
Radiology Text Analysis System (RadText):
Architecture and Evaluation

Song Wang∗, Mingquan Lin†, Ying Ding‡, George Shih§, Zhiyong Lu¶, Yifan Peng†∗

∗Cockrell School of Engineering, The University of Texas at Austin, Austin, USA
†Department of Population Health Sciences, Weill Cornell Medicine, New York, USA

‡School of Information, The University of Texas at Austin, Austin, USA
§Department of Radiology, Weill Cornell Medicine, New York, USA

¶National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM),
National Institutes of Health (NIH), Bethesda, USA

∗Email: yip4002@med.cornell.edu

Abstract—Analyzing radiology reports is a time-consuming
and error-prone task, which raises the need for an efficient
automated radiology report analysis system to alleviate the
workloads of radiologists and encourage precise diagnosis. In
this work, we present RadText, an open-source radiology text
analysis system developed by Python. RadText offers an easy-
to-use text analysis pipeline, including de-identification, section
segmentation, sentence split and word tokenization, named entity
recognition, parsing, and negation detection. RadText features
a flexible modular design, provides a hybrid text processing
schema, and supports raw text processing and local processing,
which enables better usability and improved data privacy. Rad-
Text adopts BioC as the unified interface, and also standardizes
the input / output into a structured representation compatible
with Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM). This allows for a more systematic
approach to observational research across multiple, disparate
data sources. We evaluated RadText on the MIMIC-CXR dataset,
with five new disease labels we annotated for this work. RadText
demonstrates highly accurate classification performances, with
an average precision of, a recall of 0.94, and an F-1 score of
0.92. We have made our code, documentation, examples, and the
test set available at https://github.com/bionlplab/radtext.

Index Terms—Natural Language Processing, Text Analysis
Systems, Radiology

I. INTRODUCTION

Radiology report analysis has long been a labor-some and
error-prone process [1], which raises the need for accurate
analysis tools to alleviate the workloads of radiologists and
enhance accurate diagnosis. Though existing natural language
processing (NLP) toolkits such as cTAKES [2], scispaCy [3],
MedTagger [4], and CLAMP [5] have been widely used in
text mining of clinical narratives in electronic health record
(EHR), none of these tools on the use of NLP in EHRs is
specific to radiology domain.

One recognized challenge is the requirement of proper
radiology domain knowledge, without which the process of
analyzing the structure of radiology text and interpreting the
underlying meaning would be highly error-prone. For example,
standardized terminology for each concept is important for
NLP applications. Existing clinical NLP systems frequently

System Language Raw-Text Locally Fully Open
Processing Process Neural Source

MetaMap Prolog/Java 3 Hybrid 7 3
cTakes Java 3 3 7 3
medspaCy Python 3 3 7 3
MedTagger Java/C 3 3 7 3
CLAMP Java 3 3 Hybrid 7

RadText Python 3 3 Hybrid 3

TABLE I
FEATURE COMPARISONS OF RADTEXT AGAINST OTHER WIDELY USED
NLP TOOLKITS. FULLY NEURAL: FULL NEURAL NETWORK PIPELINE.

use UMLS Methathesaurus as the medical lexicon [6]. How-
ever, few support RadLex, which offers radiology-specific
terms such as devices and imaging techniques [7]. As a
result, ambiguous terms (e.g., acronyms) can be interpreted
differently. Another example is negation detection, which is
also essential in radiology because diagnostic imagining is
often used to rule out a condition. Systems in the clinical
domain frequently implement this functionality by combining
manually crafted rules with key terms based on the syntactic
analysis [8], [9]. While they usually achieve good results in
the general clinical domain, most cannot be directly applied
to radiology reports mostly because sentences in radiology
reports are usually telegraphic, with missing subjects and
verbs. In addition, sentences in the radiology reports also
contain long, complicated noun phrases. These obstacles pose
a challenge to existing parsers that are modeled over well-
formed sentences [10]. Therefore, the performance of negation
detection algorithms significantly drops [11] in the case of
radiology reports. In such cases, filling in the gaps requires
additional rules to handle ill-formed sentences.

Another challenge is that every software intends to perform
tasks on data in various formats. It thus remains challenging
to seamlessly interchange data in and between different NLP
tools. Such a bottleneck prevents combining these tools into
a larger, more powerful, and more capable system in the

ar
X

iv
:2

20
4.

09
59

9v
1

 [c
s.C

L]
 1

9
M

ar
 2

02
2

https://github.com/bionlplab/radtext

clinical domain. To bridge this gap, the Observational Medical
Outcomes Partnership (OMOP) Common Data Model (CDM)
is proposed to harmonize disparate observational databases of
EHR [12]. The goal is to transform data contained within
those databases into a common format (data model) and
representation (terminologies, vocabularies, coding schemes)
so that systematic analyses can be conducted in the common
format. While OMOP CDM is an excellent schema to store
structured data and provides a NOTE_NLP table to store NLP
final results, it does not support representing complex, messy
data between different NLP modules, such as hierarchical note
structure (section, passage, sentence, token). Furthermore, it is
almost impossible to store the parsing trees of each sentence
in NOTE_NLP table. However, such text-preprocessing infor-
mation is frequently reused in NLP algorithms and should be
interchangeable and reusable. In addition, OMOP CDM must
be realized in a relational database, which most of the common
NLP tools do not support. These limitations result in the main
barrier to the reuse of tools and modules and the development
of text mining pipelines customized for different workflows.
One alternative solution is the BioC format [13], an XML-
based simple format to share text data and annotations. Unlike
OMOP CDM, BioC emphasizes simplicity, interoperability,
broad use and reuse of data interchange. It is thus suitable
to represent, store and exchange the NLP results, especially
complex intermediate results, in a simple manner. However, as
initially designed for sharing different annotations relevant for
biomedical research, BioC cannot be directly used for clinical
notes. To overcome this issue, we propose to extend the BioC
format with the OMOP CDM schema, called BioC-CDM, to
store the results generated in the annotation process of clinical
NLP that can be easily converted and imported into OMOP
CDM.

In this work, we present RadText, an open-source Python
radiology text analysis system. Unlike previous methods, Rad-
Text features a hybrid text analysis pipeline that utilizes high-
performance third-party implementations, including machine
learning-based methods and rule-based methods. As shown
in Table I, compared to existing widely-used NLP toolkits,
RadText has the following advantages:

• Unified Interface. RadText uses BioC-CDM format as
the unified interface throughout the system pipeline. BioC
format simplifies data representation and data exchange
and satisfies all the NLP task requirements in RadText.

• Compatible with OMOP CDM. RadText standardizes
its outputs into a structured representation compatible
with OMOP CDM. This allows for transforming data into
a common representation and further enables a systematic
analysis of disparate observational data sources.

• Easy to Use. RadText provides a user-friendly inter-
face. RadText sequentially runs de-identification, section
segmentation, sentence split, word tokenization, named
entity recognition, parsing, and negation detection. Mod-
ular choice of design greatly improves flexibility, which
enables users to adjust any module according to their

specific use case, and to re-run each module if needed.
• Raw Text Processing. RadText takes raw text as input,

which means no text preprocessing (e.g., tokenization,
annotation) is needed. This greatly enhances the usability
and generalizability of RadText.

• Local Machine. The entire system pipeline of RadText
is running locally on CPU machines. No data will be
uploaded to remote servers, greatly preserving user data
privacy.

• Open Source. To facilitate and drive future clinical NLP
research and applications, RadText is fully open source.
We make the source code, documentation, examples, and
human-annotated test set publicly available.

II. RELATED WORK

Various NLP toolkits have been introduced to the clinical
NLP community [14] and have been successfully applied to
the information extraction task from clinical text. MetaMap
[15] uses a knowledge-intensive approach based on sym-
bolic, NLP, and computational-linguistic techniques to map
the biomedical text into the Unified Medical Language System
(UMLS) Metathesaurus [16]. Apache Clinical Text Analysis
and Knowledge Extraction System (cTAKES) focuses on
extracting clinical information from electronic health record
free text, including processing clinical notes, and identifying
clinical named entities [2]. Different from MetaMap and
Apache cTAKES, which utilize machine learning methods
to map words to medical concepts, MedTagger for indexing
is built upon a fast string matching algorithm leveraging
lexical normalization [4]. It thus requires rules designing and
expert knowledge engineering. Instead of conducting sole
information extraction, medspaCy [17] and Clinical Language
Annotation, Modeling and Processing (CLAMP) [5] are de-
signed to be modularized so that users can choose from
various choices of modular components for their individual
applications. medspaCy features performing clinical NLP and
text processing tasks with the popular spaCy [18] framework,
which provides a robust architecture for building and sharing
custom, high-performance NLP pipelines [17]. CLAMP also
highlights enabling users to quickly build customized NLP
pipelines for their clinical NLP tasks. Distinguished from these
previous works, RadText aims to provide a high-performance
clinical NLP toolkit in Python that focuses on radiology
text analysis. RadText hence adopts a hybrid radiology text
processing pipeline, bringing together a number of third-
party analysis tools in the radiology domain, with each tool
implementing one or more components of RadText’s working
pipeline.

III. SYSTEM DESIGN AND ARCHITECTURE

A. BioC-CDM: BioC format compatible with OMOP CDM

We propose BioC-CDM to store the results generated in
the annotation process of clinical NLP in the BioC format
that can be easily converted and imported into OMOP CDM.
A BioC-format file is an XML document as the basis of data
class representation and data exchange, which can satisfy the

OMOP CDM field BioC field BioC class Description

note nlp id id annotation A unique identifier for each term extracted from a note.
note id doc document A foreign key to the Note table, uniquely identifying the note.
section concept id section concept id passage A foreign key to the predefined Concept in the Standardized Vocabularies represent-

ing the section of the extracted term.
snippet - - A small window of text surrounding the term.
offset offset passage

sentence
annotation

Character offset of the extracted term in the input note.

lexical variant text annotation Raw text extracted by the NLP tool.
note nlp concept id lemma annotation A foreign key to a Concept table, representing the normalized concept of the

extracted term.
note nlp source concept id source concept id annotation A foreign key to a Concept table that refers to the code in the source vocabulary

used by the NLP system.
nlp system nlp system collection Name and version of the NLP system that extracted the term.
nlp date,nlp date time date collection The date of the note processing.
term exists exists1 annotation If the patient actually has or had the condition.
term temporal temporal annotation If a condition is “present” or just in the “past”.
term modifiers modifiers annotation Describes compactly all the modifiers extracted by the NLP system.
1 currently called “negation”

TABLE II
MAPPING RADIOLOGY NOTES TO THE OMOP CDM AND BIOC USING RADTEXT.

needs of RadText’s NLP tasks throughout the entire pipeline
[13]. OMOP CDM harmonizes disparate coding systems to
a standardized vocabulary with minimal information loss. As
a result, adopting BioC-CDM as RadText’s unified interface
and using it as a common format representing all modular
components’ output eliminates the barrier of integration and
greatly enhances RadText’s interoperability. Table II shows the
current and our proposed mappings between OMOP CDM
and BioC. Section IV-C1 shows how RadText can be used
to implement mutual conversion between BioC format and
OMOP CDM.

B. Pipeline

The implementation of RadText is highly modular (Figure
1). We highlight the details of each module in this section.

Components

De-Identification

Section
Segmentation

Sentence Split and
Tokenization

NegBio medspaCy

NLTK SpaCy Stanza

Named Entity
Recognition NegBio MetaMap

Parsing Stanza Bllip
parser

Negation Detection NegBio

Philter

Implementation

scispaCy

Fig. 1. Overview of RadText’s NLP pipeline, main components, and imple-
mentations.

1) De-Identification: Radiology reports often contain pro-
tected health information (PHI), such as patient and provider

names, addresses, and numbers [19]. Removal of PHI is
important; otherwise, radiology reports remain largely unused
for research. To address this issue, RadText uses Philter [19]
for de-identification. It uses both rule-based and statistical
approaches to remove identifiers defined in the HIPAA Safe
Harbor guidelines [20].

The following code snippet shows an example of RadText’s
de-identification output. The mentions of patient’s name,
provider’s name, and dates belong to PHI. They are replaced
with a sequence of “X”s respectively for de-identification
purposes.

Output in BioC
<infon key="nlp_system">Philter</infon>
<document>
<passage>
<text>Patient’s Name: XXXXXXXXXXXXXX
Referred by: XXXXXXXXXXX XX
Date Taken: XXXXXXXXXX
Date of Report: XXXXXXXXXX

Clinical statement: Shortness of breath,
wheezing, and bilateral lower extremity
edema.

Technique: AP and lateral chest radiographs.

Comparison: XXXXXXXXXXXXX...</text>
<annotation id="A0">
<infon key="source_concept">Date</infon>
<infon key="source_concept_id">C1547350</infon>
<location offset="70" length="10"/>
<text>02/07/2016</text>

</annotation>
<annotation id="A1">
<infon key="source_concept">Date</infon>
<infon key="source_concept_id">C1547350</infon>
<location offset="97" length="10"/>
<text>02/07/2016</text>

</annotation>
<annotation id="A2">
<infon key="source_concept">Date</infon>
<infon key="source_concept_id">C1547350</infon>
<location offset="263" length="13"/>

<text>July 18, 2015</text>
</annotation>
<annotation id="A5">
<infon key="source_concept">Person Name</infon>
<infon key="source_concept_id">C1547383</infon>
<location offset="16" length="14"/>
<text>LATTE, MONICA</text>

</annotation>
<annotation id="A6">
<infon key="source_concept">Person Name</infon>
<infon key="source_concept_id">C1547383</infon>
<location offset="43" length="11"/>
<text>SAVEM, CARL</text>

</annotation>
<annotation id="A7">
<infon key="source_concept">Degree/license/

certificate</infon>
<infon key="source_concept_id">C1547754</infon>
<location offset="55" length="2"/>
<text>MD</text>

</annotation>
</passage>
...

</document>

2) Section Segmentation: Although radiology reports are in
the form of free text, they are often structured in terms of sec-
tions, such as INDICATION, FINDINGS, and IMPRESSION.
Identifying section types and section boundaries can help
various successive processing steps to use a subset of sections
or assign specific weights to the content of different sections
[21]. For example, effusion and edema were mentioned in the
INDICATION section of the sample report below. But we
should not identify them as positive because the radiologist
ruled them out in the FINDINGS section. Therefore, a named
entity recognition tool that does not differentiate between
sections will likely make errors.

An example of chest x-ray report
INDICATION: Please evaluate for pneumonia,

effusions, edema
FINDINGS: The lungs are clear without

consolidation, effusion or edema...
IMPRESSION: No acute cardiopulmonary process.

In a preprocessing step, RadText splits each report into
sections and provides two options: NegBio or medspaCy. Both
approaches rely on hand-coded heuristics for section segmen-
tation (boundary detection) and achieve good performances.

• NegBio. The heuristics in NegBio are based on conven-
tions like the capitalization of headers and the presence
of colon and blank lines between headers and text. The
set of heuristics was collected from the NIH Chest X-ray
dataset [22] and the MIMIC-CXR dataset [23].

• medspaCy. medspaCy includes an implementation of
clinical section detection based on rule-based matching
of the section titles with the default rules adapted from
SecTag [24] and expanded through practice. The default
rules were collected from different resources such as
the Logical Observation Identifiers Names and Codes
(LOINC) headers [25] and Quick Medical Reference
(QMR) Findings Hierarchy [26] and were further revised
based on the actual clinical notes from Vanderbilt EHR.

The following code snippet shows an example of the section
segmentation output for the sample report above.
Output in BioC
<infon key="nlp_system">NegBio</infon>
<document>
<passage>
<infon key="section_concept">clinical

information section </infon>
<infon key="section_concept_id">RID13166</infon>
<offset>0</offset>
<text>INDICATION:</text>

</passage>
<passage>
<offset>12</offset>
<text>Please evaluate for ... edema</text>

</passage>
<passage>
<infon key="section_concept">observations

section</infon>
<infon key="section_concept_id">RID28486</infon>
<offset>60</offset>
<text>FINDINGS:</text>

</passage>
<passage>
<offset>70</offset>
<text>The lungs are clear ... edema</text>

</passage>
...

</document>

3) Sentence Split and Word Tokenization: RadText tok-
enizes the input raw text and groups tokens into sentences
as one part of preprocessing. RadText offers three options to
tokenize and split reports into sentences, including NLTK [27],
spaCy [18], and Stanza [28].

• NLTK. The sentence tokenizer in NLTK uses an unsuper-
vised algorithm to build a model for abbreviation words,
collocations, and words that start sentences. It then uses
that model to find the sentence boundaries [27].

• spaCy. Sentence segmentation is part of spaCy’s English
pipeline. It uses a variant of the non-monotonic arc-eager
transition system [29] with the addition of a “break”
transition for sentence segmentation [18].

• Stanza. Stanza combines tokenization and sentence seg-
mentation from the raw text as one single module in its
pipeline. Stanza models it as a tagging task over character
sequences, where the model predicts whether a given
character is the end of a token, end of a sentence, or
end of a multi-word token.

The following code snippet gives an example of RadText’s
sentence split output. The input paragraph is split into three
Sentence instances.
Output in BioC
<infon key="nlp_system">NLTK</infon>
<document>
<passage>
<text>PA and lateral radiographs demonstrate

clear lungs. Heart size is normal. There is
no pneumothorax or pleural effusion.</text>

<sentence>
<offset>0</offset>
<text>PA and lateral ... clear lungs.</text>

</sentence>
<sentence>
<offset>52</offset>

<text>Heart size is normal.</text>
</sentence>
<sentence>
<offset>73</offset>
<text>There is no ... pleural effusion.</text>

</sentence>
</passage>
...

</document>

4) Named Entity Recognition: Named entity recognition
(NER) aims to determine and identify the words or phrases in
text into predefined labels that describe the concepts of interest
in a given domain [30]. To recognize the radiology-domain
named entities (e.g., thoracic disorders) in each input sentence,
RadText offers two options, spaCy-enabled rule-based method
and MetaMap.

• Rule-based Regular Expression. Rule-based NER meth-
ods use regular expressions that combine information
from terminological resources and characteristics of the
entities of interest manually constructed from report cor-
pus. RadText adopts spaCy’s PhraseMatcher as part of
this component. Rules defining concepts specify the text
regular patterns to be matched and additional information
about a concept, such as its unique id in the terminology.

• MetaMap. UMLS is the most comprehensive standard
terminology that is typically used as the basis for clinical
concept extraction. Enabled by MetaMap, RadText is able
to detect all the concepts in UMLS and map them to
Concept Unique Identifier (CUI). In general, MetaMap
is much more comprehensive than vocabulary-based pat-
terns. But at the same time, MetaMap could be noisy and
less accurate.

The following code snippet shows an example of RadText’s
NER output, where “Pneumonia” and “Pneumothorax” are
correctly recognized and their corresponding UMLS concept
IDs are also identified.
Output in BioC
<infon key="nlp_system">MetaMap</infon>
<document>
<passage>
<text>There is no pneumonia or pneumothorax.</

text>
<annotation id="a1">
<infon key="source_concept">Pneumonia</infon>
<infon key="source_concept_id">RID5350</infon>
<location offset="12" length="9"/>
<text>pneumonia</text>

</annotation>
<annotation id="a2">
<infon key="source_concept">Pneumothorax</infon

>
<infon key="source_concept_id">RID5352</infon>
<location offset="24" length="12"/>
<text>pneumothorax</text>

</annotation>
</passage>
...

</document>

5) Parsing: RadText utilizes the universal dependency
graph (UDG) to describe the grammatical relationships within
a sentence in a way that can be understood by non-linguists
and effectively used by downstream processing tasks [11].

UDG is a directed graph, which represents all universal
dependency information within a sentence. The vertices in
a UDG represent the information such as the word, lemma,
and part-of-speech tag. The edges in a UDG represent the
typed dependencies from the governor to its dependent and
are labeled with the corresponding dependency type. UDG
effectively represents the syntactic head of each word in a
sentence and the dependency relations between words. Figure
2 shows a UDG example of the sentence “There is no pleural
effusion or pneumothorax” generated by Stanza [28]. In this
example, “pleural” is the adjectival modifier of “effusion” and
“effusion” and “pneumothorax” are coordinated findings.

1/12/22, 2:39 PM Stanza Online Demo

stanza.run 1/1

art-of-Speech (XPOS):

There is no pleural effusion or pneumothorax
EX VBZ DT JJ NN CC NN

1

emmas:

There is no pleural effusion or pneumothorax
there be no pleural effusion or pneumothorax

1

amed Entity Recognition:
There is no pleural effusion or pneumothorax1

niversal Dependencies:

There is no pleural effusion or pneumothorax
PRON VERB DET ADJ NOUN CCONJ NOUNexpl ccamod

det conj
nsubj

1

onstituency Parse:

ROOT

S

NP

EX

There

VP

VBZ

is

NP

DT

no

JJ

pleural

NN

effusion

CC

or

NN

pneumothorax

Visualisation provided using the brat visualisation/annotation software (http://brat.nlplab.org/).

Considering using Stanza on English biomedical or clinical text? Consider using our biomedical models. Visit Stanza's biomedical demo page (http://stanza.run/bio) for a try
of these models.

— Text to annotate —

There is no pleural effusion or pneumothorax

— Annotations —
parts-of-speech named entities lemmas dependency parse constituency parse

— Language —
English

Submit

Fig. 2. The obtained dependency graph of “There is no pleural effusion or
pneumothorax” using Stanza [28].

To obtain the UDG of a sentence, RadText provides two
options, Stanza or Bllip Parser with the Stanford dependencies
converter [31].

• Stanza. Stanza’s dependency parsing module builds a tree
structure of words from the input sentence, representing
the syntactic dependency relations between words. After
tokenization, multi-word token (MWT) expansion, part-of-
speech (POS) and morphological features tagging, and
lemmatization, each sentence would have been directly
parsed into the universal dependencies structure [28].

• Bllip Parser with Stanford dependencies converter.
RadText first parses each sentence to obtain the parse
tree using the Bllip parser, which was trained with the
biomedical model [31], [32]. It then applies the Stanford
dependencies converter on the resulting parse tree with
the CCProcessed and Universal option [33], [34] to
derive the universal dependencies.

The following code snippet shows an example of RadText’s
parsing result. In the sample sentence, “effusion” and “pneu-
mothorax” are respectively assigned with node id of “T31” and
“T33”. Derived from the universal dependency result, there is
a conjunction relation between “T31” and “T33”.
Output in BioC
<infon key="nlp_system">Bllip Parser</infon>
<document>
<passage>
<sentence>
<infon key="parse tree">(S1 (S (S (NP (EX There

)) (VP (VBZ is) (ADVP (RB no)) (NP (NP) (JJ
pleural) (NN effusion)) (CC or) (NP (NN

pneumothorax))))) (. .)))</infon>
<text>There is no pleural effusion or

pneumothroax.</text>
...
<annotation id="T31">
<text>effusion</text>

</annotation>
<annotation id="T33">
<text>pneumothorax</text>

</annotation>

...
<relation id="R33">
<infon key="dependency">conj</infon>
<node refid="T33" role="dependant"/>
<node refid="T31" role="governor"/>

</relation>
...

</sentence>
...

</passage>
...

</document>

6) Negation Detection: Negative and uncertain medical
findings are frequent in radiology reports [35]. Since they
may indicate the absence of findings mentioned within the
radiology report, identifying them is as important as identify-
ing positive findings. For negation and uncertainty detection,
RadText employs NegBio [11], [22], which utilizes universal
dependencies for pattern definition and subgraph matching for
graph traversal search so that the scope for negation/uncer-
tainty is not limited to the fixed word distance [33].

The following code snippet shows an example of RadText’s
negation detection output. In this sample sentence, “pneumoth-
orax” is identified as negative according to NegBio’s internal
negation rule of ID “nn180”.
Output in BioC
<infon key="nlp_system">NegBio</infon>
<document>
<passage>
<text>There is no pneumonia or pneumothorax.</

text>
...
<annotation id="a2">
<infon key="source_concept">Pneumothorax</infon

>
<infon key="source_concept_id">RID5352</infon>
<infon key="exists">False</infon>
<infon key="negation">True</infon>
<infon key="negbio_pattern_id">nn180</infon>
<infon key="negbio_pattern_str">{}=f >{} {

lemma:/no/}=k0</infon>
<location offset="24" length="12"/>
<text>pneumothorax</text>

</annotation>
</passage>
...

</document>

IV. SYSTEM USAGE

RadText is designed to have a user-friendly interface and
allow quick out-of-the-box usage for radiology text analysis.
To achieve this, RadText provides automated pipeline usage
and step-by-step modular choice of design. Therefore, Users
can run RadText directly through the command line interface
or import RadText as a Python library to use any functionality
through RadText’s API.

A. Installation

The latest RadText releases are available on PyPI 1. Using
pip, RadText releases can be downloaded as source packages
and binary wheels. It is also generally recommended installing

1https://pypi.org/project/radtext/

RadText packages in a virtual environment to avoid modifying
system state:

Installation instructions
$ python -m venv venv
$ source venv/bin/activate
$ pip install -U radtext
$ python -m spacy download en_core_web_sm
$ radtext-download --all

B. Command Line Usage

The following command runs RadText’s entire pipeline in
the sequential order of de-identification, section segmentation,
sentence split and word tokenization, NER, parsing, and
negation detection. The default section title vocabulary for the
section segmentation module and concept vocabulary for the
NER module is designed to be configurable. All intermediate
result files will be generated and saved for use and reuse. The
automatic pipeline execution enables users to use RadText as
an out-of-the-box toolkit without the need and effort to figure
out how each module of RadText works.
An example of command line usage
$ bash run_pipeline.sh

In addition to running RadText’s pipeline as a whole, users
can also choose to run every single module of RadText through
easy-to-use command line commands (see Table III). This
enables users to re-run each single modular component to
reproduce the result in case of any error, without the need of
re-running RadText’s entire pipeline. All intermediate results
are saved so that users can easily check the output of each
module, which we believe will greatly facilitate error analysis
and enhance RadText’s flexibility. The following code snippet
shows a an example of RadText’s modular command line
usage.

An example of modular command line usage
$ [command] [options] -i INPUT -o OUTPUT
$ radtext-deid -i /path/to/input.xml -o /path/to/

output.xml

Commands Description

radtext-download Download all models needed.
radtext-deid De-identifies all the reports.
radtext-secsplit Segments sections.
radtext-ssplit Splits sentences and tokenizes words.
radtext-ner Recognizes named entities.
radtext-parse Parses the sentences to obtain the parse tree.
radtext-tree2dep Parses to obtain the universal dependency graph.
radtext-neg Detects negations.
radtext-collect Collects and merges labels.
radtext-csv2bioc Converts CSV format to BioC format.
radtext-cdm2bioc Converts OMOP CDM format to BioC format.
radtext-bioc2cdm Converts BioC format to OMOP CDM format.

TABLE III
COMMAND LINE COMMANDS.

https://pypi.org/project/radtext/

C. Python API Usage

RadText can be directly imported as a Python library. Users
can access all the functionalities of RadText through Python
API.

1) BioC-CDM Conversion: RadText’s Python API supports
the mutual conversion between BioC format and OMOP CDM.
The following code snippet shows an example of converting
BioC format to CDM and then converting CDM back to BioC
format.
An example of API usage
import bioc
from radtext import BioC2CDM, CDM2BioC

initialize RadText’s BioC2CDM converter.
bioc2cdm = BioC2CDM()
with open(filepath) as fp:

collection = bioc.load(fp)

cdm_df = bioc2cdm(collection)

initialize RadText’s CDM2BioC converter.
cdm2bioc = CDM2BioC()
bioc_collection = cdm2bioc(cdm_df)

2) Pipeline Usage: The following code snippet shows a
minimal usage of RadText’s entire pipeline through Python
API, which annotates a sample report and prints out all
annotation results.
An example of API usage
import bioc
import radtext

initialize RadText’s pipeline.
nlp = radtext.Pipeline()

load a BioC-format sample report.
with open(filepath) as fp:

doc = bioc.load(fp)

run RadText’s pipeline on the sample report.
collection = nlp(doc)

print(collection)

After running all modules, RadText returns a Collection
instance that stores the final annotation results. Within a
Collection instance, the annotations are stored in either
Passage or Sentence classes. The following code snip-
pet shows how we can access the detected disease findings
and the corresponding negation status after obtaining the
Collection instance.
An example of API usage
for doc in collection.documents:

for passage in doc.passages:
for annotation in passage.annotations:

print(annotation.infon[’source_concept’],
annotation.infon[’negation’])

RadText’s Python API also allows partial pipeline execution.
Therefore, users can pause after any module of RadText
to access the intermediate NLP results. The following code
snippet shows an example of the partial execution of RadText.
By specifying the annotators to be secsplit and ssplit,
RadText will run section segmentation and sentence split

sequentially. The output Collection instance will have the
annotation results of sentence split.
An example of API usage
import radtext

initialize RadText’s pipeline which will perform
section segmentation and sentence split.

nlp = radtext.Pipeline(annotators=[’secsplit’, ’
ssplit’])

load a BioC-format sample report.
with open(filepath) as fp:

doc = bioc.load(fp)

run RadText’s pipeline on the sample report.
collection = nlp(doc)

print(collection)

V. EVALUATION

A. Dataset

We evaluated RadText on the MIMIC-CXR dataset [23].
MIMIC-CXR is a large publicly available dataset of radio-
graphic studies performed at the Beth Israel Deaconess Medi-
cal Center. This dataset contains 227,827 radiology reports in
total.

B. Experiments and Results

We evaluated RadText’s performance on five new disease
findings that were not covered by previous works, including
Calcification of the Aorta, Pneumomediastinum, Pneumoperi-
toneum, Subcutaneous Emphysema, Tortuous Aorta.

Disease Finding Precision Recall F-1

Calcification of the Aorta 1.00 0.87 0.93
Pneumomediastinum 0.70 1.00 0.82
Pneumoperitoneum 0.88 1.00 0.94
Subcutaneous Emphysema 0.95 0.91 0.93
Tortuous Aorta 1.00 0.94 0.97

Macro Average 0.91 0.94 0.92

TABLE IV
RADTEXT PERFORMANCES ON FIVE NEW DISEASE FINDINGS.

We randomly selected 200 test reports from the MIMIC-
CXR dataset and manually annotated the five new disease
findings. We evaluated RadText by comparing the results of
RadText with the manually-annotated gold standard. Precision,
recall, and F1-score were computed accordingly based on the
number of true positives, false positives, and false negatives
(see Table IV). The average precision score is 0.91, with
the highest precision being 1.0 for Calcification of the Aorta
and Tortuous Aorta; the average recall score is 0.94, with
the highest recall being 1.0 for Pneumomediastinum and
Pneumoperitoneum; and the average F-1 score is 0.92, with
the highest F-1 score being 0.97 for Tortuous Aorta. RadText
achieves an average precision of 0.91, an average recall of
0.94, and an average F-1 score of 0.92. All reports in the

MIMIC-CXR dataset were analyzed using RadText (see Table
V). Among the five new disease findings, Calcification of the
Aorta is mentioned in 3,380 reports, which Pneumoperitoneum
is mentioned in only 1,604 reports. The labels can also be
found at the RadText homepage.

Finding Positive Negative Uncertain Total

Calcification of the Aorta 3,344 13 23 3,380
Pneumomediastinum 779 856 131 1,766
Pneumoperitoneum 580 938 86 1,604
Subcutaneous Emphysema 2,529 131 31 2,691
Tortuous Aorta 2,681 41 131 2,853

TABLE V
STATISTICS OF FIVE NEW DISEASE FINDINGS IN MIMIC-CXR DATASET.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented RadText, a high-performance
Python radiology text analysis system. We highlighted that
RadText features hybrid neural analysis, raw text processing
and local processing, bringing better usability and data privacy.
RadText’s modular design, user-friendly user interface, easy-
to-use command line usage and Python APIs allow users to
have great flexibility on the radiology text analysis task. We
evaluated RadText on the MIMIC-CXR dataset, especially on
five new disease findings that were not covered by previous
work, and the results demonstrated RadText’s superior perfor-
mances on radiology report analysis. RadText employs BioC-
CDM, which stores the results in the extended BioC format
that is compatible with OMOP CDM. RadText’ compatibil-
ity with OMOP CDM supports collaborative research across
disparate data sources.

In the future, RadText is going to be continuously main-
tained and expanded as new resources become available. For
example, the NER module can be improved by incorporating
scispaCy, developed for processing biomedical, scientific or
clinical text [3]. By making RadText publicly available, we
envision it can facilitate future research and applications in
the healthcare informatics community.

ACKNOWLEDGMENT

This work is supported by the National Library of Medicine
under Award No. 4R00LM013001 and the NIH Intramural
Research Program, National Library of Medicine.

REFERENCES

[1] A. Brady, “Error and discrepancy in radiology: inevitable or avoidable?”
Insights into Imaging, vol. 8, 12 2016.

[2] G. Savova, J. Masanz, P. Ogren, J. Zheng, S. Sohn, K. Kipper-Schuler,
and C. Chute, “Mayo clinical text analysis and knowledge extraction sys-
tem (cTAKES): Architecture, component evaluation and applications,”
JAMIA, vol. 17, pp. 507–13, 09 2010.

[3] M. Neumann, D. King, I. Beltagy, and W. Ammar, “ScispaCy: Fast
and Robust Models for Biomedical Natural Language Processing,” in
Proceedings of the BioNLP Workshop and Shared Task, Aug. 2019, pp.
319–327.

[4] H. Liu, S. J. Bielinski, S. Sohn, S. Murphy, K. B. Wagholikar, S. R.
Jonnalagadda, K. Ravikumar, S. T. Wu, I. J. Kullo, and C. G. Chute,
“An information extraction framework for cohort identification using
electronic health records,” AMIA Joint Summits on Translational Sci-
ence, vol. 2013, p. 149—153, 2013.

[5] E. Soysal, J. Wang, M. Jiang, Y. Wu, S. Pakhomov, H. Liu, and H. Xu,
“CLAMP – a toolkit for efficiently building customized clinical natural
language processing pipelines,” JAMIA, vol. 25, no. 3, pp. 331–336, 11
2017.

[6] O. Bodenreider, “The Unified Medical Language System (UMLS):
Integrating biomedical terminology,” Nucleic Acids Research, vol. 32,
no. Database issue, pp. D267–270, Jan. 2004.

[7] C. P. Langlotz, “RadLex: A new method for indexing online educational
materials,” Radiographics: A Review Publication of the Radiological
Society of North America, Inc, vol. 26, no. 6, pp. 1595–1597, 2006
Nov-Dec.

[8] W. W. Chapman, D. Hillert, S. Velupillai, M. Kvist, M. Skeppstedt,
B. E. Chapman, M. Conway, M. Tharp, D. L. Mowery, and L. Deleger,
“Extending the NegEx lexicon for multiple languages.” Studies in health
technology and informatics, vol. 192, pp. 677–681, 2013.

[9] B. E. Chapman, S. Lee, H. P. Kang, and W. W. Chapman, “Document-
level classification of CT pulmonary angiography reports based on an
extension of the ConText algorithm,” Journal of Biomedical Informatics,
vol. 44, no. 5, pp. 728–737, Oct. 2011.

[10] J.-w. Fan, E. W. Yang, M. Jiang, R. Prasad, R. M. Loomis, D. S. Zisook,
J. C. Denny, H. Xu, and Y. Huang, “Syntactic parsing of clinical text:
Guideline and corpus development with handling ill-formed sentences,”
JAMIA, vol. 20, no. 6, pp. 1168–1177, 2013 Nov-Dec.

[11] Y. Peng, X. Wang, L. Lu, M. Bagheri, R. Summers, and Z. Lu,
“Negbio: a high-performance tool for negation and uncertainty detection
in radiology reports,” in AMIA Joint Summits on Translational Science,
2017, pp. 188–196.

[12] E. Voss, R. Makadia, A. Matcho, Q. Ma, C. Knoll, M. Schuemie,
F. Defalco, A. Londhe, V. Zhu, and P. Ryan, “Feasibility and utility
of applications of the common data model to multiple, disparate obser-
vational health databases,” JAMIA, vol. 22, 02 2015.

[13] D. Comeau, R. Dogan, P. Ciccarese, K. Cohen, M. Krallinger, F. Leitner,
Z. lu, Y. Peng, F. Rinaldi, M. Torii, A. Valencia, K. Verspoor, T. Wiegers,
C. Wu, and W. Wilbur, “BioC: a minimalist approach to interoperability
for biomedical text processing,” Database : the journal of biological
databases and curation, vol. 2013, p. bat064, 01 2013.

[14] E. Pons, L. M. M. Braun, M. G. M. Hunink, and J. A. Kors, “Natural
Language Processing in Radiology: A Systematic Review,” Radiology,
vol. 279, no. 2, pp. 329–343, May 2016.

[15] A. Aronson and F.-M. Lang, “An overview of MetaMap: Historical
perspective and recent advances,” JAMIA, vol. 17, pp. 229–36, 05 2010.

[16] O. Bodenreider, “The unified medical language system (umls): Inte-
grating biomedical terminology,” Nucleic acids research, vol. 32, pp.
D267–70, 02 2004.

[17] H. Eyre, A. B. Chapman, K. S. Peterson, J. Shi, P. R. Alba, M. M.
Jones, T. L. Box, S. L. DuVall, and O. V. Patterson, “Launching into
clinical space with medspacy: a new clinical text processing toolkit in
python,” in AMIA Annual Symposium Proceedings, 2021.

[18] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, “spacy:
Industrial-strength natural language processing in python,” 2020.

[19] B. Norgeot, K. Muenzen, T. A. Peterson, X. Fan, B. S. Glicksberg,
G. Schenk, E. Rutenberg, B. Oskotsky, M. Sirota, J. Yazdany, G. Schma-
juk, D. Ludwig, T. Goldstein, and A. J. Butte, “Protected health
information filter (philter): accurately and securely de-identifying free-
text clinical notes,” NPJ Digital Medicine, vol. 3, 2020.

[20] O. f. C. Rights (OCR), “Guidance Regarding Methods for De-
identification of Protected Health Information in Accordance with the
Health Insurance Portability and Accountability Act (HIPAA) Pri-
vacy Rule,” https://www.hhs.gov/hipaa/for-professionals/privacy/special-
topics/de-identification/index.html, Sep. 2012.

[21] M. Tepper, D. Capurro, F. Xia, L. Vanderwende, and M. Yetisgen-
Yildiz, “Statistical Section Segmentation in Free-Text Clinical Records,”
in Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC), May 2012, pp. 2001–2008.

[22] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax
diseases,” 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3462–3471, 2017.

[23] A. Johnson, T. Pollard, S. Berkowitz, N. Greenbaum, M. Lungren, C.-y.
Deng, R. Mark, and S. Horng, “MIMIC-CXR, a de-identified publicly
available database of chest radiographs with free-text reports,” Scientific
Data, vol. 6, p. 317, 12 2019.

[24] J. C. Denny, R. A. Miller, K. B. Johnson, and A. Spickard, “Development
and evaluation of a clinical note section header terminology,” in AMIA
Symposium, 2008, pp. 156–160.

[25] C. J. McDonald, S. M. Huff, J. G. Suico, G. Hill, D. Leavelle, R. Aller,
A. Forrey, K. Mercer, G. DeMoor, J. Hook, W. Williams, J. Case, and
P. Maloney, “LOINC, a universal standard for identifying laboratory
observations: A 5-year update,” Clinical Chemistry, vol. 49, no. 4, pp.
624–633, Apr. 2003.

[26] R. A. Miller and F. E. Masarie, “Use of the Quick Medical Reference
(QMR) program as a tool for medical education,” Methods of Informa-
tion in Medicine, vol. 28, no. 4, pp. 340–345, Nov. 1989.

[27] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python, 1st ed. O’Reilly Media, Inc., 2009.

[28] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza: A
Python natural language processing toolkit for many human languages,”
in Proceedings of ACL: System Demonstrations, 2020.

[29] M. Honnibal and M. Johnson, “An improved non-monotonic transition
system for dependency parsing,” in Proceedings of EMNLP, Sep. 2015,
pp. 1373–1378.

[30] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticae Investigationes, vol. 30, 08 2007.

[31] E. Charniak and M. Johnson, “Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking,” in Proceedings of ACL, Jun. 2005, pp. 173–
180.

[32] E. Charniak and D. McClosky, “Any domain parsing: automatic domain
adaptation for natural language parsing,” 2010.

[33] M.-C. de Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter,
J. Nivre, and C. D. Manning, “Universal Stanford dependencies: A
cross-linguistic typology,” in Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC), May 2014,
pp. 4585–4592.

[34] M.-C. Marneffe and C. Manning, “The Stanford typed dependencies
representation,” COLING Workshop on Cross-framework and Cross-
domain Parser Evaluation, 01 2008.

[35] W. W. Chapman, W. Bridewell, P. Hanbury, G. F. Cooper, and B. G.
Buchanan, “Evaluation of negation phrases in narrative clinical reports,”
Proceedings. AMIA Symposium, pp. 105–9, 2001.

	I Introduction
	II Related Work
	III System Design and Architecture
	III-A BioC-CDM: BioC format compatible with OMOP CDM
	III-B Pipeline
	III-B1 De-Identification
	III-B2 Section Segmentation
	III-B3 Sentence Split and Word Tokenization
	III-B4 Named Entity Recognition
	III-B5 Parsing
	III-B6 Negation Detection

	IV System Usage
	IV-A Installation
	IV-B Command Line Usage
	IV-C Python API Usage
	IV-C1 BioC-CDM Conversion
	IV-C2 Pipeline Usage

	V Evaluation
	V-A Dataset
	V-B Experiments and Results

	VI Conclusion and Future Work
	References

