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ABSTRACT: Thermolysis of a 1:1:1 mixture of MeLH (MeL = {(2,6-'Pr2CsH3)NC(Me)}.CH), N-hydroxyphthalimide (HOPth), and
ZnEt: in toluene at 77 °C provided [MeLZn(OPth)] (1) in good yield after work-up. Subsequent reduction of 1 with 1.3 equiv
of KCs and 1 equiv of 2.2.2-cryptand, in THF, provided [K(2.2.2-cryptand)][MeLZn(OPth)] (2) in 74 % yield after work-up.
Characterization of 2 via X-ray crystallography and EPR spectroscopy reveals the presence of an S = 1/2 radical on the N-oxy-
phthalimide ligand. Importantly, these data represent the first structural and spectroscopic confirmation of the redox activity
of a metal-bound N-oxy-phthalimide fragment, expanding the range of structurally characterized redox-active ligands.

The utility of N-hydroxyphthalimide (HOPth) and its deriv-
atives in synthetic chemistry has been well established over
the past two decades.> For example, the highly reactive
phthalimide N-oxyl radical (i.e., PINO®*; Scheme 1, inset),
which is generated from HOPth in situ, can oxidize a variety
of organic substrates, including lignin model compounds,®
cycloalkanes,’-1! alkenes,'215> and alcohols,16-1° as well as a
wide variety of benzylic compounds,?°-26 under both metal-
free and metal-assisted conditions. N-
(acyloxy)phthalimides and N-alkoxyphthalimides have also
found widespread use, specifically as convenient sources of
alkyl radicals.> 27 This approach was pioneered by Okada
and co-workers, who demonstrated that N-
(acyloxy)phthalimides could cross-couple with electron-de-
ficient olefins under photocatalytic conditions.?8 2° The pro-
posed mechanism involves a photo-initiated reduction of
the N-(acyloxy)phthalimide to form a radical anion, which
subsequently undergoes decarboxylation and formation of
an alkyl radical (Scheme 1), which is then trapped by sub-
strate.

Scheme 1. Proposed mechanism of alkyl radical generation
from N-(acyloxy)phthalimide. Inset: molecular structure of
phthalimide N-oxyl radical (PINO®).

This method of alkyl radical generation has since been
widely adopted,>3° and includes examples of its use in al-
kylation,31-33 aminylation,34 35 alkoxylation,3¢ borylation,37-38
indenylation,3° arylation,*® and alkenylation.3% 41 42 This
methodology has also been incorporated into the synthesis
of complex natural products.#>-#> These transformations are
often metal-catalyzed, and while the proposed catalytic cy-
cles do not typically invoke L,M(OPth) complex formation,
it seems reasonable that electron transfer to the
phthalimide group could occur via an inner sphere mecha-
nism. However, our structural understanding of metal N-
oxy-phthalimide complexes is limited. Indeed, only a hand-
ful have been structurally characterized, including [(n-
BusP)Ag(OPth)]2,*6 [Cr(N)(OPth)(NiPr2)z],*” and
[Sb(OPth)2Ph3].#8  More importantly, to our knowledge,
there are no reported structurally characterized examples
of the OPth radical species, which hampers our understand-
ing of the mechanism of decarboxylation and potentially
limits the further development of this chemistry.

Nonetheless, our general understanding of redox non-inno-
cent ligands has grown significantly in recent years.4-56
Complexes with redox non-innocent ligands have proven
useful in catalysis, where the non-innocent ligands function
as electron reservoirs, allowing first row transition metals
to easily perform multi-electron transformations.>” Redox
non-innocent ligands can also enable multi-electron chem-
istry in the actinides,>%¢0 and they play an important role in
biology.61

Previously, we reported on the synthesis and reactivity of a
series of metal complexes containing the redox-active
TEMPO ligand, including [FeCls(n!-TEMPO)] (TEMPO =
2,2,6,6-tetramethylpiperidine-N-oxide), [AlXz(n!-TEMPO)]
(X =Cl, Br), and [(n*-TEMPO):BBr].62-¢4 In these examples,
the TEMPO moiety was bound to the metal ion in both its
radical and anionic forms. Building on this work, we have



now prepared a novel B-diketiminate-supported® Zn
phthalimide N-oxide complex, which allowed us to explore
the redox activity of the phthalimide fragment, using both
structural and spectroscopic techniques.

Heating a 1:1:1 mixture of MeLH (ML = {(2,6-
iPr2CsH3s)NC(Me)}2CH), HOPth, and ZnEt: in toluene at 77 °C
for 4 d produced a bright orange suspension. Work-up of
this reaction mixture provided [MeLZn(OPth)] (1) in 77%
isolated yield (Scheme 2, top).
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Scheme 2. Syntheses of complexes 1 and 2.

Complex 1 crystallizes with two independent molecules in
the asymmetric unit as the Et20 solvate, 1-1.5Et20. It fea-
tures a tetrahedral Zn?* center, wherein the OPth ligand
adopts a bidentate 0,0-x? coordination mode (Figure 1;
crystallographic data are given in the SI, Table S1). The met-
rical parameters of the two molecules within the asymmet-
ric unit are very similar, and the parameters of only one will
be discussed in detail. Not surprisingly, the Zn-0 distance of
the N-bound oxygen atom (Zn1-02 = 1.979(2) A; Figure 2)
is shorter than the Zn-0 distance of the C-bound oxygen
atom (Zn1-01 = 2.088(2) A), reflecting the greater anionic
character of 02. Additionally, the C-O distance of the Zn-
bound carbonyl group is longer (C30-01 = 1.246(3) A) than
the C-0 distance of the free carbonyl (C31-03 = 1.208(4) A),
consistent with activation of the C=0 fragment upon ligation
to Zn?*. The phthalimide N-C distances in 1 are also in-
equivalent (i.e., N3-C31 = 1.414(4) A and N3-C30 =
1.353(3) A). Overall, these metrical parameters suggest the
presence of localized n-bonds between N3 and C30 and be-
tween 03 and C31, as drawn for 1 in Scheme 2. Consistent
with this suggestion, the sum of interatomic angles around
N3is 359.9°, as expected for an sp2-hybridized nitrogen. For
comparison, the C-0 distances in free HOPth are equivalent
(1.210(5) and 1.214(5) A; Figure 2). The N-C distances in
free HOPth are also equivalent (1.384(6) and 1.397(6) A).
Both observations are consistent with a delocalized elec-
tronic structure in HOPth, in contrast to the situation for 1.

Figure 1. Solid-state structure of 1-1.5Et20. Thermal ellip-
soids set at 50% probability. Et20 solvate molecules and hy-
drogen atoms omitted for clarity. N-aryl substituents shown
in wireframe.

To our knowledge, the 0,0-x? N-oxy-phthalimide binding
mode observed in 1 is unique. For comparison, [(n-
BusP)Ag(OPth)]2 and [Sns02MesCl2(OPth)z] exhibit O-k':p
binding modes of their phthalimide ligands,*> ¢ whereas
[Cr(N)(OPth)(NPrz2)z] and [Sb(OPth):Phs] exhibit O-x!
binding modes.*”- 48 Interestingly, in these examples the N-
oxy-phthalimide group maintains its delocalized electronic
structure. For example, [(n-BusP)Ag(OPth)]: exhibits indis-
tinguishable N-C distances (1.389(1) and 1.397(1) A) and
indistinguishable C-0 distances (1.219(1) and 1.213(1) A).

The 'H NMR spectrum of complex 1 in Ce¢Ds features dou-
blets at 6.77 and 6.47 ppm, which are assignable to the two
unique C-H environments on the N-oxy-phthalimide ligand
(Figure S1). Likewise, the spectrum features doublets at
1.53 and 1.20 ppm, which are assignable to the two dia-
stereotopic isopropyl CHs environments of the N-aryl sub-
stituents of the B-diketiminate ligand. Both observations
are diagnostic of a C2y-symmetric complex, which contrasts
with the Cs symmetry observed in the solid-state. This dis-
crepancy can be rationalized by invoking rapid exchange of
the Zn-ligated carbonyl group (01 in Figure 1) with the un-
ligated carbonyl group (03). Alternatively, the OPth ligand
may adopt an n! coordination mode in solution, as is ob-
served for [Cr(N)(OPth)(NiPrz)z2] and [Sb(OPth):Phs].47 48
The IR spectrum of 1 (KBr pellet) features vco modes at
1793 and 1766 cm (Figure S9). For comparison, free
HOPth features vco modes at slightly higher energies (1833
and 1782 cm), consistent with the weakening expected
upon ligation.¢” Finally, the cyclic voltammogram of 1 in
THF reveals a reversible oxidation feature at -1.84 V (vs
Fc/Fc*; Figure S13), which we attribute to the reduction of
the N-oxy-phthalimide ligand.
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Figure 2. Bond distance (&) comparison for free HOPth
(black), 1-1.5Et20 (red), and 2 (blue). Carbon atoms shown
in gray, oxygen atoms shown in red, nitrogen atom shown
in blue, and zinc atom shown in lavender. Structure shown

is that of 1. Metrical parameters for HOPth taken from Ref
68

The cyclic voltammogram of 1 suggested that its 1e- reduc-
tion product could be isolable. Gratifyingly, reaction of 1 in
THF with 1.3 equiv of KCs, in the presence of 2.2.2-cryptand,
quickly produced a deep olive green solution. Work-up of
the reaction mixture permitted isolation of [K(2.2.2-
cryptand)][MeLZn(OPth)] (2) in 74% yield (Scheme 2, bot-
tom). Consistent with the anticipated paramagnetism, the
signals in its 'TH NMR spectrum are extremely broad (Figure
S3). In particular, a broad resonance at 5.11 ppm is assign-
able to the y-CH position of the B-diketiminate ligand,
whereas broad resonances at 2.04 and 1.35 ppm are assign-
able to its diastereotopic isopropyl CHs groups of the N-aryl
substituents. Additionally, we observe broad resonances at
3.17 and 2.23 ppm, which are assignable to the 2.2.2-
cryptand moiety. Finally, the IR spectrum of 2 (KBr pellet)
features a ~100 cm! redshift of its vco modes relative to 1
(Figure S10), consistent with the expected decrease in the
C=0 bond order upon reduction.

Complex 2 was also characterized by X-ray crystallography.
It crystallizes in the triclinic space group P-1 as a discrete
cation/anion pair (Figure S8). As was observed for 1, its
OPth ligand is bound in a 0,0-k? fashion to the tetrahedral
Zn?* center. Additionally, the Zn-0 distance of the N-bound
oxygen atom (Zn1-02 = 1.978(4) A; Figure 2) is indistin-
guishable to that observed for 1 by the 3o criterion. In con-
trast, however, the Zn-0 distance of the C-bound oxygen
atom in 2 (1.983(4) A) is considerably shorter (Figure 2).
Moreover, the two C-O distances in 2 are within error
(1.246(7) and 1.254(7) A), while the N-C distances are in-
equivalent (1.424(7) and 1.374(6) A). Overall, these met-
rical parameters suggest the presence of a localized n-bond
between N3 and C31 and localization of the unpaired elec-
tron at C30, as drawn for 2 in Scheme 2. The sum of intera-
tomic angles around N3 (360.0°) is also consistent with this
hypothesis.

The X-band solution-phase EPR spectrum of complex 2, rec-
orded in toluene at room temperature, displays a narrow
isotropic peak at g = 2.0010 indicative of an § = 1/2 organic
radical (Figure 3; see also Figure S5).%° Upon cooling to 110
K, the EPR spectrum of 2 remains centered at the same g

value, but broadens somewhat (Figure S6). To better un-
derstand these spectra, the electronic structure of 2 was in-
vestigated by density functional theory (DFT) calculations
using the ORCA software package.’® 7! For computational ef-
ficiency and simplicity, the B-diketiminate Ar groups were
replaced by Me groups. This truncated structure is denoted
2'.The [K(2.2.2-cryptand)]* moiety was also omitted. Its op-
timized geometry, 2’-opt, differs only slightly from the ex-
perimental structure (Figures S14 and S15; Cartesian coor-
dinates are given in Table S4). Nevertheless, the optimized
structure maintained the 0,0-x? chelate interaction.
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Figure 3. Room temperature X-band EPR spectrum (black
trace) of 2 (4.9 mM in toluene; 9.72515 GHz; field modula-
tion amplitude 4.0 G) with simulation (lavender trace). The
simulation parameters are based on DFT calculations that
provided isotropic hyperfine coupling constants for the 14N
and 'H nuclei in 2’-opt (see Table S3; only the largest mag-
nitude couplings are included). It is possible to simulate the
experimental spectrum absent any hyperfine coupling, but
with a broader linewidth (13 MHz, Gaussian, hwhm).

We also calculated the EPR parameters for 2’ and 2'-opt;
specifically, the g tensor and hyperfine coupling tensors for
14N and 'H (Table S3). The values for 2’ and 2’-opt are es-
sentially identical, and only those of 2'-opt will be discussed
in detail. For comparison, these parameters were calculated
also for PINO* (see SI for complete computational details).
In all cases, the calculated g tensors were very close to the
free electron value with anisotropy in the range of that ob-
served experimentally. More importantly, the nitroxyl 1“N
hyperfine coupling calculated for 2’-opt is reduced from
that for PINO®, while coupling to the four H atoms of the aryl
ring is increased relative to that for PINO®.72 As a conse-
quence of the reduced |A(**N)| value and increased |A(*H)|
values, the EPR signal of 2 appears as a singlet, rather than
the resolved triplet of PINO® and other related nitroxyl rad-
icals.2  The nature of the delocalization within the
phthalimide fragment can also be seen by inspecting the rel-
evant molecular orbital (91a in 2’-opt), which is shown in
Figure 4.



Figure 4. Isosurface (+0.04 au) of the SOMO (910) in 2'-opt.

Intriguingly, the hyperfine coupling to ¢7Zn is calculated to
be non-zero (ranging from 1.5 - 2.0 MHz, depending on
model). This value is too small to generate satellite peaks,
in contrast to the spectrum observed for the closely-related
Mg complex, [MeLMg(OCPh2)(DMAP)].7”®> Nonetheless, this
prediction inspired us to use the results of Rieger to esti-
mate what such a species would yield in terms of spin pop-
ulation on Zn (Table S6).7475 In this regard, our extrapola-
tion of Rieger’s method corresponds to <0.1% of a spin,
demonstrating that 2 is definitively a Zn(II) coordination
complex.

In summary, we have structurally characterized the first ex-
ample of a N-oxy-phthalimide complex featuring radical
character within its phthalimide ligand, definitively estab-
lishing the redox activity of this ligand. Our EPR spectro-
scopic studies reveal a S = 1/2 delocalized organic radical
with a smaller |A(*#N)| hyperfine coupling relative to typical
nitroxyl radicals. These data are somewhat inconsistent
with the solid-state metrical parameters of the reduced N-
oxy-phthalimide fragment, which suggest that the radical is
localized on a carbonyl group. Nonetheless, these structural
and spectroscopic insights should facilitate further develop-
ment of N-(acyloxy)phthalimide decarboxylation in organic
synthesis. This work also expands the range of structurally-
characterized redox-active ligands.
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SYNOPSIS TOC: Characterization of [K(2.2.2-cryptand)][MeLZn(OPth)] (MeL = {(2,6-Pr2CsH3)NC(Me)}.CH) via X-ray
crystallography and EPR spectroscopy reveals the presence of an S = 1/2 radical on the phthalimide ligand.
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