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Abstract—Kinematic motion analysis is widely used in health-
care, sports medicine, robotics, biomechanics, sports science,
etc. Motion capture systems are essential for motion analysis.
There are three types of motion capture systems: marker-based
capture, vision-based capture, and volumetric capture. Marker-
based motion capture systems can achieve fairly accurate results
but attaching markers to a body is inconvenient and time-
consuming. Vision-based, marker-less motion capture systems are
more desirable because of their non-intrusiveness and flexibility.
Volumetric capture is a newer and more advanced marker-
less motion capture system that can reconstruct realistic, full-
body, animated 3D character models. But volumetric capture has
rarely been used for motion analysis because volumetric motion
data presents new challenges. We propose a new method for
conducting kinematic motion analysis using volumetric capture
data. This method consists of a three-stage pipeline. First, the
motion is captured by a volumetric capture system. Then the
volumetric capture data is processed using the Iterative Closest
Points (ICP) algorithm to generate virtual markers that track
the motion. Third, the motion tracking data is imported into
the biomechanical analysis tool OpenSim for kinematic motion
analysis. Our motion analysis method enables users to apply
numerical motion analysis to the skeleton model in OpenSim
while also studying the full-body, animated 3D model from
different angles. It has the potential to provide more detailed
and in-depth motion analysis for areas such as healthcare, sports
science, and biomechanics.

Index Terms—Kinematic Motion Analysis, Volumetric Cap-
ture, Motion Capture

I. INTRODUCTION

Computer-assisted human motion analysis is used in many
areas such as healthcare, sports medicine, robotics, biome-
chanics, sports science, etc. For example, gait analysis can be
used to detect motion variations for evaluating the evolution
of neurodegenerative diseases [1]. Motion analysis is widely
used in sports medicine [2], [3] and sports science [4], [S].
Pose estimation is also an important part of computer vision
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Motion analysis relies on the data from motion capture
systems. There are three types of motion capture systems:
marker-based systems, vision-based systems, and volumetric
capture systems. Marker-based systems (e.g., Optitrack, Vicon,
Qualisys) can generate highly accurate motion tracking data
[7] but attaching markers to human bodies can be inconvenient
and time-consuming.

Vision-based motion capture systems (e.g., Theia, Deepmo-
tion, Captury, Simi) use computer vision to identify motion
from images or videos. Since the motion capture subjects do
not need to wear markers or any special suits, they can move
more naturally, and the vision-based motion capture systems
can be used in the field to capture live performances. The main
drawback of vision-based motion capture systems is that they
are not as accurate as the marker-based systems. But recent
advances in computer vision and machine learning, such as
OpenPose [8], has led to significant interest in using vision-
based motion capture system for motion analysis [6], [9], [10].

Volumetric motion capture systems (e.g., 4DViews, Mi-
crosoft Mixed Reality Capture Studios, Sony, EF EVE, Volo-
grams, Tetavi) go a step further than the vision-based systems
by generating textured, and animated 3D character models
instead of skeleton models [11]. The animated 3D character
models provide much more details than the skeleton models
and preserve the subtleties of the motions. In addition, the 3D
models can be imported into 3D graphics tools such as Maya,
Blender, Unity, or Unreal. Therefore, the 3D models can be
integrated into simulated 3D environments and viewed from
different angles.

Volumetric capture is relatively new and has been primarily
used for entertainment, broadcasting, advertisement, etc. Not
much work has been done in using volumetric capture for
motion analysis. Part of the reason is that volumetric motion
capture presents new challenges. Because there are no markers,
the locations of the joints need to be calculated from the
animated 3D models. Since we are dealing with 3D models,
image-based pose recognition technologies, such as OpenPose



[8], no longer apply. A new method for motion analysis is
needed.

In this paper, we propose a new method for conducting
kinematic motion analysis using volumetric capture data. This
method consists of a three-stage pipeline. First, the motion is
captured by a volumetric capture system. Then the volumetric
capture data is processed using the Iterative Closest Points
(ICP) algorithm [12], [13] to generate virtual markers that
track the motion in every time frame. Third, the motion
tracking data is imported into the biomechanical analysis tool
OpenSim [14], where the motion tracking data is closely
fitted with an anatomically correct skeleton model. The motion
analysis is conducted using OpenSim’s powerful kinematic
motion analysis tools.

Our motion analysis method offers unique benefits over
marker-based or vision-based motion capture systems. Users
can apply numerical motion analysis to the skeleton model
in OpenSim while also studying the full-body, animated 3D
model from different angles, leading to more detailed and in-
depth motion analysis. As volumetric motion capture systems
are more widely adopted, this work will benefit many areas
that rely on motion capture data for motion analysis, such as
healthcare, biomechanics, sports medicine, sports science, etc.

II. BACKGROUND AND RELATED WORK
A. Motion Analysis

Motion analysis can be classified into three categories [1]:
spatial-temporal motion analysis, kinematic motion analysis,
and kinetic motion analysis. Spatial-temporal analyses focus
on the motion’s distance, time, and velocity. Commonly used
features include step length, stride length, step width, step
time, stride time, stance time, swing time, cadence (steps
per minute), and step velocity (distance per second). These
parameters can be obtained via accelerometers, motion capture
systems, or computer vision technologies.

Kinematic motion analyses focus on rotations. The com-
monly used features include shoulder angle, elbow angle,
wrist angle, hip angle, knee angle, pelvic tilt, foot angle, etc.
These parameters can be obtained via motion capture systems,
computer vision technologies, and gyroscope. Our research
focuses on kinematic motion analysis.

Kinetic motion analyses focus on the forces that cause the
motion. Commonly used features include arm, hip, or knee
extension/flexion moment and power. These parameters can
be obtained via force plates, pressure sensors, or instrumented
walkways. We do not consider kinetic motion analysis in this
study.

B. Motion Capture

Before motion capture systems were invented, motion anal-
ysis depended on the manual tracking of motion in images
or videos. Manual motion tracking is still occasionally used
to provide the ground truth for evaluating motion capture
systems. Marker-based motion capture systems (e.g., Opti-
track, Vicon, Qualisys) have been around for a long time
and have achieved high motion tracking accuracy [4], [7].
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They are generally considered the current gold standard for
motion tracking and are often used as references for vision-
based motion capture systems. In marker-based motion capture
systems, specialty cameras or sensors track the motion of
markers attached to the motion capture subject. The output is
a skeleton model created by connecting these tracked markers.
The subjects of motion capture need to wear special suits, and
the markers may fall off during the motion capture. The most
accurate marker-based motion capture systems are expensive
and can only be used in a lab.

Vision-based, marker-less motion capture systems have also
been studied for a long time [15], [16]. A typical vision-
based motion capture system takes pictures or videos of
subjects, generates skeleton models by analyzing the pictures
or videos, and often superimposes the skeleton model onto the
original picture or video. Various motion analyses can then be
conducted with the skeleton model [6], [9], [10], [15]-[19].
Machine learning techniques can be used to identify different
poses [6], [10], [20]. In theory, vision-based motion capture
systems are more desirable than marker-based systems, but
low accuracy and reliability have prevented them from gaining
wide adoption. With the rise of machine learning [8] and better
camera technologies, the accuracy and reliability of vision-
based motion capture systems have improved significantly in
recent years and many commercial systems are available, such
as Theia, Deepmotion, Captury, and Simi. There have been a
number of reviews of recent advances in motion analysis using
vision-based motion capture systems [6], [9], [10], [17]-[19].

Volumetric capture (also called volumetric video or perfor-
mance capture) uses computer vision, computer graphics, and
advanced camera technologies to capture a moving character
and reconstruct it as an animated 3D model. [11], [21]-[29] As
in the vision-based systems, the motion capture subjects can
wear normal cloth, without any markers. While other types of
motion capture systems generate skeleton models, volumetric
capture systems generate either 3D mesh models or point
clouds, which can be imported into game engines, 3D anima-
tion tools, or other software for display or further processing.
In general, commercial volumetric capture systems, such as
4DViews and Microsoft Mixed Reality Capture Studios, use
an array of cameras to capture the motions. These systems
are expensive and can only be used in a lab. Recently, several
free mobile volumetric capture apps (e.g., Volograms, Tetavi)
have been released but their performance and feasibility are
still unclear.

Volumetric capture is still relatively new. So far, they have
primarily been used for entertainment, live broadcasting, film
and TV, advertisement, etc. Very little work has been done in
using volumetric captures for motion analysis. But volumetric
capture provides some advantages over other types of motion
capture systems. The 3D models generated by volumetric
captures not only preserve the small details of the motions
but also allow users to examine the motions from different
angles, enabling more in-depth motion analysis. However,
volumetric captures also creates new challenges for motion
analysis. Since there are no markers, the locations of the joints



need to be calculated based on the animated 3D model. Image-
based approaches, such as OpenPose [8], no longer apply.
There have been some previous works on generating skeleton
models from 3D geometry data, which is the reverse problem
of 3D skinning. For example, Zhu, et al. [30] proposed a
system to reconstruct subject-specific anatomy models from
point clouds. Kadlecek, et al. [31] built a template anatomical
model of an average male and then developed methods to
closely fit the template model to point clouds from 3D scans.
These previous works were designed primarily for computer
animation. We are solving a similar problem but focusing on
kinematic motion analysis. Therefore, we do not need the
complicated muscle models in Kadlecek, et al. [31]. Besides,
we deal with polygon mesh models rather than point clouds.

III. METHODOLOGY

A. Overview

Fig. 1. 4DViews Volumetric Capture Studio at Georgia State University
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Fig. 2. Overview of the proposed methodology

Our goal is to perform kinematic motion analysis on vol-
umetric motion capture data. This is achieved in three steps.
First, the movements of the subject are recorded using the
4DViews Volumetric Capture system (Fig. 1) [32]. The output
is an Alembic (.abc) animation file that contains an animated
3D character model.
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Second, the animation file is imported into Blender [33].
Using Blender’s Python API and the Iterative Closest Point
Alignment add-on [34], a program is developed to track the
motion of the animated character, generate alignment objects,
and calculate virtual marker positions. The output is a Track
Row Column (.trc) file that stores the positions of virtual
markers at different time steps. This is the same type of file
that a marker-based motion capture system would generate.

Third, the marker tracking data is imported into OpenSim
[14], an open-source biomechanical analysis software. An
anatomical skeleton model from OpenSim is aligned with the
imported marker tracking data through inverse kinematics,
resulting in an animated skeleton model. With OpenSim’s
built-in kinematic motion analysis functions, the angles of joint
flexion and extension can be calculated and visualized.

Fig. 2 gives an overview of this process. Fig. 3 shows the
difference between our method with volumetric capture and
motion analyses with other types of motion capture systems.

B. Volumetric Motion Capture

We used the 4DViews volumetric motion capture system
[32] in our lab (Fig. 1) to capture the motion. The output of
the system is a textured and animated 3D model (or models),
which can be stored in either the 4DViews format (.4ds) or
the Alembic format (.abc). The 4DViews file can be imported
into game engines Unity or Unreal, while the Alembic file can
be imported into 3D animation tools such as Maya, Blender,
Cinema 4D, etc. In our study, we used the Alembic files.

C. Motion Tracking

Using Blender’s Python API and the Iterative Closest Point
Alignment add-on [34], a program is developed to track the
motion of the animated character. We chose Blender because
it is open source and is one of the major 3D modeling
and animation tools for processing 4DViews data. Blender’s
powerful GUI and Python API make it easier to process
volumetric capture data than developing a separate program
ourselves. Fig. 4 shows the 3D animated model after it is
imported into Blender.

Once the volumetric capture data (an Alembic file) is
imported into Blender, the program generates a set of align-
ment objects representative of different body regions. These
alignment objects are simple 3D shapes that can be scaled and
altered to match the specific motion capture subject (Fig. 5).
It requires the up-front manual work of placing the alignment
objects onto their respective positions on the body. This is why
they are called alignment objects. The initial manual alignment
works best for a pose where body parts are not overlapping,
and each region is easily defined (such as a T-pose or A-pose).
Ideally, the subject would be asked to take one of these poses
at the beginning of the recording session. This initial step is
the only manual operation in the motion tracking process. The
rest of the process is automated.

Utilizing Blender’s Boolean operator, the program generates
the intersection of the alignment objects and the base mesh,
transforming alignment objects to represent their respective
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Fig. 3. A comparison of motion analysis using our method (volumetric capture) and the motion analysis using marker-based and vision-based motion capture

systems

Fig. 4. Importing volumetric capture data into Blender

body parts closely. The next step is to use the program’s track
forward and track backward features to register each alignment
object to the mesh over every frame of the animation. The
program does this by using the Iterative Closest Point (ICP)
algorithm to register the alignment objects with the mesh [12],
[13].

Iterative Closest Point (ICP) algorithm aims to find the
transformation that aligns one set of points with a 3D surface
or another set of points. Specifically, suppose we have two sets
of 3D positions: X = {z1,...,x,}, Y = {y1, ..., yn }. Each x;
and y; is a 3D coordinate. We want to find the translation
vector ¢ and rotation matrix R that minimizes the sum of the
squared error F, where

N
Z i = Ry: — ¢[)

2l~

R and t are calculated as follows. First, make both sets of
points centered on the origin by subtracting each point from
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its center of mass.

X' ={x; - li\[:sn}
- 1 (2
N=

N
V=g — 5 Dowih
i=1
Then we calculate the singular value decomposition (SVD)
of matrix A = Z v ahyl”

A=USvT

where S has singular values and is diagonal, and both U and
V' are orthogonal matrices.
Thus the optimal R and t that minimize E are:

R=UVT

1 & 1Y
= (N sz - R Zyz)
=1 i=1

Each alignment object has two to three markers attached
to them that are used later in OpenSim. When the alignment
objects are generated, the markers are automatically placed in
certain default positions, but they can be manually moved if
needed to fit the specific subject. As the alignment objects
track to the animated mesh via ICP, the markers are animated
accordingly. Finally, the positions of the markers throughout
the animation sequence are exported to a Track Row Column
(.trc) file, just like a marker-based motion capture system
would do.



Fig. 6. Animating a skeleton model in OpenSim using volumetric capture
data

D. Motion Analysis

OpenSim [14] is an open-source software package for
biomechanical motion analysis. The OpenSim GUI provides
a user-friendly interface for motion analysis, while the Open-
Sim API is for coding. OpenSim also provides anatomically
correct skeleton and muscle models [35] with controls for
the various joint flexions and extensions, with virtual markers
already attached to the skeleton model. Since we are only
concerned with kinematic motion analysis, the muscle models
are not used in this study. When the Track Row Column (.trc)
file generated by the previous step is imported into Open-
Sim, the marker data is automatically synchronized with the
markers on the OpenSim’s skeleton model using OpenSim’s
inverse kinematic simulation. Therefore, the skeleton model
is automatically scaled to match the recorded subject, and
the two sets of markers are synchronized on every frame
of the animation, resulting in an animated skeleton model
reproducing the captured motion. With OpenSim’s powerful
kinematic motion analysis tools, the joint movements can be
calculated, analyzed, and visualized (Fig. 8).

IV. CASE STUDIES AND DISCUSSION

Fig. 7 shows the results of applying our method to two
different volumetric captures: walking and exercise routine.
Our proposed motion analysis method provides unique benefits
over marker-based or vision-based motion capture systems.
Using our process, users can apply numerical motion analysis
to the skeleton model in OpenSim while studying the animated
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Fig. 7. Motion analysis case studies

3D model from different angles in Blender (or other animation
tools). This provides users with a higher level of detail for
more in-depth motion analysis.

In general, the system performed better with the walking
motion capture (Fig. 7 left), as it consists of smaller move-
ments and minimal deformation. The exercise routine motion
capture (Fig. 7 right) contains larger movements, particularly
in the arms that swing up and down. Here the system tended
to have more difficulty tracking the forearms and in a few
situations during the tracking, alignment objects had to be
manually re-positioned before resuming tracking. However,
both data sets were able to be used in OpenSim to successfully
animate the skeleton model as shown in Fig. 7.

Right and Left Knee Angle While Walking

pEaapE R

me

Fig. 8. Rotation angles of the knee joints for the walking volumetric capture

Fig. 8 shows the rotation angle of the subject’s knees
from the walking motion capture (Fig. 7 left) calculated by
OpenSim’s kinematic motion analysis tools.

Some of the limitations of this method include the pos-
sibility of alignment objects drifting or losing tracking over
the sequence. Areas of the body that are less well-defined
tend to be harder to track. For example, when the subject’s
arm is completely straight, the system can have difficulty
determining the difference between the forearm and the upper
arm. Similarly, large and fast movements can also be difficult
to track at times. However, if an alignment object does lose
tracking, the user is able to manually realign it and resume
automatic tracking. This kind of problem is common among
motion capture systems. Even marker-based motion capture
systems often require manual data cleaning.

Recordings of subjects with baggy clothing can also be
problematic if the clothing often moves and changes shape
because it is harder to place the alignment objects and markers.



Again, this type of problem is common for vision-based
motion capture systems. Although getting a proper track of the
body movements can depend on the quality of the recording
and the scope of the subject’s movements, in general, the
system provides a steady track from which useful data can
be extracted.

V. CONCLUSION AND FUTURE WORK

We have presented a method for conducting motion analysis
with volumetric motion capture data. Volumetric capture is
relatively new and provides advantages over marker-based
or vision-based motion capture systems because volumetric
capture reconstructs full-body motion. However, volumetric
capture systems also pose new challenges for motion analysis
because traditional methods no longer apply. We propose a
three-stage pipeline that extracts motion data from volumetric
information. This process allows users to conduct both nu-
merical motion analysis and full-body motion analysis from
different angles. In the future, we plan to continue improving
the motion tracking accuracy of this method by integrating
machine learning methods. We also plan to apply this tech-
nique to sports medicine and sports performance analysis and
study its impact.
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