dimensional.

Lemma 3.4 Let U = [−1, 1]. There exists a positive constant β > 0 such that

‖ f − PN f ‖L2(U×R×S;ρ(y)dydxdv) � eCt/2
√

πC1

(√
1 − r2 + O(1/N 1/3)

) r N+1

√
1 − r2

,

(3.16)
where 0 < r = 1

|ξ |+
√

ξ2−1
< 1 with ξ = −1 − β < −1, C = 2‖σs‖∞ + 1, and C1 =

‖ f0‖22 + C2
ψ .

Proof By the definition of the norm in (2.8), Equation (3.2), and the orthonormal property
of the gPC basis polynomials, we have

‖ f − PN f ‖2L2(U×R×S;ρ(y)dydxdv)
=

∫ 1

−1
‖ f − PN f ‖22 ρ(y)dy =

∞∑

n=N+1

‖ f̂n‖22, (3.17)
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which, together with Theorem 3.1, yields

‖ f − PN f ‖2L2(U×R×S;ρ(y)dydxdv)
� eCtπC1

∞∑

n=N+1

(√
1 − r2 + O(1/n1/3)

)2
r2n

� eCtπC1

(√
1 − r2 + O(1/N 1/3)

)2 ∞∑

n=N+1

r2n

� eCtπC1

(√
1 − r2 + O(1/N 1/3)

)2 r2N+2

1 − r2
.

(3.18)
Thus the proof is complete. 	


For the casewith d-dimensional randomvariable y = (y1, y2, . . . , yd),PN f is nowmulti-
indexed with N = (N1, N2, . . . , Nd) where Nk is the order of the gPC basis polynomial for
yk . The error estimate for this case in the following theorem can be obtained by applying the
analysis in Lemma 3.4 direction by direction.

Theorem 3.2 Let U = [−1, 1]d . There exists positive constants β1, . . . , βd > 0 such that

‖ f − PN f ‖L2(U×R×S; ρ(y)dydxdv) � eCt/2
√

πC1

d∑

k=1

(√

1 − r2k + O(1/N 1/3
k )

)
r Nk+1
k√

1 − r2k

,

(3.19)
where 0 < rk = 1

|ξk |+
√

ξ2k −1
< 1 with ξk = −1 − βk < −1 for k = 1, . . . , d. Here

C = 2‖σs‖∞ + 1 and C1 = ‖ f0‖22 + C2
ψ .

3.3.2 Error Estimate of f − gN : One-dimensional Random Space

In this section, we investigate the error estimates of PN f − gN and establish the main results
for the error estimates of f − gN for one-dimensional random variables.

By the orthonormal property of the gPCbasis polynomials, the error estimate forPN f −gN
are

‖PN f − gN‖2L2(U×R×S; ρ(y)dydxdv)
=

N∑

n=0

‖ f̂n − ĝn‖22.

Let f̂ = ( f̂0, f̂1, . . . , f̂N , . . .)T and ĝ = (ĝ0, ĝ1, . . . , ĝN )T . Then (3.5) and (3.8) can be
rewritten as

∂t f̂ + v · ∇x f̂ = AL f̂ , (3.20)

∂t ĝ + v · ∇x ĝ = A11Lĝ, (3.21)

where A is an infinite matrix with each entry defined in (3.6), and A11 is the top left (N +
1) × (N + 1) block of A. Furthermore, we split f̂ into the following two vectors

f̂ (1) = ( f̂0, f̂1, . . . , f̂N )T , f̂ (2) = ( f̂N+1, f̂N+2, . . .)
T

with which (3.20) can be written as

∂t

[
f̂ (1)

f̂ (2)

]

+ v · ∇x

[
f̂ (1)

f̂ (2)

]

= A

[L f̂ (1)

L f̂ (2)

]

=
[
A11 A12

A21 A22

] [L f̂ (1)

L f̂ (2)

]

. (3.22)
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Comparing it with (3.21), the error vector ε = f̂ (1) − ĝ satisfies the following equation

∂tε + v · ∇xε = A11Lε + A12L f̂ (2). (3.23)

The coupling matrix A11 is symmetric positive definite as shown in [18, 37]. It has N + 1
real eigenvalues {σ̄s + ζ j }Nj=0 where {ζ j } are Legendre-Gauss quadrature points in [−1, 1].
We address these properties of A11 in the following lemma. The proof is similar to the
stationary RTE case discussed in [41] and thus is omitted.

Lemma 3.5 A11 is a symmetric positive definite matrix. Denote λ(A) as the collection of the
eigenvalues of A11. Then

‖λk‖∞ ≤ Cσ , λk ∈ λ(A)

holds with the constant Cσ = ‖σ̄s‖∞ + 1.

Lemma 3.6 Let U = [−1, 1]. There exists a positive constant β > 0 such that

‖PN f − gN‖L2(U×R×S; ρ(y)dydxdv) � eCmaxt/2‖σs‖∞
√

πNC1t
(√

1 − r2 + O(1/N 1/3)
) r N+1

1 − r
,

where 0 < r = 1
|ξ |+

√
ξ2−1

< 1 with ξ = −1 − β < −1, C1 = ‖ f0‖22 + C2
ψ , and

Cmax = max(C, 2Cσ + 1) with C defined in Theorem 3.1 and Cσ defined in Lemma 3.5.

Proof By Lemma 3.5, A11 can be diagonalized by a unitary matrix Q, i.e., A11 = Q−1�Q
with � = diag(λ0, λ1, . . . , λN ) being a diagonal matrix and λi , i = 0, 1, . . . , N being
eigenvalues of A11.

Let ε̃ = Qε, then (3.23) becomes

∂t ε̃ + v · ∇x ε̃ = �Lε̃ + QA12L f̂ (2), (3.24)

which can be further written component-wisely as

∂t ε̃m + v · ∇x ε̃m = λmLε̃m + sm, m = 0, 1, . . . , N , (3.25)

with sm being the m-th entry of QA12L f̂ (2). The boundary and initial conditions for (3.25)
are

ε̃m |�− = 0, ε̃m |t=0 = 0, m = 0, 1, . . . , N , (3.26)

since the boundary and initial conditions of f̂ and ĝ are

f̂0
∣
∣
∣
�− = ĝ0

∣
∣
�− = ψ, f̂k

∣
∣
∣
�− = ĝk

∣
∣
�− = 0, k = 1, 2, . . . , N , . . . ,

f̂0
∣
∣
∣
t=0

= ĝ0
∣
∣
t=0 = f0, f̂k

∣
∣
∣
t=0

= ĝ0
∣
∣
t=0 = 0, k = 1, 2, . . . , N , . . . ,

based on the given boundary and initial conditions f |�− = ψ(t, x, v), f |t=0 = f0(x, v).
It follows from Theorem 2.1 that the solution ε̃m to (3.25) with (3.26) satisfies

‖ε̃m(t)‖22 ≤ eCmt
∫ t

0
e−Cmτ‖sm(τ )‖22dτ, (3.27)

where Cm = 2‖λm‖∞ + 1. The estimate on sm is required in order to get the bound for
ε̃m(t). Clearly ‖Q‖2 = √

λmax (QT Q) = 1 since Q is a unitary matrix, and each entry of A
satisfies

‖Amn‖∞ ≤ ‖σs‖∞ (3.28)
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according to the definition in (3.6). Combining with Lemma 2.1 and Theorem 3.1, we have

‖sm(t)‖2 =
∥
∥
∥

N∑

k=0

∞∑

n=N+1

Qmk AknL f̂n
∥
∥
∥
2

≤ ‖σs‖∞‖Q‖2‖L‖2
∞∑

n=N+1

‖ f̂n‖2

� eCt/2‖σs‖∞
√

πC1

∞∑

n=N+1

(√
1 − r2 + O (

1/n1/3
))

rn

� eCt/2‖σs‖∞
√

πC1

(√
1 − r2 + O (

1/N 1/3)
) r N+1

1 − r
,

(3.29)

where 0 < r = 1
|ξ |+

√
ξ2−1

< 1 with ξ = −1 − β < −1, C = 2‖σs‖∞ + 1, and C1 =
‖ f0‖22 + C2

ψ .

By substituting (3.29) into (3.27), we have

‖ε̃‖22 =
N∑

m=0

‖ε̃m(t)‖22 � ‖σs‖2∞πC1

(√
1 − r2 + O(1/N 1/3)

)2 r2N+2

(1 − r)2

N∑

m=0

eCmt
∫ t

0
e(−Cm+C)τdτ .

Denote C̃σ = 2Cσ +1 with Cσ defined in Lemma 3.5. Clearly Cm ≤ C̃σ form = 0, · · · , N .

It follows from the fact that eCt−eCm t

C−Cm
is increasing with respect to Cm and ex ≥ x + 1 that

N∑

m=0

eCmt
∫ t

0
e(−Cm+C)τdτ =

N∑

m=0

eCt − eCmt

C − Cm
≤

N∑

m=0

eCt − eC̃σ t

C − C̃σ

≤ NteCmaxt ,

where Cmax = max(C, C̃σ ). Therefore,

‖ε̃‖2 � eCmaxt/2‖σs‖∞
√

πNC1t
(√

1 − r2 + O(1/N 1/3)
) r N+1

1 − r
,

which, together with the orthonormal property of the gPC basis polynomials and the fact that
QT Q = I , yields

‖PN f − gN‖L2(U×R×S; ρ(y)dydxdv) = ‖ε(t)‖2 = ‖QT ε̃‖2 = ‖ε̃‖2.
The proof is complete. 	

We end this subsection by presenting themain theorem regarding the error estimate of f −gN
for one-dimensional random variables.

Theorem 3.3 Let U = [−1, 1]. There exists a positive constant β > 0 such that

‖ f − gN‖L2(U×R×S;ρ(y)dydxdv)

�
√

πC1

(
‖σs‖∞

√
NteCmaxt/2 + eCt/2

) (√
1 − r2 + O(1/N 1/3)

) r N+1

1 − r
, (3.30)
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where 0 < r = 1
|ξ |+

√
ξ2−1

< 1 with ξ = −1 − β < −1, C = 2‖σs‖∞ + 1, and C1 =
‖ f0‖22 + C2

ψ . Here Cmax is the same as defined in Lemma 3.6.

Proof According to the definition of ‖ · ‖L2(U×R×S;ρ(y)dydxdv), we have

‖ f − gN‖2L2(U×R×S;ρ(y)dydxdv)
=

N∑

n=0

‖ f̂n − ĝn‖22 +
∞∑

n=N+1

‖ f̂n‖22

= ‖PN f − gN‖2L2(U×R×S;ρ(y)dydxdv)

+ ‖ f − PN f ‖2L2(U×R×S;ρ(y)dydxdv)
,

which, together with Lemma 3.4 and Lemma 3.6, completes the proof. 	


3.3.3 Error Estimate of f − gN : Multi-dimensional Random Space

With the multi-indices m = (m1, . . . ,md), n = (n1, . . . , nd), and N = (N1, . . . , Nd), the
gPC expansion is written as

f (t, x, v, y) =
∞∑

n1,n2,...,nd=0

f̂n1,...,nd (t, x, v)pn1 (y1) · · · pnd (yd) , (3.31)

and the first N -term gPC projection is

PN f =
N1...,Nd∑

n1,...,nd=0

f̂n1,...,nd (t, x, v)pn1 (y1) · · · pnd (yd) . (3.32)

The numerical solution gN obtained by the stochastic Galerkin method is

gN (t, x, v, y) =
N1...,Nd∑

n1,...,nd=0

ĝn1,...,nd (t, x, v)pn1 (y1) · · · pnd (yd) . (3.33)

The gPC coefficients for f and gN still satisfies Eqs. (3.5) and (3.8), respectively, with each
entry of A defined by

An,m = 〈
σs(y)pm1 (y1) · · · pmd (yd) , pn1 (y1) · · · pnd (yd)

〉

y . (3.34)

According to the KL expansion of σs in (2.6), then

A = σ̄s ⊗d
k=1 Ik + A1 ⊗d

k=2 Ik + I1 ⊗ A2 ⊗d
k=3 Ik + . . . + ⊗d−1

k=1Ik ⊗ Ad ,

where⊗ denotes the Kronecker product, Ak is an infinite matrix with themknk-th entry given
by

〈
ykφk pmk (yk), pnk (yk)

〉

yk
, and Ik is the infinity identity matrix, for k = 1, . . . , d . A’s top

left block is

A11 = σ̄s ⊗d
k=1 I

11
k + A11

1 ⊗d
k=2 I

11
k + I

11
1 ⊗ A11

2 ⊗d
k=3 I

11
k + . . . + ⊗d−1

k=1I
11
k ⊗ A11

d ,

where A11
k and I

11
k are the top left Nk × Nk block in yk direction of matrices Ak and Ik ,

respectively. Then the eigenvalues of A11 satisfies

λmax
(
A11) ≤ σ̄s +

d∑

k=1

λmax
(
A11
k

)
,
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since the eigenvalues of the Kronecker product matrix are the products of the eigenvalues of
the sub-matrices; see [29] for more details. Moreover, λ(A11

k ) is bounded for k = 1, 2. . . . , d ,
as discussed in the one-dimensional case. Thus λ(A11) is bounded under simple algebraic
operations. Namely, there exists a positive constant Cσ that depends only on σs such that

‖λ‖∞ ≤ Cσ (3.35)

holds for all the eigenvalues of A11.
With the bound (3.35), the error estimate ofPN f −gN in Lemma 3.6 for one-dimensional

randomvariable can be extended to themulti-dimensional case by replacingCm = 2‖λm‖∞+
1 in (3.27)with 2Cσ +1. The extension involvesmuchmore tedious notations but no technique
difficulties. Combining with the error estimate of f − PN f for multi-dimensional random
variable in Theorem 3.2, we finally present in the following theorem the main result for the
error estimate of f − gN in d-dimensional random space.

Theorem 3.4 Let U = [−1, 1]d . Denote the d-dimensional random variable as y =
(y1, y2, . . . , yd) with N = (N1, N2, . . . , Nd), where Nk is the order of the gPC basis poly-
nomial for yk . There exists a positive constant β > 0 such that

‖ f − gN‖L2(U×R×S;ρ(y)dydxdv)

�
√

πC1

d∑

k=1

(
‖σs‖∞

√
Nkte

Cmaxt/2 + eCt/2
)(√

1 − r2k + O(1/N 1/3
k )

)
r Nk+1
k

1 − rk
,

where 0 < rk = 1

|ξk |+
√

ξ2k −1
< 1 with ξk = −1 − β < −1, C = 2‖σs‖∞ + 1, C1 =

‖ f0‖22 + C2
ψ , and

Cmax = max(C, 2Cσ + 1) with Cσ given in (3.35).

Remark 3.5 The values {rk} here is the multi-dimensional extension of that in Theorem 3.1.
Similar to Remark 3.3, here we only show the existence of this decay rate r with 0 < r < 1.
The specific value of r depends on the final time t and the diffusive scaling. It is challenging
to spell out the details. We refer interested readers to [2, 3, 40] for the original derivations
that uses this argument.

4 Numerical Tests

In this section, we verify our theoretical results with the following time-dependent RTE

ε∂t f + v · ∇x f = σ(x, y)

ε

(
1

2

∫ 1

−1
f (v)dv − f

)

, x ∈ [0, 1], v ∈ [−1, 1], (4.1)

with the random coefficient σ(x, y). The initial condition is given by

f (t = 0, x, v, y) = 0, x ∈ [0, 1], v ∈ [−1, 1], (4.2)

and boundary conditions are

f (t, x = 0, v, y) = 1, v > 0; f (t, x = 1, v, y) = 0, v < 0.

We use the upwind finite difference method to discretize the x variable with Nx uniform
points in [0, 1]. v variable is discretized with the Legendre-Gauss nodes on [−1, 1], and 16
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Fig. 1 Decay rate of gPC coefficients for σ(x, y) = 2 + y at t = 0.1 (left) and t = 0.25 (right). Top: ε = 1
with Nx = 80. Bottom: ε = 10−8 with Nx = 100

points are used in our numerical tests. We apply the third order strong-stability-preserving
Runge–Kuttamethod [35] for temporal discretizationwith the time step set as�t = 0.035�x .

We first test one-dimensional random space with σ(x, y) = 2 + y, where y ∈ [−1, 1]
is uniformly distributed. Figure1 plots the decay rate of the gPC coefficients with different
diffusive scaling at t = 0.1 and t = 0.25. The analytical result is computed by

‖ f̂n‖2 ∼ eCt/2
√

πC1(
√
1 − r2 + 2

n1/3
)rn (4.3)

by Theorem 3.1 with C = max{x,y} |σ(x, y)| = 7, and Cψ = 1/4. For ε = 1, we choose
r = 0.008 for t = 0.1 and r = 0.019 for t = 0.25. For ε = 10−8, we choose r = 0.27
for t = 0.1 and r = 0.24 for t = 0.25. Nx = 80 for ε = 1, while a finer mesh Nx = 100
is taken for ε = 10−8 to obtain better resolution. It is worth mentioning that the asymptotic
preserving method [28] is adopted for the case with ε = 10−8.

We now test the multi-dimensional case where the random field σ(x, y) has the following
form

σ(x, y) = 1 + σ

d∑

k=1

cos(2πkx)yk (4.4)

with σ = 1
d+1 and {yk} being a set of mutually independent uniformly distributed random

variables in [−1, 1]. We set d = 6 and plot the decay rate of the gPC coefficients with
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Fig. 2 Decay rate of gPC coefficients for σs in (4.4) with d = 6 at t = 0.02 (left) and t = 0.04 (right). Top:
ε = 1 with Nx = 40. Bottom: ε = 10−8 with Nx = 100

different diffusive scaling at t = 0.02 and t = 0.04 in Fig. 2. The analytic result is computed
by (4.3) with C = 2(1 + d

d+1 ) + 1 = 33
7 and Cψ = 1/4. For ε = 1, we choose r = 0.001

for t = 0.02 and r = 0.004 for t = 0.04. For ε = 10−8, we choose r = 0.008 for t = 0.02
and r = 0.006 for t = 0.04. Again, we use Nx = 40 for ε = 1 and a finer mesh Nx = 100
for ε = 10−8. Again asymptotic preserving technique [28] is applied for the case ε = 10−8.

5 Conclusion

In this paper,we investigate the impact of uncertainty for the time-dependent radiative transfer
equation with nonhomogeneous boundary condition through the stochastic Galerkin approx-
imation. We theoretically prove the a-priori bound of the solution, its continuity with respect
to the coefficient σs , as well as the regularity in the random space. Based on the theoretical
study of the regularity of the solution, the stochastic Galerkin method of the gPC approach
is adopted. Besides the regularity study for the case with nonhomogeneous boundary con-
ditions, our main contribution is that we provide a recipe for a more fundamental question:
why is the gPC expansion even a converging series? Furthermore, we prove the exponential
decay rate of the gPC coefficients and establish the error estimates of the stochastic Galerkin
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method. Our analysis shows that the error decay exponentially with the rate rn . Numerical
tests are conducted based on our analytical results.
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