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A B S T R A C T

Accurate identification of the presence, absence or possibility of relevant entities in clinical notes is important
for healthcare professionals to quickly understand crucial clinical information. This introduces the task of
assertion classification - to correctly identify the assertion status of an entity in the unstructured clinical notes.
Recent rule-based and machine-learning approaches suffer from labor-intensive pattern engineering and severe
class bias toward majority classes. To solve this problem, in this study, we propose a prompt-based learning
approach, which treats the assertion classification task as a masked language auto-completion problem. We
evaluated the model on six datasets. Our prompt-based method achieved a micro-averaged F-1 of 0.954 on the
i2b2 2010 assertion dataset, with ∼1.8% improvements over previous works. In particular, our model showed
excellence in detecting classes with few instances (few-shot). Evaluations on five external datasets showcase
the outstanding generalizability of the prompt-based method to unseen data. To examine the rationality of
our model, we further introduced two rationale faithfulness metrics: comprehensiveness and sufficiency. The
results reveal that compared to the ‘‘pre-train, fine-tune’’ procedure, our prompt-based model has a stronger
capability of identifying the comprehensive (∼63.93%) and sufficient (∼11.75%) linguistic features from free
text. We further evaluated the model-agnostic explanations using LIME. The results imply a better rationale
agreement between our model and human beings (∼71.93% in average F-1), which demonstrates the superior
trustworthiness of our model.
1. Introduction

Assertion classification is the task of classifying the assertion status
of clinical concepts expressed in natural languages, such as a diagnosis
or condition being present, absent, or possible [1]. It is of substan-
tial importance to the understanding of Electronic Health Records
(EHRs) and has shown the great potential to benefit various clinical
applications since the assertion status is a critical contextual property
to automated clinical reasoning [2]. However, assertion classification
has long been a challenging task due to the imbalance in the class
distribution and the unstructured nature of clinical notes [3]. For
xample, classifying Possible assertions is particularly difficult because
hey have a much smaller occurring frequency than the Present and
bsent assertions, and they are often expressed vaguely [2,4].
Various approaches have been explored for assertion classifica-

ion. Some earliest attempts handled this task via hand-crafted rules
nd carefully designed heuristics [5,6]. For example, Chapman et al.
5] posited that medical language is lexically less ambiguous, and
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hence their model used a simple regular expression algorithm to detect
negation cues (NegEx). Peng et al. [6] enhanced NegEx and utilized
Universal Dependency patterns to design the rules. Rule-based ap-
proaches usually achieve a high precision but are often cited for a
low recall due to the rigid hand-crafted patterns. While it is feasible to
manually identify and implement high-quality patterns to achieve good
precision, it is often impractical to exhaustively design all patterns nec-
essary for a high recall. To overcome this limitation, machine learning
approaches were explored, such as Conditional Random Fields [7] and
Support Vector Machines [8–11].

More recently, several deep learning methods were introduced for
assertion classification in the biomedical domain. Qian et al. [12]
considered bringing the advantage of Convolutional Neural Networks
to identifying the scopes of negations in clinical texts. Many others
explored bidirectional Long-Short Term Memory for negation recog-
nition [3,13–15]. Nowadays, transformer-based methods have become
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dominant [1,4]. While conventional deep learning methods demon-
strated excellent performances, they typically rely on large amounts
of labeled data to learn the distinguishing class features and are often
hampered when the dataset is small or imbalanced.

To relieve these limitations, we introduce a powerful prompt-based
learning approach for its proven capability of performing few-shot
learning and rapid adaptation to new tasks with only a limited number
of labeled examples. Prompting methods have shown success in various
natural language tasks [16,17], such as knowledge probing [18,19],
uestion answering [20], and textual entailment [21]. However, to the
est of our knowledge, no previous work introduces prompt-based ap-
roaches to assertion classification. Our prompt-based learning method
reats the assertion classification task as a masked language auto-
ompletion problem. The model probabilistically generates a textual
esponse to a given prompt defined by a task-specific template [22].
n this way, we can manipulate the model behaviors so that the pre-
rained language model (LM) can learn to classify the assertion types.
rompting framework allows us to utilize the LMs pre-trained on
assive amounts of raw text, and to perform few-shot or even zero-
hot learning by defining a new prompting function, which enables us
o adapt to new tasks with few or no supervised data [22,23], reducing
r obviating the need for large, supervised datasets. We trained a
rompt-based model on the i2b2 2010 assertion dataset [24], and
valuated its performances on six datasets, including the i2b2 2010
ssertion dataset, i2b2 2012 assertion dataset [25], MIMIC-III assertion
dataset [4,26], BioScope [27], NegEx [28] and Chia [29]. The ob-
served results demonstrated our prompt model’s superior classification
capability and generalizability over the state-of-the-art approaches.

Beyond evaluating the performances of the NLP models, research
interest has recently grown in revealing why models make specific
predictions [30]. Model’s rationality measures how well the rationales
(i.e., a snippet that supports outputs) provided by models align with
human rationales, and the degree to which the provided rationales
influence the corresponding predictions [30] Metrics such as precision,
recall, and F-1 score can only measure partial quality and quantity
aspects of model predictions, but cannot evaluate properties of the
model’s rationality. Hence, the effectiveness of these NLP systems is
limited by their current inability to explain their decisions to hu-
man beings, especially in clinical practices. To quantify the model’s
rationality for model comparisons and progress tracking, we intro-
duced two rationale faithfulness evaluation metrics, comprehensiveness
and sufficiency, which measure to what extent the model adheres to
human rationales. We further evaluated the alignments between the
model explanations and the human rationales, and the results show
the superior trustworthiness of our prompt-based method in terms of
its better alignment with human rationales, compared to the state-of-
the-art models. We believe that our prompt-based method provides a
reasonable start featuring human rationales for assertion classification.

We will make our code and model publicly available to facilitate
future research.1

2. Material and methods

2.1. Task of assertion classification

Assertion classification is the task of classifying if the patient has or
had a given condition. Following the definition in the work of Uzuner
et al. [24], the outcomes are Present, Absent, Possible, Conditional,
ypothetical, and Not Associated (Table 1).
In this work, we take an input sentence 𝑥 with a given concept
ention 𝑒 and predict a label 𝑙 from a fixed label set , based on a
odel 𝑃 (𝑙|𝑥, 𝑒; 𝜃). For example, given an input 𝑥 = ‘‘This is very likely
o be an asthma exacerbation’’ and 𝑒 = ‘‘an asthma exacerbation’’, we
im to predict a label 𝑙 = ‘‘Possible’’ out of a 6-class label set.

1 https://github.com/bionlplab/assertion_classification.
2

Table 1
Examples of assertion types. Concepts are italicized.
Assertion type Example

Present Severe systolic HTN is noted.
Absent There is no pericardial effusion.
Possible High CO and low SVR suggestive of sepsis.
Conditional Narcotics can cause constipation.
Hypothetical Return to the emergency room if he experiences any chest pain.
Not Associated Father had MI at 42.

2.2. Datasets

In this study, we included six independent datasets (Table 2).

i2b2 2010 assertion dataset. annotates a corpus of assertions in dis-
charge summaries and progress reports from three institutions [24].
Six assertion types of medical concepts in clinical notes were manually
annotated, including Present, Absent, Possible, Hypothetical, Conditional
and Not Associated with the Patient. In the released version, there are
170 annotated clinical notes in the training set and 256 notes in the test
set. Table 2 reveals that the class distribution is highly imbalanced. For
example, the number of training instances for Present is about 50 times
more than the number of instances for Conditional and Not Associated
with the Patient.

i2b2 2012 assertion dataset. contains 189 annotated notes in the train-
ing set and 119 notes in the test set from de-identified discharge
summaries [25]. In the i2b2 2012 assertion dataset, clinical concepts
were annotated with polarity attributes (whether an event was positive
or negative) and modality attributes (whether an event occurred or
not). We defined three assertion types. A concept is Present if its
polarity is ‘‘positive’’ and its modality is ‘‘factual’’, Absent if its polarity
is ‘‘negative’’, and Possible if its polarity is ‘‘positive’’ and its modality
is ‘‘possible’’. In this study, we only used the test set to assess the
generalizability of the proposed model.

BioScope. provides a corpus of 3 assertion types (i.e., Present, Absent,
Possible) annotated by two independent linguist annotators following
the guidelines set up by a chief linguist [27]. The corpus consists
of medical free texts, biological full papers and biological scientific
abstracts, resulting in 1,954 notes.

MIMIC-III assertion dataset. annotates 3 assertion types (i.e., Present,
Absent, Possible) in 239 clinical notes, including 92 discharge sum-
maries, 49 nursing notes, 23 physician notes, and 75 radiology re-
ports [4]. The dataset follows the same annotation guidelines as the
i2b2 2010/VA challenge [24]. The detailed statistics of MIMIC-III
subsets can be found in Table B.1 in Appendix A.

NegEx. annotates the Present and Absent assertion types in 116 de-
identified discharge summaries dictated at two medical ICU’s at the
University of Pittsburgh Medical Center. Assertions of medical concepts
were first identified by a regular expression algorithm and then verified
by three physicians.

Chia. is a large-scale corpus of patient eligibility criteria extracted
from 1,000 interventional, Phase IV clinical trials registered on Clin-
icalTrials.gov [29]. From this dataset, a concept is Absent if there is
a ‘‘has_negation’’ relation between this concept and a trigger word
(e.g., ‘‘cannot’’). In this study, we obtained 1,057 Absent concepts, and
sampled the same number of Present concepts.

2.3. Prompt-based assertion classification

Given an input sentence 𝑥 = {𝑤0,… , 𝑤𝑛} with a given concept
mention 𝑒 = {𝑤𝑖,… , 𝑤𝑗}, the prompt function 𝑓𝑝𝑟𝑜𝑚𝑝𝑡(𝑥, 𝑒) will convert
the input to a prompt 𝑥𝑝𝑟𝑜𝑚𝑝𝑡, which is a textual string that includes a
one-token answer slot [MASK]. The LM takes 𝑥𝑝𝑟𝑜𝑚𝑝𝑡 as the input, maps
it to a sequence of token embeddings, and learns to select one answer 𝑧
for the [MASK] token that can be mapped to the label space  (Fig. 1).

https://github.com/bionlplab/assertion_classification
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Table 2
Statistics of the datasets. Size - the number of notes..
Dataset Size Present Absent Possible Hypothetical Conditional Not Associated Total

i2b2 2010 Train 170 4,624 1,596 309 382 73 89 7,073

i2b2 2010 Test 256 8,604 2,592 646 442 148 131 12,563
i2b2 2012 Test 119 3,360 640 245 – 64 – 4,309
BioScope 1,954 5,338 899 1,368 – – – 7,605
MIMIC-III 239 3,392 1,243 365 – – – 5,000
NegEx 116 1,885 491 – – – – 2,376
Chia 1,000 1,057 1,057 – – – – 2,114
Fig. 1. Prompt-based assertion classification.
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rompt function. The most natural way to create prompts is to manu-
lly create intuitive templates based on human introspection. In this
ork, we designed the prompt function 𝑓𝑝𝑟𝑜𝑚𝑝𝑡(𝑥, 𝑒) = ‘‘[CLS] 𝑤0...
E] 𝑒 [/E]... 𝑤𝑛 [SEP] [E] 𝑒 [/E] is [MASK] [SEP]’’ to gen-
rate a prompt 𝑥𝑝𝑟𝑜𝑚𝑝𝑡 for a sentence 𝑥. Specifically, we surrounded
he concept-of-interest tokens 𝑒 in the input sentence with special
ndicator tokens [E] and [/E], whose embeddings were randomly ini-
ialized. We then concatenated the sentence with a prompting snippet
‘[E] 𝑒 [/E] is [MASK]’’, where the concept tokens were also sur-
ounded by [E] and [/E]. The [SEP] token in the middle helps the
odel understand which part of 𝑥𝑝𝑟𝑜𝑚𝑝𝑡 belongs to the input sentence
nd which part belongs to the prompting question.
One sample input sequence looks like this: ‘‘[CLS] It is possible

hat she has [E] pneumonia [/E]. [SEP] [E] pneumonia [/E] is
MASK]. [SEP]’’, where ‘‘pneumonia’’ is the concept we focus on in
his case.

nswer search and label mapping. LMs learned to search for the highest-
cored word 𝑧 ∈  to fill in the answer slot [MASK] in 𝑥𝑝𝑟𝑜𝑚𝑝𝑡. For each
pecific prompt function, we defined  as a set of permissible values
or 𝑧, such as ‘‘positive’’ and ‘‘negative’’. The highest-scored answer 𝑧
an be further mapped to 𝑙 ∈  in the label space.

raining details. We trained a task-specific head by maximizing the log-
robability of the correct label at the masked token, given the hidden
ector of [MASK]. Taking 𝑥𝑝𝑟𝑜𝑚𝑝𝑡 as the input, LM’s probability of
redicting assertion label 𝑙 is:

(𝑙|𝑥𝑝𝑟𝑜𝑚𝑝𝑡, 𝜃) = 𝑝([𝙼𝙰𝚂𝙺] = (𝑙)|𝑥𝑝𝑟𝑜𝑚𝑝𝑡)

=
exp(𝑊𝑧ℎ[𝙼𝙰𝚂𝙺])

∑

𝑧𝑖∈ exp(𝑊𝑧𝑖ℎ[𝙼𝙰𝚂𝙺])

here 𝑙 ∈  is the correct label, (𝑙) maps the label 𝑙 to the word 𝑧
3

in the answer vocabulary, ℎ[𝙼𝙰𝚂𝙺] is the hidden vector of the [MASK] T
token, and 𝑊 represents the trainable weights. We fine-tuned the LM
to minimize the cross-entropy loss.

2.4. Measuring rationality

Inspired by DeYoung et al. [30], we introduced two rationale faith-
fulness evaluation metrics comprehensiveness (do we need every sen-
tence token to make a correct prediction?), and sufficiency (do the
linguistic scopes contain enough information to make a correct predic-
tion?) to provide reasonable comparisons of specific aspects of model’s
rationality (Fig. 2). To better understand on what grounds our model
took the decision, we adopted Local Interpretable Model-agnostic Ex-
planations (LIME) [31] to explain the model predictions and further
compared how the identified model explanations aligned with the
human rationales.

Comprehensiveness. Cue phrases are often used in natural language to
provide key semantic information about a target [32]. For example, in
the sentence ‘‘This is very likely to be an asthma exacerbation’’, the
phrase ‘‘very likely’’ can be semantically perceived as cue words of a
Possible assertion to ‘‘an asthma exacerbation’’ by human beings. To
measure the rationale’s comprehensiveness, we constructed a counterex-
ample for the input sentence 𝑥 with a concept mention 𝑒, by removing
the assertion cues 𝑐 from the text, resulting in 𝑥∕𝑐. In our setting, let
𝑝̂(𝑙|𝑓𝑝𝑟𝑜𝑚𝑝𝑡(𝑥, 𝑒)) be the original prediction probability of our model for
he class 𝑙. comprehensiveness is defined as the changes in the model’s
redicted probabilities for the same class:

𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑝̂(𝑙|𝑓𝑝𝑟𝑜𝑚𝑝𝑡(𝑥, 𝑒)) − 𝑝̂(𝑙|𝑓𝑝𝑟𝑜𝑚𝑝𝑡(𝑥∕𝑐, 𝑒)) (1)

higher comprehensiveness score reflects a more severe confidence drop
n the model when removing the linguistic cues, which implies that
he removed rationales are more influential in making the prediction.
herefore, the model with a higher comprehensiveness score tends to
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Fig. 2. Comprehensiveness and sufficiency demonstrations. 𝑥 is the input sentence, 𝑒 is the concept of interest, 𝑐 is the assertion semantic cue, 𝑠 is the assertion scope containing
he cue phrase and the objects it applies to.
[

s

ocus on the linguistic cues more heavily when making the prediction,
ndicating better adherence to human rationales.

ufficiency. A linguistic scope contains the semantic operator (i.e., cue
hrase) and the objects it applies to [27]. For example, in the sentence
‘Right middle lobe abnormalities suggest airways disease rather than
acterial pneumonia’’, the preposition ‘‘rather than’’ affects the inter-
retation of ‘‘bacterial pneumonia’’ instead of ‘‘airways disease’’, since
‘airways disease’’ is not within its semantic scope. sufficiency is defined
o evaluate to what degree the linguistic scopes are sufficient for our
odel to make a correct prediction. Denote 𝑠 as the linguistic scope of
he assertion in sentence 𝑥, and sufficiency can be formulated as:

𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑝̂(𝑙|𝑓𝑝𝑟𝑜𝑚𝑝𝑡(𝑥, 𝑒)) − 𝑝̂(𝑙|𝑓𝑝𝑟𝑜𝑚𝑝𝑡(𝑠, 𝑒)) (2)

he sufficiency score can be used to imply a model’s capability of
rasping the sufficient rationales from the text: a lower sufficiency score
uggests that the model is more capable of making correct predic-
ions by solely using the assertion scopes, hence a better capability of
apturing sufficient features from the unstructured text.

IME-based explanations. LIME is a local interpretability model that can
xplain the predictions of any classifier. To obtain the explanations
f a black-box model which has a complex decision function f, LIME
amples instances, acquires predictions using f, and assigns continuous
importance scores to tokens by the proximity to the instance being
explained [31]. For example, in the sentence ‘‘Findings suggesting viral
or reactive airway disease’’, LIME assigns an importance score 0.52
to the token ‘‘suggesting’’ and 0.24 to the token ‘‘or’’ to explain the
Possible assertion of ‘‘airway disease’’. In this study, we converted the
soft importance scores into discrete rationales by taking the top−𝑛
values. We set 𝑛 to 1 and 5, given the fact that the ground truth human
rationales are short in length. We counted a token as a true positive if it
overlaps with any ground truth cue words; otherwise, a false positive.
We used these definitions to measure the token-level precision, recall,
and F-1 score. A higher F-1 score implies a better agreement of the
model rationales with the human rationales, hence a more trustworthy
model.

2.5. Experimental settings

There are various pre-trained LMs available for prompt-based learn-
ng, and we selected the BioBERT [33] which was additionally pre-
trained on discharge summaries and further fine-tuned on the i2b2
2010 training data [4]. AdamW optimizer [34] and weighted Cross-
Entropy loss were adopted. We used a learning rate of 10−6, batch size
4

of 8, and 10 epochs of training with Early-Stopping enabled to prevent
overfitting. Intel Core i9-9960X 16 cores processor, NVIDIA Quadro
RTX 5000 GPU and a memory size of 128G were used in this work.
Following the i2b2 2020 challenge task, we used the precision, recall,
F-1, and micro F-1 (for multi-class) to evaluate the model performance.

3. Results and discussions

3.1. Assertion classification

3.1.1. Evaluation on the i2b2 2010 dataset
We selected the best-performed models in the i2b2 2010/VA chal-

lenge [24] as our baseline models, including Roberts et al. [8], Jiang
et al. [9], Demner-Fushman et al. [10], Clark et al. [7], de Bruijn et al.
11].
We also compared our model with a feature-based Logistic Regres-

ion model and a fine-tuned ClinicalBERT model [33]. Table 3 shows
that our proposed prompt model outperformed baseline methods by a
large margin in terms of micro F-1 (> 1.8%). The BERT model achieved
the second-best micro F-1 of 0.936. However, it failed to classify the
few-shot classes, such as Conditional and Not Associated. In contrast,
our prompt model boosted the classification performances of almost
all classes, especially those few-shot ones, presenting a notable 1.85%
improvement in the Hypothetical class and a 1.4% improvement in
the Conditional class, demonstrating its superior capability of few-shot
learning. We also noticed that compared to Demner-Fushman et al.
[10], our prompt model reported a 9.6% lower F-1 in the Possible class.

The detailed class-wise precision and recall scores can be found in
Table B.2 in Appendix A. We observed drastic improvements in the
recall scores in most classes, except for a 2.5% drop in the Present class.
The tremendous recall boosts in the few-shot classes were particularly
notable, 42% for Conditional and 11.7% for Not Associated. It is notice-
able that there was a 4% increase on the precision score of Present,
but a 0.2%–63.2% precision drop was also observed in other classes.
The improved recall scores showed our model’s superior capability
of identifying false negatives over state-of-the-art methods, which is
critical in clinical practices.

We looked at some instances in the Possible class where our model
failed to make correct predictions (Table 4, cases 1–3). In cases 1 and 2,
our prompt model was not able to identify the possibleness reflected by
the mentions of ‘‘consistent with’’, mistakenly classifying the concepts

to be Present. In case 3, our model sensed the hypothesis from the
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Table 3
Results on the i2b2 2010 dataset. The best scores are bolded. * - the numbers were reported in the i2b2 2010/VA challenge [24], and were
not directly comparable with our model. ⋄ - the numbers are computed based on the reported confusion matrices from the original paper, and
were not directly comparable with our model.
Model Present Absent Hypothetical Possible Conditional Not Associated micro F-1

Logistic Regression 0.900 0.842 0.833 0.464 0.471 0.596 0.850
Roberts et al. [8]* 0.962 0.947 0.895 0.684 0.423 0.861 0.928
Jiang et al. [9]* 0.960 0.954 0.904 0.666 0.391 0.863 0.931
Demner et al. [10]⋄ 0.957 0.940 0.626 0.859 0.384 0.835 0.933
Clark et al.[7]* 0.958 0.937 0.890 0.630 0.422 0.869 0.934
de Bruijin et al. [11]⋄ 0.959 0.942 0.884 0.643 0.263 0.824 0.936
BERT model 0.959 0.955 0.902 0.760 0.000 0.000 0.936
Prompt model 0.971 0.968 0.921 0.763 0.485 0.875 0.954
Table 4
Error cases. Concepts are italicized.
1. This was consistent with scar.
2. Examination revealed an apicovaginal lesion consistent with recurrent tumor.
3. Over the next several days the patient remained in the hospital to reassess for recurrent pleural effusion.
4. When her pacemaker was in a sinus rhythm without a beta blocker, she had significant angina.
5. The patient will have these symptoms when the eyes are closed.
6. She could not walk a few yards without developing symptoms.
7. A question of a SULFA allergy.
Table 5
Results of three-class assertion classification. The best scores are bolded.
Dataset Model Present Absent Possible micro F-1

i2b2 2010 Logistic Regression 0.926 0.866 0.468 0.888
RadText [35] 0.897 0.706 0.420 0.839
BERT model [4] 0.977 0.967 0.756 0.964
Prompt model 0.980 0.975 0.769 0.966

i2b2 2012 Logistic Regression 0.921 0.782 0.548 0.874
RadText [35] 0.898 0.607 0.348 0.829
BERT model [4] 0.955 0.866 0.652 0.924
Prompt model 0.956 0.875 0.656 0.927

BioScope Logistic Regression 0.945 0.780 0.720 0.877
RadText [35] 0.836 0.631 0.432 0.735
BERT model [4] 0.951 0.835 0.732 0.892
Prompt model 0.966 0.823 0.811 0.912

MIMIC-III Logistic Regression 0.899 0.846 0.454 0.855
RadText [35] 0.880 0.700 0.420 0.816
BERT model [4] 0.951 0.937 0.621 0.927
Prompt model 0.950 0.933 0.662 0.927

mention of ‘‘to reassess for’’, hence classifying the ‘‘recurrent pleural
effusion’’ to be Hypothetical.

We also looked at some error cases in the few-shot Conditional
lass ( Table 4, cases 4–7). In cases 4 and 5, there are certain condi-
ions described in the clause following ‘‘when’’, only under which the
oncepts-of-interest hold, but our model failed to identify the condi-
ional prerequisites and mistakenly classified them into Present. In case
6, ‘‘symptoms’’ is conditional on ‘‘walk a few yards’’, but our prompt
method classified it as Absent. The double negative ‘‘could not walk a
few yards’’ and ‘‘without developing symptoms’’ makes it more difficult
to classify the assertion of ‘‘symptoms’’. In case 7, ‘‘allergy’’ is consid-
ered to be Conditional itself according to the annotation guideline, but
our model classified it to be Possible.

3.1.2. Evaluations on external datasets
We further evaluated our model on five external datasets. We

selected several baseline models for comparison, including one feature-
based Logistic Regression model, two rule-based systems (NegEx [5]
and RadText [35]), and a BERT-based model [4]. The class-wise per-
formance comparisons in Tables 5 and 6 show that our model demon-
strated the best performances in almost all classes on all test sets. In
Table 5, compared to the rule-based system RadText, drastic improve-
ments can be observed on nearly all datasets. Compared to van Aken
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et al. [4], our prompt-based method achieved a noticeable 2% micro
Table 6
Results of two-class assertion classification. The best scores are bolded.
Dataset Model Present Absent micro F-1

i2b2 2010 Logistic Regression 0.926 0.866 0.911
NegEx [5] 0.925 0.836 0.906
RadText [35] 0.897 0.706 0.858
BERT model [4] 0.977 0.967 0.975
Prompt model 0.980 0.975 0.978

i2b2 2012 Logistic Regression 0.921 0.782 0.893
NegEx [5] 0.937 0.815 0.917
RadText [35] 0.898 0.607 0.853
BERT model [4] 0.955 0.866 0.940
Prompt model 0.956 0.875 0.943

BioScope Logistic Regression 0.945 0.780 0.914
NegEx [5] 0.879 0.621 0.847
RadText [35] 0.836 0.631 0.789
BERT model [4] 0.951 0.835 0.928
Prompt model 0.966 0.823 0.938

MIMIC-III Logistic Regression 0.899 0.846 0.883
NegEx [5] 0.908 0.863 0.896
RadText [35] 0.880 0.700 0.890
BERT model [4] 0.951 0.937 0.947
Prompt model 0.950 0.933 0.950

NegEx Logistic Regression 0.926 0.821 0.889
NegEx [5] 0.983 0.931 0.972
RadText [35] 0.817 0.530 0.734
BERT model [4] 0.926 0.815 0.890
Prompt model 0.940 0.821 0.938

Chia Logistic Regression 0.693 0.540 0.609
NegEx [5] 0.763 0.612 0.705
RadText [35] 0.703 0.430 0.609
BERT model [4] 0.763 0.619 0.708
Prompt model 0.772 0.652 0.724

F-1 improvement on the BioScope dataset and reported comparable
performances on other datasets. In Table 6, Chapman et al. [5] outper-
formed other methods on the NegEx dataset, but our prompt method
showed superior or comparable results to other baselines, presenting a
0.3%–1.6% improvement in micro F-1 on the remaining test sets.

The comparisons of micro F-1 scores and the detailed class-wise
performance comparisons of MIMIC-III subsets can be found in Ta-
bles B.4 and B.5 in Appendix, respectively. Our proposed model had
a slightly lower micro F-1 score than van Aken et al. [4] on the Physi-
cian Letters subset, but performed better on the other three subsets.
The external evaluations showcased the prompt method’s outstanding
generalizability to unseen data.
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Comparing Tables 3, 5, and 6, we also observed that the perfor-
ance improvement of our prompt model on the 3-type or 2-type
ssertion classification was not as substantial as that on the 6-type
lassification. One potential reason is that the class distribution of
resent, Absent, and Possible is more balanced than other assertion types.
or example, there are only 73 and 89 training instances for Condi-
tional and Not Associated assertion types in the i2b2 2010 training set.
The comparison demonstrates that prompt-based learning can achieve
better and more robust performances than the standard fine-tuning
learning, especially for the few-shot learning task. This capability might
be useful in the clinical domain, where we often have a few training
examples for a new task. In such a situation, prompting may offer a
feasible alternative methodology.

3.2. Measuring rationality

We then evaluated the models’ rationality. Both the annotated
linguistic scope and cue information of the concepts are required to
compute the comprehensiveness and sufficiency. We utilized two datasets
for measuring rationality, BioScope and an annotated corpus from i2b2
2010 dataset (the annotation details can be found in Appendix A). Note
that both datasets only annotated the scopes and cues for the Possible
and Absent concepts.

Fig. 3(a) compares the comprehensiveness scores of the Logistic Re-
gression model, fine-tuned BERT model and our prompt-based model
on the BioScope dataset. Here, we hypothesize that removing the
linguistic cues ought to decrease the model’s confidence in classifying
assertions. The results show that the confidence in predicting Absent
of the prompt model dropped by 79.03% (79.03% comprehensiveness),
while the confidence of the BERT model dropped by 69.09% (69.09%
comprehensiveness) and the confidence of the Logistic Regression model
only dropped by 14.99% (14.99% comprehensiveness). Similarly, the
onfidence in predicting Possible of the prompt model dropped by
8.84% (48.84% comprehensiveness), while the confidences of the BERT
odel and the Logistic Regression model dropped by 42.52% (42.52%
omprehensiveness) and 30% (30% comprehensiveness) respectively. Here
s one example, ‘‘Increase in markings centrally with streaky disease
n lingula that has the appearance most suggestive of atelectasis, less
ikely early infiltrate’’. After removing the linguistic cue ‘‘suggestive’’
rom the input, the Logistic Regression model’s confidence of classi-
ying ‘‘atelectasis’’ as Possible only dropped by 28.6%, the fine-tuned
ERT model’s confidence dropped by 62.3%, while our prompt model’s
onfidence dropped by 98.9%. Fig. 3(c) compares the comprehensive-
ness scores on the annotated i2b2 2010 corpus. The prompt model is
observed to yield a higher comprehensiveness than other models. The re-
sults prove that the prompt model is better at capturing comprehensive
features that are aligned with human rationales to make predictions.

Fig. 3(b) compares the sufficiency scores of the Logistic Regression
model, the fine-tuned BERT model and our prompt-based model on
the BioScope dataset. Here, we hypothesize that the model should be
able to come to a similar prediction (i.e., a smaller confidence drop)
using only the linguistic scopes. The results show that the prompt
model’s confidence in predicting Absent dropped by 19.31% (19.31%
sufficiency), while the confidences of the BERT model and the Logistic
Regression model dropped by 19.89% (19.89% sufficiency) and 20.74%
(20.74% sufficiency) respectively. Similarly, the confidence in predict-
ing Possible of the prompt model dropped by 4.20% (4.20% sufficiency),
while the confidences of the BERT model and the Logistic Regression
model dropped by 8.98% (8.98% sufficiency) and 14.72% (14.72%
sufficiency) respectively. Here we also look at one example, ‘‘Scattered
perihilar air space opacity with questionable left lower lobe opacity’’.
When only using the linguistic scopes ‘‘questionable left lower lobe
opacity’’ as the input sentence, the fine-tuned BERT model’s confidence
of classifying ‘‘lower lobe opacity’’ as Possible dropped drastically by
6

8.2%, the Logistic Regression model’s confidence dropped by 6.7%,
while our prompt model’s confidence dropped by 0.4%, almost un-
changed. Fig. 3(d) compares the sufficiency scores on the i2b2 2010
corpus. We can observe that the prompt model reports a smaller con-
fidence drop than the other two models when using only the linguistic
scope information. The results suggest that the linguistic scopes are
more adequate for a prompt model to make a prediction than for the
BERT model and the feature-based machine learning model.

Fig. 3(e) compares the top-1 token-level F-1 scores of the Logistic
Regression model, the fine-tuned BERT model and our prompt-based
model on the BioScope dataset. The results show that the BERT model
and the prompt model were comparable in terms of the Absent class
F-1 scores, while the Logistic Regression model reported a much lower
Absent class F-1 score. Our prompt-based model reported an F-1 score
of 0.6705 in the Possible class, which was 14.95% higher than that of
the fine-tuned BERT model. Fig. 3(f) compares the top-5 token-level F-1
scores the Logistic Regression model, the fine-tuned BERT model and
our prompt-based model on the BioScope dataset. Our prompt-based
model reported F-1 scores of 0.4468 and 0.4728, respectively, in the
Absent class and Possible class, which were respectively 11.36% and
12.42% better than that of the fine-tuned BERT model, 21.34% and
20.25% better than that of the Logistic Regression model. The results
imply a better rationale agreement between the prompt-based model
and human beings, demonstrating superior model trustworthiness when
compared to the BERT model and the feature-based machine learning
model.

In summary, the evaluations show that our prompt method has
better rationality for its faithfulness to the human rationales, and it
is more trustworthy in terms of its rationale agreement with human
beings.

3.3. Ablation study

We conducted several ablation studies to understand the effects of
prompt engineering, label mapping and LM backbones in prompt-based
learning.

3.3.1. Prompt engineering
We explored three types of prompt templates to evaluate the impact

of prompt engineering (Table 7). Note that we kept all other model
elements identical while the prompt template was the only variable
here. P1 is to ask LMs to fill the assertion words in the [MASK] token
based on their impressions of the whole sentence. P2 provides the
concept-of-interest together with a list of potential assertion types. It
then asks LMs to choose one from the list. P3 provides LMs with the
concept and asks LMs to fill in the assertion words. The evaluation
was conducted on the i2b2 2010 test set. According to the results, P3
performed the best (a micro F-1 of 0.954), 0.5% higher than P1, and
0.4% higher than P2.

3.3.2. Label mapping
In this study, several label mapping approaches were explored

(Table 8). M1 maps a single-letter answer to a classification label in a
one-to-one manner. For example, the single-letter answer ‘‘P’’ maps to
the label Present. M2 also does the mapping in a one-to-one fashion,
but instead of using a single letter as the answer, it uses a single
word. For example, the answer ‘‘positive’’ maps to the Present label.
M3 further extends M2 to a single-word many-to-one mapping. For
example, both the answers ‘‘positive’’ and ‘‘present’’ can be mapped
to the Present label. Among the three mapping approaches, M1 and
M2 gave comparable performances, but M3 showed a 0.5% relative
performance drop. The detailed mappings can be found in Table B.6

in Appendix A.
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Fig. 3. Comparisons of model rationality. (a) comprehensiveness comparisons on BioScope. A higher comprehensiveness score implies a more important role the linguistic cues play in
the model’s prediction. (b) sufficiency comparisons on BioScope. A lower sufficiency score implies the model’s better capability of capturing sufficient features. (c) comprehensiveness
comparisons on i2b2 2010. (d) sufficiency comparisons on i2b2 2010. (e) Top-1 token-level F-1 comparisons on BioScope. A higher score implies the highest-scored model rationale
oken has a better agreement with the ground truth rationales. (f) Top-5 token-level F-1 comparisons on BioScope. A higher score implies that the top-5 model rationale tokens
re better aligned with the ground truth rationales.
Table 7
Micro F-1 comparisons of different prompt templates.
Prompt Template micro F-1

P1: [MASK]. 0.949
P2: Is [E] concept [/E] present, absent, possible, hypothetical, conditional or N/A? [MASK]. 0.950
P3: [E] concept [/E] is [MASK]. 0.954
Table 8
Micro F-1 comparisons of different answer mappings.
Label Mapping micro F-1

M1: Single-letter one-to-one mapping 0.954
M2: Single-word one-to-one mapping 0.954
M3: Single-word many-to-one mapping 0.949

3.3.3. Backbone models

Our prompt-based method employs a LM as the backbone. Hence
the model performance can vary when using different pre-trained LMs.
7

To explore the impact of backbone models, we selected four pre-trained
LMs, including BERT [36], BlueBERT [37], ClinicalBERT [33], and
BioBERT+Discharge Summaries model [4]. We trained four prompt-
based models on the assertion classification task, and compared their
micro F-1 scores ( Table 9). BioBERT+Discharge Summaries model
performed 0.6% higher than the BERT model, 0.1% higher than the
BlueBERT model and ClinicalBERT model.

In the ablation studies, though only three prompt templates and
three label mapping approaches were evaluated, the reported 0.5%
micro F-1 differences were not trivial. This implied that the impor-
tance of appropriate prompt engineering and answer designing should
not be neglected. A more sophisticated prompt engineering (e.g., soft
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Table 9
Micro F-1 comparisons of the prompt model using different
backbone models.
Backbone Model micro F-1

BERT 0.948
BlueBERT 0.953
ClinicalBERT 0.953
BioBERT+Discharge summaries 0.954

prompt templates [38]) and label mapping design (e.g., soft answer
tokens [39]) in building the clinical NLP application could potentially
further improve the outcome. In the ablation study of backbone models,
performance differences were identified among different LMs, and it is
noticeable that BERT models fine-tuned on clinical notes or medical
corpus demonstrated a better performance than the base BERT model.

4. Conclusions

In this work, we introduced the prompt-based method to the as-
sertion classification task. Noticeable improvements were observed in
the evaluations of six datasets, proving the effectiveness of prompting
methods, especially in few-shot learning, compared to conventional
supervised or fine-tuning methods. By introducing two rationale faith-
fulness metrics to measure our model’s rationality, we showed that
our model demonstrated better adherence and faithfulness to human
rationales. The evaluations of LIME-based explanations implied a bet-
ter rationale alignment between our prompt-based model and human
beings, which further proved better trustworthiness of our model.
Through ablation studies, we showed the importance of prompt en-
gineering and label mapping but found no significant performance
differences using variant backbones. Compared to conventional ma-
chine learning-based systems, our method requires less exhausting
feature engineering; compared to BERT-based systems, our method fea-
tures better classification performances and explainability; compared to
traditional rule-based systems, our method is way less labor-intensive
while possessing a more efficient inference capability. This enables our
methods to better assist healthcare professionals to quickly understand
crucial clinical information from clinical notes in several applications.
For example, our prompt-based method can be incorporated with ra-
diology report analysis for efficient assertion classification. Negative
and uncertain assertions of medical findings are frequent in radiology
reports [40]. Since they may indicate the absence or uncertainty of find-
ings mentioned in the radiology report, identifying them is as important
as identifying those positive ones. In our previous work, we developed
NegBio [6,41]. It conducts pattern definition utilizing universal depen-
dencies and graph traversal search using subgraph matching, so that
the scope for negation/uncertainty is no longer restricted to the fixed
word distance [42]. While NegBio has been widely used to harvest
labels from radiology reports and construct chest X-ray databases such
as NIH Chest X-ray and MIMIC, it is often impractical to exhaustively
design high-quality patterns necessary for a new dataset, let alone to
accommodate a new note type. Our prompt-based method provides an
opportunity for high-performance assertion classification since it was
trained on a diverse set of note types that covers various writing styles.
In the future, we plan to integrate our model into clinical NLP pipelines,
such as RadText [35], cTAKES [43], and medspaCy [44].

One limitation of our work is that the manual design of prompts
and answers could inject bias into evaluations. Also, manually defining
prompt templates may fail to discover optimal prompts. Automatic
prompt generation methods and automated answer space searches can
be further explored. Though our model demonstrated noticeable im-
provements in recall scores, we cannot neglect the performance drops
in the precision scores. When evaluating the rationality of our model,
we masked out some parts of the input sentence, which produced
incomplete sentences. Such a perturbation could lead to several issues.
8

Table B.1
Statistics of the MIMIC-III assertion dataset.
Note type Present Absent Possible Total

Discharge summaries 2,610 980 250 3,840
Nursing letters 293 59 14 366
Physician letters 204 66 34 304
Radiology reports 285 138 67 490

For example, the corrupted sentence could fall off the distribution of the
training data [45]. Furthermore, there are ongoing discussions about
LIME’s stability and robustness issues, that LIME can be stable when
explaining linear models, but this may not be the case for non-linear
models [46]. More sophisticated post-hoc explanation methods can be
explored. We hope our results could encourage future work to ad-
dress these limitations to further explore the potential of prompt-based
learning.
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Appendix A. Annotating rationales of the i2b2 2010 dataset

We randomly sampled 50 instances from the i2b2 2010 dataset,
34 of which were Absent assertions and 16 were Possible assertions.
Two independent annotators annotated the cues and scopes of these 50
instances following the annotation guidelines of BioScope. Cases of the
agreement were accepted without further checking, while differences
between the two were resolved by a third expert, yielding the gold stan-
dard labeling of the corpus. After removing the ambiguous instances,
there were 31 Absent assertions and 15 Possible assertions left. We
measured the consistency level of the annotations using inter-annotator
agreement analysis. We defined the inter-annotator agreement rate as
the overall F-measures of one annotation, treating the second one as the
gold standard [47]. Precision is the number of correct answers divided
by the total number of answers a system has predicted. Recall is the
number of correct answers divided by the total number of answers in
the gold standard. We report high inter-annotator agreements (0.9787
for cue annotations and 0.9375 for scope annotations).

Appendix B
See Tables B.1–B.6.
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Table B.2
Results of (P)recision, (R)ecall, and F-1 for each assertion type on the i2b2 2010 dataset. The best scores are bolded. * - the numbers are from original paper, and were not directly
comparable with our model. ⋄ - the numbers are computed based on the reported confusion matrices from the original paper, and were not directly comparable with our model.
Model Present Absent Hypothetical

P R F-1 P R F-1 P R F-1

Logistic Regression 0.921 0.883 0.900 0.809 0.882 0.842 0.844 0.810 0.833
Roberts et al. [8]* 0.944 0.980 0.962 0.959 0.934 0.947 0.921 0.870 0.895
Jiang et al. [9]* 0.943 0.977 0.960 0.962 0.946 0.954 0.939 0.872 0.904
Demner et al. [10]⋄ 0.932 0.983 0.957 0.958 0.923 0.940 0.815 0.509 0.626
Clark et al. [7]* 0.937 0.980 0.958 0.955 0.920 0.937 0.924 0.859 0.890
de Bruijin et al. [11]⋄ 0.938 0.981 0.959 0.951 0.934 0.942 0.909 0.861 0.884
BERT model 0.936 0.983 0.959 0.967 0.943 0.955 0.906 0.898 0.902
Prompt-based 0.984 0.958 0.971 0.965 0.971 0.968 0.907 0.935 0.921

Possible Conditional Not Associated

Logistic Regression 0.441 0.482 0.464 0.462 0.487 0.471 0.501 0.735 0.596
Roberts et al. [8]* 0.816 0.589 0.684 0.729 0.298 0.423 0.915 0.814 0.861
Jiang et al. [9]* 0.761 0.593 0.666 0.714 0.270 0.391 0.962 0.782 0.863
Demner et al. [10]⋄ 0.937 0.792 0.859 0.759 0.257 0.384 0.917 0.766 0.835
Clark et al. [7]* 0.772 0.532 0.630 0.803 0.287 0.422 0.983 0.780 0.869
de Bruijin et al. [11]⋄ 0.818 0.530 0.643 0.963 0.152 0.263 0.955 0.724 0.824
BERT model 0.818 0.709 0.760 0.000 0.000 0.000 0.000 0.000 0.000
Prompt-based 0.709 0.825 0.763 0.331 0.907 0.485 0.824 0.931 0.875
Table B.3
Results of (P)recision, (R)ecall, and F-1 on the external evaluation datasets.
Dataset Model Present Absent Possible

P R F-1 P R F-1 P R F-1

i2b2 2010 Logistic Regression 0.934 0.918 0.926 0.835 0.900 0.866 0.490 0.447 0.468
NegEx [5] 0.881 0.975 0.925 0.885 0.792 0.836 – – –
RadText [35] 0.859 0.939 0.897 0.792 0.637 0.706 0.599 0.323 0.420
BERT model [4] 0.968 0.986 0.977 0.969 0.966 0.967 0.874 0.666 0.756
Prompt-based 0.975 0.985 0.980 0.973 0.976 0.975 0.835 0.712 0.769

i2b2 2012 Logistic Regression 0.944 0.899 0.921 0.725 0.847 0.782 0.508 0.595 0.548
NegEx [5] 0.913 0.962 0.937 0.779 0.855 0.815 – – –
RadText [35] 0.881 0.916 0.898 0.627 0.588 0.607 0.454 0.282 0.348
BERT model [4] 0.959 0.951 0.955 0.831 0.905 0.866 0.693 0.616 0.652
Prompt-based 0.961 0.951 0.956 0.846 0.906 0.875 0.671 0.641 0.656

BioScope Logistic Regression 0.904 0.989 0.945 0.724 0.847 0.780 0.919 0.592 0.720
NegEx [5] 0.784 0.999 0.879 0.658 0.587 0.621 – – –
RadText [35] 0.804 0.871 0.836 0.495 0.870 0.631 0.912 0.283 0.432
BERT model [4] 0.911 0.994 0.951 0.766 0.947 0.835 0.985 0.583 0.732
Prompt-based 0.941 0.991 0.966 0.752 0.908 0.823 0.961 0.702 0.811

MIMIC-III Logistic Regression 0.920 0.879 0.899 0.782 0.921 0.846 0.507 0.411 0.454
NegEx [5] 0.867 0.954 0.908 0.855 0.871 0.863 – – –
RadText 0.819 0.950 0.880 0.847 0.597 0.700 0.609 0.321 0.420
BERT model [4] 0.937 0.965 0.951 0.929 0.945 0.937 0.775 0.518 0.621
Prompt-based 0.946 0.953 0.950 0.922 0.945 0.933 0.722 0.611 0.662

NegEx Logistic Regression 0.985 0.874 0.926 0.725 0.945 0.821 – – –
NegEx [5] 0.977 0.988 0.983 0.951 0.912 0.931 – – –
RadText [35] 0.901 0.748 0.817 0.434 0.680 0.530 – – –
BERT model [4] 0.993 0.867 0.926 0.700 0.976 0.815 – – –
Prompt-based 0.975 0.907 0.940 0.747 0.912 0.821 – – –

Chia Logistic Regression 0.606 0.810 0.693 0.798 0.408 0.540 – – –
NegEx [5] 0.639 0.946 0.763 0.896 0.465 0.612 – – –
RadText [35] 0.570 0.916 0.703 0.803 0.293 0.430 – – –
BERT model [4] 0.640 0.944 0.763 0.915 0.467 0.619 – – –
Prompt-based 0.669 0.913 0.772 0.894 0.513 0.652 – – –
Table B.4
Micro F-1s on the MIMIC-III assertion dataset.
Model Discharge Nursing Physician Radiology

summaries letters letters reports

Logistic Regression 0.865 0.820 0.805 0.837
NegEx [5] 0.877 0.915 0.783 0.767
RadText [35] 0.813 0.844 0.799 0.822
BERT model [4] 0.926 0.970 0.911 0.912
Prompt model 0.927 0.967 0.882 0.927
9
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Table B.5
Results of (P)recision, (R)ecall, and F-1 on the MIMIC-III assertion dataset. The best scores are bolded.
Note type Model Present Absent Possible

P R F-1 P R F-1 P R F-1

Discharge Logistic Regression 0.923 0.890 0.906 0.792 0.917 0.850 0.521 0.396 0.450
summaries NegEx [5] 0.876 0.961 0.917 0.881 0.878 0.879 – – –

RadText [35] 0.817 0.947 0.877 0.836 0.584 0.688 0.608 0.316 0.416
BERT model [4] 0.941 0.961 0.951 0.920 0.948 0.934 0.727 0.480 0.578
Prompt-based 0.949 0.948 0.949 0.916 0.951 0.933 0.678 0.580 0.625

Nursing Logistic Regression 0.916 0.860 0.887 0.639 0.780 0.702 0.105 0.143 0.121
letters NegEx [5] 0.931 0.966 0.948 0.839 0.881 0.860 – – –

RadText [35] 0.875 0.956 0.914 0.719 0.390 0.506 0.429 0.429 0.429
BERT model [4] 0.980 0.983 0.981 0.966 0.949 0.957 0.786 0.786 0.786
Prompt-based 0.983 0.980 0.981 0.950 0.966 0.958 0.714 0.714 0.714

Physician Logistic Regression 0.912 0.814 0.860 0.628 0.952 0.756 0.682 0.469 0.556
letters NegEx [5] 0.809 0.912 0.857 0.703 0.788 0.743 – – –

RadText [35] 0.781 0.980 0.870 0.897 0.530 0.667 0.889 0.235 0.372
BERT model [4] 0.908 0.971 0.938 0.934 0.864 0.898 0.880 0.647 0.746
Prompt-based 0.895 0.956 0.924 0.887 0.833 0.859 0.875 0.618 0.724

Radiology Logistic Regression 0.887 0.856 0.871 0.876 0.971 0.921 0.516 0.478 0.496
reports NegEx [5] 0.767 0.902 0.829 0.768 0.862 0.812 – – –

RadText [35] 0.821 0.951 0.881 0.923 0.783 0.847 0.558 0.358 0.436
BERT model [4] 0.886 0.979 0.930 0.978 0.957 0.967 0.900 0.537 0.673
Prompt-based 0.923 0.968 0.945 0.970 0.942 0.956 0.825 0.702 0.758
Table B.6
Label mappings.

Present Absent Hypothetical

M1 P N H
M2 Present Absent Hypothetical
M3 P, Positive, Present N, Negative, Absent H, Hypothetical, Imaginary

Possible Conditional Not Associated

M1 U C O
M2 Possible Conditional Not-Associated
M3 U, Possible, Uncertain C, Conditional, Consequent O, Not-Associated, Irrelevant
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