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INTRODUCTION: Thousands of genetic variants
have been associated with human diseases
and traits through genome-wide association
studies (GWASs). Translating these discoveries
into improved therapeutics requires discerning
which variants among hundreds of candidates
are causally related to disease risk. To date, only
ahandful of causal variantshavebeenconfirmed.
Here, we leverage 100million years of mamma-
lian evolution to address this major challenge.

RATIONALE: We compared genomes from hun-
dreds of mammals and identified bases with un-
usually few variants (evolutionarily constrained).
Constraint is ameasure of functional importance
that is agnostic to cell type or developmental stage.
It can be applied to investigate any heritable dis-
ease or trait and is complementary to resources
using cell type– and timepoint–specific functional

assays like Encyclopedia of DNA Elements
(ENCODE)andGenotype-TissueExpression (GTEx).

RESULTS: Using constraint calculated across pla-
cental mammals, 3.3% of bases in the human ge-
nome are significantly constrained, including
57.6% of coding bases. Most constrained bases
(80.7%) are noncoding. Common variants (allele
frequency ≥ 5%) and low-frequency variants
(0.5% ≤ allele frequency < 5%) are depleted for
constrained bases (1.85 versus 3.26% expected
by chance,P<2.2× 10−308). Pathogenic ClinVar
variants are more constrained than benign var-
iants (P < 2.2 × 10−16).
The most constrained common variants are

more enriched for disease single-nucleotide poly-
morphism (SNP)–heritability in 63 independent
GWASs. The enrichment of SNP-heritability in
constrained regions is greater (7.8-fold) than

previously reported in mammals and is even
higher in primates (11.1-fold). It exceeds the
enrichment of SNP-heritability in nonsynony-
mous coding variants (7.2-fold) and fine-mapped
expression quantitative trait loci (eQTL)–SNPs
(4.8-fold). The enrichment peaks near con-
strained bases, with a log-linear decrease of
SNP-heritability enrichment as a function of
the distance to a constrained base.
Zoonomia constraint scores improve func-

tionally informed fine-mapping. Variants at
sites constrained in mammals and primates
have greater posterior inclusion probabilities
and higher per-SNP contributions. In addition,
using both constraint and functional annota-
tions improves polygenic risk score accuracy
across a range of traits. Finally, incorporating
constraint information into the analysis of
noncoding somatic variants in medulloblas-
tomas identifies new candidate driver genes.

CONCLUSION: Genome-wide measures of evo-
lutionary constraint can help discern which
variants are functionally important. This in-
formation may accelerate the translation of
genomic discoveries into the biological, clinical,
and therapeutic knowledge that is required
to understand and treat human disease.▪
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Using evolutionary constraint in
genomic studies of human
diseases. (A) Constraint was
calculated across 240 mammal
species, including 43 primates
(teal line). (B) Pathogenic ClinVar
variants (N = 73,885) are more
constrained across mammals
than benign variants (N = 231,642;
P < 2.2 × 10−16). (C) More-
constrained bases are more
enriched for trait-associated
variants (63 GWASs). (D) Enrichment
of heritability is higher in con-
strained regions than in functional
annotations (left), even in a joint
model with 106 annotations (right).
(E) Fine-mapping (PolyFun) using
a model that includes constraint
scores identifies an experimentally
validated association at rs1421085.
Error bars represent 95% confi-
dence intervals. BMI, body mass
index; LF, low frequency; PIP,
posterior inclusion probability.
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Leveraging base-pair mammalian constraint to
understand genetic variation and human disease
Patrick F. Sullivan1,2†, Jennifer R. S. Meadows3†, Steven Gazal4,5†, BaDoi N. Phan6, Xue Li7,8,
Diane P. Genereux7, Michael X. Dong3, Matteo Bianchi3, Gregory Andrews7, Sharadha Sakthikumar3,8,
Jessika Nordin3, Ananya Roy9, Matthew J. Christmas3, Voichita D. Marinescu3, Chao Wang3,
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Thousands of genomic regions have been associated with heritable human diseases, but attempts to
elucidate biological mechanisms are impeded by an inability to discern which genomic positions are
functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type
or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human
genome as significantly constrained and likely functional. We compared phyloP scores to genome
annotation, association studies, copy-number variation, clinical genetics findings, and cancer data.
Constrained positions are enriched for variants that explain common disease heritability more than other
functional annotations. Our results improve variant annotation but also highlight that the regulatory
landscape of the human genome still needs to be further explored and linked to disease.

I
n the past 15 years, increasingly larger ge-
nomic studies have delivered many previ-
ously unknown associations for a wide
array of human diseases, disorders, bio-
markers, and other traits. About 400,000

genetic associations have been identified that
span the allelic spectrum, from ultrarare var-
iants in large sequencing datasets to common
variants that are present in many humans, in
both coding and regulatory regions [see sup-
plementary methods (SM), section 1]. Although
these associations meet rigorous standards
for statistical significance and replicability,
their functional importance is generally un-
known. Inferring functional importance is
crucial to translating the results of rare and
common variant association studies into the
biological, clinical, and therapeutic knowledge
required to understand and treat human dis-
ease. Exceptional efforts have been made to
annotate the human genome using functional
genomics—e.g., Encyclopedia of DNA Elements

(ENCODE) (1) and Genotype-Tissue Expres-
sion (GTEx) (2)—as well as inferring deleteri-
ous effects from allele frequencies and location
in coding sequence—e.g., Genome Aggregation
Database (gnomAD) (3) and Trans-Omics for
Precision Medicine (TOPMed) (4). Although
these seminal projects greatly expanded our
knowledge base, this “central problem in bi-
ology” is unresolved and motivated the Na-
tional Human Genome Research Institute
(NHGRI) Impact of Genomic Variation on
Function initiative.
Evolutionary constraint is complementary

to these efforts. Functional importance is in-
ferred from the signatures of evolution in the
human genome: “Constraint” indicates ge-
nomic positions that have changed more slowly
than expected under neutral drift because
of purifying selection. A key advantage of con-
straint lies in its mechanistic agnosticism; a
highly constrained base has an impact on some
biological process, in some cell, at some life

stage (discussed in SM, section 2). Constraint
has been used in efforts to understand the hu-
man genome for more than 50 years, beginning
with cross-species protein-sequence compar-
isons. More recently, at the extremes of the
allelic spectrum, constraint is often used by
clinical geneticists to prioritize potentially
causal rare variants (5, 6), and common var-
iants in regions under constraint are highly
enriched in genome-wide association study
(GWAS) results (7–9). However, evolutionary
constraint is underused in the functional in-
terpretation and prioritization of GWAS loci
(10–15).
Our companion paper describes the Zoonomia

reference-free alignment of 240 placental mam-
mals spanning ~100 million years of evolution
(16). The analyses showed the unprecedented
informativeness of this alignment at multiple
scales, from exceptionally constrained 100-kb
bins (e.g., all HOX clusters) to smaller ultracon-
servedelements andhumanaccelerated regions,
noncoding regulatory regions, and specific base
positions inbindingmotifs. These results strong-
ly suggest the utility of constraint as a functional
annotation that can be leveraged to deepen our
understanding of heritable human diseases.
Here, we demonstrate the importance of mam-
malian constraint for connecting genotype to
phenotype for human disease.

The properties of evolutionary constraint
at single-base resolution
Defining constraint

Placentalmammalian constraint was estimated
using phyloP scores (17) across 240 species for
2,852,623,265bases in thehumangenome (chro-
mosomes 1 to 22, X, and Y; SM, section 3). In
our companion paper (16), we estimated that
10.7% of the human genome is under some
degree of constraint because of purifying
selection; for these disease-focused analyses,
we used a subset with the strongest constraint
signatures. We defined a base as constrained
inmammals if its phyloP scorewas≥2.27 [false
discovery rate (FDR) 0.05 threshold]. At this
threshold, 100,651,377 bases or 3.26% of the
human genome is constrained. We defined
constraint across 43 primates using a phast-
Cons (18) threshold (≥0.961, 101,134,907 bases)
selected to match the fraction of the genome

ZOONOMIA

Sullivan et al., Science 380, eabn2937 (2023) 28 April 2023 1 of 12

1Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA. 2Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden.
3Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden. 4Department of Population and Public Health Sciences, Keck School of
Medicine, University of Southern California, Los Angeles, CA 90033, USA. 5Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
6Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. 7Program in Bioinformatics and Integrative Biology, University of Massachusetts
Medical School, Worcester, MA 01605, USA. 8Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA. 9Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala
University, 75185 Uppsala, Sweden. 10Center for System Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. 11Department of Genetic and Genomic
Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 12Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA. 13Department of Biological Sciences,
Carnegie Mellon University, Pittsburgh, PA 15213, USA. 14Gladstone Institutes, San Francisco, CA 94158, USA. 15Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
94158, USA. 16Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia. 17Department of Biostatistics, University of North Carolina Medical School, Chapel Hill, NC 27599,
USA. 18UC Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA. 19Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA. 20School of Biology and Environmental Science,
University College Dublin, Belfield, Dublin 4, Ireland. 21Chan Zuckerberg Biohub, San Francisco, CA 94158, USA. 22Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK. 23Program in
Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
*Corresponding author. Email: elinor@broadinstitute.org (E.K.K.); kersli@broadinstitute.org (K.L.-T.) †These authors contributed equally to this work. ‡These authors contributed equally to this work.
§Zoonomia Consortium collaborators and affiliations are listed at the end of this paper.

D
ow

nloaded from
 https://w

w
w

.science.org at C
arnegie M

ellon U
niversity on June 20, 2023

mailto:elinor@broadinstitute.org
mailto:kersli@broadinstitute.org


annotated as constrained in the placentalmam-
mals studied here. Mammalian and primate
constraint overlapped considerably but not
fully (Jaccard index 0.30). In section 4 of the
SM, we describe the properties of constrained
genomic positions, from base-level to higher-
order annotations. Briefly, we found that
mammalian constrained bases had a marked
tendency to cluster (median distance two
bases) compared with random expectations
(median distance 24 bases), that specific geno-
mic elements were highly enriched in con-
strained bases [e.g., 57.6% of coding sequence
(CDS) is constrained] (Fig. 1A and fig. S1), that
constraint scores captured nuances of the
genetic code (fig. S2), and that constrained
basesmainly spanned regulatory features (e.g.,
80.7% of constrained bases are within non-
coding regions versus 19.3% within CDS).

Constraint across the allelic spectrum

Genetic variation is fundamental to heritable
human diseases, disorders, and other traits.
We thus evaluated the relationship between
allele frequency (AF) and constraint (Fig. 1B).
Using whole-genome sequencing data from
more than 140,000 humans (TOPMed, v8) (4),
we observed an inverse correlation between
allele count and phyloP score [Spearman’s cor-
relation coefficient (r) = −0.07], with stronger
correlations in CDS regions and for nonsyn-
onymous variants (Spearman’s r = −0.12 and

−0.18, allP< 2.2 × 10−308). As expected, owing to
negative selection, common (defined as AF ≥
5%) and low-frequency (0.5% ≤ AF < 5%) ge-
netic variants were depleted for constrained
bases (1.85 versus 3.26% expected by chance, P <
2.2 × 10−308). This relatively high fraction of
constrained bases highlights the ability of mam-
malian constraint to predict deleterious effects
across the AF spectrum. To evaluate these rela-
tions more formally, genome-wide models con-
trasting singletons [allele count (AC) = 1] to
common and low-frequency variants (AF ≥
0.005) found that common and low-frequency
variants had lower phyloP scores and amarked
increase in CG context (fig. S3 and SM, section 4).
Models forCDSsingle-nucleotidepolymorphisms
(SNPs) found an inverse association of AC with
constraint and that common and low-frequency
SNPs had greater odds of occurring at a C or G
base and tend not to occur in important CDS
positions (e.g., codon position 1 or 2, or at
bases that could mutate to stop).

Common and low-frequency constrained SNPs
are relevant for human diseases

We conducted additional analyses of common
and low-frequency SNPs (AF ≥ 0.5%) because
these variants are the main focus of GWASs
(SM, section 4). Of these 15,777,878 SNPs in
TOPMed, 1.85% (N = 291,669) are constrained,
far less than genome-wide constraint (3.26%).
Our modeling showed that constrained SNPs

are 22 timesmore likely to occur inCDS, 3 times
more likely to occur in promoters, and ~2 times
more likely to be a “fine-mapped” expression
quantitative trait loci (eQTL)–SNP or to occur
in open chromatin or an enhancer compared
with outside those regions.
The strong tendency of these constrained

SNPs to occur in CDS was unexpected given
that (by definition) these positions are highly
constrained in placental mammals and yet
variable in humans. We hypothesized that this
could occur if selection effects were variable
across genes (some generate peptide variabil-
ity whereas others are highly intolerant of CDS
variation). We found that 37.8% of protein-
coding (PC) genes had no constrained CDS
SNPs and other genes had appreciable frac-
tions (up to 10% of all CDS bases are common
and low-frequency SNPs). A gene-set analysis
of the top 5% (N = 980) of genes containing
the greatest number of constrained CDS SNPs
showed that this set was enriched for genes
with medical relevance [an Online Mendelian
Inheritance in Man (OMIM) entry including
multiple neurological disorders], G protein–
coupled receptor genes, “druggable” genes (19),
taste receptor genes, skin development genes,
and genes involved in multiple immune pro-
cesses. These biological processes are at the
interface of a mammal and its environment
and allow adaptation to an environmental
niche.We suggest thatmany of these genes could
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Fig. 1. Overview of constraint distribution. (A) Evolutionary constraint in
multiple genomic partitions. The x axis is the fraction of the genome occupied by
a partition, the y axis is the fraction of partition under constraint in placental mammals
(purple circles) and primates (blue triangles), and the gray line is the genome
mean (0.033). The greatest constraint is found in CDS and key regulatory regions
(5′UTRs, ENCODE promoter-like elements, and 3′UTRs). The higher fraction
constrained in primates versus mammals is due to different constraint definitions
and does not necessarily reflect biology. This figure is a subset of fig. S1 and data from
section 4 of the SM, which shows more biotypes, PC gene parts, and regulatory

regions. dhs, DNase I hypersensitive sites. (B) Whisker plots of constraint in
variants from TOPMed whole-genome sequencing (WGS), stratified by CDS (green,
6.14 million biallelic SNPs) and non-CDS variants (orange, 549.64 million biallelic
SNPs). The x axis shows six AC bins, from singletons (bin AC = 1, 44.8% of total
variants) to common and low-frequency variants (AF ≥ 0.5%, 1.4% of total variants).
For the plots, the center line represents the median, box limits are upper and lower
quartiles, and whiskers are minimum and maximum values. Outliers are hidden for
clarity. (C) PhyloP score density for ClinVar benign (N = 231,642), ClinVar pathogenic
(N = 73,885), and gnomADWGS variant positions with CADD ≥ 20 (N = 3,958,488).
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be prioritized for gene-environment interac-
tion searches because constrained variants that
reachhigh frequency inhumanpopulationsmay
be particularly relevant for human diseases.

Base-pair resolution of deleterious effects

We contrasted constraint scores tometrics that
are used to aid the interpretation of functional
variation for human health. First, pathogenic
ClinVar (20) variants were significantly skewed
to higher phyloP in comparison to benign var-
iants (two-tailed Wilcoxon rank sum test, P <
2.2 × 10−16; Fig. 1C), and phyloP scores were
strongly associated with the improvement in
annotations of variants in ClinVar from 2016 to
2021 (e.g., uncertain to benign or to pathogenic;
SM, section 5). For a second metric, Combined
Annotation–Dependent Depletion (CADD) (6),
which incorporates evolutionary constraint, we
found that variant positions with a higher like-
lihood of deleteriousnesswere also enriched for
constrained phyloP scores (two-tailedWilcoxon
rank sum test, P < 2.2 × 10−16; Fig. 1C). A fo-
cused analysis of human nonsynonymous var-
iants at constrained sites across the mammalian
tree using Tool to infer Orthologs from Ge-
nome Alignments (TOGA) (16, 21) identified
1570 genes for which a nonsynonymous change
resulted in a ClinVar pathogenic or likely path-
ogenic phenotype in humans (SM, section 5).
For example, theCFTR gene that underlies cystic
fibrosis (22) showed a high burden of patho-
genic sites compared with benign sites (123
versus 1 out of 1585 alignment sites). A further
12,889 genes had identifiable constrained sites
but lacked records of nonsynonymous patho-
genic alterations (SM, section 5). Several of these
constrained positions, which presently lack
ClinVar pathogenic annotations, likely rep-
resent previously uncharacterized sources of
deleterious variation resulting in a disease state.
We tested this by leveraging functionally ex-
plored variation in two GPCRs, GPR75 (23) and
ADRB2 (24), and showed that functionally im-
portant SNP or amino acid sites, respectively,
were marked by higher constraint scores (SM,
section 5). Species alignments at this scale also
allow for the identification of potential model
systems, those for which a substitution may
result in a human disease state but is otherwise
naturally occurring in nonhuman mammals.
We found 697 such sites across 330 genes, in-
cluding multiple positions in SOD1 (pathogenic
sites for amyotrophic lateral sclerosis). These
observations open a pathway for natural adap-
tive variants to inform the development of new
therapies for treatment (SM, section 5).

Common and low-frequency variation and
human diseases and complex traits

GWASs have found that the genetic architec-
ture of human diseases and complex traits is
highly polygenic and dominated by com-
mon variants with weak effects (10). Here, we

dissected the impact of common and low-
frequency variants on this architecture through
polygenic analyses of disease SNP–heritability
(h2) using stratified linkage disequilibrium
(LD) score regression (S-LDSC) (7, 25, 26).

Constraint scores are proportional to common
variant SNP-h2 enrichments

We first validated the relevance of our con-
straint scores to investigate the role of com-
mon variants in human diseases and complex
traits using the results of 63 independent
European ancestry GWASs (27) (mean N =
314,000; data S1 and SM, section 6). We found
that common variants in the highest constraint
score percentiles had greater enrichment for
GWAS trait-associated variants (measured by
SNP-h2 enrichment, or the proportion of h2

divided by the proportion of SNPs; Fig. 2A and
data S2). We observed decreasing but signifi-
cant enrichments (P < 0.0033, Bonferroni cor-
rection for 15 comparisons) for SNPs in the
first four percentiles of mammalian constraint
scores (phyloP) (in line with 3.26% of the ge-
nome bases being considered as constrained
using a 5% FDR threshold) and in the first five
percentiles of primate (phastCons) constraint
scores. We justified the use of different scores
tomeasure constraint inmammals andprimates
by the fact that phyloP scores were unable to de-
tect single-base constraint in primates owing to
lack of power and were too noisy to lead to sig-
nificant h2 enrichment (fig. S4). Although both
phyloPandphastCons element scores performed
similarly in heritability analyses, phyloP is su-
perior for having single-base resolution (fig. S4
and additional justification in SM, section 6).

Mammalian constraint scores are
base pair–specific

We evaluated the resolution of constraint scores
by estimating SNP-h2 with different distances
to a constrained base. First, we confirmed the
base-pair resolution of mammalian constraint
scores by observing that SNPs ~1 base pair
(bp) from a constrained variant were signifi-
cantly less enriched for h2 than constrained
SNPs (P ≤ 3.35 × 10−3) (Fig. 2B and data S3).
We also observed a log-linear decrease of h2

enrichment as a function of the distance to a
constrained base, with significant h2 enrich-
ment up to 100 kb from constrained bases,
confirming the larger-scale clustering of con-
strained bases. Finally, demonstrating the
power of a broad mammal-wide genome sam-
pling, constraint scores obtained only from
primate species have lower resolution (10 to
100 bp; Fig. 2B) because these are based on
fewer species (43), from a single mammalian
order, and thus have shorter branch length.

Zoonomia constraint is distinctively informative

Annotations derived from mammal and pri-
mate constrained positionsweremore inform-

ative for human diseases than key functional
annotations, including previously published
constrained annotations (18, 28, 29) (Fig. 2D
and data S4). First, their degrees of enrichment
(7.84 ± 0.37–fold for mammals and 11.10 ±
0.40–fold for primates) exceeded those of pre-
viously published constraint and key func-
tional annotations, such as nonsynonymous
coding variants (7.20 ± 0.78–fold) or fine-
mapped eQTL-SNPs (4.81 ± 0.31–fold) (30).
We still observed high degrees of enrichment
when removing exonic variants from our
constraint annotations (6.15 ± 0.41–fold for
mammals and 9.90 ± 0.51–fold for primates;
fig. S5), confirming the informativeness of
constraint to annotate noncoding common
variants (see next sections). Second, in con-
ditional analyses involving 106 annotations
analyzed jointly (SM, section 6), we observed
that these constrained annotations were among
the most significant (P = 1.17 × 10−10 for mam-
mals and P = 1.19 × 10−53 for primates) and
were more significant than previously pub-
lished constrained annotations (Fig. 2D and
data S4).

Variants at constrained positions are less
enriched in blood and immune trait heritability
than in other complex traits

We did not observe disease-specific patterns
for our constrained annotations, without any
trait exhibiting higher h2 enrichment than the
mean calculated for the mammal and primate
constrained annotations (fig. S6 and data S5).
However, we observed consistently lower h2

enrichments for constrained annotations in a
meta-analysis of 11 blood and immune traits,
as previously observed (7), but no differential
enrichment in nine brain disorders (Fig. 2C
and data S1 and S6).

Variants at positions constrained in primates
are informative for noncoding common variants

SNPs constrained in primates have greater
SNP-h2 enrichment than SNPs constrained in
mammals (Fig. 2, A to C). To investigate, we in-
tersected mammalian and primate constraint
information and observed significantly higher
h2 enrichment in SNPs constrained in both
mammals and primates (16.52 ± 0.73–fold)
compared with constraint only in primates
(8.66 ± 0.38–fold) or only in mammals (3.56 ±
0.40–fold) (Fig. 2E and data S7). We verified
that these results are mostly driven by the in-
tersection of mammal and primate constrained
bases (and are not due to the different scoring
tests; fig. S7). By stratifying constrained mam-
malian bases by their primate constraint scores,
we found that variants identified as constrained
in the studied placental mammals but not in
primates are not significantly enriched in h2,
whereas SNPs constrained in primates were
significantly enriched regardless of their con-
straint scores in mammals (fig. S8). These
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results explain the lower SNP-h2 for constraint
in mammals and demonstrate increased in-
formativeness when combining information
from primates and mammals. We observed
consistently higher h2 enrichment for SNPs
that are constrained in bothmammals and pri-

mates when stratifying by genomic function
(i.e., coding regions, promoters, and enhancers),
but that constraint is more informative in pri-
mates than in mammals only for noncoding
variants (Fig. 2E). This confirms that the in-
formativeness of our constraint annotations

does not only reside in their high overlap with
exonic bases (see also fig. S5). We observed
that constrained SNPs defined as nonfunc-
tional (see SM, section 6) were still enriched
in h2 (>2.67-fold with P < 1.22 × 10−4, except
for SNPs constrained only in mammals or
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Fig. 2. SNP-h2 analyses of variants at constrained positions in human
complex traits and diseases. (A) Heritability enrichment of common SNPs
in the top percentiles of constraint scores in placental mammals (phyloP
positions) and primates (phastCons elements). (B) Heritability enrichment as a
function of the distance to a constrained base. (C) Heritability enrichment of
constrained annotations in 11 blood and immune traits and nine brain diseases
(light color) versus other types of traits (dark color). *P < 0.05 and **P < 0.05
after Bonferroni correction. (D) Heritability enrichment of constrained and
functional annotations (left) and corresponding significance of the conditional
effect while considered in a joint model with 106 annotations (right). GERP,
genomic evolutionary rate profiling. (E) Heritability enrichment of constrained

annotations intersected together and stratified by their genomic function.
(F) Squared transancestry genetic correlation enrichment (left) with corresponding
significance (right) for seven annotations with significant depletion of squared
transancestry genetic correlations. H3K27ac, histone H3 acetylated at lysine 27.
(G) Standardized squared effect sizes as a function of AF. Results are meta-
analyzed across, 63 independent GWASs [(A), (B), (D), and (E)], 31 independent
traits with GWASs available in European and Japanese populations [(F)], and
27 independent UK Biobank traits [(G)]. Dashed red lines represent a null
enrichment of 1 [(A) to (E)] and a null squared transancestry genetic correlation
(F). Error bars are 95% confidence intervals. Numerical results are reported
in data S2 to S4, S6 to S8, and S11.
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primates; Fig. 2E), emphasizing the inform-
ativeness of our constrained annotations to
annotate noncoding variants with unknown
functions.

Per-allele effect sizes of common variants
at constrained positions differ across
human populations

Although our heritability analyses focused on
European ancestry GWASs, variant per-allele
effect sizes differ across human populations,
especially for variants with stronger gene-
environment interactions (31). To quantify
how per-allele effect sizes of constrained com-
mon variants differ across populations, we
applied S-LDXR (31) on 31 diseases and com-
plex traits with GWAS data from East Asian
(mean N = 90,000) and European (mean N =
267,000) populations. Here, we focused on
per-allele effect sizes rather than per-SNP h2

to account for differences in allele frequencies
across populations (31). Variants at constrained
sites in mammals and primates were among
the most significantly depleted in squared
transancestry genetic correlation (P = 4.38 ×
10−9 and 1.63 × 10−14, the third and most sig-
nificant investigated annotations, respec-
tively; Fig. 2F and data S8). These results
highlight more population-specific causal ef-
fect sizes for variants at constrained positions,
in line with stronger gene-environment in-
teractions at these loci, and potentially ex-
plain how genetic variations at constrained
bases could have become common in human
populations.

Strong effect sizes for coding low-frequency
variants at constrained positions

Genomic regions under purifying selection
tend to have low-frequency variants (0.5% ≤
AF < 5%) with larger effect sizes, which leads
to higher enrichment in low-frequency var-
iant h2 compared with common variant h2 (8).
We quantified low-frequency SNP-h2 enrich-
ments of constrained annotations by analyz-
ing 34 well-powered independent UKBiobank
traits (mean N = 340,000; data S10). We ob-
served that constrained annotations had con-
sistently larger low-frequency h2 enrichment
than common h2 enrichment, especially for
variants at constrained sites in mammals
(17.02 ± 0.89–fold versus 8.67 ± 0.71–fold; P =
1.99 × 10−13 for difference) (fig. S9 and data
S10) in line with greater effect sizes as AF de-
creases (Fig. 2G and data S11). Similar patterns
were observed for variants at constrained sites
in primates (data S10). This enrichment dif-
ference was driven by exonic variants at con-
strained sites (50.03 ± 2.74–fold versus 19.80 ±
1.84–fold in mammals; P = 5.49 × 10−20 for
difference); we note that the low-frequency
h2 enrichment for these variants was similar
to that of nonsynonymous variants (40.48 ±
2.37–fold), suggesting that constraint infor-

mation is as informative as protein change
information at the coding level. Low-frequency
and common SNP h2 enrichments within reg-
ulatory constrained variants were similar (data
S10), suggesting that although a very high frac-
tion of variants within regulatory constrained
elements are deleterious, their deleterious effects
are moderately high (8).
In conclusion, we observed that our mam-

malian constraint scores have unprecedented
base-pair resolution to investigate common var-
iants in GWAS findings for human complex
traits and diseases, are distinctively informa-
tive compared with known functional anno-
tations and previously published constraint
scores, are even more informative when com-
bined with primate constraint scores, and
could be used to investigate variants defined
as nonfunctional.

Leveraging constraint to move from
prioritization to function
Zoonomia constraint scores improve functionally
informed fine-mapping analyses

Based on our heritability results, we expected
that our constraint scores would improve func-
tionally informed fine-mapping of constrained
genetic variants associatedwith common traits.
We comparedPolyFun (32) fine-mapping results
obtained with no annotations (nonfunctional
model) with its default setting of annotations
[baseline–low frequency (LF) model] and with
an augmented baseline-LF annotation contain-
ingmultiple Zoonomia constraint annotations
(baseline-LF+Zoonomia model) on the 34 well-
powered UK Biobank diseases and complex
traits (data S12 and SM, section 7).We observed
significantly (P < 1.00 × 10−4) greater posterior
inclusion probability (PIP) for variants at con-
strained sites in mammals and primates when
using PolyFunwith the baseline-LF+Zoonomia
model compared with the nonfunctional and
baseline-LF models (Fig. 3, A and B). Nota-
bly, PolyFun with the baseline-LF+Zoonomia
model detected 2100 variants at constrained
sites fine-mapped with high confidence (PIP >
0.75) across all the UK Biobank traits (43.81%
of high-confidence fine-mapped variants), against
1108 and 1840 when using the nonfunctional
and baseline-LF models, respectively (33.39
and 40.92% of high-confidence fine-mapped
variants, respectively) (fig. S10).

Fine-mapping examples

We highlight the utility of evolutionary con-
straint scores in fine-mapping analyses. First,
rs1421085 has a causal and experimentally
validated association with body mass index
(the SNP is located in FTO but has regulatory
effects on IRX5 and IRX3) (33, 34); this var-
iant is extremely constrained in mammals
(phyloP = 6.31) and primates (phastCons =
1.00), leading to a higher PIP when using the
baseline-LF+Zoonomiamodel (0.84) thanwhen

using the nonfunctional and baseline-LF mod-
els (0.13 and 0.58, respectively; Fig. 3C). The
fractions of CDS and promoter bases that are
constrained for IRX5 (0.79 and 0.58) and IRX3
(0.74 and 0.34) were higher than those for FTO
(0.61 and 0.23), suggesting that constrained var-
iants in regulatory regions could be more likely
to target genes with constrained CDS and/or
promoters (see section Evolutionary con-
straint, PC genes, and humandisease). Second,
rs6914622 is constrained in mammals and
primates (phyloP = 2.37 and phastCons = 1.00)
and may be causal in hypothyroidism by the
baseline-LF+Zoonomiamodel (PIP = 0.76; Fig.
3D) but not by the nonfunctional and
baseline-LF models (PIP ≤ 0.14). Conversely,
the sentinel variant rs9497965 is not evolu-
tionarily constrained but has a notable PIP
in the baseline-LFmodel (PIP ≥ 0.85) but not
in the baseline-LF+Zoonomia model (PIP =
0.24). Using epigeneticmarks from four thyroid
cell types (35) (functional information not in
the fine-mapping models), rs6914622 was in
an active enhancer in all thyroid cell types and
rs9497965 was inferred as being in an en-
hancer in only one thyroid cell type (weak
transcription and quiescent for the others),
suggesting a causal role for rs6914622 over
rs9497965. Although functional follow-up
is necessary, these examples illustrate how
Zoonomia constraint scores can affect fine-
mapping. Some regulatory elements may not
be conserved at the nucleotide level but lie in a
cell-type regulatory element that is predicted
to be conserved across mammals. Identifying
associations between enhancers and pheno-
types with the Tissue-Aware Conservation In-
ference Toolkit (TACIT) provides examples of
howmammalian genomes can be leveraged to
discover regulatory conservation and link var-
iation to function (36).

Measures of constraint can reveal unannotated
variants that affect human health

Because of the challenge of generating func-
tional datasets in all cell types and all cell
states, much of the genome’s regulatory space
is unannotated (37). The high levels of con-
straint and low levels of variant diversity in
unannotated intergenic constraint regions
(UNICORNs) [SM, section 8; (16)] suggest that
they are likely of functional importance de-
spite lacking functional annotations (consistent
with our observation that unannotated con-
strained SNPs are enriched in h2; Fig. 2E).
Although fewer fine-mapped SNPs were lo-
cated within UNICORNs (905 SNPs) compared
with a matched set of random unannotated
nonconstrained intergenic regions (5572 SNPs)
and to SNPs located elsewhere in the genome
(272,374 SNPs), those variants had higher mean
PIP scores (0.14 UNICORNs versus 0.05 for
the other two regions). This demonstrates that
UNICORNs can reveal unannotated variants
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that affect human health and disease. UNICORNs
contain fine-mapped SNPs with significantly
higher PIP scores compared with the back-
ground sets across multiple traits (linear re-
gression, P < 0.01 in all cases after correcting
for multiple testing; data S13). For example, a
163-bp UNICORN contains rs72782676 with
fine-mapping evidence for multiple traits (e.g.,
eosinophil count, asthma, eczema, respiratory
and ear, nose, and throat diseases; AFTOPMed =
0.005; PIP > 0.99 in all GWASs) (Fig. 3E). The
nearest gene, GATA3, sits 915 kb upstream, is a
master transcriptional regulator for T helper 2
lineage commitment (38), and is known to
play an important role in inflammatory disease
(39, 40). This UNICORN highlights a strong
regulatory candidate for GATA3 in a disease-
relevant region that presently lacks annotation.

Predicted variant effect validated
at single-base resolution

Massively parallel reporter assays (MPRAs) have
been used to rapidly test thousands of genomic

variants for their potential regulatory effects
on gene expression. Although the functional
output from these high-throughput methods
is useful for localizing putative causal alleles,
overlaying constraint scores may help further
elucidate functional variants (SM, section 8).
To investigate this,we integratedourZoonomia-
derived phyloP scores with >35,000 assayed
variants from existing 3′ untranslated region
(3′UTR) (41) and eQTL (42) MPRAs. Using the
3′UTRMPRA data to highlight our results, we
found that phyloP scores could differentiate
between sequence backgrounds with andwith-
out regulatory activity (e.g., across multiple tis-
sues, neutral versus active: Polig = 2.32 × 10−5;
Fig. 3F). PhyloP scores further highlighted
variants with allele-specific regulatory effects
(e.g., neutral versus skew: Pbase = 1.4 × 10−5;
Fig. 3G). Additionally, we found that selection
on constrained phyloP positions enriched the
allele-specific regulatory effects by 1.3-fold
(SM, section 8). Similar trends were observed
in promoter and enhancer saturation muta-

genesis MPRAs (43). For example, phyloP con-
straint was a strong predictor for variant effect
within the LDLR promoter (Spearman’s r =
0.51), with five of the most constrained sites
providing the strongest regulatory effects and
also tagging pathogenic ClinVar positions (Fig.
3H). Further, in our companion paper (44), we
use MPRAs to directly assess the regulatory
impacts of bases under high constraint that
have been deleted specifically in the human
lineage. For many, we can precisely identify
how the deletions affect transcription factor
binding, which is well correlated with the ob-
served regulatory changes, linking sequence
change to mechanism. We found that these
human-specific deletions were enriched to
overlie psychiatric disease GWAS signals (i.e.,
schizophrenia or bipolar disorder) and dis-
covered 800 deletions with significant species-
specific regulatory effects, providing a set of
candidate variants that may have contrib-
uted to the prevalence of human neurological
disorders.
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Fig. 3. Leveraging constraint to move from variation to function. (A and
B) We report the cumulative distribution function (CDF) of PIP scores using
functionally informed fine-mapping with different models of functional annota-
tions. Distribution functions are split into subpanels according to whether the
fine-mapped SNP overlaps high constraint scores in mammals (A) and primates
(B). One-way Kolmogorov-Smirnov tests show that CDFs for PIP scores obtained
from the baseline-LF model (blue) are lower (above) than the CDFs for PIP
scores obtained from the baseline-LF+Zoonomia model (orange) with Bonferroni
correction for N = 4 categories across panels (***P < 0.0001; NS is not
significant). (C and D) Examples of constrained fine-mapped variants. We report
GWAS P values (top) and corresponding PIP scores under different functionally

informed fine-mapping models (bottom). The shapes of the data points
correspond to constraint information. (E) Fine-mapped variants are not limited
to the annotated genome, as exemplified by rs72782676 (red dot in the AF
panel) in the GATA3 UNICORN locus. TFBS, transcription factor binding site;
cCREs, candidate cis-regulatory regions. (F and G) Constraint is formally linked
to function through MPRAs at the regional oligo (F) and base-pair (G) level for
neutral, active, and allele-specific skewed effects. (H) For the LDLR promoter
locus, the MPRA effect is strongly correlated with the phyloP score. Constrained
(red) and unconstrained (orange) ClinVar pathogenic variants are plotted to
highlight known deleterious positions. In (E) and (H), the dashed orange lines
represent the 5% FDR threshold for constraint.
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Evolutionary constraint, PC genes,
and human disease
Gene-based measures of evolutionary con-
straint have an important role in understand-
ing the impact of genetic variation on human
disease [e.g., LOEUF (loss-of-function observed/
expected upper bound fraction)] (3). As detailed
in section 9 of the SM, we defined seven mea-
sures of gene constraint based on the Zoonomia
alignment, including the fraction of CDS con-
strained, normalization against 32.13 million
CDS bases, a model-based approach adjusting
for 12 covariates (codon information, mutational
consequences, and positional features), and
cross-species amino acid constraint (normalized
Shannon entropy). After evaluation, we selected
the fraction of constrained CDS bases per gene
(fracCdsCons) as a simple measure of gene con-
straint, given its continuous distribution, low
missingness, high correlations with more com-

plex measures of gene constraint, and external
validation (Fig. 4A). These gene-based con-
straint metrics are provided in data S14.
Given the complexities of human PC genes, it

would be surprising if any one gene metric ap-
plies toall genes [e.g., LOEUFandpLI (probability
of being loss-of-function intolerant) are miss-
ing for 10.1% of PC genes].We used an empirical
approach to identify genes behaving differ-
ently and identified 277 genes (1.43%) that are
inaccessible to fracCdsCons (clusters A and
B; Fig. 4A and SM, section 10). We examined
fracCdsCons in several ways (SM, section 10).
First, given its widespread use, we compared
fracCdsCons to the inverse-scored LOEUF (3)
and found Spearman’s r = −0.55. This is no-
table given the markedly different basis of each
measure—constraint over ~100 million years
of mammalian evolution versus statistical mod-
eling of predicted loss of function (pLoF) counts

in human whole-exome sequencing catalogs
(SM, section 2): Empirical confirmation is an
important validator for both measures. We
next compared fracCdsCons to external gene
sets with established patterns of constraint
(similar to the LOEUF validation strategy) (3)
and obtained similar patterns between both
scores (Fig. 4, B and C).
Second, we used an empirical approach to

cluster genes based on different constrained
metrics (Fig. 4A, data S14, and SM, section 10).
After removing 277 gene outliers inaccessible
to fracCdsCons, we conducted gene set analy-
ses for 19,109 PC genes (clusters C to E; data
S15 and S16). The 5% most constrained genes
(N = 955, fracCdsCons 0.811 to 0.975) were
strongly enriched in the following gene sets:
basic embryology (stem cell proliferation and
differentiation, tube formation, anterior and
posterior patterning, endoderm and mesoderm
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Fig. 4. Evolutionary constraint, PC genes, and human disease. (A) Scat-
terplot of PC gene clustering [uniform manifold approximation and projection
(UMAP) and density-based spatial clustering of applications with noise
(DBSCAN)]. The x and y axes are the UMAP coordinates. Each point is a PC gene
(N = 19,386). Five clusters are labeled: (a) 56 genes whose CDS bases are in
complex regions that align poorly; (b) 221 genes that are apparently human- or
primate-specific; (c) 669 genes with good alignment and possible human-specific
functions [e.g., five human leukocyte antigen (HLA) genes and 14 interferon-a
genes]; (d) 15 genes, all highly constrained; and (e) all other 18,425 PC genes.
Coloring shows fracCdsCons, where gray indicates least and red indicates
most constrained with an anticlockwise gradient in mammalian constraint from
the upper middle to lower right. (B and C) Gene constraint deciles versus
external gene sets as “lollipop plots” Zoonomia fracCdsCons are shown in (B). A
recapitulation of figure 3 from (3) with the LOEUF decile reversed and missing

data shown is presented in (C). Each panel has six subgraphs for autosomal-
recessive genes, ClinGen level 3 genes, essential genes from Hart, essential
genes in mouse, olfactory receptor genes, and severe haploinsufficiency genes.
The x axis is the constraint decile (0 is least, 9 is most constrained, 99 is
missing). The y axis is the fraction of the PC genes in a gene set in each decile as
represented by circles. (D) Gene heritability enrichment for SNPs linked to genes
of each decile of fracCdsCons. The dashed red line represents a null enrichment of 1.
Error bars are 95% confidence intervals. (E) Spearman’s correlation of the
constraint fraction between the parts of PC genes. (F and G) Fraction of CDS
constraint (fracCdsCons) versus fraction of promoter constraint (F) and fraction
of distal enhancer constraint (G) (shrunk to values <0.3). For (F) and (G), each
point is a PC gene, and HOX genes (purple) and DEFB genes (green) are
highlighted. (H) Gene heritability enrichment for SNPs linked to genes of decile of
constraint in different gene features, plotted as per (D).
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formation); organ morphogenesis (central and
peripheral nervous system, connective tissue,
ear, epithelium, eye, gastrointestinal tract, heart,
kidney, lung, muscle, myeloid, pancreas, skel-
eton); cell cycle (phase transition, fate, WNT),
cell signaling, positive and negative regulatory
processes; and pre- and postsynaptic processes
(synapse assembly, postsynaptic density, neuro-
transmitter regulation, synaptic vesicle cycle,
modulation of transsynaptic signaling). The
5% least constrainedgenes (N=956, fracCdsCons
0 to 0.150) were strongly enriched in the follow-
ing gene sets:microbial defense response (ad-
aptive immunity, bacteria and virus, cell killing,
cytokine and interferon); bitter taste and olfac-
tion; and skin development (keratinization,
keratinocyte differentiation, epidermal cell
differentiation, and epidermis development).
The most-constrained genes captured pro-
cesses fundamental to the making of a mam-
mal, and the least-constrained genes are central
to the adaptive evolution of a mammal to its
environment—that is, the specific microbiota;
adaptations of smell and taste to detect mates,
prey, predators, and poisons; and adaptations
of skin for temperature regulation, camou-
flage, and defense.
Finally, we evaluated the relevance of mam-

malian gene constraint to humandisease. Figure
S11A shows the relationship of fracCdsCons
to multiple human disease annotations. For
all comparisons, increasing constraint is cor-
related with increasing relevance for human
disease. Figure S11B depicts the relation with
GTEx gene expression, and greater gene con-
straint is correlated with greater expression in
all tissues. “Housekeeping” genes that are uni-
formly expressed across tissues had greater
constraint (P < 3 × 10−197) and made up 3.0%
of the least-constrained decile and 30.5% of the
most-constrained decile. Finally, we evaluated
the impact of commonSNPs linked to PC genes
in each fracCdsCons decile by estimating their
gene h2 enrichment (defined as h2 enrichment
for the decile annotation divided by the mean
h2 enrichment over all deciles) using S-LDSC
on63 independentGWASdatasets (SM, section
10). We observed significantly higher gene h2

enrichment for SNPs linked to genes in the
most-constrained deciles (P = 6.96 × 10−59; Fig.
4D and data S17). We observed stronger gene
h2 enrichment patterns in a meta-analysis of
nine brain disorders and gene h2 enrichment
patterns that were nearly independent of gene
constraint in a meta-analysis of 11 blood and
immune traits (Fig. 4D and data S17).

Long noncoding RNAs are depleted
of constraint bases

Although less well-defined than their PC gene
counterparts, long noncoding RNAs (lncRNAs)
represent a genome-wide catalog of transcribed
elements with broad tissue expression (SM,
section 11). We found that lncRNA exons are

an order of magnitude less constrained than
their PC counterparts (median constraint 0.02
lncRNA versus 0.62 PC genes), and in contrast
to others (45, 46), lncRNA promoters have a
similar and not higher fraction of constraint
compared with lncRNA exons. We found a
trend of higher constraint in lncRNAs impli-
cated in cancer or neurological disease but
note that this analysis is limited by the num-
ber of lncRNAs with clear and validated bio-
logical processes. Finally, although lncRNA
exons were depleted of common constrained
SNPs, these positions were enriched in disease
heritability (4.36 ± 2.55–fold in mammals and
9.81 ± 2.78–fold in primates), but only the pri-
mate measure was significant (P = 6 × 10−3).

Mammalian constraint is correlated between
coding and regulatory elements

We further extended our approach to measure
gene constraint on different regulatory fea-
tures [including promoters and ENCODE3
distal enhancers linked to their genes using
EpiMap (35)] because human diseases and
complex traits are predominantly affected by
common regulatory variants. We found sub-
stantial correlations of constraint between
CDS and the regulatory parts of PC genes, with
a higher correlation between CDS and pro-
moter gene constraint (Spearman’s r = 0.55)
than between CDS and distal enhancer gene
constraint (r = 0.25) (Fig. 4, E to G; gene scores
are reported in data S18). These correlations are
consistent with the idea that if the function of
a gene in mammals requires high conservation
of protein structure, then its regulatory se-
quences tend to also be constrained. We ob-
served families of geneswith shared constrained
patterns (such as HOX genes that have con-
strained exons, promoters, and enhancers)
and with distinct constrained patterns [such
as defensin b (DEFB) genes, which only have
constrained enhancers]. Finally, we observed
that common SNPs linked to genes with con-
strained promoters and distal enhancers are
as enriched in h2 as genes with constrained
CDS, suggesting that constraint in regulatory
elements can be leveraged in the analyses of
human diseases and complex traits (Fig. 4F
and data S17).

Mammalian constraint and copy-number variation

Copy-number variants (CNVs) are genomic seg-
ments that have fewer or more copies than a
reference genome. CNVs are important drivers
of evolution and risk factors for multiple hu-
man diseases (47–49). However, CNVs often
occur in high-repeat and low-mappability re-
gions, meaning that detecting their presence
and importance is often complex (50, 51). We
thus evaluated whethermammalian constraint
could help prioritize potentially disease-related
CNVs. First, as a qualitative check,we evaluated
a pathogenic CNV—a small distal enhancer up-

stream of SOX9 with a ClinVar pathogenic an-
notation as a cause of Pierre Robin sequence—
and found that it was highly constrained (52)
(SM, section 12). Second, we evaluated con-
straint in structural variants (SVs) identified in
TOPMed (4). We found that singleton (AC = 1)
SV deletions, inversions, and duplications had
similar fractions of constrained bases. How-
ever, common and low-frequency (AF ≥ 0.005)
SV deletions had far less constraint than SV
inversions or duplications. We speculate that
singletons are recent mutations that have been
relatively unexposed to purifying selection,
whereas common and low-frequency SV dele-
tions are directly exposed to selection pressures
because of the impacts of haploinsufficiency.
Third, these analyses suggest that constrained

bases could have utility in CNV prioritization
and burden calculations. Given that CNVs are
known risk factors for schizophrenia (53), we
obtained the CNV call set from the largest
published study (21,094 cases, 20,227 controls)
(54). After replicating the main analysis, we
found that schizophrenia cases had greater
CNV constraint burden (the total number of
conserved bases affected by a CNV) compared
with controls. The case-control differenceswere
four to five logs more significant than two
commonly usedmeasures of CNVburden (total
number and total bases per person). The im-
provements were particularly notable for CNV
deletions. We suggest that the number of con-
strained bases affected by a CNV is a more
direct assessment of functional impact—for
example, a large CNV with no constrained
bases is less likely to be deleterious than a far
smaller CNV that deletes constrained exons,
promoters, and/or enhancer elements.

Evolutionary constraint and polygenic
risk scores

Polygenic risk scores (PRSs) have been widely
used to summarize the inherited liability for
individuals across a broad range of complex
diseases, disorders, and human traits (55, 56).
High PRSs can confer substantial risk of dis-
ease (57, 58). Full details are provided in section
13 of the SM, but, briefly, PRSs are calculated by
selecting a subset of SNPs from a large train-
ing set (e.g., GWASs for height or diabetes)
and then summarizing their impact in an in-
dependent testing set for which an estimation
of inherited genetic risk in individual subjects
is of interest.
Considerable prior work has comparedmeth-

ods of selecting the subset of genetic variants
from the training set. Because of LD, a typical
GWAS locus can contain hundreds of similarly
strongly associated SNPs. A core challenge is
to select variants that are the most likely to be
causal and that yield the best performance
in the testing set, and we asked whether use
of constraint measures improved PRSs. Three
expert groups evaluated this question using
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different but complementary approaches as
rigorous tests of the utility of constraint scores
for PRSs.
As detailed in section 13 of the SM,we found

that (i) evolutionarily constrained SNPs con-
tain a disproportionately large fraction of
the PRS prediction accuracy (e.g., 3% of all
common SNPs captured 88% of the PRS pre-
diction accuracy for human height), (ii) the
per-SNP contribution of evolutionarily con-
strained SNPs is far greater than that of non-
constrained SNPs, (iii) annotating SNPs using
evolutionary constraint improves PRS across a
range of quantitative and discrete traits, (iv)
aggregating constraint metrics (e.g., a union
set of mammalian and primate constraint)
tended to perform well (but this may vary by
the specific trait), and (v) generalizability is
maximized by the use of different methodo-
logical approaches, traits, and samples.

Cancer driver genes identified with
mammalian constraint

Moving from the germline to the somatic ge-
nomes, we demonstrated howmammalian con-
straint in noncoding regions of the genome
canbe applied to detect candidate cancer driver
genes (SM, section 12). Noncoding constraint
mutations [NCCMs; phyloP ≥ 1.2 (59)] were
identified usingwhole-genome sequencing data
(International Cancer Genome Consortium)
(60) for two types of brain tumors that pri-
marily affect children. Pilocytic astrocytoma is
a low-grade tumor (61), and medulloblastomas
are malignant brain tumors with intertumoral
heterogeneity informed by subgroups deter-
mined by molecular profiling (i.e., wingless/
integrated (WNT), sonic hedgehog signaling
(SHH), group 3 and group 4) (62). We identi-
fiedNCCMswithin introns, 5′UTRs and3′UTRs,
and regions within 100 kb of each gene (59).
We found significantly different NCCM rates

between the two cancers (63). In pilocytic as-
trocytoma, which is known to have coding and
translocation mutations primarily in BRAF,
high NCCM rates were restricted to the BRAF
locus, in line with the low somatic mutation
burden of this tumor type. Notably, for me-
dulloblastoma, 114 genes had ≥2 NCCMs per
100 kb (Fig. 5A) and 525 genes had ≥5 NCCMs
per gene. These genes were enriched for the
Gene Ontology (GO) biological processes “ner-
vous system development” (P = 1.32 × 10−26)
and “generation of neurons” (P = 1.68 × 10−22).
Among the top 114 genes, 15 gene loci were
primarily seen in adult cases (≥18 years of age)
and seven loci in pediatric cases (<18 years of
age). A subset of these loci is shown in Fig. 5B.
An example is ZFHX4, which was previously
reported to be differentially expressed in me-
dulloblastoma (64), where NCCMs were pre-
dominantly identified in adult patients of the
SHH subgroup and found in high-constraint
ZFHX4 intronic regions (Fig. 5C). For the pe-

diatric set of medulloblastoma, potential driver
genes included BMP4 and the HOXB locus
(containingmultiple genes),mostly in patients
diagnosed as group 3 or group 4. Multiple
NCCMs in these two loci were shown to have
differential DNA binding capacity in a medul-
loblastoma cell line (63). Further, we noted
differential gene expression in medulloblas-
toma compared with cerebellum for multiple
NCCM genes, for example, HOXB2 (65), for
which expression levels correlate with patient
survival (66).
The addition of evolutionary constraint mea-

sures may help advance stratification of me-
dulloblastoma, with regard to both age and
molecular subgroups. More generally, we de-
monstrate how NCCM analysis can be used as
a tool for the identification of previously un-
characterized driver genes in cancer. We sug-
gest that NCCM analysis should be evaluated
in more cancer types for its potential to yield a
better understanding of disease biology and
improved diagnosis and prognosis.

Discussion

Understanding genome-wide patterns in the
strength of evolutionary constraint can deepen
our understanding of human diseases. Zoo-

nomia’s alignment of 240 placental mammals,
representing ~100 million years of evolution,
achieves single-base resolution constraint that
allows a detailed evaluation of individual mu-
tations. This contrasts sharply with existing
methodologies that offer only gene-sized reso-
lution. Evolutionary constraint compares fav-
orably to huge amounts of functional genomics
data based on specific cell types or tissues be-
cause functionality in any tissue at any time
point will be detected by constraint. The com-
bination of constraint scores measured here,
and additional empirical measures of coding
and noncoding function, can only serve to re-
fine our understanding of complex genomic
processes.We demonstrate that constraint can
be used to detect candidate causal mutations
in both rare and common diseases, including
cancer, and could be particularly leveraged for
brain diseases that are more affected by con-
strained genes and biological processes. Finally,
we note that primate constraint has a stronger
heritability enrichment thanmammalian con-
straint in noncoding regions, suggesting that
sequencingmore primateswould complement
the present efforts to validate the functions of
the multitude of regulatory elements present
in the human lineage.
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Fig. 5. Cancer driver genes
identified using NCCM rates.
(A) Distribution of the rates of
NCCM for medulloblastoma.
(B) An example set of the candi-
date driver genes found either
in pediatric (light blue) or
adult (purple) samples. Age of
diagnosis (years) of the patient
is indicated together with the
tumor subgroup. (C) The ZFHX4
locus contains nine NCCMs
drawn from eight patients.
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Methods summary

The analyses in support of our study goals
were organized into 14 main areas and en-
tailed the coordinated work of more than 10
different teams. Each of these approaches is
described in full length as a separate section in
the SM and briefly here. The numbers below
correspond to the SM section (e.g., section 4:
Genomic properties of constraint scores).
4) We described the properties of con-

strained bases, including GC content, cluster-
ing, enrichment in specific elements (gene
biotypes, gene parts, regulatory elements),
CDS and base-pair resolution, and constraint
at variable sites in humans.
5) We benchmarked constraint score against

ClinVar (19) and CADD (6) with strong effects
on ClinVar classification from 2016 to 2021.
6) We evaluated constraint as an annota-

tion in S-LDSC (7, 25, 26) in GWAS results for
63 independent human traits (27).
7) We applied functionally informed fine-

mapping, PolyFun (32), to leverage evolution-
ary constraint.
8) We identified and evaluated UNICORNs,

which are clusters of constrained bases with
no known annotation.
9) We created seven gene-based measures

of constraint [complementary to residual
variation intolerance score (RVIS), pLI, and
LOEUF (3)] and selected the simplest mea-
sure, fracCdsCons, the fraction of CDS bases
under significant constraint (phyloP ≥ 2.27).
10) We conducted extensive evaluation of

fracCdsCons, including identifying outliers,
gene-set analysis of the top and bottom ven-
tiles, and comparison to LOEUF (3).
11) We developed a constraint measure for

long intergenic noncoding RNA genes (lncRNA).
12) We demonstrated the utility of con-

straint for prioritization of rare CNVs in
human disease (e.g., Pierre Robin sequence
and schizophrenia).
13) We extensively demonstrated the utility

of evolutionary constraint in the selection of
SNPs in training sets for application to new
data and for developing polygenic risk scores.
14) Finally, we showed thatmammalian con-

straint scores identified previously unchar-
acterized candidate cancer driver genes in
pilocytic astrocytoma and medulloblastoma
tumors.
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