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INTRODUCTION: Diverse phenotypes, including
large brains relative to body size, group living,
and vocal learning ability, have evolved multi-
ple times throughout mammalian history.
These shared phenotypes may have arisen re-
peatedly by means of common mechanisms
discernible through genome comparisons.

RATIONALE: Protein-coding sequence differ-
ences have failed to fully explain the evo-
lution of multiple mammalian phenotypes.
This suggests that these phenotypes have
evolved at least in part through changes in
gene expression, meaning that their differ-
ences across species may be caused by differ-
ences in genome sequence at enhancer regions
that control gene expression in specific tissues
and cell types. Yet the enhancers involved in
phenotype evolution are largely unknown. Se-
quence conservation–based approaches for iden-
tifying such enhancers are limited because
enhancer activity can be conserved even when
the individual nucleotides within the sequence
are poorly conserved. This is due to an over-
whelming number of cases where nucleotides
turn over at a high rate, but a similar com-

bination of transcription factor binding sites
and other sequence features can be main-
tained across millions of years of evolution,
allowing the function of the enhancer to be
conserved in a particular cell type or tissue.
Experimentally measuring the function of or-
thologous enhancers across dozens of spe-
cies is currently infeasible, but new machine
learning methods make it possible to make
reliable sequence-based predictions of en-
hancer function across species in specific
tissues and cell types.

RESULTS: To overcome the limits of studying
individual nucleotides, we developed the Tissue-
Aware Conservation Inference Toolkit (TACIT).
Rather than measuring the extent to which
individual nucleotides are conserved across a
region, TACIT uses machine learning to test
whether the function of a given part of the ge-
nome is likely to be conserved. More specifi-
cally, convolutional neural networks learn the
tissue- or cell type–specific regulatory code con-
necting genome sequence to enhancer activ-
ity using candidate enhancers identified from
only a few species. This approach allows us to

accurately associate differences between spe-
cies in tissue or cell type–specific enhancer
activity with genome sequence differences at
enhancer orthologs. We then connect these
predictions of enhancer function to pheno-
types across hundreds of mammals in a way
that accounts for species’ phylogenetic related-
ness. We applied TACIT to identify candidate
enhancers from motor cortex and parvalbumin
neuron open chromatin data that are associated
with brain size relative to body size, solitary
living, and vocal learning across 222 mammals.
Our results include the identification of multi-
ple candidate enhancers associated with brain
size relative to body size, several of which are
located in linear or three-dimensional prox-
imity to genes whose protein-coding muta-
tions have been implicated inmicrocephaly or
macrocephaly in humans. We also identified
candidate enhancers associated with the evo-
lution of solitary living near a gene implicated
in separation anxiety and other enhancers as-
sociated with the evolution of vocal learning
ability. We obtained distinct results for bulk
motor cortex and parvalbumin neurons, dem-
onstrating the value in applying TACIT to both
bulk tissue and specific minority cell type pop-
ulations. To facilitate future analyses of our
results and applications of TACIT, we released
predicted enhancer activity of >400,000 can-
didate enhancers in each of 222mammals and
their associations with the phenotypes we
investigated.

CONCLUSION: TACIT leverages predicted en-
hancer activity conservation rather than
nucleotide-level conservation to connect ge-
netic sequence differences between species
to phenotypes across large numbers of mam-
mals. TACIT can be applied to any phenotype
with enhancer activity data available from at
least a few species in a relevant tissue or cell
type and a whole-genome alignment available
across dozens of species with substantial
phenotypic variation. Although we developed
TACIT for transcriptional enhancers, it could
also be applied to genomic regions involved
in other components of gene regulation, such
as promoters and splicing enhancers and
silencers. As the number of sequenced genomes
grows, machine learning approaches such as
TACIT have the potential to help make sense
of how conservation of, or changes in, subtle
genome patterns can help explain pheno-
type evolution.▪
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Tissue-Aware Conservation Inference Toolkit (TACIT) associates genetic differences between
species with phenotypes. TACIT works by generating open chromatin data from a few species in a tissue
related to a phenotype, using the sequences underlying open and closed chromatin regions to train
a machine learning model for predicting tissue-specific open chromatin and associating open chromatin
predictions across dozens of mammals with the phenotype. [Species silhouettes are from PhyloPic]
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Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the
involvement of genomic elements that regulate gene expression such as enhancers. Identifying
associations between enhancers and phenotypes is challenging because enhancer activity can be
tissue-dependent and functionally conserved despite low sequence conservation. We developed
the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species’
phenotypes using predictions from machine learning models trained on specific tissues. Applying
TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological
phenotypes revealed dozens of enhancer–phenotype associations, including brain size–associated
enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation
for identifying enhancers associated with the evolution of any convergently evolved phenotype in any
large group of species with aligned genomes.

M
uch of the phenotypic diversity across
vertebrates is thought to have arisen
from changes in how genes are ex-
pressed (1). Variation in phenotypes
such as vocal learning (2) and lon-

gevity (3) has been linked to patterns of gene
expression in relevant brain regions and tis-
sues. Thus, at least some of the genetic differ-
ences associated with the evolution of these
and other complex phenotypes are likely in
enhancers, which we define as distal cis-
regulatory genomic elements that are bound
by transcription factor (TF) proteins and reg-
ulate the expression of associated genes, often
through cell type–specific activation (4, 5).
For example, limblessness in snakes is asso-
ciated with sequence divergence and activ-
ity loss in a critical enhancer near the Sonic

hedgehog gene (6), and mutations in orthologs
of this enhancer are associated with polydactyly
in humans, mice, and cats (7, 8). Enhancer
evolution has been associated with multiple
other complex phenotypes, including whisker,
penile spine, and brain growth (9).
Recent advances facilitate identifying relation-

ships between enhancer activity and phenotype
evolution (10–12). Community genome sequenc-
ing efforts such as the Zoonomia Consortium
and the Vertebrate Genomes Project have con-
structed assemblies for hundreds of species
from diverse mammalian and vertebrate clades
(13, 14). Reference-free multispecies whole-
genome alignments that can account for struc-
tural rearrangements and tools for extracting
orthologs have vastly improved ortholog map-
ping for noncoding genomic regions (10, 15, 16).
In addition, new phylogeny-aware statistical
methods have been developed for identify-
ing factors associated with phenotype evo-
lution (17, 18).
Despite these successes, identifying enhancer–

phenotype relationships is still amajor challenge.
Widely used methods to identify conserva-
tion and convergent evolution across orthol-
ogous genome sequences measure the extent
to which the nucleotides within a given region
are the same across species (19–21). While these
approaches have led to some exciting findings,
including the identification of multiple eye
enhancers whose functions are lost in blind
subterranean mammals (22, 23), such ap-
proaches are limited because nucleotide-level
sequence conservation is not required for or
always sufficient for activity conservation at
enhancer orthologs (24). In fact, most enhancer

sequences and TF binding sites are under less
sequence constraint than promoter and gene
sequences (25, 26). For example, a recent study
found that the Islet enhancer is conserved in
its tissue-specific activation patterns despite
low sequence conservation because its TF mo-
tifs are in different orders in different spe-
cies (27, 28). Another study computed average
PhastCons scores, which measure the proba-
bility that a region is conserved, for house
mouse brain enhancers whose rhesus ma-
caque orthologs are not brain enhancers and
found a few hundred enhancers that have high
sequence conservation (PhastCons scores > 0.5)
despite their different activities between spe-
cies (12, 29). These findings suggest that, even
when enhancer sequences are not very con-
served at the nucleotide level, they can contain
conserved patterns, such as TF motif occur-
rences, that are predictive of enhancer activity.
Previous studies showed that machine learn-

ing models that use DNA sequence to predict
enhancer activity in a tissue of interest in one
species can accurately predict clade-specific and
tissue-specific enhancer activity in species from
different mammalian clades (12, 30–32). These
findings demonstrate that the sequence pat-
terns associated with enhancer activity in
tissues including brain and liver are highly
conserved across mammals, even though the
patterns’ nucleotide-level conservation is not
always high. Leveraging that principle, we
recently developed a method for identifying
conservation of enhancer activity based on
tissue- or cell type–specific regulatory patterns
learned by machine learning models rather
than conservation of nucleotides (12). Here, we
present a framework that builds on this pre-
vious work to quantify the association between
enhancer activity conservation and specific
phenotypes. We apply this framework to open
chromatin regions (OCRs), which we use as a
proxy for enhancers, to associate open chromatin
with brain size and other neural phenotypes
and find that many associated candidate en-
hancers are near relevant genes. This method
provides new opportunities to investigate the
interplay between DNA sequence and pheno-
type evolution through gene regulation.

Results

We developed a framework called the Tissue-
Aware Conservation Inference Toolkit (TACIT),
which identifies candidate enhancers asso-
ciated with the evolution of phenotypes across
multiple clades by integratingmachine learning–
based predictions of enhancer activitywith other
comparative genomics advances (13, 17, 18).
TACIT uses sequences of candidate enhancers
identified experimentally in a small number of
species to train machine learning models that
predict the probability of enhancer activity
of sequences in other genomes at the or-
thologous regions (13). Models are trained in
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a specific tissue or cell type that is relevant to
a phenotype of interest. TACIT then uses these
predictions, treating the probability of en-
hancer activity as a continuous value, to link
candidate enhancers to specific phenotypes
while accounting for phylogeny (Fig. 1). In
our first application of TACIT, we used OCRs
as our candidate enhancers (12, 33–40), con-
volutional neural networks (CNNs) (41) for
our machine learningmodels, and 222 aligned
boreoeutherian mammalian genomes from
Zoonomia to identify orthologs (10).

Nucleotide-level conservation-based metrics
do not find brain size–associated genes
or regulatory elements

The sequenced genomes and nucleotide align-
ments of the Zoonomia Project provide the
foundation to link differences in genome se-
quence to differences in complex traits (13). We
began by examining brain size, a complex and
diverse trait across mammalian species that
contributes to human cognitive ability (42).
Specifically, we used the brain size residual (de-
viationof brainmass fromthepredicted value of
brain mass from a regression on body mass)
(43, 44) because brain size is highly correlated
with overall body size (45, 46) and because we
were able to obtain brain size residual annota-
tions for 158boreoeutherianmammals (43,44)—
primates, lagomorphs, rodents, insectivores,
bats, carnivores, pangolins, and ungulates. To
explore the sufficiency of existing methods,
we applied a previously developed nucleotide

conservation–basedmethod calledRERconverge
(21) to investigate whether there are proteins or
motor cortex OCRs whose relative evolutionary
rates are associated with the evolution of brain
size residual and found no associated proteins
and only one associated OCR, which is close in
linear but not three-dimensional (3D) space to
genes implicated in brain size (47–52).

Convolutional neural networks accurately
predict open chromatin status of candidate
enhancer OCR orthologs

As an alternative to these approaches, we used
our new method, TACIT, which estimates
conservation of enhancer activity on the basis
of predicted tissue-specific regulatory signa-
tures. We applied TACIT to the motor cortex
and liver, both of which have open chromatin
data from more than two species, as well as
retina and motor cortex parvalbumin-positive
(PV+) interneurons, which have open chro-
matin from only two species; details about the
setup for each model are given in the “Model
encyclopedia” section of the supplementary
text (52). For this first application of TACIT,
we used OCRs because accessible regions of
the genome are available for TF binding and
therefore can serve as a proxy for enhancers.
We chose OCRs instead of other metrics of
enhancer activity, such as H3K27ac chroma-
tin immunoprecipitation sequencing (ChIP-
seq) regions, because open chromatin data are
widely available in both tissue and single-cell
applications, because OCRs pinpoint func-

tional regulatory sequences with high reso-
lution (16, 52–56), and because several recent
studies have suggested that they are more
indicative of enhancer activity (52, 57–59).
We limited our focus to OCRs that are likely

to function as enhancers, which we defined
as nonexonic OCRs that are sufficiently far
from the nearest protein-coding transcription
start site (TSS) that they would be unlikely to
function as promoters and sufficiently short
that they would be unlikely to function as
super-enhancers (52). We decided to focus on
candidate enhancers instead of all OCRs be-
cause enhancers and promoters have partially
different regulatory codes (60, 61) and because
enhancers tend to be better-assembled than
promoters owing to their generally lower GC
content (62, 63). We chose tissues and cell
types that we thought would reveal relation-
ships between open chromatin and complex
phenotypes of interest. A logistic regression
model trained using TF motif features per-
formed suboptimally (table S1), so we decided
to train CNNs, which can automatically learn
sequence patterns and pattern combinations
that are predictive of open chromatin, en-
abling them to learn sequences beyond those
that match known TF motifs as well as com-
binations of TFmotifs. Since themost-relevant
CNN fromourpreviouswork (12) and thewidely
used DeepSEA Beluga model (64), which were
trained for tasks related to motor cortex open
chromatin prediction (brain and glioblas-
toma, respectively, open chromatin predic-
tion), had suboptimal motor cortex test set
performance (52), we trained models direct-
ly for our tasks.
For motor cortex and liver, we trained CNN

classifiers to distinguish whether a sequence
is an OCR likely to function as an enhancer in
one species (positive) or a non-OCR ortholog
of a different species’ OCR (negative), as de-
scribed previously (12). We initially trained
CNNs using only house mouse sequences [mo-
tor cortex: MouseMotorCortexModel; liver: pre-
viously published (12)] to demonstrate that
a CNN trained in one species could make
accurate predictions in species with differ-
ent levels of relatedness that were not used
in training (fig. S1 and tables S2 and S3) (52).
We next trained multispecies CNNs for both
motor cortex (MultiSpeciesMotorCortexModel)
and liver (MultiSpeciesLiverModel) using data
from house mouse (Mus musculus) and Norway
rat (Rattus norvegicus) (both in the Glires clade)
and from Rhesus macaque (Macaca mulatta)
(Euarchonta clade). We also included motor
cortex data from Egyptian fruit bat (Rousettus
aegyptiacus) and liver data from the domes-
tic cow (Bos taurus) and pig (Sus scrofa) (all
Laurasiatheria clade). The models trained on
these multispecies datasets achieved overall
test set performance area under the receiver
operating characteristic curve (AUC) of 0.91
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Fig. 1. Overview of TACIT. We trained a machine learning model using sequences underlying candidate
enhancers (indicated in dark red) and non-enhancers (not pictured) to predict enhancer activity in a tissue or
cell type of interest. We used the model to predict enhancer activity (darker red arrows indicate higher
predicted activity) in that tissue or cell type in hundreds of genomes (13). We associated our predictions with
phenotypes using a phylogeny-aware regression and then quantified the significance of the association using
an empirical P value. [All silhouettes are from PhyloPic, and the silhouette of Orcinus orca was created
by Chris Huh (license: https://creativecommons.org/licenses/by-sa/3.0/) and was not modified (132)]
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and area under the precision-recall curve
(AUPRC) of 0.90 as well as lineage- and tissue-
specific OCR accuracy AUC > 0.8 and area un-
der the negative predictive value–specificity
curve (AUNPV-Spec.) greater than the fraction

of examples in smaller class for all metrics
(indicated by white bars in figures) (Fig. 2,
A and C; fig. S3A; and tables S4 and S5), far
exceeding the performance of the logistic
regression (table S1).

We also evaluated the phylogeny-matching
correlations, which quantify the relationship
between predictions at OCR orthologs and
distance from the species in which an OCR
was identified, a relationship that we would
expect to be negative because open chroma-
tin status is more likely to be different in a
species that is more distantly related from the
species in which the open chromatin was iden-
tified. The phylogeny-matching correlations
were Pearson correlation coefficient (r) <
−0.95 and Spearman correlation < −0.75 (figs.
S2, A, C, and E, and S3, B to F). To determine
whether our phylogeny-matching correlation
results were likely to be explained by the mod-
els learning different sequence embeddings for
different species, we computed the first prin-
cipal component of the outputs of the first
fully connected layer of each model and com-
pared the distributions of these for house
mouse positives with positives and negatives
from each species for which we have open
chromatin data, European rabbit (selected be-
cause it is the most distantly related Glires spe-
cies from house mouse in Fig. 2C) orthologs,
and bottlenose dolphin (selected because it has
a large brain size residual, is a vocal learner,
and is not closely related to any species with
open chromatin data) orthologs. We found that
the first principal component of these embed-
dings, which explained 34.2 and 34.9% of the
variance for MultiSpeciesMotorCortexModel
andMultiSpeciesLiverModel, respectively, tended
to be more similar between house mouse posi-
tives and positives from other species than
between house mouse positives and negatives,
suggesting that the model is learning a con-
sistent sequence embedding across species
(Fig. 2E, fig. S3F, and tables S6 and S7). In
addition, the values for the other Glires and
bottlenose dolphin orthologs of house mouse
positives tended to be distributed in between
those of the mouse positives and negatives,
with the bottlenose dolphin orthologs tending
to have more values closer to those of house
mouse negatives, suggesting that the model is
learning that OCR orthologs in more distantly
related species tend to have sequence compo-
sitions more similar to negatives than to posi-
tives, matching previously demonstrated trends
(Fig. 2E; figs. S2, G, I, and K, and S3F; and tables
S6 and S7) (49, 65, 66).
We then used the models to make predic-

tions at house mouse motor cortex OCR or-
thologs, which we found using the Zoonomia
Cactus alignment, as this alignment is reference-
free and can account for multiple types of struc-
tural rearrangements, including translocations
and inversions (10, 67). We obtained ortho-
logs in 222 diverse boreoeutherian Zoonomia
mammal genomes, limiting ourselves to the
clades for which open chromatin data were
available instead of using all 240 mamma-
lian genomes. To further evaluate the reliability
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Fig. 2. MultiSpeciesMotorCortexModel and MultiSpeciesPVModel performance. (A and B) Area under
the receiver operating characteristic curve (AUC), area under the negative predictive value–specificity curve
(AUNPV-Spec.), and area under the precision-recall curve (AUPRC). Results are for the full test set,
clade-specific OCRs and non-OCRs, and OCRs shared with another tissue/brain region/cell type (positive)
versus tissue/brain region/cell type–specific OCRs in that other tissue/brain region/cell type (negative)
[described in the “Detailed description of model performance figures” section of the supplementary materials
(52)] for MultiSpeciesMotorCortexModel (A) and MultiSpeciesPVModel (B). Orths., orthologs. The ideal
performance is 1, and the horizontal white bar indicates the performance that would be expected from a
randomly guessing model, which is the fraction of examples in the minority class for AUNPV-Spec. and
AUPRC. (The AUC from random guessing is 0.5.) (C and D) The negative relationship between the average
house mouse OCR ortholog MultiSpeciesMotorCortexModel (C) and MultiSpeciesPVModel (D) predictions
for Glires species and the time [millions of years ago (MYA)] at which each species diverged from house
mouse, where each point corresponds to a different species. The dashed line is the average prediction
for the negative test set across all species used to train the model. Prediction standard deviations
for MultiSpeciesMotorCortexModel and MultiSpeciesPVModel are given in fig. S2, C and D, respectively.
(E and F) Violin plots comparing the first principal component for the embeddings from the first fully connected
layer of MultiSpeciesMotorCortexModel (E) and MultiSpeciesPVModel (F) for positives and negatives from
each species as well as European rabbit and bottlenose dolphin orthologs of house mouse positives.
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of our predictions, we clustered the species
hierarchically by comparing the vector of
MultiSpeciesMotorCortexModel predictions
made on all OCR orthologs in each species
and found that the cluster hierarchy was sim-
ilar to the phylogenetic tree (68), with all but
a few species clustering correctly by clade
(Fig. 3, fig. S4, and data S1) (52).
We then trained CNNs to predict open chro-

matin in PV+ interneurons and in retina,
which required developing a new negative
set construction approach owing to having
data from only two species (figs. S1, S7, and
S9 to S11, and tables S8 to S13) (52).We chose to
train models for PV+ interneurons separately
from those for bulk motor cortex because,
while they are critical in cortical microcircuits
and human brain disorders, including schizo-
phrenia (69, 70), they are a minority popula-
tion, representing 4 to 8% of neurons and 2 to
4% of the total cell population in the mouse
cortex (71). Given this sparsity, our bulk motor
cortex open chromatin data may not capture
OCRs that are specific to PV+ interneurons. In
fact, ~30% of mouse PV+ OCRs do not overlap
any bulk motor cortex OCRs, including non-
reproducible peaks. We began by quantifying
the regulatory code conservation of PV+ inter-
neurons and retina by running motif discov-

ery (72) on OCRs from each species for which
data were available. For each of PV+ inter-
neurons and retina, we foundmotifs for many
of the same TFs in both species, and some of
these TFs have known regulatory roles in PV+
interneurons and retina, respectively (52, 65).
To ensure that CNNs for predicting PV+ in-

terneuron and retina open chromatin could
make accurate predictions in species not used
for training,we first trained and evaluated CNNs
to predict PV+ interneuron (MousePVModel)
and retina (MouseRetinaModel) open chro-
matin using only house mouse sequences (52).
We then trained CNNs to predict PV+ inter-
neuron (MultiSpeciesPVModel) and retina
(MultiSpeciesRetinaModel) open chroma-
tin using sequences from both house mouse
and human. Both MultiSpeciesPVModel and
MultiSpeciesRetinaModel achieved AUC > 0.70
and AUPRC and AUNPV-Spec. greater than the
fraction of examples in minority class for all
criteria as well as phylogeny-matching Pearson
r < −0.60 and Spearman correlation < −0.40
(Fig. 2, B, D, and F; figs. S2 and S5, A to F;
and tables S14 to S17) (49, 65). Although this
performance is not as strong as the perfor-
mance ofMultiSpeciesMotorCortexModel and
MultiSpeciesLiverModel, our evaluation sets
tended to have lower positive:negative ratios

than our evaluation sets for the motor cortex
and liver models (tables S8 and S9) owing to
the human data being substantially shallower
than the datasets for other combinations of
tissues and species (37, 40), and the perfor-
mance is substantially better than would be
expected from a randomly guessing model
(Fig. 2B and fig. S5A).
We expect models for specific tissues to cap-

ture sequence signatures of motifs of TFs in-
volved in those tissues. We evaluated this for
our models by comparing the groups of nucleo-
tides the models found to be important to data-
sets of known TFmotifs (figs. S5G and S6 to S8)
(52, 73–75). MultiSpeciesMotorCortexModel
andMultiSpeciesLiverModel seemed to have
learned sequence patterns similar to motifs of
TFs involved in motor cortex and liver, respec-
tively, such as MEF2C (myocyte-specific en-
hancer factor 2C) for motor cortex (76, 77) and
HNF4A (hepatocyte nuclear factor 4-alpha)
(78, 79) for liver, as well as sequence patterns
that do not match any known TF motif (figs.
S6 to S8) (52).

Applying TACIT to mammalian phenotypes
A framework for associating predicted
open chromatin with phenotypes

We applied TACIT to motor cortex and PV+
interneuron OCR orthologs to identify individ-
ual OCRs whose predicted open chromatin
across species is associated with neurological
phenotypes (Fig. 1, table S17, and data S2). We
applied the phylolm and phyloglm methods
(17) for continuous and binary traits, respec-
tively. These methods are sped-up versions of
phylogenetic generalized least squares (80, 81).
We used them to test for a relationship be-
tween each OCR ortholog’s open chromatin
predictions and relevant phenotype annota-
tions across species that cannot be explained
by the species phylogeny alone. To minimize
false positives, we implemented phylogenetic
permulations, which are permutation tests that
preserve the general topology of the phenotype
tree (18), enabling us to evaluate the signif-
icance of each OCR–phenotype relationship
against a background distribution of shuffled
phenotypes with similar phylogenetic struc-
tures (52).

TACIT identifies motor cortex OCRs
associated with the evolution of brain size

Applying TACIT with MultiSpeciesMotor-
CortexModel (figs. S12, A and B, and S13; table
S18; and data S3) (52) identified 49 brain
size–associated motor cortex OCRs–OCRs as-
sociated with brain size residual after Benjamini-
Hochberg false discovery rate (FDR) correction
(q < 0.15) (82). We note that the 98,912 OCRs
we tested with TACIT are the same OCRs that
we tested with RERconverge [with the excep-
tion of 27 OCRs tested for TACIT that could
not be tested for RERconverge with the settings
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Active in primates

Active in most species

Inactive in primates, 
ungulates, and carnivora
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active in other species

Active in primates, weakly 
active in other species
Inactive in primates and 
ruminants
Active in laurasiatheria
Active in rodents

P(Motor Cortex OCR)
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Light Gray: Missing

Fig. 3. Heatmap of MultiSpeciesMotorCortexModel predictions for a subset of 1000 OCRs,
clustered by OCR with predictions as features. Predictions of OCR ortholog open chromatin are shown
for 1000 randomly selected motor cortex OCRs with orthologs in at least 75% of species, with each row
corresponding to one OCR and each column corresponding to one species. Predictions are shown on a
white (closed) to red (open) scale, with missing (species, OCR) pairs shown in light gray. The OCRs (rows)
are ordered according to the results of a hierarchical clustering with Ward’s minimum variance method,
where the distance between two OCRs was defined as the cosine similarity of activity predictions in species
for which both OCRs have usable orthologs (12). Species are ordered by their position in the phylogenetic
tree; the approximate positions of species in selected clades are shown along the bottom, and illustrated
species are listed in table S26, with the exception of the bat, which is an Egyptian fruit bat. Species
colored black are those with data used in model training, and species colored dark gray are those for which
we have only predicted open chromatin.
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we used (52)] (21), which identified only one
association, so these two analyses had ap-
proximately the same multiple hypothesis
testing burden. Moreover, we found almost
no correlation between the TACIT P values
and OCR orthologs’ phyloP scores [Pearson
r < 0, coefficient of determination (R2) <
0.00129] or distances from the closest TSS
(Pearson r < 0, R2 < 0.000286), demonstrat-
ing the value in leveraging candidate enhancer
activity conservation instead of nucleotide-
level conservation and proximity to TSSs in
identifying candidate enhancers associated
with phenotype evolution (tables S19 and
S20) (19, 52, 83).
We then examined all genes with TSSs within

1 Mb of the 49 brain size–associated OCRs.
Of these 49 OCRs, 42 are near genes whose
encoded proteins have roles in brain devel-
opment or brain tumor growth (listed in table
S21); 22 of these 42 have orthologs that are
physically close to one of those nearby genes in
either human or mouse cortices according to
chromatin conformation capture data (q < 0.05
for a test of an interaction with the 10-kb bin
containing the TSS; 15 of 37 OCR-gene interac-
tions tested in mouse and 13 of 28 OCR-gene
interactions tested in human; table S22), poten-
tially reflecting functional enhancer-promoter
looping (52, 84). We selected a tolerant FDR
threshold of q < 0.15 because we view the
reported associations in part as hypotheses for
further investigation, and we found potentially
relevant gene neighborhoods and chromatin
conformation capture data contacts for
many OCRs with q values between 0.1 and
0.15 (table S22).
Of the 42 brain size–associated OCRs near

brain development and tumor growth genes,
32 are near genes with human mutations im-
plicated in neurological disorders, including
14 OCRs near genes in which mutations have
been reported to cause microcephaly or macro-
cephaly (table S21 and fig. S14, A to N) (52, 85).
Furthermore, motor cortex OCRs with hu-
man orthologs near [within 1 Mb in Genome
Reference Consortium Human Build 38 (hg38)
coordinates] genes mutated in microcephaly
or macrocephaly tend to have stronger asso-
ciations with brain size residual than other
OCRs. Specifically, OCRs near genes mutated
in microcephaly or macrocephaly exhibit a
significantly shifted-lower distribution of the
number of successful trials out of 10,000 than
do other motor cortex OCRs with human
orthologs (one-tailed Wilcoxon rank-sum test,
P = 0.0127, statistic = −2.23; fig. S12A) (52),
where a successful trial is a permulated pheno-
type that better correlates with the OCR’s
predicted activity than the true phenotype.
We note that this trend seems to be present
but weaker for models with lower test set
AUPRC across our evaluation criteria (tables
S23 and S24) (52).

One of the brain size–associated OCRs, chr18:
81802310-81802951 (mm10), is ~800 kb down-
stream from the TSS of the gene Sall3 (spalt-
like transcription factor 3). Sall3 is the closest
gene upstream and fourth-closest gene over-
all to this OCR. The three closer genes are Galr1
(galanin receptor 1), Mbp (myelin basic pro-
tein), and Zfp236 (zinc finger protein 236), of
which Mbp also has a connection to brain de-
velopment (86). Hi-C from adult human cortex
(84) shows that the bin containing the human
ortholog of this OCR is close to SALL3 in 3D
space (FastHiC q = 1.30 × 10−11; table S22) (87)
but does not significantly physically interact
with MBP (q = 0.412). This OCR displays a
positive association with brain size residual
both overall (q = 0.059) and within mamma-
lian clades with especially large variations in
brain size residual, including the great apes
and cetaceans (Fig. 4A). Sall3 is a member of
the conserved spalt-like family of transcrip-
tion factors, which are important in develop-
ment in metazoans, and loss of Sall3 in house
mice is lethal because it causes a loss in cranial
nerve development (88, 89). Although a spe-
cific role of Sall3 in the motor cortex has not
been described, Sall3 regulates the maturation
of neurons in other regions of the mouse brain
(89, 90), and Sall3 or SALL3 is expressed in
developing house mouse motor neurons (89)
and the human cerebral cortex (91).
Wealso identifiedOCRchr2:75345159-75346046

(rheMac8) as having predicted open chroma-
tin negatively associated with brain size re-
siduals (q = 0.11), with an especially strong
negative association in cetaceans and great
apes (Fig. 4B). The closest gene to this OCR is
LRIG1 (leucine rich repeats and immunoglob-
ulin like domains 1), whose TSSs are ~250 kb
upstream of the OCR. LRIG1 slows and delays
the differentiation of neural stem cells (92, 93).
While this OCR is also near other genes, none
of those genes has a known role in brain size.
This OCR is in physical proximity to Lrig1 in
mouse cortical cells (FitHiC2 q= 0.0100; table
S22). It also has strongly significant contact
with LRIG1 in the human cortex (FastHiC q =
3.31 × 10−14; table S22), suggesting that this
OCR’s 3D connection to the gene it regulates
may have been conserved more strongly than
its activity in the motor cortex.
We additionally identified two brain size–

associated motor cortex OCRs, mm10 chr17:
52351209-52351928 and rheMac8 chr2:174466184-
174466517, near SATB1 (SATB homeobox 1)—
a gene for which specific mutations can result
in either microcephaly or macrocephaly (94)
(Fig. 4, C and D, and fig. S14, E and I). For both
associations, predicted open chromatin is as-
sociatedwith small brain size residual (q= 0.11
and 0.085, respectively). Their human ortho-
logs are each ~500 kb from the TSS of the gene,
where one is upstream and the other is down-
stream. Satb1/SATB1 is the second-closest gene

to each, and the closer genes, Kcnh8 (potassium
voltage-gated channel subfamily H member 8)
and TBC1D5 (TBC1 domain family member 5),
have no known role in brain growth (95, 96).
The former OCR does contact Satb1 in mouse
cortical cells (FitHiC2 q = 3.49 × 10−3; table
S22). The latter OCR does not have an iden-
tified mouse ortholog, so we could not eval-
uate its proximity in mouse; it does not have a
significant contact with SATB1 in human cortex
(FastHiC q= 0.435; table S22), but, because the
humanOCR ortholog is predicted to be closed,
this does not indicate a lack of relationship
between this OCR and SATB1 in small-brained
mammals.
The associations seem to be driven in large

part by cetaceans (Fig. 4C) and great apes (Fig.
4D), both of which have a large variation in
brain size residual (97). In particular, the lat-
ter OCR (Fig. 4D) is predicted to be active in
all great apes except for humans, the great ape
with the largest brain size residual. Inhumans,
most reported cases of SATB1-associated mac-
rocephaly at birth were associated with a mu-
tation that disrupts a large portion of the
protein product, whereas microcephaly was
usually associated with SATB1missense muta-
tions (94). This pattern is consistent with the
significant negative associations between pre-
dicted open chromatin and brain size re-
sidual, assuming that the OCRs we identified
activate the expression of SATB1. Determin-
ing whether an OCR activates or represses gene
expression is difficult because many OCRs are
bound by both activating and repressive TFs,
the motifs of many repressive TFs have never
been assayed, and both activation and repres-
sion can be done by cofactor proteins that do
not directly bind DNA (98–100).
Among the other motor cortex OCRs near

genes mutated in macro- and microcephaly
is the negatively associated (q = 0.12) OCR
chr2:11867277-11867712 (rn6), which is only
69 kb from the Mef2c gene. This OCR has a
strong Hi-C contact to MEF2C in human
(FastHiC q = 1.16 × 10−23; table S22). In addi-
tion to being mutated in a neurodevelopmental
disorder that frequently includes microceph-
aly (76, 101), Mef2c is known to be a critical
transcription factor in the brain (76, 102, 103),
and its motif was learned by our motor cortex
models (figs. S6 and S7).

TACIT identifies PV+ interneuron OCRs
associated with the evolution of brain size

Wealso applied TACITwithMultiSpeciesPVModel
to identify PV+ interneuron OCRs whose pre-
dicted activities across Euarchontoglires (the
clade with primates, rodents, and their closest
relatives—we did not have PV+ interneuron
open chromatin data from other clades) are
associated with brain size residual according
to phylolm with phylogenetic permulations
(fig. S12C; tables S18 and S25; and data S3).
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We identified 15 OCRs whose PV+ interneu-
ron predicted open chromatin has an associ-
ation with species’ brain size residuals after a
FDR correction (q < 0.15) (table S25), 12 of
which are house mouse OCRs for which pre-
dicted open chromatin is associatedwith having
a smaller brain size residual. We identified
four PV+ interneuron OCRs that are signif-
icantly negatively associated with brain size
residual and are within 1Mb of a gene that is
mutated in macrocephaly or microcephaly
(fig. S14, O to R, and table S25). Two of those
OCRs—chr13:114757413-114757913 (mm10; q =
0.092) and chr13:114793237-114793737 (mm10;
q = 0.035)—are, respectively, ~60 kb and ~25 kb
from the Mocs2 (molybdenum cofactor syn-
thesis 2) gene, which is the closest gene to
both. Both have strong associations with brain
size residual within Euarchonta (primates and
their closest relatives), especially great apes,
and the first also has some association within
Glires (rodents and their closest relatives) (Fig.
5 and fig. S14, O and Q). Mocs2 is one of four
genes involved in molybdenum cofactor bio-
synthesis (104). Molybdenum cofactor defici-
ency in humans is a rare, fatal disease marked
by intractable seizures, hypoxia, and micro-
cephaly (105). We also identified an OCR,
chr1:95762160-95762660 (mm10; q = 0.041),
that is ~100 kb away from the gene St8sia4
(ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 4), which is important for the
development and density of interneurons—
including PV+ interneurons—in the cortex
(106, 107).
Notably, there is no overlap between the

bulk motor cortex OCRs and PV+ interneuron
OCRs with predicted activity that are signifi-
cantly associated with brain size residual. In
fact, no housemouse OCR ortholog from either
set is within 3 Mb of a house mouse OCR or-
tholog from the other set, suggesting that
the OCRs are involved in regulating different
genes. We also used MultiSpeciesLiverModel
to identify liver OCRs associated with brain
size residual (q < 0.15) and found that none of
those OCRs overlapped the associated motor
cortex OCRs (tables S18 and S27 and data S3)
(52); only one liver OCR is within 1 Mb of a
motor cortex or a PV+ interneuron OCR with
an association. This highlights the complemen-
tary information provided by using TACIT
OCRs from different tissues as well as from
using both bulk and specific cell type data.

TACIT identifies PV+ interneuron and
motor cortex OCRs in loci associated with
the evolution of solitary and group living

Next, we used TACIT with a targeted approach
to examine relationships between predicted
PV+ interneuron open chromatin from Multi-
SpeciesPVModel and social organization in-
cluding solitary living, which we define as
spending little timewith nonprogenymembers
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Fig. 4. Examples of associations between predicted motor cortex OCR ortholog open chromatin and brain
size residual. (A toD) Each point represents an ortholog of the OCR in question in one species; species are grouped along
the x axis by clade, as shown by the silhouettes and tree below (C) and (D) (table S26). Points are colored by brain
size residual following the scale at the bottom of the figure. The permulations-based Benjamini-Hochberg q-values and the
coefficient on the predicted open chromatin returned by phylolm are in the lower right of each panel. The hominoid and
cetacean clades are highlighted by gray boxes in each panel, and scatterplots of predictedmotor cortex open chromatin
versus brain size residual for these clades are in the inset plots in each panel. Note that the lines in the inset plots are
not based on the phylogenetic regression we used for TACIT, which we ran across all 222 Boreoeutherian mammals and
not in specific clades, are for illustration purposes only. (A) Positive association between predicted motor cortex open
chromatin and brain size residual for a motor cortex OCR in the Sall3 locus, chr18:81802310-81802951 (mm10). (B)
Positive association between predictedmotor cortex open chromatin and brain size residual for amotor cortex OCR in the
Lrig1 locus, chr15:40082805-40083380 (mm10). [(C) and (D)] Negative association between predicted motor cortex
open chromatin and brain size residual for twomotor cortex OCRs in the SATB1 locus, chr17:52351209-52351928 (mm10)
and chr2:174466184-174466517 (rheMac8), within Laurasiatheria and Euarchontoglires, respectively. The latter OCR has
no orthologs in Lagomorpha, which is omitted from (D). Boreoeutherian mammal-wide panels are shown in fig. S15.
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of the same species outside of mating, as well
as heterogeneous group-living lifestyles (108).
PV+ interneurons are implicated in regulating
social behaviors and in neuropsychiatric dis-
orders with social components such as autism
spectrum disorder (ASD) and schizophrenia
in humans (109). Molecular evidence for PV+
interneuron involvement suggests associated
transcriptional changes. For example, PVALB
was themost strongly down-regulated transcript
in ASD brain tissue compared with healthy
controls and in animal models of monoge-
netic neurodevelopmental syndromicdisorders
(110, 111), and single-nucleus RNA sequenc-
ing performed on brain tissue of humans with
schizophrenia revealed substantially affected
gene expression in PV+ interneurons (112, 113).
Manipulation of psychiatric genes in PV+
interneurons induced social deficits in mice,
whereas similar manipulations in other neu-
ronal cell types had different effects (114).
Given the impact of PV+ interneuron gene ex-
pression on social behaviors, we hypothesized

that selection on PV+ interneuron open chro-
matin may be associated with social structure
transitions in mammals.
Before investigating our results, we evaluated

the presence of a biologically plausible signal
within TACIT results for PV+ interneurons and
solitary living using the MultiSpeciesPVModel
enhancer activity predictions genome-wide with
10,000 trials (table S18 and data S3). To define a
set of candidate enhancers likely to be enriched
for neuronal function and potentially social
function,we divided PV+OCRs into two groups:
those that overlapped a schizophrenia-associated
genetic variant (115) and those that did not.
Despite a small foreground size, the set of PV+
interneuronOCRswith schizophrenia-associated
variants had a somewhat shifted-lower distribu-
tion of number of successful trials out of 10,000
for association with solitary living compared
with the distribution for other PV+ interneu-
ron OCRs (one-tailed Wilcoxon rank-sum, P =
0.078, statistic = −1.42; fig. S12D) (52). That is,
OCRs overlapping schizophrenia-associated

single-nucleotide polymorphisms were, overall,
more likely to have a stronger association with
solitary living thanwith a null phenotype with a
similar tree topology comparedwith otherOCRs,
lending support to the candidate enhancer-
phenotype prediction outputs from TACIT.
One challenge of using TACIT is that tens to

hundreds of thousands of OCRs are tested, so
substantial multiple hypothesis correction is
necessary. The number of tested OCRs can be
limited if a small number of genomic loci have
been hypothesized to be involved in a trait.
For solitary living and group living, we chose
to focus on the 1,661,222-bp Williams-Beuren
Syndrome (WBS) deletion region (Fig. 6A),
where haploinsufficiency causes increased
sociability, intellectual disability, and enhanced
verbal fluency in human patients and deletion
causes a decrease in nose-to-nose sniffing in
mice (116). This region has also been proposed
to be associated with sociability differences
between dogs and wolves (117), but this is not
functionally resolved owing to fully confounded
phylogenetic relationships and social traits
in canines. TACIT provides an opportunity to
assess social living strategy-enhancer associ-
ations within the WBS locus across many
mammals while accounting for phylogenetic
relationships.
When applyingTACIT to only theWBS locus,

we identified a house mouse PV+ interneuron
OCR (out of two OCRs in this locus) 29 kb
upstream of Gtf2ird1 (general transcription
factor II I repeat domain–containing 1) and
~168 kb upstream of Gtf2i (general transcrip-
tion factor II I) that was positively associated
with group living (q = 0.043) and negatively
associated with solitary living (q = 0.14) (Fig. 6B,
table S18, and data S3). To evaluate whether
this associationwas limited to PV+ interneurons,
we also evaluated the relationship between
predicted bulk motor cortex open chromatin
fromMultiSpeciesMotorCortexModel and sol-
itary as well as group living (table S18 and
data S3). We found one OCR with both a sig-
nificant negative association with solitary
living (q = 8.5 × 10−3) (Fig. 6C) and a sig-
nificant positive association with group living
(q = 0.016). This OCR’s human ortholog (OCR
was originally found in macaque) is in an
intron of GTF2IRD1 that is ~27 kb from its
nearest TSS and ~177 kb from the TSS for
GTF2I but does not overlap the OCR identified
for PV+ interneurons. We also found a second
OCR with some negative association (q =
0.094) with group living. Of the 27 protein-
coding genes in the WBS locus, Gtf2i is the
only gene with a duplication associated with
separation anxiety and a heterozygous dele-
tion associated with increased nose-to-nose
contact in mice (118, 119). We additionally eval-
uated the relationship between predicted liver
open chromatin and solitary as well as group
living using MultiSpeciesLiverModel but did
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Fig. 5. Examples of associations between predicted PV+ interneuron OCR ortholog open chromatin
and brain size residual. (A and B) Each point represents an ortholog of the OCR in question in one
species; species are grouped along the x axis by clade, as shown by the silhouettes and tree below
(table S26). Points are colored by brain size residual following the scale at the bottom of the figure.
The permulations-based Benjamini-Hochberg q-values the coefficient and the predicted open chromatin
returned by phylolm are in the lower right of each panel. Negative association within Euarchontoglires
between predicted PV+ interneuron open chromatin and brain size residual of two PV+ interneuron
OCRs in the Mocs2 locus, chr13:114757413-114757913 (mm10) (A) and chr13:114793237-114793737 (mm10)
(B), respectively. The hominoid clade is highlighted by a gray box in each panel, and scatterplots of
predicted PV+ interneuron open chromatin versus brain size residual in Hominoidea are in the inset plots.
Note that the lines in the inset plots are for illustration purposes only and are not based on the
phylogenetic regression we used for TACIT; we ran the phylogenetic regression across all Euarchontoglires
and not in specific clades.
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not obtain any statistically significant relation-
ships after multiple hypothesis correction.

TACIT identifies OCRs associated with the
evolution of vocal learning

We applied TACIT to vocal learning, the abil-
ity to modify vocal output as a result of social
experience, which has convergently evolved
across mammals and been associated with
convergent patterns of gene expression in
the motor cortex (2, 120, 121). We identified
dozens of OCRs displaying convergent pat-
terns of predicted open chromatin after FDR

correction (q < 0.15) for motor cortex tissue
(MultiSpeciesMotorCortexModel) and for PV+
interneurons (MultiSpeciesPVModel), which
are described in more depth in our other man-
uscript (35). One of the motor cortex OCRs lies
88 kb from Vip (vasoactive intestinal peptide),
whose expression in the motor cortex has been
associated with vocal learning (2). Another
OCR is 715 kb from TSHZ3 (teashirt zinc finger
homeobox 3) (35). TSHZ3 is involved in the
formation of corticostriatal circuits, which
play a central role in vocal learning behavior
in mammals and birds, and its disruption in

the human population is associated with a
form of autism that includes delayed or dis-
rupted speech acquisition (121, 122).

Discussion

We sought to use the hundreds of aligned ge-
nomes of the Zoonomia project to discover
genetic variation across placental mammals
associated with the evolution of complex neu-
ral phenotypes. We first applied RERconverge
(21, 22, 123) to identify brain size residual–
associatedacceleratedor constrainednucleotide-
level conservation across genes and candidate
enhancers for 158 species. Despite the large
number of genomes and reliable phenotype
annotations, we found only one significantly
associated locus, although we cannot rule
out that alternative methods for detecting
convergent evolution in aligned genes or en-
hancers could still find associated regions.
While RERconverge and other nucleotide-level
conservation-based approaches have identi-
fied enhancers associated with phenotypes
that overlap some of the most conserved non-
coding regions of the genome (22, 124), we
realized that suchmethods’ utility is limited
in regions with high functional conserva-
tion but low to moderate nucleotide-level
conservation.
To overcome the limitations in using the

alignment of individual nucleotides as a proxy
for conservation, we present TACIT, a method
for associating genotypes to phenotypes using
machine learning predictions of tissue- or cell
type–specific open chromatin. TACIT accounts
for the conservation of enhancer activity in
the presence of low sequence conservation and
can capture the tissue- and cell type–specificity
of enhancer activity (12) through machine
learning models that learn the conserved reg-
ulatory code underlying enhancer activity in
a tissue or cell type of interest. We provide a
community resource of annotated predicted
open chromatin for more than 400,000 OCRs
from four tissues and cell types across 222
mammalian species by making it available on
the University of California, Santa Cruz (UCSC)
Genome Browser (https://genome.ucsc.edu/
cgi-bin/hgGateway?genome=Homo_sapiens&
hubUrl=https://cgl.gi.ucsc.edu/data/cactus/241-
mammalian-2020v2-hub/hub.txt) (125).
We applied TACIT to identify tissue- and

cell type–specific OCRs whose predicted open
chromatin status across species is associated
with brain size residual, solitary living, group
living, and vocal learning, including OCRs
near genes that were previously implicated in
these phenotypes, providing potential mech-
anisms for how these genes are regulated.
Specifically, we identified motor cortex and
PV+ interneuron OCRs associated with brain
size residual that are near genes whose mu-
tations are associated with microcephaly and
macrocephaly in humans. While many of these
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cortex OCRs [(B) and (C)] near the gene GTF2IRD1 are in yellow and green, respectively. (B) Marginal
negative association between predicted PV+ interneuron open chromatin and solitary living of a PV+
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genes are known for roles in brain devel-
opment that may influence brain size, the
OCRs that regulate them may continue to be
open in the adult brain. We also found motor
cortex OCRs with a strong brain size residual
association in cetaceans, providing candidate
mechanisms for the evolution of brain size
beyond human-specific deletions identified
in earlier work (9). In addition, OCRs within
the WBS deletion region that are associated
with solitary living reside near a critical gene
for WBS presentation and a gene associated
with social behavior in mice (118, 119). Ge-
nome wide, the associations of PV+ interneu-
ron OCRs with solitary living are correlated
with whether the OCR overlaps a genome-wide
association study (GWAS) hit for schizophre-
nia, which suggests that OCRs involved in the
evolution of phenotypes may also be involved
in related disorders. To be confident that the
OCRs we identified have enhancer activity
that differs between species, we would need
to use reporter assays to test the OCR or-
thologs’ enhancer activity in multiple species.
Unfortunately, current technology limits large-
scale reporter assays to cell lines, and there
is no cell line that captures the transcriptional
regulatory program of motor cortex and PV+
interneurons or protocol for differentiating
these specific cell types from induced pluri-
potent stem cells. In addition, to thoroughly
demonstrate that these OCRs regulate the near-
by genes associated with the phenotypes, we
would need to do experiments such as CRISPR
followed by RNA quantitative polymerase chain
reaction to knock out the OCR and show that
the knockout causes a change in the expression
of the nearby gene, but doing such experiments
for more than one OCR at a time is currently
feasible in only cell lines. Furthermore, consid-
ering genes with TSSs within 1 Mb may limit
our ability to identify real gene–OCR relation-
ships (126), and data measuring 3D genome
interactions is not currently available frommo-
tor cortex in species other than human and
housemouse or from PV+ interneurons in any
species. As such data become available at higher
resolution and in additional species, tissues,
and cell types, our ability to link candidate en-
hancers associated with phenotypes to the
genes they likely regulate will improve.
While we previously used data from at least

three species for model training (12), in this
study, we developed a strategy for negative set
construction that allowed us to train accurate
models using data from only two species. This
enabled us to train models that accurately
predict whether sequence differences across
species in PV+ interneuron OCR orthologs are
associated with PV+ interneuron open chroma-
tin changes, demonstrating that the regulatory
code is conserved across Euarchontoglires
not only at the bulk tissue level but also in a
specific neuronal cell type. We have found

that, when the relevant data were available,
including data from more clades enabled us
to accurately predict OCRs in more distantly
related species (12). With our confident pre-
dictions in diverse clades, we identified OCRs
associated with phenotypes in a variety of
clades, such as the OCR near Lrig1 associated
with the evolution of brain size residual in the
Cetacea infraorder within Laurasiatheria (the
clade that includes bats, carnivorans, ungu-
lates, and their close relatives). Predictions in
more species also provide us with the power to
identify OCRs exhibiting weaker associations
with a phenotype across multiple lineages, such
as the OCR near SALL3 associated with the evo-
lution of brain size residual in both Euarchonta
and Laurasiatheria.
Unlike phyloP or PhastCons scores, the broad

application of TACIT is limited by the avail-
ability of high-quality enhancer activity data
from the same tissue or cell type in multiple
species. TACIT requires enhancer activity data
from at least two species for evaluating the
corresponding machine learning models, and
different datasets may need to be filtered dif-
ferently depending ondata quality and genome
size. Biases due to data quality and filtering
need to be evaluated before model evaluations
are done on held-out test sets. Additionally,
predictions are currently limited to identifi-
able orthologs of experimentally identified
candidate enhancers, meaning that we are
not able to capture enhancers that are not
active in the experimentally assayed species,
cell types, developmental stages, or conditions
or use enhancers that cannot be aligned with
existing alignment methods, which are more
commonwhen applying TACIT tomore distant-
ly related species. Furthermore, our approach
assumes that the evolution of a phenotype is
controlled by the same candidate enhancer
across species. There are likely many pheno-
types controlled by genes that are not activated
by the same enhancer in every species, as pre-
vious studies have shown that many enhancers
are deleted or inserted via transposable ele-
ments in some species despite the expression
of the genes they regulate being conserved
(127, 128). We also treat missing or unusable
OCR orthologs as missing data, but some of
these may have been lost during evolution,
making them negatives. Moreover, neither
our models nor our phenotype annotations
are perfect, which could cause incorrect asso-
ciation results, and our lack of known positive
and negative open chromatin–phenotype as-
sociations often makes evaluating the amount
of noise that TACIT can tolerate infeasible.
Finally, our approach assumes that the regu-
latory code in our tissue or cell type of interest
is conserved across the species in which we
are making predictions, an assumption that
may be violated in some tissues and cell types.
For example, this may explain the suboptimal

performance of MouseRetinaModel in pre-
dicting Euarchonta-specific open and closed
chromatin (129, 130).
Exciting extensions to our approach include

training models to predict whether sequence
differences cause changes in candidate en-
hancer activity genome-wide, jointlymodeling
cross-species predicted activity of enhancers
near the same gene, using genome quality and
the predicted open chromatin ofOCRs in closely
related species to determine when a lack of a
usable OCR ortholog should be treated as a
non-OCR, and evaluating more-lenient defi-
nitions of an enhancer for smaller genomes.
TACIT could also be extended to identify pro-
moters or noncoding RNAs associated with
phenotype evolution by training models to
predict the promoter or noncoding RNA ac-
tivity at these elements’ orthologs.
With the Zoonomia Cactus alignment of

>200 mammalian genomes (10) and the wealth
of publicly available enhancer activity data from
matching tissues and cell types in human,
house mouse, and other species, TACIT can
currently be applied to identify candidate en-
hancers associated with the evolution of many
mammalian phenotypes. Because TACIT re-
quires enhancer activity data from tissues or
cell types of interest in only a few species, it
can be used to associate losses of enhancer
activity with changes in a phenotype even in
challenging-to-study species for which we have
genomes but cannot collect tissue samples.
In addition, although we trained our models
for TACIT using open chromatin and CNNs,
TACIT can also be applied using other assays
of enhancer activity, such as H3K27ac and
EP300ChIP-seq, andusing othermachine learn-
ing modeling methods, such as support vector
machines (30). Candidate enhancers associ-
ated with the evolution of phenotypes near
genes with mutations or expression differ-
ences involved in diseases related to those
phenotypes may provide mechanistic insights.
We anticipate that, as more genomes and reg-
ulatory genomics data become available, TACIT
will allow us to discover regulatory mechanisms
governing a wide range of phenotypes.

Methods summary

We obtained open chromatin data from mo-
tor cortex, liver, PV+ interneurons, and retina
from multiple species, mapped and filtered
the reads, called peaks, and obtained reprodu-
cible peaks.We used the sequences underlying
the reproducible peaks to train a machine
learning model for predicting open chroma-
tin in each tissue and cell type. We identified
orthologs of the reproducible peaks from each
tissue and cell type in 222 boreoeutherianmam-
mals and used the corresponding machine
learning models to predict open chromatin
in that tissue or cell type in each species. We
associated the predictions with phenotype
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annotations for brain size, solitary and group
living, and vocal learning using phylolm for
continuous and phyloglm for binary traits,
computed empirical P values using phyloge-
netic permulations, and corrected P values
using the Benjamini-Hochberg procedure
(17, 18, 82).
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