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ARTICLE INFO ABSTRACT

Handling Editor: E. Hunja Waithaka Forest fires are the result of complex interactions among human, geographic and weather conditions. Climate
change would alter the link between forest fire and the controlling factors. The objective of the study is to model
the forest fire occurrences and quantify the contribution of explanatory geographic, climatic and anthropogenic
variables using satellite-derived historical fire data (2003-2019) and machine learning classifiers over the
western Himalaya, India. The climatic variables were derived from a regional Earth system model (ROM). Along
with the key selected explanatory variables, the conditions of neighbouring (3 x 3) pixels were incorporated to
account for the contribution from the surrounding area. Out of the selected classifiers, random forest recorded
the most promising performance in k-fold cross-validation (f2-score = 0.95 and f1-score = 0.94) as well as in the
final model validation (f2-score = 0.85 and fl-score = 0.84). The elevation and mean neighbour elevation
exhibited the highest influence (8.18% and 6.72%, respectively) in forest fire occurrences followed by near-
surface temperatures (4.65-5.78%). We predicted the forest fire susceptibility [0, 1] for 2030, 2040 and 2050
using the future climate projections. The predicted map can be useful to plan effective fire management strategies
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to minimize damage to the forest ecosystem.

1. Introduction

The forest system plays a fundamental role in the global biogeo-
chemical cycle, predominately in the carbon cycle (Shen et al., 2019).
Forest fire is an integral and inevitable component of terrestrial eco-
systems and has a significant contribution to ecosystem functionality,
land atmospheric interaction, and energy flux (Bowman et al., 2009). In
the last few decades, the influence of forest fires has been amplified in
shaping the environment and atmosphere (Shi et al., 2021). Especially,
forest ecosystems are increasingly threatened by natural and human fire
activities. Wildland or forest fire has significantly contributed to the
budgets of atmospheric aerosol and trace gases (Akagi et al., 2011),
which alter the local and regional air quality. Moreover, this changing
atmospheric composition has influenced to change the short-term
weather as well as climate (Ramanathan & Carmichael, 2008). Studies
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indicated that climate change may lead to more intense and frequent fire
activities (Flannigan et al., 2013). Warm, windy and dry conditions
favour fires over the Northwest, USA, and such conditions are becoming
more frequent under climate change (Goss et al., 2020; Halofsky,
Peterson, & Harvey, 2020). The recent climatic change has played an
important role in increasing forest fire intensity over the Amazon forest,
mainly in the drought years. Consequently, the lower precipitation and
tropical North Atlantic Ocean induced warming have caused severe and
extensive forest fires across the Amazon (Chen et al., 2017; Jolly et al.,
2015; Marengo et al., 2008). The majority of the global fire activities are
found along the tropics, and savannas are the most affected land cover.
Tropical forest fires in south and Central America, Africa, and Southeast
Asia (Maurin et al., 2014; Pearson, Brown, Murray, & Sidman, 2017)
and Asian crop residue burning (Sahu & Sheel, 2014) account for around
90% of the world’s fires. In every year, the global average burnt area size
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is ~423 Mha which equates to the area of the European Union (Giglio,
Boschetti, Roy, Humber, & Justice, 2018). This large fire activity not
only degrades the forest covers but causes loss of lives and properties.
Therefore, understating the underlining factors and predicting future
forest fire occurrences is an increasingly important task.

Forest fires are becoming a dominant natural disaster and threat to
forest ecosystems across the globe (Bowman et al., 2009). The ignition
and spread of a forest fire is a result of a complex interaction among
climate, topography (elevation, slope, aspect), forest type and human
activities (Tonini et al., 2020). The elevation significantly controlled
other local physio-climatic conditions from a high ridge to a gentle
valley and the steeper slope aided to burn up-slope very fast (Patton &
Coen, 2004). Additionally, the climatic parameters (i.e. temperature,
precipitation, humidity, solar radiation, wind etc.), and biophysical
condition of vegetation (Fraction of Absorbed Photosynthetically Active
Radiation, Fraction of green Vegetation Cover, Leaf Area Index, Chlo-
rophyll content, etc.) have significant control over the fire regime (size,
pattern, frequency and intensity) of an ecosystem (Estes, Knapp,
Skinner, Miller, & Preisler, 2017; Liu, Ballantyne, & Cooper, 2019;
Marlon et al., 2008). Like the weather component, temperature posi-
tively accelerates the forest fire intensity (Bar, Parida, Roberts, et al.,
2021) but precipitation immediately suppresses the fire activities.
However, in the long run, it encourages high fire activities, through
vegetation and fuel build-up (Earl & Simmonds, 2018; Marlon et al.,
2008). It is a fact that the regional climatic condition is substantially
regulated by large-scale climatic oscillations, i.e. El-Nino-Southern
Oscillation (ENSO), and teleconnection (Mason, Hamlington, Hamling-
ton, Matt Jolly, & Hoffman, 2017). Apart from the climatic and envi-
ronmental factors, human activities are responsible for ~90% of fire
ignition, but the prevalent environment creates the indispensable con-
dition which accelerates the intensity of fire (Bar, Parida, Roberts, et al.,
2021; Taylor, 2010). Consequently, the quantification of contributing
geo-environmental and human factors is essential to understand the
underlining causes and predicting future fire activities. Machine
learning (ML) algorithms are becoming popular in forest fire detection,
occurrence modeling and prediction studies (Abid, 2020; Bar, Parida, &
Pandey, 2020a; Collins, Griffioen, Newell, & Mellor, 2018).

Effective management and prevention techniques are essential to
control forest fire activities, which could be possible through the
appropriate prediction of spatial fire probability (Abid, 2020). Fire
susceptibility estimates the probability of fire occurrence over space and
time. Regional forest fire susceptibility is regulated by many factors and
has typically nonlinear relations with complex characteristics. Hence, it
is challenging to develop a promising forest fire predictable model (Ngoc
Thach et al., 2018). Several approaches were developed in forest fire
susceptibility modeling from physical process-based methods to statis-
tical, and ML-based modeling (Abid, 2020; Chang et al., 2013; Han, Ryu,
Chi, & Yeon, 2003; Tonini et al., 2020). The data-driven ML algorithms
have also drawn wide attention for decades (Abid, 2020). The machine
learning algorithms, such as random forest (RF) (Tonini et al., 2020; G.
Zhang, Wang, & Liu, 2019), support vector machine (SVM) (Sakr et al.,
2010), artificial neural networks (ANN), multilayer perceptron neural
network (Dimuccio et al., 2011; Zhang, Wang, & Liu, 2021), kernel lo-
gistic regression (Hong, Pradhan, Xu, & Tien Bui, 2015), naive Bayes
(Avitabile et al., 2016) and gradient boosting decision tree (Dimuccio
et al., 2011) were utilized in forest fire susceptibility modeling. Among
the algorithms, the RF model demonstrated a highly promising accuracy
in forest fire susceptibility modeling (Collins et al., 2018; Ramo, Garcia,
Rodriguez, & Chuvieco, 2018; Tonini et al., 2020).

India is one of the forest fire-prone regions in Southeast Asia, spe-
cifically the deciduous forests of central and south India, and forests in
the west and east Himalayas (Bar, Parida, Pandey, & Kumar, 2022; Bar,
Parida, Pandey, & Panda, 2022; Pratap Srivastava, 2013; Vadrevu et al.,
2013). In recent decades, the northwestern Himalaya experienced
devastating forest fire activities, mostly during the hot and dry
pre-monsoon (March to June) period (Babu. et al., 2016; Dobriyal &
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Bijalwan, 2017). The burn area increased at a rate of 72.94 km? year’1
over Uttarakhand and Himachal Pradesh between 2001 and 2019 (Bar,
Parida, Roberts, et al., 2021). Some of the limited studies demonstrated
the forest fire risk modeling based on geospatial techniques (Babu. et al.,
2016; Kumar, Meenakshi, Das Bairagi, Vandana, & Kumar, 2015), An-
alytic Hierarchy Process (AHP) and fuzzy AHP (Tiwari, Shoab, & Dixit,
2021) in the parts of western Himalaya. The remote sensing and geo-
spatial information system demonstrated a relevant role in forest fire
monitoring and assessment (Bar et al., 2020b; Chuvieco et al., 2018;
Giglio, Schroeder, & Justice, 2016; Reddy et al., 2019). The Moderate
Resolution Imaging Spectroradiometer (MODIS) derived global fire
products (e.g., MOD14A1, MOD14A2, MYD14CMQ, MOD14CMQ,
MCD64CMQ, MCD14ML, and MCD64A1) are one of the reliable fire
dataset. From our knowledge, the present study is the first of its kind that
modeled forest fire occurrences and predicted future fire susceptibility.
The overarching objectives of the study are to (i) model the forest fire
occurrences over western Himalayan, using remote sensing and regional
climate model-derived spatial data and ML algorithms, (ii) quantify the
contribution of geographic, climatic and anthropogenic variables on
forest fires, and (iii) predict the fire susceptibility for 2030, 2040 and
2050.

2. Study area

The study area covers parts of the western Himalaya, Himachal
Pradesh and Uttarakhand states of India, which is a fragile mountain
ecosystem and rich in biodiversity. Importantly, fire is a frequent human
and naturally driven phenomenon in the Himalayas (Dobriyal & Bijal-
wan, 2017). The major forest types in this mountain ecosystem are
evergreen broadleaf and needle leaf forest, and deciduous broadleaf
forests (Reddy, Jha, Diwakar, & Dadhwal, 2015). The elevation ranges
from about 173 m to 7764 m (above mean sea level), and the topography
is characterized by steep mountain ridges and narrow valleys (Fig. 1).
The climatic condition ranges from tropical to temperate (Mal & Singh,
2014; Parida, Pandey, & Patel, 2020), and the warmer summer or
pre-monsoon (March to June) is the indispensable period for fire ac-
tivities (Bar, Parida, Roberts, et al., 2021). The annual precipitation
varies from 600 to 2000 mm which is mostly found in the monsoon
season (July to September). Maximum temperature ranges from 15 °C to
40 °C, the warmest temperature found between March and June (pre--
monsoon) (V. Kumar, Shanu, & Jahangeer, 2017; Mohd Wani, Sarda, &
Jain, 2017). The pre-monsoonal forest fire burnt area has significantly
increased over the last two decades (2001-2019) over this region (Bar,
Parida, Roberts, et al., 2021). Therefore, probability or susceptibility
based fire occurrence modeling and future prediction are essential for
this fragile mountainous ecosystem.

3. Data and methods

The forest fire occurrence was modeled using the co-occurring
geographic, climatic and anthropogenic variables, and the methedo-
logical workflow presented in Fig. 2. The whole dataset has been divided
into two parts, static geographical information (e.g., topographic,
locational, forest type including anthropogenic) and dynamic climatic
variables. The detailed description of the data was explained in the
following sections and, and listed in Table 1.

3.1. Fire data

The MODIS data is a reliable source of fire products over the last two
decades. The present study has adopted a MODIS-derived collection 6
vector fire dataset (MCD14ML v0061) from 2003 to 2019. The
MCD14ML data was produced using both AQUA and TERRA thermal
information, processed by the National Aeronautics and Space Admin-
istration (NASA) Science Computing Facility (SCF) of the University Of
Maryland (UMD). MOD14 and MYD14 swath products flagged the active
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Fig. 1. (a) Elevation map of the study area (Uttarakhand and Himachal Pradesh) derived from Advanced Land Observing Satellite (ALOS) World 3D (30 m) digital
surface model (DSM) and (b) Land Use land cover map, extracted from Roy et al. (2015).
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Fig. 2. The methodological workflow of forest fire modeling and prediction over western Himalaya.

fire (MCD14ML), at centre of 1 km pixel, through thermal anomaly
(Giglio, Descloitres, Justice, & Kaufman, 2003; Justice et al., 2010).
Compared to MCD14ML collection 5 and 5.1 (earlier versions), this fire
product reduces false alarms and uncertainties (Giglio, Randerson, &
van der Werf, 2013). The vector spatial fire point locations are distrib-
uted from Fire Information for Resource Management System (FIRMS).
The present study has considered fire points having a confidence level of
more than 80%. The MODIS burn area data product, i.e., MCD64A1 was
also used to illustrate the annual burn areas of the study area from 2003
to 2019.

3.2. Climatic variables

The climatic variables, namely near surface maximum, minimum
and average temperature (°C), accumulated precipitation (mm/day),

relative (%) and specific humidity (kg/kg) at 1000 and 850 hPa, solar
radiation (W/mz) and wind vector at 10 m height at ~20 km spatial
resolution are used to model the fire occurrences of western Himalaya
(Table 1). These climatic data was retrieved on a daily scale from a
regional Earth system model (ROM) (Mishra et al., 2021; Sein et al.,
2015). ROM has been forced with a global model MPI_ESM LR using
historical, moderate (Representative Concentration Pathway 4.5
(RCP4.5)) and high emission scenario (RCP8.5) forcing for period
1950-2100. The model was simulated over the CORDEX-South-Asia
domain (Mishra et al., 2021) at horizontal grid resolution of 0.22° x
0.22°. The ROM derived climatic variables (maximum temperature,
minimum temperature and precipitation) have exhibited a promising
association (82-92%) with the India Meteorological Department (IMD)
climatic data.
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Table 1
A list of data products used to accomplish the forest fire modelling and predic-
tion over western Himalaya.

Data Product ID Characteristics Source

Active fire MCD14ML Daily and point Fire Information for
v0061 Resource Management

System (FIRMS)

Burn area MCD64A1 Monthly and Land Processes
v006 500m Distributed Active
Archive Center (LP
DAAC)

Climatic Variables Daily and ~20 Regionally coupled
(near surface (2 m) km atmosphere-ocean-sea
maximum and ice-marine
minimum biogeochemistry
temperature (°C), model (ROM)
accumulated
precipitation (mm/
day), relative (%)
and specific
humidity (kg/kg)
at 1000 and 850
hPa, solar radiation
(W/m2) and wind
vector at 10m)

Digital Surface Model =~ AW3D30 ~30m Advanced Land
(DSM) Observing Satellite

(ALOS)

Population density GPWv411 ~1km x 1 km, SEDAC (2018)

demi-decadal

Global Human gHM ~1km x 1 km, Kennedy, Oakleaf,
Modification available in Theobald,

2016 only Baruch-Mordo, and

Kiesecker (2019b)

3.3. Topographic and land use land cover (LULC)

The topographic variables significantly influence fire ignition and its
spreading over the landscape. The study area mostly covers the undu-
lating terrain of the western Himalayas. The topographic condition and
land cover information are used as static geographical information. We
used a 30 m digital surface model (DSM) retrieved from Advanced Land
Observing Satellite (ALOS; AW3D30) data (Takaku, Futamura, Iijima,
Tadono, & Shimada, 2007). Surface elevation (m), slope (°), aspect (°)
and roughness were computed from the ALOS-based DSM. The forest
area and type (including shrub and grassland) information were
retrieved from a decadal land cover land use product of 2005 (Roy et al.,
2015), with a spatial resolution of 100 m.

3.4. Anthropogenic variables

Anthropogenic activities have a major contribution, mainly in
igniting forest fires (Bar, Parida, Roberts, et al., 2021; Puri, Areendran,
Raj, Mazumdar, & Joshi, 2011). Therefore, it is indispensable to
consider the human footprint data in forest fire modeling. A gridded
population density data (GPWv411) generated through the extrapola-
tion of census data, available every 5 years (2005 — 2020) in ~1 km was
used (SEDAC, 2018). The global Human Modification (gHM) intensity
index is a cumulative measure of human settlement, agriculture, trans-
portation (major, minor, and two-track roads; railroads), mining and
energy production and electrical infrastructure (power lines, nighttime
lights) intensity (Kennedy, Oakleaf, Theobald, Baruch-Mordo, & Kie-
secker, 2019a). The gHM of 2016 (~1 km) was employed to include the
various human modification related effects on forest fire over the
western Himalaya.

3.5. Co-occurring neighbour feature extraction

According to the first law of Geography, the nearer things are more
closely associated than remote things (Tobler, 1970). While ignition of a
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pixel and fire spread is not only dependent upon the weather geographic
and vegetation conditions in that pixel/region, but also depends on the
conditions of neighbouring pixels/regions (Zhang et al., 2019). The
pixel-based machine learning classifiers assumed fire or non-fire is a
function of the different explanatory factors of that pixel only. However,
it does not take into account the state of the explanatory variables of
neighbouring/associated regions/pixels in a particular fire or non-fire
pixel Looking into this gap, the present study has extracted the neigh-
bour information i.e., mean and entropy. A 3 x 3 kernel has been run
over the images to compute the mean and entropy of the central pixel.
Along the margin of the image or boundary regions, the co-occurring
information were retrieved using the available neighbour pixels. The
gray level co-occurrence matrixes (GLCM) package of R (Lu & Batistella,
2005) was used to derive the gray level neighbour information for
selected variables.

3.6. Machine learning algorithms

The study has adopted numbers ML classifiers, namely Logistic
Regression (LR), Gaussian Naive Bayes (GNB), Hist Gradient Boosting
(HGB), Extreme Gradient Boosting (XGB) and RF. These ML classifiers
are commonly used to model processes and events in the geoscience
discipline, specifically in forest fire modeling studies (Abid, 2020;
Acharya et al., 2021; Chang et al., 2013; Feng, Zhao, Chen, & Zhang,
2020; Tonini et al.,, 2020; Zhang et al., 2019), especially forest fire
detection and prediction. The model parameters are briefly explained in
the next section.

3.7. Features selection

Initially, the key forest fire influencing variables were selected from
the literature (Abid, 2020; Bar, Parida, & Uma Shankar, 2021; Dimuccio
et al., 2011; Sakr, Elhajj, Mitri, & Wejinya, 2010; Tiwari et al., 2021).
The climatic (12 variables), geographic (5 variables), anthropogenic (2
variables), and their 2 Gy level neighbour variables (i.e., mean and
entropy) were used as influencing agents in the ignition and spread of
forest fire. Along with these variables, two geo-locational variables (i.e.,
latitude and longitude) were also employed as covariates to account for
the spatial distribution of forest fire occurrences. The main 19 variables
and their 38 (19 x 2 = 38) neighbour occurrence information and 2
locational variables (total 59 variables) were extracted for every pixel.
The variable names and their code names are present in Table S1. The
feature selection was carried out using two methods i.e., recursive
feature elimination (RFE) and Mean Decreasing Accuracy (MDA) of the
RF model. The RFE is an efficient algorithm in feature selection that
attempts to reduce the collinearity of the training dataset (Thilagam &
V.S, 2007). The RF model is used as the base model in RFE. The RFE was
performed 18 times (starting with 6 features and 3 more were included
with each iteration) and from a total of 59 features, 50 features were
selected as explanatory variables for forest fire occurrence modeling.

3.8. Model and parameters selection

A double or nested Cross-Validation (CV) hypertuning approach was
adopted to select the hyperparameters of the aforementioned models
(Cawley & Talbot, 2010). The simple hyperparameter optimization
could overfit the dataset, while the nested CV reduces the bias and aid in
selecting the hyperparameters and model (Cawley & Talbot, 2010). The
nested CV method uses an iterative pair of nested loops, in the outer
loop, the hyperparameters are adjusted to optimise a model selection
criterion (i.e., model selection). In the inner loop, the parameters are set
to optimise a training criterion (model fitting). Here, we used 10-fold CV
in the outer loop and 5-fold CV in the inner loop. The best combination
of the hyperparameters of the models and the average and standard
deviation (SD) of the models’ performance matrices were presented in
Table 2.
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Table 2
Nested k-fold cross-validation model-wise hyper-parameters and corresponding
model performance metrics.

Model Optimum-parameters Accuracy matrixes (mean
and standard deviation)
Logistic max_iter = 200, penalty = ‘12’, f2-score = 0.818 (£0.003),
Regression solver = ‘Ibfgs’ f1-score = 0.777 (£0.003),

recall = 0.848 (4+0.003),
precision = 0.717 (+0.004)
and Accuracy = 0.767
(+0.002)

f2-score = 0.837 (£0.004),
fl-score = 0.748 (+£0.004),
recall = 0.909 (+0.005),
precision = 0.651(+0.004)
and Accuracy = 0.711
(+0.004)

f2-score = 0.908 (+0.004),

Gaussian Naive
Bayes

var_smoothing = 0.23101297

Hist Gradient 12_regularization = 1,

Boosting learning_rate = 0.5, max_iter = f1-score = 0.904 (£0.005),
Classifier 500, max_depth = 30 recall = 0.911 (40.005),
precision = 0.898 (+0.007)
and Accuracy = 0.906
(+0.005)
XGBoost n_estimators = 2000, f2-score = 0.943 (+0.003),
Classifier max_depth = 10, learning rate f1-score = 0.942 (+0.003),

=0.2 recall = 0.943 (+0.004),
precision = 0.943 (+0.004)
and Accuracy = 0.940
(+0.004)

f2-score = 0.958 (+0.002),
f1-score = 0.940 (+0.002),
recall = 0.970 (£0.003),
precision = 0.912 (+0.003)
and Accuracy = 0.940
(+0.002)

Random Forest
Classifier

n_estimators = 2000, criterion
= ‘entropy’, max_features = 8,
max_depth = 40.

3.9. Model building

After getting the optimum hyperparamerters, and the average ac-
curacy matrix from the nested CV, the final model was built. The dataset
was split into two parts, the training dataset was from 2003 to 2018, and
the trained model was tested over 2019’s dataset. As the weather con-
ditions and human activities were different in 2020-2021, due to the
COVID-19 related lockdown (Parida, Bar, Kaskaoutis, et al., 2021; Par-
ida, Bar, Roberts, et al., 2021; Parida, Bar, Singh, et al., 2021), we didn’t
consider data from 2020 to train or test the model. The extracted
training dataset of fire occurrence (y) classes (i.e., fire; 1 and non-fire; 0)
were in a considerable high-class imbalance, which could create bias in
favour of the majority class and reduce the overall model performance.
To eradicate this class imbalance and get an optimally balanced training
dataset, this study has employed Synthetic Minority Over-sampling

4
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Technique (SMOTE) (Blagus & Lusa, 2013). SMOTE did not generate
any new information for the dataset. In the present study, the majority
and minority classes of the training dataset were non-fire (n = 4136126)
and fire (n = 10414) respectively, which resulted in a balanced training
dataset (i.e., n = 52450 in each class). The contribution of the explan-
atory variables (i.e., feature importance) retrieved from the mean
decreasing accuracy (MDA) of RF (Hong Han, Guo, & Yu, 2016).

The accuracy of nested CV and final model validation was assessed
using precision, recall, f2-score, fl-score, Overall Accuracy, and area
under the curve (AUC) (Goutte & Gaussier, 2005). These statistical
measures were present in Supplement — 2.

4. Results
4.1. Historical distribution of forest fire

Fig. 3 presents the spatial distribution of forest fire events and inter-
annual burn area variability during the study period. The spatial dis-
tribution of fire counts in 5 x 5 km grid cells over 18 years suggests the
highest fire frequency (i.e., 35-40) along the southern and central part
of the study area, specifically over Uttarakhand. The spatial distribution
of fire events and frequency revealed a locational association (Fig. 3a)
with a significant interannual variability (SD = 568.58 km?). The
average pre-monsoonal burn area of this region was 748.25 km?2. The
highest burn area was observed in 2012 (1781.71 kmz) and 2016
(1753.57 kmz), followed by 2009 and 2019 (Fig. 3b).

4.2. Performance of the models in nested cross-validation

The performances of the models were assessed through a number of
accuracy measures in the outer loop (i.e., 10-folds CV). The highest and
consistent performance was found in RF classifier (i.e., f2-score = 0.958
(£0.002), f1-score = 0.940 (+£0.002), recall = 0.970 (+0.003), preci-
sion = 0.912 (4+0.004) and OA = 0.940 (4+0.002)). The best combination
of the hyperparameters is given in Table 2. GNB and LR classifiers
exhibited the lowest performance based on the accuracy measures. The
XGB and HGB classifiers performance ranked after RF (i.e., the f2-score
were 0.943 and 0.908, respectively). Based on the performance of
models (Table 2), the study selected RF classifier for the future predic-
tion of forest fires.

4.3. Relative importance of the features
Fig. 4 shows the relative feature importance (%) of the selected
variables. Where, the elevation (8.62%), mean neighbour elevation (i.e.,

Elev_m; 6.71%) and temperatures at 2-m height (i.e., Temp2m, Tmin2m
and Tmax2m; 5.80-4.78%) demonstrated the highest contribution in

40 b)

1500

1000

15
500
10
. | o I 1il.

2003 2005 2007 2009 2011 2013 2015 2017 2019
Year

Bun Area ( km?)

Fig. 3. (a) Fire counts in 5 x 5 km grid over 2003-2020 according to MCD14ML active fire data and (b) variability of pre-monsoonal total burn area (MCD64A1) over

Uttarakhand and Himachal Pradesh.
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Fig. 4. Random Forest derived feature importance (%) in forest fire modeling.

forest fire occurrences over western Himalaya. The mountainous
topography of this region significantly controls other local physio-
climatic conditions, from a high ridge to a gentle valley. Here, eleva-
tion shows the highest contribution to forest fire occurrence than the
near-surface temperatures. Followed by the locational covariates i.e.,
latitude and longitude (3.96% and 3.82%, respectively), Tmax2m_m,
Temp2m_m and Rhum1000 (i.e., 2.74%, 2.50% and 2.34%, respec-
tively) and population (2.06%) and others variables (Fig. 4). The lowest
contributing variables were the precipitation and aspect variables.
However, orders of feature importance slightly vary among models (RF,
XGB, HGB and LR). Still, as RF demonstrated the highest and most
consistent performance in nested CV, the study only considered the
feature importance of RF.

4.4. Validation of the final model

The reported accuracy measures of the validations were presented in
Table 3. With respect to both of the classes (i.e., fire and non-fire), RF
demonstrated the highest accuracy (f2-score = 0.85, fl1-score = 0.84,
recall = 0.85, precision = 0.84, OA = 0.85 and AUC = 0.84), followed by

Table 3
Models’ performance metrics on the tested dataset of 2019 fire occurrences.
Model Accuracy metrics
F2- F1- Recall  Precision  Overall AUC
score score Accuracy
(0A)
Logistic 0.83 0.77 0.88 0.69 0.70 0.83
Regression
Gaussian Naive 0.72 0.70 0.73 0.67 0.67 0.70
Bayes
Hist-Gradient 0.76 0.77 0.76 0.78 0.78 0.77
Boosting
Classifier
XGBoost 0.81 0.82 0.86 0.83 0.83 0.82
Classifier
Random Forest 0.85 0.84 0.85 0.84 0.85 0.84
Classifier

XGB (OA = 0.83 and AUC = 0.82) and HGB (OA = 0.78 and AUC =
0.77). The GNB classifier recorded the lowest agreement in respect of all
the accuracy measures (Table 3). The spatial agreements between the
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actual fire points and predicted forest fire susceptibility based on LR,
GNB, HGB, XGB and RF were presented in Fig. 5a—e, respectively. These
susceptibility maps suggest the major forest fire clusters are located
along the southern slope of the study area, especially over Uttarakhand.
The actual active fire points of 2019 were mostly located in/and around
higher forest fire probability (close to 1) regions.

4.5. Prediction of forest fire susceptibility

This study also predicted the forest fire susceptibility for the years
2030, 2040 and 2050 using the climatic scenarios of RCP4.5 and
RCP8.5. The geographic and anthropogenic variables were kept as static
variables. The RF derived projected forest fire susceptibility maps were
presented in Fig. 6. Both scenarios revealed a higher probability (close to
1) of forest fire along the southern slope of the study area in the selected
time period, which could be attributed to increasing near-surface tem-
perature. According to the RCP8.5 scenario, the higher intensity of fire
activities would gradually extend to the middle and northern parts of the
study area in the next decades. Both of the scenarios suggested a slightly
decreasing trend of fire activities (in 2050) over Himachal Pradesh and
an increasing trend in Uttarakhand (Fig. 6). We also analysed the pre-
dicted fire susceptibility in 2030, 2040 and 2050 along with the change
of elevation, our model projected the highest probability (>0.8) of fire at
elevation <2500 m, and a lower probability of fire at higher elevation
regions (Fig. 7).

5. Discussion

An appropriate prediction of forest fire susceptibility is a prerequisite
to control, manage and reduce fire events and damages. The present
study demonstrated the potential utilities of ML algorithms to forest fire
modeling and prediction using large numbers of climatic, geographic
and anthropogenic explanatory variables. Long-term historical active
fire observation data (2003-2018) was used to train the models of fire
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occurrences. The key findings of the study indicate that the RF classifier
performed comparatively better in nested CV (f2-score = 0.96 and
fl-score = 0.94), as well as in model validation over 2019 (f2-score =
0.85 and fl-score = 0.84), out of the five selected classifier. As the study
area is characterized by mountainous undulating topography, the
elevation, Elev.m and near-surface temperatures (Temp2m, Tmin2m
and Tmax2m) were revealed as the highest contributing variables in
forest fire occurrence. Whereas previous studies over the western Hi-
malayan region concluded that most of the fire activities are confined
within ~2000 m of elevation where near surface-temperature is
comparatively higher (Babu, Roy, & Prasad, 2016; Bar, Parida, & Uma
Shankar, 2021; Roy, 2005). Typically, the forest fire of this region is
location-specific, especially over the southern slope, therefore, the pre-
sent study found a substantial influence of geo-locational variables in
fire occurrence. The neighbour conditions (gray level information: mean
and entropy) of the fire and non-fire pixels showed a significant control
in fire occurrence, especially the neighbour temperature i.e., Tmax2m_m
and Temp2m_m. The anthropogenic variables (i.e., population and
gHM) confirmed a moderate contribution in forest fire incidence over
the study area. The precipitation and their neighbour (i.e., Preci_m and
Preci_e) variables accounted for a lower contribution in forest fire in-
cidences of western Himalaya, because the present study considered
only the pre-monsoon season (March to June) which is mostly the dry
season, very fewer amounts of precipitation occur over the main
fire-affected parts of the region. Both bottom-up (topography, forest
type) and top-down (climatic and human activities) controls of the forest
fire depicted a significant contribution in forest fire but specifically, the
bottom-up i.e., elevation revealed the highest controls over forest fire of
this region. A similar finding was reported by Gill & Taylor (2009) in
California, USA which indicated fire regimes were strongly influenced
by bottom-up factors (i.e., elevation gradient). The forest fire suscepti-
bility over 2030, 2040 and 2050 was predicted using RCP4.5 (moderate)
and RCP8.5 (high emission) climate projections. This indicates higher
fire activities along the southern slopes of the study area and the fire

u Actual fire points of 2019

08

06

04

02

Predicted probability of fire

00

Fig. 5. (a) Logistic regression, (b) Gaussian Naive Bayes, (c) Hist Gradient Boosting, (d) XGBoost and (e) Random Forest derived forest fire susceptibility (0-1) map,
where 0 and 1 indicate no-fire and high probability to fire, respectively. The actual fire active fire points of 2019 were overlaid.
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Fig. 6. Random Forest derived predicted susceptibility of forest fire and corresponding histogram over 2030, 2040 and 2050 using RCP4.5 and RCP8.5 cli-
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Fig. 7. Predicted forest fire susceptibility along the gradient of elevation (m) over Uttarakhand and Himachal Pradesh. The class value and corresponding colour

code present the fire susceptibility alongside elevation.

intensity would gradually extend to middle and northern higher
elevated parts, specifically over Uttarakhand. The elevation gradient
showed that higher fire susceptibility pixels would be mostly over
<2500m elevation regions due to sufficient fuel loads, comparatively
higher temperature and dryness and human activities. Moreover, Babu
et al. (2016) and Bar, Parida, and Uma Shankar (2021) identified similar
factors that were responsible for higher fire activities in western
Himalaya.

In this study, we adopted a nested CV approach to hyperparameters
optimization and model selection which reduces the overfitting proba-
bility of CV as well as in the parameters selection method (Cawley &

Talbot, 2010). We incorporated the neighbourhood information (i.e.,
mean and entropy) along with the main explanatory variables, to ac-
count for the influence of the neighbour pixel’s condition in forest fire
occurrence and spread. As per the performance matrix, the RF was the
comparatively more promising model than XGB, HGB, GNB and LR. The
previous machine learning-based forest fire probability studies also re-
ported a superior performance of RF classifiers (Collins et al., 2018;
Pourtaghi, Pourghasemi, Aretano, & Semeraro, 2016; Tonini et al.,
2020; Zhang et al., 2019) over different parts of the globe. Among the
selected models (i.e., RF, XGB, HGB, GNB and LR), GNB had the lowest
performance (i.e. f2-score = 0.72, fl-score = 0.70 and AUC = 0.70),
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which might be due to the collinearity, feature selection, data volume
and data type (Zhang, 2004). We analysed the collinearity among the
climatic, geographic and anthropogenic variables, but if we drop the
variables based on collinearity then a good number of important vari-
ables (near surface-temperatures, relative and absolute humidity,
elevation, population density, human modification, among others) will
be out of the model, which directly reduces the performance of the
models.

The remote sensing derived geographic, human, and climatic; i.e.,
regional earth system model-derived variables were employed to model
the fire occurrences over the western Himalaya. We used the active fire
product of MODIS, version 6 (MCD14ML). The MCD14ML product is
generated from both Terra and Aqua thermal channels (in ~1 km), the
product would miss the fire spots not actively burning during the sat-
ellite overpass. In the process of forest fire prediction, this study
assumed the geographic including geo-locational variables and anthro-
pogenic variables as static variables where the future predicted
geographic and anthropogenic variables need to incorporate while for-
est fire prediction to get more robust predicted fire susceptibility.
Another significant shortcoming of the study is that the future predicted
forest fire susceptibility is heavily reliant on the projected climatic
scenarios, which are based on a few assumptions and have significant
uncertainty. Apart from all this, the present study could be used to
navigate the short-term prediction of forest fires and their control and
prevention by the forest authority.

6. Conclusions

The historical forest fire occurrence from MODIS was modeled as a
function of selected geographic, human and climatic (ROM derived)
variables for the western Himalaya. The study considered both geo-
environmental conditions and human activities to understand forest
fire occurrences (i.e., fire and non-fire) using ML models or classifiers.
The hyper-parameters and the selection of the best classifier were car-
ried out using a nested CV grid searching method, which reduces the
overfitting probability. RF appeared as the most promising classifier in
nested CV as well as in the final model validation followed by XGB, HGB,
LR and GNB. The elevation and the Elev.m recorded the highest
contribution in forest fire occurrences. Followed by the near-surface
temperatures, geo-locational covariates and mean neighbour tempera-
tures and relative humidity. A promising association (up to 85%) be-
tween actual and predicted fire was found. As well, the spatial
associations of predicted susceptibility and actual forest fire of 2019
exhibited a close association. The study demonstrated the potential use
of satellite, reanalysis and regional climate model-derived data in forest
fire modeling and prediction over a mountainous region. The temporal
availability of geographical and anthropogenic data is limited which can
reduce the prediction accuracy of the forest fire. The predicted future
fire susceptibility maps could aid to navigate the probable fire occur-
rence spots to control and manage forest fires. Nevertheless, it has been
suggested that forest management authorities may start implementing
fuel breaks along the southern slope as well as around high-value
resources.
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