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Abstract—Kinematic motion analysis is widely used in health-
care, sports medicine, robotics, biomechanics, sports science,
etc. Motion capture systems are essential for motion analysis.
There are three types of motion capture systems: marker-based
capture, vision-based capture, and volumetric capture. Marker-
based motion capture systems can achieve fairly accurate results
but attaching markers to a body is inconvenient and time-
consuming. Vision-based, marker-less motion capture systems are
more desirable because of their non-intrusiveness and flexibility.
Volumetric capture is a newer and more advanced marker-
less motion capture system that can reconstruct realistic, full-
body, animated 3D character models. But volumetric capture has
rarely been used for motion analysis because volumetric motion
data presents new challenges. We propose a new method for
conducting kinematic motion analysis using volumetric capture
data. This method consists of a three-stage pipeline. First, the
motion is captured by a volumetric capture system. Then the
volumetric capture data is processed using the Iterative Closest
Points (ICP) algorithm to generate virtual markers that track
the motion. Third, the motion tracking data is imported into
the biomechanical analysis tool OpenSim for kinematic motion
analysis. Our motion analysis method enables users to apply
numerical motion analysis to the skeleton model in OpenSim
while also studying the full-body, animated 3D model from
different angles. It has the potential to provide more detailed
and in-depth motion analysis for areas such as healthcare, sports
science, and biomechanics.

Index Terms—Kinematic Motion Analysis, Volumetric Cap-
ture, Motion Capture

I. INTRODUCTION

Computer-assisted human motion analysis is used in many

areas such as healthcare, sports medicine, robotics, biome-

chanics, sports science, etc. For example, gait analysis can be

used to detect motion variations for evaluating the evolution

of neurodegenerative diseases [1]. Motion analysis is widely

used in sports medicine [2], [3] and sports science [4], [5].

Pose estimation is also an important part of computer vision

[6].

This project is supported in part by NSF grant #1852516.

Motion analysis relies on the data from motion capture

systems. There are three types of motion capture systems:

marker-based systems, vision-based systems, and volumetric

capture systems. Marker-based systems (e.g., Optitrack, Vicon,

Qualisys) can generate highly accurate motion tracking data

[7] but attaching markers to human bodies can be inconvenient

and time-consuming.

Vision-based motion capture systems (e.g., Theia, Deepmo-

tion, Captury, Simi) use computer vision to identify motion

from images or videos. Since the motion capture subjects do

not need to wear markers or any special suits, they can move

more naturally, and the vision-based motion capture systems

can be used in the field to capture live performances. The main

drawback of vision-based motion capture systems is that they

are not as accurate as the marker-based systems. But recent

advances in computer vision and machine learning, such as

OpenPose [8], has led to significant interest in using vision-

based motion capture system for motion analysis [6], [9], [10].

Volumetric motion capture systems (e.g., 4DViews, Mi-

crosoft Mixed Reality Capture Studios, Sony, EF EVE, Volo-

grams, Tetavi) go a step further than the vision-based systems

by generating textured, and animated 3D character models

instead of skeleton models [11]. The animated 3D character

models provide much more details than the skeleton models

and preserve the subtleties of the motions. In addition, the 3D

models can be imported into 3D graphics tools such as Maya,

Blender, Unity, or Unreal. Therefore, the 3D models can be

integrated into simulated 3D environments and viewed from

different angles.

Volumetric capture is relatively new and has been primarily

used for entertainment, broadcasting, advertisement, etc. Not

much work has been done in using volumetric capture for

motion analysis. Part of the reason is that volumetric motion

capture presents new challenges. Because there are no markers,

the locations of the joints need to be calculated from the

animated 3D models. Since we are dealing with 3D models,

image-based pose recognition technologies, such as OpenPose
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[8], no longer apply. A new method for motion analysis is

needed.

In this paper, we propose a new method for conducting

kinematic motion analysis using volumetric capture data. This

method consists of a three-stage pipeline. First, the motion is

captured by a volumetric capture system. Then the volumetric

capture data is processed using the Iterative Closest Points

(ICP) algorithm [12], [13] to generate virtual markers that

track the motion in every time frame. Third, the motion

tracking data is imported into the biomechanical analysis tool

OpenSim [14], where the motion tracking data is closely

fitted with an anatomically correct skeleton model. The motion

analysis is conducted using OpenSim’s powerful kinematic

motion analysis tools.

Our motion analysis method offers unique benefits over

marker-based or vision-based motion capture systems. Users

can apply numerical motion analysis to the skeleton model

in OpenSim while also studying the full-body, animated 3D

model from different angles, leading to more detailed and in-

depth motion analysis. As volumetric motion capture systems

are more widely adopted, this work will benefit many areas

that rely on motion capture data for motion analysis, such as

healthcare, biomechanics, sports medicine, sports science, etc.

II. BACKGROUND AND RELATED WORK

A. Motion Analysis

Motion analysis can be classified into three categories [1]:

spatial-temporal motion analysis, kinematic motion analysis,

and kinetic motion analysis. Spatial-temporal analyses focus

on the motion’s distance, time, and velocity. Commonly used

features include step length, stride length, step width, step

time, stride time, stance time, swing time, cadence (steps

per minute), and step velocity (distance per second). These

parameters can be obtained via accelerometers, motion capture

systems, or computer vision technologies.

Kinematic motion analyses focus on rotations. The com-

monly used features include shoulder angle, elbow angle,

wrist angle, hip angle, knee angle, pelvic tilt, foot angle, etc.

These parameters can be obtained via motion capture systems,

computer vision technologies, and gyroscope. Our research

focuses on kinematic motion analysis.

Kinetic motion analyses focus on the forces that cause the

motion. Commonly used features include arm, hip, or knee

extension/flexion moment and power. These parameters can

be obtained via force plates, pressure sensors, or instrumented

walkways. We do not consider kinetic motion analysis in this

study.

B. Motion Capture

Before motion capture systems were invented, motion anal-

ysis depended on the manual tracking of motion in images

or videos. Manual motion tracking is still occasionally used

to provide the ground truth for evaluating motion capture

systems. Marker-based motion capture systems (e.g., Opti-

track, Vicon, Qualisys) have been around for a long time

and have achieved high motion tracking accuracy [4], [7].

They are generally considered the current gold standard for

motion tracking and are often used as references for vision-

based motion capture systems. In marker-based motion capture

systems, specialty cameras or sensors track the motion of

markers attached to the motion capture subject. The output is

a skeleton model created by connecting these tracked markers.

The subjects of motion capture need to wear special suits, and

the markers may fall off during the motion capture. The most

accurate marker-based motion capture systems are expensive

and can only be used in a lab.

Vision-based, marker-less motion capture systems have also

been studied for a long time [15], [16]. A typical vision-

based motion capture system takes pictures or videos of

subjects, generates skeleton models by analyzing the pictures

or videos, and often superimposes the skeleton model onto the

original picture or video. Various motion analyses can then be

conducted with the skeleton model [6], [9], [10], [15]–[19].

Machine learning techniques can be used to identify different

poses [6], [10], [20]. In theory, vision-based motion capture

systems are more desirable than marker-based systems, but

low accuracy and reliability have prevented them from gaining

wide adoption. With the rise of machine learning [8] and better

camera technologies, the accuracy and reliability of vision-

based motion capture systems have improved significantly in

recent years and many commercial systems are available, such

as Theia, Deepmotion, Captury, and Simi. There have been a

number of reviews of recent advances in motion analysis using

vision-based motion capture systems [6], [9], [10], [17]–[19].

Volumetric capture (also called volumetric video or perfor-

mance capture) uses computer vision, computer graphics, and

advanced camera technologies to capture a moving character

and reconstruct it as an animated 3D model. [11], [21]–[29] As

in the vision-based systems, the motion capture subjects can

wear normal cloth, without any markers. While other types of

motion capture systems generate skeleton models, volumetric

capture systems generate either 3D mesh models or point

clouds, which can be imported into game engines, 3D anima-

tion tools, or other software for display or further processing.

In general, commercial volumetric capture systems, such as

4DViews and Microsoft Mixed Reality Capture Studios, use

an array of cameras to capture the motions. These systems

are expensive and can only be used in a lab. Recently, several

free mobile volumetric capture apps (e.g., Volograms, Tetavi)

have been released but their performance and feasibility are

still unclear.

Volumetric capture is still relatively new. So far, they have

primarily been used for entertainment, live broadcasting, film

and TV, advertisement, etc. Very little work has been done in

using volumetric captures for motion analysis. But volumetric

capture provides some advantages over other types of motion

capture systems. The 3D models generated by volumetric

captures not only preserve the small details of the motions

but also allow users to examine the motions from different

angles, enabling more in-depth motion analysis. However,

volumetric captures also creates new challenges for motion

analysis. Since there are no markers, the locations of the joints
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need to be calculated based on the animated 3D model. Image-

based approaches, such as OpenPose [8], no longer apply.

There have been some previous works on generating skeleton

models from 3D geometry data, which is the reverse problem

of 3D skinning. For example, Zhu, et al. [30] proposed a

system to reconstruct subject-specific anatomy models from

point clouds. Kadlecek, et al. [31] built a template anatomical

model of an average male and then developed methods to

closely fit the template model to point clouds from 3D scans.

These previous works were designed primarily for computer

animation. We are solving a similar problem but focusing on

kinematic motion analysis. Therefore, we do not need the

complicated muscle models in Kadlecek, et al. [31]. Besides,

we deal with polygon mesh models rather than point clouds.

III. METHODOLOGY

A. Overview

Fig. 1. 4DViews Volumetric Capture Studio at Georgia State University

Fig. 2. Overview of the proposed methodology

Our goal is to perform kinematic motion analysis on vol-

umetric motion capture data. This is achieved in three steps.

First, the movements of the subject are recorded using the

4DViews Volumetric Capture system (Fig. 1) [32]. The output

is an Alembic (.abc) animation file that contains an animated

3D character model.

Second, the animation file is imported into Blender [33].

Using Blender’s Python API and the Iterative Closest Point

Alignment add-on [34], a program is developed to track the

motion of the animated character, generate alignment objects,

and calculate virtual marker positions. The output is a Track

Row Column (.trc) file that stores the positions of virtual

markers at different time steps. This is the same type of file

that a marker-based motion capture system would generate.

Third, the marker tracking data is imported into OpenSim

[14], an open-source biomechanical analysis software. An

anatomical skeleton model from OpenSim is aligned with the

imported marker tracking data through inverse kinematics,

resulting in an animated skeleton model. With OpenSim’s

built-in kinematic motion analysis functions, the angles of joint

flexion and extension can be calculated and visualized.

Fig. 2 gives an overview of this process. Fig. 3 shows the

difference between our method with volumetric capture and

motion analyses with other types of motion capture systems.

B. Volumetric Motion Capture

We used the 4DViews volumetric motion capture system

[32] in our lab (Fig. 1) to capture the motion. The output of

the system is a textured and animated 3D model (or models),

which can be stored in either the 4DViews format (.4ds) or

the Alembic format (.abc). The 4DViews file can be imported

into game engines Unity or Unreal, while the Alembic file can

be imported into 3D animation tools such as Maya, Blender,

Cinema 4D, etc. In our study, we used the Alembic files.

C. Motion Tracking

Using Blender’s Python API and the Iterative Closest Point

Alignment add-on [34], a program is developed to track the

motion of the animated character. We chose Blender because

it is open source and is one of the major 3D modeling

and animation tools for processing 4DViews data. Blender’s

powerful GUI and Python API make it easier to process

volumetric capture data than developing a separate program

ourselves. Fig. 4 shows the 3D animated model after it is

imported into Blender.

Once the volumetric capture data (an Alembic file) is

imported into Blender, the program generates a set of align-

ment objects representative of different body regions. These

alignment objects are simple 3D shapes that can be scaled and

altered to match the specific motion capture subject (Fig. 5).

It requires the up-front manual work of placing the alignment

objects onto their respective positions on the body. This is why

they are called alignment objects. The initial manual alignment

works best for a pose where body parts are not overlapping,

and each region is easily defined (such as a T-pose or A-pose).

Ideally, the subject would be asked to take one of these poses

at the beginning of the recording session. This initial step is

the only manual operation in the motion tracking process. The

rest of the process is automated.

Utilizing Blender’s Boolean operator, the program generates

the intersection of the alignment objects and the base mesh,

transforming alignment objects to represent their respective
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Fig. 3. A comparison of motion analysis using our method (volumetric capture) and the motion analysis using marker-based and vision-based motion capture
systems

Fig. 4. Importing volumetric capture data into Blender

body parts closely. The next step is to use the program’s track

forward and track backward features to register each alignment

object to the mesh over every frame of the animation. The

program does this by using the Iterative Closest Point (ICP)

algorithm to register the alignment objects with the mesh [12],

[13].

Iterative Closest Point (ICP) algorithm aims to find the

transformation that aligns one set of points with a 3D surface

or another set of points. Specifically, suppose we have two sets

of 3D positions: X = {x1, ..., xn}, Y = {y1, ..., yn}. Each xi

and yi is a 3D coordinate. We want to find the translation

vector t and rotation matrix R that minimizes the sum of the

squared error E, where

E =
1

N

N∑

n=1

(‖xi −Ryi − t‖)2

R and t are calculated as follows. First, make both sets of

points centered on the origin by subtracting each point from

its center of mass.

X ′ = {xi − 1

N

N∑

i=1

xi}

Y ′ = {yi − 1

N

N∑

i=1

yi}

Then we calculate the singular value decomposition (SVD)

of matrix A =
∑N

i=1 x
′
iy

′
i
T

:

A = USV T

where S has singular values and is diagonal, and both U and

V are orthogonal matrices.

Thus the optimal R and t that minimize E are:

R = UV T

t = (
1

N

N∑

i=1

xi −R
1

N

N∑

i=1

yi)

Each alignment object has two to three markers attached

to them that are used later in OpenSim. When the alignment

objects are generated, the markers are automatically placed in

certain default positions, but they can be manually moved if

needed to fit the specific subject. As the alignment objects

track to the animated mesh via ICP, the markers are animated

accordingly. Finally, the positions of the markers throughout

the animation sequence are exported to a Track Row Column

(.trc) file, just like a marker-based motion capture system

would do.
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Fig. 5. Motion tracking using the Iterative Closest Point (ICP) algorithm

Fig. 6. Animating a skeleton model in OpenSim using volumetric capture
data

D. Motion Analysis

OpenSim [14] is an open-source software package for

biomechanical motion analysis. The OpenSim GUI provides

a user-friendly interface for motion analysis, while the Open-

Sim API is for coding. OpenSim also provides anatomically

correct skeleton and muscle models [35] with controls for

the various joint flexions and extensions, with virtual markers

already attached to the skeleton model. Since we are only

concerned with kinematic motion analysis, the muscle models

are not used in this study. When the Track Row Column (.trc)

file generated by the previous step is imported into Open-

Sim, the marker data is automatically synchronized with the

markers on the OpenSim’s skeleton model using OpenSim’s

inverse kinematic simulation. Therefore, the skeleton model

is automatically scaled to match the recorded subject, and

the two sets of markers are synchronized on every frame

of the animation, resulting in an animated skeleton model

reproducing the captured motion. With OpenSim’s powerful

kinematic motion analysis tools, the joint movements can be

calculated, analyzed, and visualized (Fig. 8).

IV. CASE STUDIES AND DISCUSSION

Fig. 7 shows the results of applying our method to two

different volumetric captures: walking and exercise routine.

Our proposed motion analysis method provides unique benefits

over marker-based or vision-based motion capture systems.

Using our process, users can apply numerical motion analysis

to the skeleton model in OpenSim while studying the animated

Fig. 7. Motion analysis case studies

3D model from different angles in Blender (or other animation

tools). This provides users with a higher level of detail for

more in-depth motion analysis.

In general, the system performed better with the walking

motion capture (Fig. 7 left), as it consists of smaller move-

ments and minimal deformation. The exercise routine motion

capture (Fig. 7 right) contains larger movements, particularly

in the arms that swing up and down. Here the system tended

to have more difficulty tracking the forearms and in a few

situations during the tracking, alignment objects had to be

manually re-positioned before resuming tracking. However,

both data sets were able to be used in OpenSim to successfully

animate the skeleton model as shown in Fig. 7.

Fig. 8. Rotation angles of the knee joints for the walking volumetric capture

Fig. 8 shows the rotation angle of the subject’s knees

from the walking motion capture (Fig. 7 left) calculated by

OpenSim’s kinematic motion analysis tools.

Some of the limitations of this method include the pos-

sibility of alignment objects drifting or losing tracking over

the sequence. Areas of the body that are less well-defined

tend to be harder to track. For example, when the subject’s

arm is completely straight, the system can have difficulty

determining the difference between the forearm and the upper

arm. Similarly, large and fast movements can also be difficult

to track at times. However, if an alignment object does lose

tracking, the user is able to manually realign it and resume

automatic tracking. This kind of problem is common among

motion capture systems. Even marker-based motion capture

systems often require manual data cleaning.

Recordings of subjects with baggy clothing can also be

problematic if the clothing often moves and changes shape

because it is harder to place the alignment objects and markers.
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Again, this type of problem is common for vision-based

motion capture systems. Although getting a proper track of the

body movements can depend on the quality of the recording

and the scope of the subject’s movements, in general, the

system provides a steady track from which useful data can

be extracted.

V. CONCLUSION AND FUTURE WORK

We have presented a method for conducting motion analysis

with volumetric motion capture data. Volumetric capture is

relatively new and provides advantages over marker-based

or vision-based motion capture systems because volumetric

capture reconstructs full-body motion. However, volumetric

capture systems also pose new challenges for motion analysis

because traditional methods no longer apply. We propose a

three-stage pipeline that extracts motion data from volumetric

information. This process allows users to conduct both nu-

merical motion analysis and full-body motion analysis from

different angles. In the future, we plan to continue improving

the motion tracking accuracy of this method by integrating

machine learning methods. We also plan to apply this tech-

nique to sports medicine and sports performance analysis and

study its impact.
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