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A B S T R A C T   

Forest fires are the result of complex interactions among human, geographic and weather conditions. Climate 
change would alter the link between forest fire and the controlling factors. The objective of the study is to model 
the forest fire occurrences and quantify the contribution of explanatory geographic, climatic and anthropogenic 
variables using satellite-derived historical fire data (2003–2019) and machine learning classifiers over the 
western Himalaya, India. The climatic variables were derived from a regional Earth system model (ROM). Along 
with the key selected explanatory variables, the conditions of neighbouring (3 × 3) pixels were incorporated to 
account for the contribution from the surrounding area. Out of the selected classifiers, random forest recorded 
the most promising performance in k-fold cross-validation (f2-score = 0.95 and f1-score = 0.94) as well as in the 
final model validation (f2-score = 0.85 and f1-score = 0.84). The elevation and mean neighbour elevation 
exhibited the highest influence (8.18% and 6.72%, respectively) in forest fire occurrences followed by near- 
surface temperatures (4.65–5.78%). We predicted the forest fire susceptibility [0, 1] for 2030, 2040 and 2050 
using the future climate projections. The predicted map can be useful to plan effective fire management strategies 
to minimize damage to the forest ecosystem.   

1. Introduction 

The forest system plays a fundamental role in the global biogeo
chemical cycle, predominately in the carbon cycle (Shen et al., 2019). 
Forest fire is an integral and inevitable component of terrestrial eco
systems and has a significant contribution to ecosystem functionality, 
land atmospheric interaction, and energy flux (Bowman et al., 2009). In 
the last few decades, the influence of forest fires has been amplified in 
shaping the environment and atmosphere (Shi et al., 2021). Especially, 
forest ecosystems are increasingly threatened by natural and human fire 
activities. Wildland or forest fire has significantly contributed to the 
budgets of atmospheric aerosol and trace gases (Akagi et al., 2011), 
which alter the local and regional air quality. Moreover, this changing 
atmospheric composition has influenced to change the short-term 
weather as well as climate (Ramanathan & Carmichael, 2008). Studies 

indicated that climate change may lead to more intense and frequent fire 
activities (Flannigan et al., 2013). Warm, windy and dry conditions 
favour fires over the Northwest, USA, and such conditions are becoming 
more frequent under climate change (Goss et al., 2020; Halofsky, 
Peterson, & Harvey, 2020). The recent climatic change has played an 
important role in increasing forest fire intensity over the Amazon forest, 
mainly in the drought years. Consequently, the lower precipitation and 
tropical North Atlantic Ocean induced warming have caused severe and 
extensive forest fires across the Amazon (Chen et al., 2017; Jolly et al., 
2015; Marengo et al., 2008). The majority of the global fire activities are 
found along the tropics, and savannas are the most affected land cover. 
Tropical forest fires in south and Central America, Africa, and Southeast 
Asia (Maurin et al., 2014; Pearson, Brown, Murray, & Sidman, 2017) 
and Asian crop residue burning (Sahu & Sheel, 2014) account for around 
90% of the world’s fires. In every year, the global average burnt area size 
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is ~423 Mha which equates to the area of the European Union (Giglio, 
Boschetti, Roy, Humber, & Justice, 2018). This large fire activity not 
only degrades the forest covers but causes loss of lives and properties. 
Therefore, understating the underlining factors and predicting future 
forest fire occurrences is an increasingly important task. 

Forest fires are becoming a dominant natural disaster and threat to 
forest ecosystems across the globe (Bowman et al., 2009). The ignition 
and spread of a forest fire is a result of a complex interaction among 
climate, topography (elevation, slope, aspect), forest type and human 
activities (Tonini et al., 2020). The elevation significantly controlled 
other local physio-climatic conditions from a high ridge to a gentle 
valley and the steeper slope aided to burn up-slope very fast (Patton & 
Coen, 2004). Additionally, the climatic parameters (i.e. temperature, 
precipitation, humidity, solar radiation, wind etc.), and biophysical 
condition of vegetation (Fraction of Absorbed Photosynthetically Active 
Radiation, Fraction of green Vegetation Cover, Leaf Area Index, Chlo
rophyll content, etc.) have significant control over the fire regime (size, 
pattern, frequency and intensity) of an ecosystem (Estes, Knapp, 
Skinner, Miller, & Preisler, 2017; Liu, Ballantyne, & Cooper, 2019; 
Marlon et al., 2008). Like the weather component, temperature posi
tively accelerates the forest fire intensity (Bar, Parida, Roberts, et al., 
2021) but precipitation immediately suppresses the fire activities. 
However, in the long run, it encourages high fire activities, through 
vegetation and fuel build-up (Earl & Simmonds, 2018; Marlon et al., 
2008). It is a fact that the regional climatic condition is substantially 
regulated by large-scale climatic oscillations, i.e. El-Niño–Southern 
Oscillation (ENSO), and teleconnection (Mason, Hamlington, Hamling
ton, Matt Jolly, & Hoffman, 2017). Apart from the climatic and envi
ronmental factors, human activities are responsible for ~90% of fire 
ignition, but the prevalent environment creates the indispensable con
dition which accelerates the intensity of fire (Bar, Parida, Roberts, et al., 
2021; Taylor, 2010). Consequently, the quantification of contributing 
geo-environmental and human factors is essential to understand the 
underlining causes and predicting future fire activities. Machine 
learning (ML) algorithms are becoming popular in forest fire detection, 
occurrence modeling and prediction studies (Abid, 2020; Bar, Parida, & 
Pandey, 2020a; Collins, Griffioen, Newell, & Mellor, 2018). 

Effective management and prevention techniques are essential to 
control forest fire activities, which could be possible through the 
appropriate prediction of spatial fire probability (Abid, 2020). Fire 
susceptibility estimates the probability of fire occurrence over space and 
time. Regional forest fire susceptibility is regulated by many factors and 
has typically nonlinear relations with complex characteristics. Hence, it 
is challenging to develop a promising forest fire predictable model (Ngoc 
Thach et al., 2018). Several approaches were developed in forest fire 
susceptibility modeling from physical process-based methods to statis
tical, and ML-based modeling (Abid, 2020; Chang et al., 2013; Han, Ryu, 
Chi, & Yeon, 2003; Tonini et al., 2020). The data-driven ML algorithms 
have also drawn wide attention for decades (Abid, 2020). The machine 
learning algorithms, such as random forest (RF) (Tonini et al., 2020; G. 
Zhang, Wang, & Liu, 2019), support vector machine (SVM) (Sakr et al., 
2010), artificial neural networks (ANN), multilayer perceptron neural 
network (Dimuccio et al., 2011; Zhang, Wang, & Liu, 2021), kernel lo
gistic regression (Hong, Pradhan, Xu, & Tien Bui, 2015), naïve Bayes 
(Avitabile et al., 2016) and gradient boosting decision tree (Dimuccio 
et al., 2011) were utilized in forest fire susceptibility modeling. Among 
the algorithms, the RF model demonstrated a highly promising accuracy 
in forest fire susceptibility modeling (Collins et al., 2018; Ramo, García, 
Rodríguez, & Chuvieco, 2018; Tonini et al., 2020). 

India is one of the forest fire-prone regions in Southeast Asia, spe
cifically the deciduous forests of central and south India, and forests in 
the west and east Himalayas (Bar, Parida, Pandey, & Kumar, 2022; Bar, 
Parida, Pandey, & Panda, 2022; Pratap Srivastava, 2013; Vadrevu et al., 
2013). In recent decades, the northwestern Himalaya experienced 
devastating forest fire activities, mostly during the hot and dry 
pre-monsoon (March to June) period (Babu. et al., 2016; Dobriyal & 

Bijalwan, 2017). The burn area increased at a rate of 72.94 km2 year−1 

over Uttarakhand and Himachal Pradesh between 2001 and 2019 (Bar, 
Parida, Roberts, et al., 2021). Some of the limited studies demonstrated 
the forest fire risk modeling based on geospatial techniques (Babu. et al., 
2016; Kumar, Meenakshi, Das Bairagi, Vandana, & Kumar, 2015), An
alytic Hierarchy Process (AHP) and fuzzy AHP (Tiwari, Shoab, & Dixit, 
2021) in the parts of western Himalaya. The remote sensing and geo
spatial information system demonstrated a relevant role in forest fire 
monitoring and assessment (Bar et al., 2020b; Chuvieco et al., 2018; 
Giglio, Schroeder, & Justice, 2016; Reddy et al., 2019). The Moderate 
Resolution Imaging Spectroradiometer (MODIS) derived global fire 
products (e.g., MOD14A1, MOD14A2, MYD14CMQ, MOD14CMQ, 
MCD64CMQ, MCD14ML, and MCD64A1) are one of the reliable fire 
dataset. From our knowledge, the present study is the first of its kind that 
modeled forest fire occurrences and predicted future fire susceptibility. 
The overarching objectives of the study are to (i) model the forest fire 
occurrences over western Himalayan, using remote sensing and regional 
climate model-derived spatial data and ML algorithms, (ii) quantify the 
contribution of geographic, climatic and anthropogenic variables on 
forest fires, and (iii) predict the fire susceptibility for 2030, 2040 and 
2050. 

2. Study area 

The study area covers parts of the western Himalaya, Himachal 
Pradesh and Uttarakhand states of India, which is a fragile mountain 
ecosystem and rich in biodiversity. Importantly, fire is a frequent human 
and naturally driven phenomenon in the Himalayas (Dobriyal & Bijal
wan, 2017). The major forest types in this mountain ecosystem are 
evergreen broadleaf and needle leaf forest, and deciduous broadleaf 
forests (Reddy, Jha, Diwakar, & Dadhwal, 2015). The elevation ranges 
from about 173 m to 7764 m (above mean sea level), and the topography 
is characterized by steep mountain ridges and narrow valleys (Fig. 1). 
The climatic condition ranges from tropical to temperate (Mal & Singh, 
2014; Parida, Pandey, & Patel, 2020), and the warmer summer or 
pre-monsoon (March to June) is the indispensable period for fire ac
tivities (Bar, Parida, Roberts, et al., 2021). The annual precipitation 
varies from 600 to 2000 mm which is mostly found in the monsoon 
season (July to September). Maximum temperature ranges from 15 ◦C to 
40 ◦C, the warmest temperature found between March and June (pre-
monsoon) (V. Kumar, Shanu, & Jahangeer, 2017; Mohd Wani, Sarda, & 
Jain, 2017). The pre-monsoonal forest fire burnt area has significantly 
increased over the last two decades (2001–2019) over this region (Bar, 
Parida, Roberts, et al., 2021). Therefore, probability or susceptibility 
based fire occurrence modeling and future prediction are essential for 
this fragile mountainous ecosystem. 

3. Data and methods 

The forest fire occurrence was modeled using the co-occurring 
geographic, climatic and anthropogenic variables, and the methedo
logical workflow presented in Fig. 2. The whole dataset has been divided 
into two parts, static geographical information (e.g., topographic, 
locational, forest type including anthropogenic) and dynamic climatic 
variables. The detailed description of the data was explained in the 
following sections and, and listed in Table 1. 

3.1. Fire data 

The MODIS data is a reliable source of fire products over the last two 
decades. The present study has adopted a MODIS-derived collection 6 
vector fire dataset (MCD14ML v0061) from 2003 to 2019. The 
MCD14ML data was produced using both AQUA and TERRA thermal 
information, processed by the National Aeronautics and Space Admin
istration (NASA) Science Computing Facility (SCF) of the University Of 
Maryland (UMD). MOD14 and MYD14 swath products flagged the active 
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fire (MCD14ML), at centre of 1 km pixel, through thermal anomaly 
(Giglio, Descloitres, Justice, & Kaufman, 2003; Justice et al., 2010). 
Compared to MCD14ML collection 5 and 5.1 (earlier versions), this fire 
product reduces false alarms and uncertainties (Giglio, Randerson, & 
van der Werf, 2013). The vector spatial fire point locations are distrib
uted from Fire Information for Resource Management System (FIRMS). 
The present study has considered fire points having a confidence level of 
more than 80%. The MODIS burn area data product, i.e., MCD64A1 was 
also used to illustrate the annual burn areas of the study area from 2003 
to 2019. 

3.2. Climatic variables 

The climatic variables, namely near surface maximum, minimum 
and average temperature (◦C), accumulated precipitation (mm/day), 

relative (%) and specific humidity (kg/kg) at 1000 and 850 hPa, solar 
radiation (W/m2) and wind vector at 10 m height at ~20 km spatial 
resolution are used to model the fire occurrences of western Himalaya 
(Table 1). These climatic data was retrieved on a daily scale from a 
regional Earth system model (ROM) (Mishra et al., 2021; Sein et al., 
2015). ROM has been forced with a global model MPI_ESM_LR using 
historical, moderate (Representative Concentration Pathway 4.5 
(RCP4.5)) and high emission scenario (RCP8.5) forcing for period 
1950–2100. The model was simulated over the CORDEX-South-Asia 
domain (Mishra et al., 2021) at horizontal grid resolution of 0.22◦ ×

0.22◦. The ROM derived climatic variables (maximum temperature, 
minimum temperature and precipitation) have exhibited a promising 
association (82–92%) with the India Meteorological Department (IMD) 
climatic data. 

Fig. 1. (a) Elevation map of the study area (Uttarakhand and Himachal Pradesh) derived from Advanced Land Observing Satellite (ALOS) World 3D (30 m) digital 
surface model (DSM) and (b) Land Use land cover map, extracted from Roy et al. (2015). 

Fig. 2. The methodological workflow of forest fire modeling and prediction over western Himalaya.  
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3.3. Topographic and land use land cover (LULC) 

The topographic variables significantly influence fire ignition and its 
spreading over the landscape. The study area mostly covers the undu
lating terrain of the western Himalayas. The topographic condition and 
land cover information are used as static geographical information. We 
used a 30 m digital surface model (DSM) retrieved from Advanced Land 
Observing Satellite (ALOS; AW3D30) data (Takaku, Futamura, Iijima, 
Tadono, & Shimada, 2007). Surface elevation (m), slope (◦), aspect (◦) 
and roughness were computed from the ALOS-based DSM. The forest 
area and type (including shrub and grassland) information were 
retrieved from a decadal land cover land use product of 2005 (Roy et al., 
2015), with a spatial resolution of 100 m. 

3.4. Anthropogenic variables 

Anthropogenic activities have a major contribution, mainly in 
igniting forest fires (Bar, Parida, Roberts, et al., 2021; Puri, Areendran, 
Raj, Mazumdar, & Joshi, 2011). Therefore, it is indispensable to 
consider the human footprint data in forest fire modeling. A gridded 
population density data (GPWv411) generated through the extrapola
tion of census data, available every 5 years (2005 − 2020) in ~1 km was 
used (SEDAC, 2018). The global Human Modification (gHM) intensity 
index is a cumulative measure of human settlement, agriculture, trans
portation (major, minor, and two-track roads; railroads), mining and 
energy production and electrical infrastructure (power lines, nighttime 
lights) intensity (Kennedy, Oakleaf, Theobald, Baruch-Mordo, & Kie
secker, 2019a). The gHM of 2016 (~1 km) was employed to include the 
various human modification related effects on forest fire over the 
western Himalaya. 

3.5. Co-occurring neighbour feature extraction 

According to the first law of Geography, the nearer things are more 
closely associated than remote things (Tobler, 1970). While ignition of a 

pixel and fire spread is not only dependent upon the weather geographic 
and vegetation conditions in that pixel/region, but also depends on the 
conditions of neighbouring pixels/regions (Zhang et al., 2019). The 
pixel-based machine learning classifiers assumed fire or non-fire is a 
function of the different explanatory factors of that pixel only. However, 
it does not take into account the state of the explanatory variables of 
neighbouring/associated regions/pixels in a particular fire or non-fire 
pixel Looking into this gap, the present study has extracted the neigh
bour information i.e., mean and entropy. A 3 × 3 kernel has been run 
over the images to compute the mean and entropy of the central pixel. 
Along the margin of the image or boundary regions, the co-occurring 
information were retrieved using the available neighbour pixels. The 
gray level co-occurrence matrixes (GLCM) package of R (Lu & Batistella, 
2005) was used to derive the gray level neighbour information for 
selected variables. 

3.6. Machine learning algorithms 

The study has adopted numbers ML classifiers, namely Logistic 
Regression (LR), Gaussian Naive Bayes (GNB), Hist Gradient Boosting 
(HGB), Extreme Gradient Boosting (XGB) and RF. These ML classifiers 
are commonly used to model processes and events in the geoscience 
discipline, specifically in forest fire modeling studies (Abid, 2020; 
Acharya et al., 2021; Chang et al., 2013; Feng, Zhao, Chen, & Zhang, 
2020; Tonini et al., 2020; Zhang et al., 2019), especially forest fire 
detection and prediction. The model parameters are briefly explained in 
the next section. 

3.7. Features selection 

Initially, the key forest fire influencing variables were selected from 
the literature (Abid, 2020; Bar, Parida, & Uma Shankar, 2021; Dimuccio 
et al., 2011; Sakr, Elhajj, Mitri, & Wejinya, 2010; Tiwari et al., 2021). 
The climatic (12 variables), geographic (5 variables), anthropogenic (2 
variables), and their 2 Gy level neighbour variables (i.e., mean and 
entropy) were used as influencing agents in the ignition and spread of 
forest fire. Along with these variables, two geo-locational variables (i.e., 
latitude and longitude) were also employed as covariates to account for 
the spatial distribution of forest fire occurrences. The main 19 variables 
and their 38 (19 × 2 = 38) neighbour occurrence information and 2 
locational variables (total 59 variables) were extracted for every pixel. 
The variable names and their code names are present in Table S1. The 
feature selection was carried out using two methods i.e., recursive 
feature elimination (RFE) and Mean Decreasing Accuracy (MDA) of the 
RF model. The RFE is an efficient algorithm in feature selection that 
attempts to reduce the collinearity of the training dataset (Thilagam & 
V.S, 2007). The RF model is used as the base model in RFE. The RFE was 
performed 18 times (starting with 6 features and 3 more were included 
with each iteration) and from a total of 59 features, 50 features were 
selected as explanatory variables for forest fire occurrence modeling. 

3.8. Model and parameters selection 

A double or nested Cross-Validation (CV) hypertuning approach was 
adopted to select the hyperparameters of the aforementioned models 
(Cawley & Talbot, 2010). The simple hyperparameter optimization 
could overfit the dataset, while the nested CV reduces the bias and aid in 
selecting the hyperparameters and model (Cawley & Talbot, 2010). The 
nested CV method uses an iterative pair of nested loops, in the outer 
loop, the hyperparameters are adjusted to optimise a model selection 
criterion (i.e., model selection). In the inner loop, the parameters are set 
to optimise a training criterion (model fitting). Here, we used 10-fold CV 
in the outer loop and 5-fold CV in the inner loop. The best combination 
of the hyperparameters of the models and the average and standard 
deviation (SD) of the models’ performance matrices were presented in 
Table 2. 

Table 1 
A list of data products used to accomplish the forest fire modelling and predic
tion over western Himalaya.  

Data Product ID Characteristics Source 

Active fire MCD14ML 
v0061 

Daily and point Fire Information for 
Resource Management 
System (FIRMS) 

Burn area MCD64A1 
v006 

Monthly and 
500m 

Land Processes 
Distributed Active 
Archive Center (LP 
DAAC) 

Climatic Variables 
(near surface (2 m) 
maximum and 
minimum 
temperature (◦C), 
accumulated 
precipitation (mm/ 
day), relative (%) 
and specific 
humidity (kg/kg) 
at 1000 and 850 
hPa, solar radiation 
(W/m2) and wind 
vector at 10m)  

Daily and ~20 
km 

Regionally coupled 
atmosphere-ocean-sea 
ice-marine 
biogeochemistry 
model (ROM) 

Digital Surface Model 
(DSM) 

AW3D30 ~30 m Advanced Land 
Observing Satellite 
(ALOS) 

Population density GPWv411 ~1 km × 1 km, 
demi-decadal 

SEDAC (2018) 

Global Human 
Modification 

gHM ~1 km × 1 km, 
available in 
2016 only 

Kennedy, Oakleaf, 
Theobald, 
Baruch-Mordo, and 
Kiesecker (2019b)  
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3.9. Model building 

After getting the optimum hyperparamerters, and the average ac
curacy matrix from the nested CV, the final model was built. The dataset 
was split into two parts, the training dataset was from 2003 to 2018, and 
the trained model was tested over 2019’s dataset. As the weather con
ditions and human activities were different in 2020–2021, due to the 
COVID-19 related lockdown (Parida, Bar, Kaskaoutis, et al., 2021; Par
ida, Bar, Roberts, et al., 2021; Parida, Bar, Singh, et al., 2021), we didn’t 
consider data from 2020 to train or test the model. The extracted 
training dataset of fire occurrence (y) classes (i.e., fire; 1 and non-fire; 0) 
were in a considerable high-class imbalance, which could create bias in 
favour of the majority class and reduce the overall model performance. 
To eradicate this class imbalance and get an optimally balanced training 
dataset, this study has employed Synthetic Minority Over-sampling 

Technique (SMOTE) (Blagus & Lusa, 2013). SMOTE did not generate 
any new information for the dataset. In the present study, the majority 
and minority classes of the training dataset were non-fire (n = 4136126) 
and fire (n = 10414) respectively, which resulted in a balanced training 
dataset (i.e., n = 52450 in each class). The contribution of the explan
atory variables (i.e., feature importance) retrieved from the mean 
decreasing accuracy (MDA) of RF (Hong Han, Guo, & Yu, 2016). 

The accuracy of nested CV and final model validation was assessed 
using precision, recall, f2–score, f1–score, Overall Accuracy, and area 
under the curve (AUC) (Goutte & Gaussier, 2005). These statistical 
measures were present in Supplement – 2. 

4. Results 

4.1. Historical distribution of forest fire 

Fig. 3 presents the spatial distribution of forest fire events and inter- 
annual burn area variability during the study period. The spatial dis
tribution of fire counts in 5 × 5 km grid cells over 18 years suggests the 
highest fire frequency (i.e., 35–40) along the southern and central part 
of the study area, specifically over Uttarakhand. The spatial distribution 
of fire events and frequency revealed a locational association (Fig. 3a) 
with a significant interannual variability (SD = 568.58 km2). The 
average pre-monsoonal burn area of this region was 748.25 km2. The 
highest burn area was observed in 2012 (1781.71 km2) and 2016 
(1753.57 km2), followed by 2009 and 2019 (Fig. 3b). 

4.2. Performance of the models in nested cross-validation 

The performances of the models were assessed through a number of 
accuracy measures in the outer loop (i.e., 10–folds CV). The highest and 
consistent performance was found in RF classifier (i.e., f2–score = 0.958 
(±0.002), f1–score = 0.940 (±0.002), recall = 0.970 (±0.003), preci
sion = 0.912 (±0.004) and OA = 0.940 (±0.002)). The best combination 
of the hyperparameters is given in Table 2. GNB and LR classifiers 
exhibited the lowest performance based on the accuracy measures. The 
XGB and HGB classifiers performance ranked after RF (i.e., the f2–score 
were 0.943 and 0.908, respectively). Based on the performance of 
models (Table 2), the study selected RF classifier for the future predic
tion of forest fires. 

4.3. Relative importance of the features 

Fig. 4 shows the relative feature importance (%) of the selected 
variables. Where, the elevation (8.62%), mean neighbour elevation (i.e., 
Elev_m; 6.71%) and temperatures at 2-m height (i.e., Temp2m, Tmin2m 
and Tmax2m; 5.80–4.78%) demonstrated the highest contribution in 

Table 2 
Nested k-fold cross-validation model-wise hyper-parameters and corresponding 
model performance metrics.  

Model Optimum-parameters Accuracy matrixes (mean 
and standard deviation) 

Logistic 
Regression 

max_iter = 200, penalty = ‘l2’, 
solver = ‘lbfgs’ 

f2-score = 0.818 (±0.003), 
f1-score = 0.777 (±0.003), 
recall = 0.848 (±0.003), 
precision = 0.717 (±0.004) 
and Accuracy = 0.767 
(±0.002) 

Gaussian Naive 
Bayes 

var_smoothing = 0.23101297 f2-score = 0.837 (±0.004), 
f1-score = 0.748 (±0.004), 
recall = 0.909 (±0.005), 
precision = 0.651(±0.004) 
and Accuracy = 0.711 
(±0.004) 

Hist Gradient 
Boosting 
Classifier 

l2_regularization = 1, 
learning_rate = 0.5, max_iter =
500, max_depth = 30 

f2-score = 0.908 (±0.004), 
f1-score = 0.904 (±0.005), 
recall = 0.911 (±0.005), 
precision = 0.898 (±0.007) 
and Accuracy = 0.906 
(±0.005) 

XGBoost 
Classifier 

n_estimators = 2000, 
max_depth = 10, learning_rate 
= 0.2 

f2-score = 0.943 (±0.003), 
f1-score = 0.942 (±0.003), 
recall = 0.943 (±0.004), 
precision = 0.943 (±0.004) 
and Accuracy = 0.940 
(±0.004) 

Random Forest 
Classifier 

n_estimators = 2000, criterion 
= ‘entropy’, max_features = 8, 
max_depth = 40. 

f2-score = 0.958 (±0.002), 
f1-score = 0.940 (±0.002), 
recall = 0.970 (±0.003), 
precision = 0.912 (±0.003) 
and Accuracy = 0.940 
(±0.002)  

Fig. 3. (a) Fire counts in 5 × 5 km grid over 2003–2020 according to MCD14ML active fire data and (b) variability of pre-monsoonal total burn area (MCD64A1) over 
Uttarakhand and Himachal Pradesh. 
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forest fire occurrences over western Himalaya. The mountainous 
topography of this region significantly controls other local physio- 
climatic conditions, from a high ridge to a gentle valley. Here, eleva
tion shows the highest contribution to forest fire occurrence than the 
near-surface temperatures. Followed by the locational covariates i.e., 
latitude and longitude (3.96% and 3.82%, respectively), Tmax2m_m, 
Temp2m_m and Rhum1000 (i.e., 2.74%, 2.50% and 2.34%, respec
tively) and population (2.06%) and others variables (Fig. 4). The lowest 
contributing variables were the precipitation and aspect variables. 
However, orders of feature importance slightly vary among models (RF, 
XGB, HGB and LR). Still, as RF demonstrated the highest and most 
consistent performance in nested CV, the study only considered the 
feature importance of RF. 

4.4. Validation of the final model 

The reported accuracy measures of the validations were presented in 
Table 3. With respect to both of the classes (i.e., fire and non-fire), RF 
demonstrated the highest accuracy (f2–score = 0.85, f1–score = 0.84, 
recall = 0.85, precision = 0.84, OA = 0.85 and AUC = 0.84), followed by 

XGB (OA = 0.83 and AUC = 0.82) and HGB (OA = 0.78 and AUC =
0.77). The GNB classifier recorded the lowest agreement in respect of all 
the accuracy measures (Table 3). The spatial agreements between the 

Fig. 4. Random Forest derived feature importance (%) in forest fire modeling.  

Table 3 
Models’ performance metrics on the tested dataset of 2019 fire occurrences.  

Model Accuracy metrics 

F2- 
score 

F1- 
score 

Recall Precision Overall 
Accuracy 
(OA) 

AUC 

Logistic 
Regression 

0.83 0.77 0.88 0.69 0.70 0.83 

Gaussian Naive 
Bayes 

0.72 0.70 0.73 0.67 0.67 0.70 

Hist-Gradient 
Boosting 
Classifier 

0.76 0.77 0.76 0.78 0.78 0.77 

XGBoost 
Classifier 

0.81 0.82 0.86 0.83 0.83 0.82 

Random Forest 
Classifier 

0.85 0.84 0.85 0.84 0.85 0.84  
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actual fire points and predicted forest fire susceptibility based on LR, 
GNB, HGB, XGB and RF were presented in Fig. 5a–e, respectively. These 
susceptibility maps suggest the major forest fire clusters are located 
along the southern slope of the study area, especially over Uttarakhand. 
The actual active fire points of 2019 were mostly located in/and around 
higher forest fire probability (close to 1) regions. 

4.5. Prediction of forest fire susceptibility 

This study also predicted the forest fire susceptibility for the years 
2030, 2040 and 2050 using the climatic scenarios of RCP4.5 and 
RCP8.5. The geographic and anthropogenic variables were kept as static 
variables. The RF derived projected forest fire susceptibility maps were 
presented in Fig. 6. Both scenarios revealed a higher probability (close to 
1) of forest fire along the southern slope of the study area in the selected 
time period, which could be attributed to increasing near-surface tem
perature. According to the RCP8.5 scenario, the higher intensity of fire 
activities would gradually extend to the middle and northern parts of the 
study area in the next decades. Both of the scenarios suggested a slightly 
decreasing trend of fire activities (in 2050) over Himachal Pradesh and 
an increasing trend in Uttarakhand (Fig. 6). We also analysed the pre
dicted fire susceptibility in 2030, 2040 and 2050 along with the change 
of elevation, our model projected the highest probability (>0.8) of fire at 
elevation <2500 m, and a lower probability of fire at higher elevation 
regions (Fig. 7). 

5. Discussion 

An appropriate prediction of forest fire susceptibility is a prerequisite 
to control, manage and reduce fire events and damages. The present 
study demonstrated the potential utilities of ML algorithms to forest fire 
modeling and prediction using large numbers of climatic, geographic 
and anthropogenic explanatory variables. Long-term historical active 
fire observation data (2003–2018) was used to train the models of fire 

occurrences. The key findings of the study indicate that the RF classifier 
performed comparatively better in nested CV (f2–score = 0.96 and 
f1–score = 0.94), as well as in model validation over 2019 (f2–score =
0.85 and f1–score = 0.84), out of the five selected classifier. As the study 
area is characterized by mountainous undulating topography, the 
elevation, Elev_m and near-surface temperatures (Temp2m, Tmin2m 
and Tmax2m) were revealed as the highest contributing variables in 
forest fire occurrence. Whereas previous studies over the western Hi
malayan region concluded that most of the fire activities are confined 
within ~2000 m of elevation where near surface-temperature is 
comparatively higher (Babu, Roy, & Prasad, 2016; Bar, Parida, & Uma 
Shankar, 2021; Roy, 2005). Typically, the forest fire of this region is 
location-specific, especially over the southern slope, therefore, the pre
sent study found a substantial influence of geo-locational variables in 
fire occurrence. The neighbour conditions (gray level information: mean 
and entropy) of the fire and non-fire pixels showed a significant control 
in fire occurrence, especially the neighbour temperature i.e., Tmax2m_m 
and Temp2m_m. The anthropogenic variables (i.e., population and 
gHM) confirmed a moderate contribution in forest fire incidence over 
the study area. The precipitation and their neighbour (i.e., Preci_m and 
Preci_e) variables accounted for a lower contribution in forest fire in
cidences of western Himalaya, because the present study considered 
only the pre-monsoon season (March to June) which is mostly the dry 
season, very fewer amounts of precipitation occur over the main 
fire-affected parts of the region. Both bottom-up (topography, forest 
type) and top-down (climatic and human activities) controls of the forest 
fire depicted a significant contribution in forest fire but specifically, the 
bottom-up i.e., elevation revealed the highest controls over forest fire of 
this region. A similar finding was reported by Gill & Taylor (2009) in 
California, USA which indicated fire regimes were strongly influenced 
by bottom-up factors (i.e., elevation gradient). The forest fire suscepti
bility over 2030, 2040 and 2050 was predicted using RCP4.5 (moderate) 
and RCP8.5 (high emission) climate projections. This indicates higher 
fire activities along the southern slopes of the study area and the fire 

Fig. 5. (a) Logistic regression, (b) Gaussian Naive Bayes, (c) Hist Gradient Boosting, (d) XGBoost and (e) Random Forest derived forest fire susceptibility (0–1) map, 
where 0 and 1 indicate no-fire and high probability to fire, respectively. The actual fire active fire points of 2019 were overlaid. 
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intensity would gradually extend to middle and northern higher 
elevated parts, specifically over Uttarakhand. The elevation gradient 
showed that higher fire susceptibility pixels would be mostly over 
<2500m elevation regions due to sufficient fuel loads, comparatively 
higher temperature and dryness and human activities. Moreover, Babu 
et al. (2016) and Bar, Parida, and Uma Shankar (2021) identified similar 
factors that were responsible for higher fire activities in western 
Himalaya. 

In this study, we adopted a nested CV approach to hyperparameters 
optimization and model selection which reduces the overfitting proba
bility of CV as well as in the parameters selection method (Cawley & 

Talbot, 2010). We incorporated the neighbourhood information (i.e., 
mean and entropy) along with the main explanatory variables, to ac
count for the influence of the neighbour pixel’s condition in forest fire 
occurrence and spread. As per the performance matrix, the RF was the 
comparatively more promising model than XGB, HGB, GNB and LR. The 
previous machine learning-based forest fire probability studies also re
ported a superior performance of RF classifiers (Collins et al., 2018; 
Pourtaghi, Pourghasemi, Aretano, & Semeraro, 2016; Tonini et al., 
2020; Zhang et al., 2019) over different parts of the globe. Among the 
selected models (i.e., RF, XGB, HGB, GNB and LR), GNB had the lowest 
performance (i.e. f2–score = 0.72, f1–score = 0.70 and AUC = 0.70), 

Fig. 6. Random Forest derived predicted susceptibility of forest fire and corresponding histogram over 2030, 2040 and 2050 using RCP4.5 and RCP8.5 cli
matic scenarios. 

Fig. 7. Predicted forest fire susceptibility along the gradient of elevation (m) over Uttarakhand and Himachal Pradesh. The class value and corresponding colour 
code present the fire susceptibility alongside elevation. 
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which might be due to the collinearity, feature selection, data volume 
and data type (Zhang, 2004). We analysed the collinearity among the 
climatic, geographic and anthropogenic variables, but if we drop the 
variables based on collinearity then a good number of important vari
ables (near surface-temperatures, relative and absolute humidity, 
elevation, population density, human modification, among others) will 
be out of the model, which directly reduces the performance of the 
models. 

The remote sensing derived geographic, human, and climatic; i.e., 
regional earth system model-derived variables were employed to model 
the fire occurrences over the western Himalaya. We used the active fire 
product of MODIS, version 6 (MCD14ML). The MCD14ML product is 
generated from both Terra and Aqua thermal channels (in ~1 km), the 
product would miss the fire spots not actively burning during the sat
ellite overpass. In the process of forest fire prediction, this study 
assumed the geographic including geo-locational variables and anthro
pogenic variables as static variables where the future predicted 
geographic and anthropogenic variables need to incorporate while for
est fire prediction to get more robust predicted fire susceptibility. 
Another significant shortcoming of the study is that the future predicted 
forest fire susceptibility is heavily reliant on the projected climatic 
scenarios, which are based on a few assumptions and have significant 
uncertainty. Apart from all this, the present study could be used to 
navigate the short-term prediction of forest fires and their control and 
prevention by the forest authority. 

6. Conclusions 

The historical forest fire occurrence from MODIS was modeled as a 
function of selected geographic, human and climatic (ROM derived) 
variables for the western Himalaya. The study considered both geo- 
environmental conditions and human activities to understand forest 
fire occurrences (i.e., fire and non-fire) using ML models or classifiers. 
The hyper-parameters and the selection of the best classifier were car
ried out using a nested CV grid searching method, which reduces the 
overfitting probability. RF appeared as the most promising classifier in 
nested CV as well as in the final model validation followed by XGB, HGB, 
LR and GNB. The elevation and the Elev_m recorded the highest 
contribution in forest fire occurrences. Followed by the near-surface 
temperatures, geo-locational covariates and mean neighbour tempera
tures and relative humidity. A promising association (up to 85%) be
tween actual and predicted fire was found. As well, the spatial 
associations of predicted susceptibility and actual forest fire of 2019 
exhibited a close association. The study demonstrated the potential use 
of satellite, reanalysis and regional climate model-derived data in forest 
fire modeling and prediction over a mountainous region. The temporal 
availability of geographical and anthropogenic data is limited which can 
reduce the prediction accuracy of the forest fire. The predicted future 
fire susceptibility maps could aid to navigate the probable fire occur
rence spots to control and manage forest fires. Nevertheless, it has been 
suggested that forest management authorities may start implementing 
fuel breaks along the southern slope as well as around high-value 
resources. 
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